JP2016151477A - Pressure sensor - Google Patents

Pressure sensor Download PDF

Info

Publication number
JP2016151477A
JP2016151477A JP2015028806A JP2015028806A JP2016151477A JP 2016151477 A JP2016151477 A JP 2016151477A JP 2015028806 A JP2015028806 A JP 2015028806A JP 2015028806 A JP2015028806 A JP 2015028806A JP 2016151477 A JP2016151477 A JP 2016151477A
Authority
JP
Japan
Prior art keywords
pressure
pressure wave
propagation
dividing
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015028806A
Other languages
Japanese (ja)
Other versions
JP6373202B2 (en
Inventor
敬生 近藤
Takao Kondo
敬生 近藤
山崎 易治
Yasuji Yamazaki
易治 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2015028806A priority Critical patent/JP6373202B2/en
Publication of JP2016151477A publication Critical patent/JP2016151477A/en
Application granted granted Critical
Publication of JP6373202B2 publication Critical patent/JP6373202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pressure sensor for detecting collisions at a plurality of places of an automobile separately.SOLUTION: A pressure sensor according to the present invention has an enclosure 7, a pressure detection element 8 disposed inside the enclosure 7, and pressure wave propagation paths 11a, 11b for propagating pressure waves Va and Vb produced as an automobile is subjected to pressure, and further includes a plurality of introduction parts for introducing the pressure waves Va and Vb into the enclosure 7 via the pressure wave propagation paths 11a, 11b, and a divided path formation unit 12 for dividing the pressure wave propagation path 11b formed in all or other than one of the plurality of introduction parts and forming a plurality of divided paths 13 and 14 differing in the propagation distance of the pressure wave Vb, a difference in the propagation distance of pressure waves between the plurality of introduction parts being mutually different.SELECTED DRAWING: Figure 1

Description

この発明は、圧力センサに係り、特に、自動車が圧迫されることにより生じる圧力波を検出する圧力センサに関する。   The present invention relates to a pressure sensor, and more particularly to a pressure sensor that detects a pressure wave generated when a vehicle is compressed.

従来から、自動車の衝突を検出するために圧力センサが利用されている。一般的に、圧力センサは、筐体内に圧力検出素子を配置して構成されており、例えば、自動車が衝突して圧迫されることにより生じる圧力波を筐体内に導き、その圧力波を圧力検出素子で検出する。このような圧力センサを自動車の外面近傍に配置することにより自動車の衝突を先行して検出することができ、例えば衝突の検出により車内のエアバッグを速やかに展開して搭乗者を衝突の衝撃から確実に保護することができる。   Conventionally, pressure sensors have been used to detect automobile collisions. Generally, a pressure sensor is configured by disposing a pressure detection element in a housing. For example, a pressure wave generated by a car colliding and being compressed is guided into the housing, and the pressure wave is detected by pressure. Detect with element. By arranging such a pressure sensor in the vicinity of the outer surface of the vehicle, it is possible to detect the collision of the vehicle in advance, for example, by quickly deploying the airbag in the vehicle by detecting the collision, It can be surely protected.

ここで、衝突は自動車の様々な箇所で生じるため、これらの衝突に対応するにはそれぞれの箇所に圧力センサを配置する必要があり、圧力センサの数が増加して装置が複雑化すると共にコストの増加を招くおそれがあった。このため、自動車の複数箇所における衝突を1つの圧力センサで検出することが求められている。   Here, since collisions occur in various parts of the automobile, it is necessary to arrange pressure sensors at the respective parts in order to cope with these collisions, which increases the number of pressure sensors, complicates the apparatus and reduces the cost. May increase. For this reason, it is required to detect a collision at a plurality of locations of an automobile with a single pressure sensor.

そこで、複数箇所の衝突を1つの圧力センサで検出する技術として、例えば、特許文献1には、複数のドアの内部を複数のチューブを介してチューブ統合容器に接続し、複数のドアにおける内部空気の圧力変化をチューブ統合容器へ伝搬する車両用衝突検知システムが提案されている。この車両用衝突検知システムでは、複数のドアにおける内部空気の圧力変化に起因してチューブ統合容器に内部空気の圧力変化が生じ、この圧力変化を圧力検出センサで検出するため、1つの圧力検出センサで複数のドアにおける衝突の発生を検出することができる。   Therefore, as a technique for detecting a collision at a plurality of locations with a single pressure sensor, for example, Patent Document 1 discloses that the interior of a plurality of doors is connected to a tube integrated container via a plurality of tubes, and the internal air in the plurality of doors. A vehicle collision detection system that propagates the pressure change to the tube integrated container has been proposed. In this vehicle collision detection system, the pressure change of the internal air occurs in the tube integrated container due to the pressure change of the internal air at the plurality of doors, and this pressure change is detected by the pressure detection sensor. It is possible to detect the occurrence of a collision at a plurality of doors.

特開2007−127537号公報JP 2007-127537 A

しかしながら、特許文献1の車両用衝突検知システムは、いずれのドアに衝突が生じた場合でもチューブ統合容器の内部空気は同様の圧力変化を示すため、自動車の複数箇所における衝突を区別して検出することは困難であった。   However, the vehicle collision detection system disclosed in Patent Document 1 distinguishes and detects collisions at a plurality of locations in an automobile because the internal air of the tube integrated container shows the same pressure change regardless of which door has a collision. Was difficult.

この発明は、このような従来の問題点を解消するためになされたもので、自動車の複数箇所における衝突を区別して検出する圧力センサを提供することを目的とする。   The present invention has been made to solve such a conventional problem, and an object thereof is to provide a pressure sensor that distinguishes and detects a collision at a plurality of locations of an automobile.

この発明に係る圧力センサは、筐体と、筐体内に配置される圧力検出素子と、自動車が圧迫されることにより生じた圧力波を伝搬させる圧力波伝搬路を有し、圧力波伝搬路を介して圧力波を筐体内に導入する複数の導入部と、複数の導入部のうち全てまたは1つ以外に形成された圧力波伝搬路を分割して圧力波の伝搬距離が異なる複数の分割路を形成する分割路形成部とを備え、複数の導入部の間で圧力波の伝搬距離の差が互いに異なるものである。   The pressure sensor according to the present invention includes a housing, a pressure detection element disposed in the housing, and a pressure wave propagation path for propagating a pressure wave generated by the automobile being compressed. A plurality of introduction portions for introducing pressure waves into the housing via a plurality, and a plurality of division passages having different propagation distances of pressure waves by dividing pressure wave propagation passages formed in all or other than the plurality of introduction portions And a difference in pressure wave propagation distance between the plurality of introduction portions.

ここで、分割路形成部は、複数の導入部のうち1つ以外に設けることが好ましい。   Here, it is preferable to provide the dividing path forming portion other than one of the plurality of introducing portions.

また、分割路形成部は、複数の分割路のうち1つ以外を圧力波の伝搬距離が長くなるように変形することが好ましい。   Moreover, it is preferable that a division path formation part deform | transforms so that the propagation distance of a pressure wave may become long except for one of several division paths.

また、複数の導入部は、自動車の複数箇所から延びて圧力波を伝搬する複数の伝搬チューブを接続するために筐体から外部に突出すると共に内部に圧力波伝搬路が形成された複数の接続部に設けることが好ましい。
また、複数の導入部は、自動車の複数箇所から延びて筐体に接続されると共に内部に圧力波伝搬路が形成された伝搬チューブに設けることもできる。
In addition, the plurality of introduction portions protrude from the housing to connect a plurality of propagation tubes that propagate from a plurality of locations of the automobile and propagate pressure waves, and a plurality of connections in which pressure wave propagation paths are formed inside It is preferable to provide in the part.
Further, the plurality of introduction portions can be provided in a propagation tube that extends from a plurality of locations of the automobile and is connected to the housing and has a pressure wave propagation path formed therein.

また、筐体内に配置され、圧力波伝搬路から筐体内にのみ圧力波を通過させる弁をさらに有することが好ましい。   Moreover, it is preferable to further have a valve which is disposed in the housing and allows the pressure wave to pass only from the pressure wave propagation path into the housing.

また、複数の導入部は、圧力波伝搬路がそれぞれ形成された第1の導入部と第2の導入部からなり、分割路形成部は、第1の導入部に形成された圧力波伝搬路のみに2つの分割路を形成すると共に、2つの分割路を伝搬する圧力波の伝搬距離が異なるように一方の分割路を変形することができる。   In addition, the plurality of introduction parts are composed of a first introduction part and a second introduction part in which pressure wave propagation paths are respectively formed, and the division path formation part is a pressure wave propagation path formed in the first introduction part. Only one of the two dividing paths can be deformed so that the propagation distance of the pressure wave propagating through the two dividing paths is different.

この発明によれば、複数の導入部のうち全てまたは1つ以外に形成された圧力波伝搬路を分割して圧力波の伝搬距離が異なる複数の分割路を形成すると共に複数の導入部の間で圧力波の伝搬距離の差が異なるので、自動車の複数箇所における衝突を区別して検出する圧力センサを提供することが可能となる。   According to the present invention, the pressure wave propagation path formed in all or one of the plurality of introduction parts is divided to form a plurality of division paths having different propagation distances of pressure waves and between the introduction parts. Since the difference in the propagation distance of the pressure wave is different, it is possible to provide a pressure sensor that distinguishes and detects collisions at a plurality of locations of the automobile.

この発明の実施の形態1に係る圧力センサを備えた衝突検出装置の構成を示す図である。It is a figure which shows the structure of the collision detection apparatus provided with the pressure sensor which concerns on Embodiment 1 of this invention. 自動車に配置されたエアバッグ装置を示す図である。It is a figure which shows the airbag apparatus arrange | positioned at the motor vehicle. 圧力検出素子で検出される圧力波の強度分布を示すグラフである。It is a graph which shows intensity distribution of a pressure wave detected with a pressure sensing element. この発明の実施の形態2に係る圧力センサの構成を示す断面図である。It is sectional drawing which shows the structure of the pressure sensor which concerns on Embodiment 2 of this invention. 実施の形態2において圧力検出素子で検出される圧力波の強度分布を示すグラフである。6 is a graph showing an intensity distribution of a pressure wave detected by a pressure detection element in the second embodiment. 実施の形態2の変形例に係る圧力センサの構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a configuration of a pressure sensor according to a modification of the second embodiment. 実施の形態2の変形例において圧力検出素子で検出される圧力波の強度分布を示すグラフである。6 is a graph showing an intensity distribution of a pressure wave detected by a pressure detection element in a modification of the second embodiment. この発明の実施の形態3に係る圧力センサの構成を示す断面図である。It is sectional drawing which shows the structure of the pressure sensor which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る圧力センサの構成を示す断面図である。It is sectional drawing which shows the structure of the pressure sensor which concerns on Embodiment 4 of this invention. 実施の形態1〜4の変形例に係る圧力センサの構成を示す断面図である。It is sectional drawing which shows the structure of the pressure sensor which concerns on the modification of Embodiment 1-4.

以下、この発明の実施の形態を添付図面に基づいて説明する。
実施の形態1
図1に、この発明の実施の形態1に係る圧力センサを備えた衝突検出装置の構成を示す。この衝突検出装置は、圧力波を検出する圧力センサ1を有し、この圧力センサ1が自動車の異なる箇所に設けられた2つの圧力発生室RaおよびRbに伝搬チューブ2を介して接続されている。また、圧力センサ1は衝突演算部3に接続され、この衝突演算部3がエアバッグ制御部4に接続されている。さらに、エアバッグ制御部4が2つのエアバッグ装置5aおよび5bに接続されている。
なお、圧力発生室RaおよびRbは、自動車が衝突して圧迫されることにより圧力波VaおよびVbを生じるもので、例えば自動車のセンターピラーとリヤドアの内部にそれぞれ設けることができる。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment 1
FIG. 1 shows the configuration of a collision detection apparatus including a pressure sensor according to Embodiment 1 of the present invention. This collision detection device has a pressure sensor 1 for detecting a pressure wave, and this pressure sensor 1 is connected to two pressure generation chambers Ra and Rb provided at different locations of an automobile via a propagation tube 2. . The pressure sensor 1 is connected to the collision calculation unit 3, and the collision calculation unit 3 is connected to the airbag control unit 4. Further, the airbag control unit 4 is connected to the two airbag devices 5a and 5b.
The pressure generating chambers Ra and Rb generate pressure waves Va and Vb when the automobile collides and is compressed, and can be provided, for example, inside the center pillar and the rear door of the automobile.

伝搬チューブ2は、円筒形状を有し、一端部が圧力発生室R1およびR2に接続されると共に他端部が圧力センサ1に接続され、その内部には一端部から他端部まで延びる中空の圧力波伝搬路6が形成されている。圧力波伝搬路6は、圧力発生室RaおよびRbが圧迫されることにより生じる圧力波VaおよびVbを圧力センサ1へ伝搬するものであり、圧力波VaおよびVbを伝搬する伝搬流体、例えば空気などで満たされている。   The propagation tube 2 has a cylindrical shape, one end of which is connected to the pressure generating chambers R1 and R2 and the other end is connected to the pressure sensor 1, and the inside thereof is a hollow extending from one end to the other end. A pressure wave propagation path 6 is formed. The pressure wave propagation path 6 propagates the pressure waves Va and Vb generated when the pressure generating chambers Ra and Rb are compressed to the pressure sensor 1, and a propagation fluid that propagates the pressure waves Va and Vb, for example, air Is filled with.

圧力センサ1は、内部に圧力検出室Dが形成された筐体7と、筐体7の圧力検出室Dに配置された圧力検出素子8とを有する。
筐体7には、互いに対向する側壁から外部に突出する2つの接続部9aおよび9bが設けられている。接続部9aおよび9bは、伝搬チューブ2を筐体7に接続するためもので円筒形状を有し、その外周部にらせん状の凹凸部10が形成されている。この接続部9aおよび9bを伝搬チューブ2内に差し込むことにより、伝搬チューブ2の内壁に凹凸部10が圧入され、伝搬チューブ2が接続部9aおよび9bに接続される。
なお、接続部9aおよび9bは、本発明における導入部を構成するものである。
The pressure sensor 1 includes a housing 7 in which a pressure detection chamber D is formed, and a pressure detection element 8 disposed in the pressure detection chamber D of the housing 7.
The housing 7 is provided with two connecting portions 9a and 9b that protrude outward from the side walls facing each other. The connecting portions 9a and 9b are for connecting the propagation tube 2 to the housing 7 and have a cylindrical shape, and a helical uneven portion 10 is formed on the outer peripheral portion thereof. By inserting the connecting portions 9a and 9b into the propagation tube 2, the uneven portion 10 is press-fitted into the inner wall of the propagation tube 2, and the propagation tube 2 is connected to the connecting portions 9a and 9b.
In addition, the connection parts 9a and 9b comprise the introduction part in this invention.

接続部9aおよび9bの内部には、伝搬チューブ2の圧力波伝搬路6から連通して圧力検出室Dまで直線状に延びる圧力波伝搬路11aおよび11bが形成されている。接続部9aに形成された圧力波伝搬路11aは、圧力検出室Dまで同一の直径で延びるように形成されている。一方、接続部9bに形成された圧力波伝搬路11bには、圧力波伝搬路11bを分割して圧力波Vbの伝搬距離が互いに異なる2つの分割路13および14を形成する分割路形成部12が設けられている。   Pressure wave propagation paths 11a and 11b communicating with the pressure wave propagation path 6 of the propagation tube 2 and extending linearly to the pressure detection chamber D are formed inside the connection portions 9a and 9b. The pressure wave propagation path 11a formed in the connection portion 9a is formed to extend to the pressure detection chamber D with the same diameter. On the other hand, the pressure wave propagation path 11b formed in the connection part 9b divides the pressure wave propagation path 11b to form two division paths 13 and 14 having different propagation distances of the pressure wave Vb. Is provided.

具体的には、分割路形成部12は、圧力波伝搬路11bを2つの分割路13および14に分割する分割壁15と、分割路14内に突出して圧力波Vbの伝搬方向を変更する突出部16とを有する。分割壁15は、圧力波伝搬路11bに沿う方向に延びて圧力波伝搬路11bを半分に分割するように形成されている。突出部16は、圧力波Vbが蛇行して伝搬するように、圧力波伝搬路11bが延びる方向に向かって互いに対向する内壁から交互に突出するように設けられている。これにより、分割路13を伝搬する圧力波Vbは圧力波伝搬路11bに沿って直線状に伝搬するのに対し、分割路14を伝搬する圧力波Vbは蛇行しつつ伝搬するため、分割路14を伝搬する圧力波Vbは分割路13を伝搬する圧力波Vbと比較して長い距離を伝搬することになる。   Specifically, the dividing path forming unit 12 projects a dividing wall 15 that divides the pressure wave propagation path 11b into two dividing paths 13 and 14, and a protrusion that projects into the dividing path 14 and changes the propagation direction of the pressure wave Vb. Part 16. The dividing wall 15 extends in a direction along the pressure wave propagation path 11b and is formed so as to divide the pressure wave propagation path 11b in half. The protrusions 16 are provided so as to alternately protrude from the inner walls facing each other in the direction in which the pressure wave propagation path 11b extends so that the pressure wave Vb meanders and propagates. As a result, the pressure wave Vb propagating through the division path 13 propagates linearly along the pressure wave propagation path 11b, whereas the pressure wave Vb propagating through the division path 14 propagates while meandering. The pressure wave Vb propagating through the pressure propagates a longer distance than the pressure wave Vb propagating through the dividing path 13.

このように、圧力波伝搬路11bを伝搬する圧力波Vbの伝搬距離には分割路13および14に起因する差が生じているのに対し、圧力波伝搬路11aを伝搬する圧力波Vaの伝搬距離には分割路が形成されていないため差が生じない。すなわち、分割路13および14を形成することにより、圧力波伝搬路11bを伝搬する圧力波Vbの伝搬距離の差が、圧力波伝搬路11aを伝搬する圧力波Vaの伝搬距離の差(ゼロ)と異なるものとなる。   As described above, the difference in the propagation distance of the pressure wave Vb propagating through the pressure wave propagation path 11b is caused by the division paths 13 and 14, whereas the propagation of the pressure wave Va propagating through the pressure wave propagation path 11a. There is no difference in distance because no dividing path is formed. That is, by forming the dividing paths 13 and 14, the difference in the propagation distance of the pressure wave Vb propagating through the pressure wave propagation path 11b becomes the difference in the propagation distance of the pressure wave Va propagating through the pressure wave propagation path 11a (zero). And will be different.

圧力検出素子8は、接続部9aおよび9bの圧力波伝搬路11aおよび11bを伝搬した圧力波VaおよびVbの強度を検出するものであり、例えばダイアフラムを用いた素子を用いることができる。
衝突演算部3は、圧力検出素子8に接続され、圧力検出素子8で検出された圧力波の強度分布に基づいて、圧力波が自動車の圧力発生室RaおよびRbのうちどちらの圧力発生室で生じたものかを算出し、自動車の衝突位置を特定する。
The pressure detection element 8 detects the intensity of the pressure waves Va and Vb propagated through the pressure wave propagation paths 11a and 11b of the connecting portions 9a and 9b. For example, an element using a diaphragm can be used.
The collision calculation unit 3 is connected to the pressure detection element 8, and based on the intensity distribution of the pressure wave detected by the pressure detection element 8, the pressure wave is generated in either of the pressure generation chambers Ra and Rb of the automobile. Calculate whether it occurred, and identify the collision position of the car.

エアバッグ制御部4は、衝突演算部3で算出された自動車の衝突位置に基づいて、エアバッグ装置5aおよび5bの駆動制御を行う。
エアバッグ装置5aおよび5bは、自動車において互いに異なる箇所に配置されており、例えば図2に示すように、自動車Mの前部座席に対応してエアバッグ装置5aを配置すると共に自動車Mの後部座席に対応してエアバッグ装置5bを配置することができる。エアバッグ装置5aおよび5bは、インフレータ17aおよび17bと、インフレータ17aおよび17bからの展開ガスの注入によりドアと搭乗者の間にカーテン状に展開されるカーテンエアバッグ18aおよび18bとを有する。
The airbag control unit 4 performs drive control of the airbag devices 5 a and 5 b based on the vehicle collision position calculated by the collision calculation unit 3.
The airbag apparatuses 5a and 5b are arranged at different locations in the automobile. For example, as shown in FIG. 2, the airbag apparatus 5a is arranged corresponding to the front seat of the automobile M and the rear seat of the automobile M. The airbag device 5b can be arranged corresponding to the above. Airbag devices 5a and 5b have inflators 17a and 17b, and curtain airbags 18a and 18b that are deployed in a curtain shape between a door and a passenger by injecting deployment gas from inflators 17a and 17b.

なお、圧力発生室RaおよびRbはエアバッグ装置5aおよび5bが配置された箇所にそれぞれ対応して配置されており、例えば圧力発生室RaをフロントドアS1に隣接するセンターピラーP内に配置すると共に圧力発生室RbをリヤドアS2内に配置することができる。これにより、エアバッグ制御部4は、圧力発生室Raにおいて圧力波Vaが発生した場合にはエアバッグ装置5aを駆動し、圧力発生室Rbにおいて圧力波Vbが発生した場合にはエアバッグ装置5bを駆動することで、自動車Mの衝突箇所に応じて搭乗者を確実に保護することができる。   The pressure generating chambers Ra and Rb are arranged corresponding to the locations where the airbag devices 5a and 5b are arranged. For example, the pressure generating chamber Ra is arranged in the center pillar P adjacent to the front door S1. The pressure generation chamber Rb can be disposed in the rear door S2. Thus, the airbag control unit 4 drives the airbag device 5a when the pressure wave Va is generated in the pressure generation chamber Ra, and the airbag device 5b when the pressure wave Vb is generated in the pressure generation chamber Rb. By driving the occupant, the passenger can be reliably protected according to the collision location of the automobile M.

次に、圧力検出素子8で検出される圧力波VaおよびVbについて詳細に説明する。
圧力波Vaは自動車Mの衝突により圧力発生室Raが圧迫されることにより生じ、圧力波Vbは自動車Mの衝突により圧力発生室Rbが圧迫されることにより生じる。圧力発生室Raで生じた圧力波Vaは、伝搬チューブ2の圧力波伝搬路6を介して接続部9aへと伝搬され、接続部9aの圧力波伝搬路11aを直線状に伝搬して圧力検出室D内に導入され、圧力検出素子8により順次検出される。このため、図3(A)に示すように、圧力検出素子8で検出される圧力波Vaの強度分布は、検出開始時間T0から徐々に強度が増加して検出時間T1において最大値が得られ、その後は徐々に強度が減少するような形状となる。
Next, the pressure waves Va and Vb detected by the pressure detection element 8 will be described in detail.
The pressure wave Va is generated when the pressure generation chamber Ra is compressed by the collision of the automobile M, and the pressure wave Vb is generated by the pressure generation chamber Rb being compressed by the collision of the automobile M. The pressure wave Va generated in the pressure generating chamber Ra is propagated to the connecting portion 9a through the pressure wave propagation path 6 of the propagation tube 2, and propagates linearly through the pressure wave propagation path 11a of the connecting portion 9a to detect pressure. It is introduced into the chamber D and is sequentially detected by the pressure detection element 8. For this reason, as shown in FIG. 3A, the intensity distribution of the pressure wave Va detected by the pressure detecting element 8 gradually increases from the detection start time T0, and the maximum value is obtained at the detection time T1. Thereafter, the shape gradually decreases in strength.

一方、圧力発生室Rbで生じた圧力波Vbは、伝搬チューブ2の圧力波伝搬路6を介して接続部9bへと伝搬され、接続部9bの圧力波伝搬路11bを分割路13と分割路14に別れて伝搬して圧力検出室D内に導入される。この時、分割路13を通る圧力波Vbは、圧力波Vaと同様に、分割路13を直線状に伝搬して圧力検出室D内に導入される。一方、分割路14を通る圧力波Vbは、突出部16により伝搬方向が変化され、圧力検出室Dに向かって蛇行しつつ伝搬して圧力検出室D内に導入される。
このように、分割路14を伝搬した圧力波Vbは、分割路13を伝搬した圧力波Vbと比較して長い距離を伝搬するため、分割路13を伝搬した圧力波Vbより遅れて圧力検出素子8で検出される。このため、図3(B)に示すように、圧力検出素子8で検出される圧力波Vbの強度分布は、分割路13を伝搬した圧力波Vbに起因して検出時間T1に最初の極大値が得られ、続いて分割路14を伝搬した圧力波Vbに起因して検出時間T2に2つ目の極大値が得られることになる。
On the other hand, the pressure wave Vb generated in the pressure generating chamber Rb is propagated to the connection portion 9b via the pressure wave propagation path 6 of the propagation tube 2, and the pressure wave propagation path 11b of the connection portion 9b is divided into the division path 13 and the division path. 14 is separated and introduced into the pressure detection chamber D. At this time, similarly to the pressure wave Va, the pressure wave Vb passing through the dividing path 13 propagates linearly through the dividing path 13 and is introduced into the pressure detection chamber D. On the other hand, the propagation direction of the pressure wave Vb passing through the dividing path 14 is changed by the protrusion 16, propagates while meandering toward the pressure detection chamber D, and is introduced into the pressure detection chamber D.
Thus, since the pressure wave Vb propagated through the dividing path 14 propagates a longer distance than the pressure wave Vb propagated through the dividing path 13, the pressure detecting element is delayed from the pressure wave Vb propagated through the dividing path 13. 8 is detected. Therefore, as shown in FIG. 3B, the intensity distribution of the pressure wave Vb detected by the pressure detection element 8 is the first maximum value at the detection time T1 due to the pressure wave Vb propagated through the dividing path 13. Then, the second maximum value is obtained at the detection time T2 due to the pressure wave Vb propagated through the dividing path 14.

次に、この実施の形態1の動作について説明する。
まず、例えば自動車MのリヤドアS2に衝突体が衝突すると、リヤドアS2内に設けられた圧力発生室Rbが圧迫されて圧力波Vbが生じる。この圧力発生室Rbで生じた圧力波Vbは、伝搬チューブ2を介して接続部9bに伝搬され、接続部9bの圧力波伝搬路11bを分割路13と分割路14に別れて伝搬して筐体7内の圧力検出室Dに導入される。
Next, the operation of the first embodiment will be described.
First, for example, when a colliding body collides with the rear door S2 of the automobile M, the pressure generating chamber Rb provided in the rear door S2 is compressed to generate a pressure wave Vb. The pressure wave Vb generated in the pressure generation chamber Rb is propagated to the connection portion 9b via the propagation tube 2, and propagates separately through the pressure wave propagation path 11b of the connection portion 9b into the division path 13 and the division path 14 to form a housing. It is introduced into the pressure detection chamber D in the body 7.

この時、分割路13を通る圧力波Vbは、圧力検出室Dに向かって直線状に伝搬されるのに対し、分割路14を通る圧力波Vbは、分割路形成部12により伝搬方向が変化され、圧力検出室Dに向かって蛇行するように伝搬される。このように、圧力波伝搬路11bを伝搬する圧力波Vbの伝搬距離に差が生じているため、圧力検出素子8で検出される圧力波Vbは、図3(B)に示すように、検出時間T1およびT2において2つの極大値を有する強度分布を示すことになる。   At this time, the pressure wave Vb passing through the dividing path 13 is linearly propagated toward the pressure detection chamber D, whereas the propagation direction of the pressure wave Vb passing through the dividing path 14 is changed by the dividing path forming unit 12. And propagated so as to meander toward the pressure detection chamber D. As described above, since there is a difference in the propagation distance of the pressure wave Vb propagating through the pressure wave propagation path 11b, the pressure wave Vb detected by the pressure detection element 8 is detected as shown in FIG. It will show an intensity distribution with two maxima at times T1 and T2.

圧力検出素子8で検出された圧力波Vbの強度は衝突演算部3に順次出力され、衝突演算部3が、圧力波Vbの強度分布に基づいて自動車Mの衝突箇所を算出する。
ここで、自動車MのセンターピラーPに衝突体が衝突して圧力発生室Raに圧力波Vaが発生した場合には、圧力波Vaは圧力検出室Dまで圧力波伝搬路11aに沿って一様に伝搬されるため、圧力波Vaの伝搬距離には差が生じない。このため、圧力波Vaは圧力検出素子8に一度に到達し、図3(A)に示すように、1つの最大値を有する強度分布が得られる。このように、接続部9bの圧力波伝搬路11bを伝搬する圧力波Vbの伝搬距離の差が、接続部9aの圧力波伝搬路11aを伝搬する圧力波Vaの伝搬距離の差と異なるため、圧力波Vbの強度分布は圧力波Vaの強度分布とは異なる形状となる。
そこで、衝突演算部3は、例えば強度分布の極大値の数に基づいて自動車Mの衝突箇所を算出することができる。このように、圧力センサ1により自動車Mの複数箇所における衝突を区別して検出することで、その衝突がリヤドアS2で生じたことを容易に特定することができる。
The intensity of the pressure wave Vb detected by the pressure detection element 8 is sequentially output to the collision calculation unit 3, and the collision calculation unit 3 calculates the collision location of the automobile M based on the intensity distribution of the pressure wave Vb.
Here, when a collision object collides with the center pillar P of the automobile M and a pressure wave Va is generated in the pressure generation chamber Ra, the pressure wave Va is uniform along the pressure wave propagation path 11a to the pressure detection chamber D. Therefore, there is no difference in the propagation distance of the pressure wave Va. For this reason, the pressure wave Va reaches the pressure detecting element 8 at once, and an intensity distribution having one maximum value is obtained as shown in FIG. Thus, the difference in the propagation distance of the pressure wave Vb propagating through the pressure wave propagation path 11b of the connection portion 9b is different from the difference in the propagation distance of the pressure wave Va propagating through the pressure wave propagation path 11a of the connection portion 9a. The intensity distribution of the pressure wave Vb is different from the intensity distribution of the pressure wave Va.
Thus, the collision calculation unit 3 can calculate the collision location of the automobile M based on, for example, the number of local maximum values of the intensity distribution. As described above, the pressure sensor 1 distinguishes and detects a collision at a plurality of locations of the automobile M, so that the collision can be easily specified at the rear door S2.

衝突演算部3で特定された自動車Mの衝突箇所は、エアバッグ制御部4に出力され、エアバッグ制御部4が衝突箇所のリヤドアS2に対応するエアバッグ装置5bを駆動させる。これにより、インフレータ17bから展開ガスが吐出されて、カーテンエアバッグ18bがリヤドアS2の内面に沿ってリヤドアS2と後部座席の搭乗者の間に展開し、リヤドアS2に衝突した衝撃から搭乗者を保護することができる。   The collision location of the automobile M identified by the collision calculation unit 3 is output to the airbag control unit 4, and the airbag control unit 4 drives the airbag device 5b corresponding to the rear door S2 at the collision location. As a result, the deployment gas is discharged from the inflator 17b, the curtain airbag 18b is deployed between the rear door S2 and the rear seat passenger along the inner surface of the rear door S2, and the passenger is protected from the impact that collides with the rear door S2. can do.

本実施の形態によれば、接続部9aと接続部9bとの間で圧力波の伝搬距離の差が互いに異なるように圧力波伝搬路11aおよび11bを設けることにより、圧力検出素子8で検出される圧力波Vaと圧力波Vbの強度分布を異なる形状で得ることができ、自動車の複数箇所における衝突を区別して検出することができる。   According to the present embodiment, by providing the pressure wave propagation paths 11a and 11b so that the difference in the propagation distance of the pressure wave between the connection portion 9a and the connection portion 9b is different from each other, the pressure detection element 8 detects the pressure wave propagation paths. The intensity distribution of the pressure wave Va and the pressure wave Vb can be obtained in different shapes, and collisions at a plurality of locations of the automobile can be distinguished and detected.

実施の形態2
実施の形態1では、筐体7から突出する2つの接続部9aおよび9bが設けられたが、複数の接続部が設けてあればよく、接続部の数は2つに限られるものではない。
例えば、図4に示すように、実施の形態1の筐体7に新たに接続部9cを設けることができる。この接続部9cは、自動車Mにおいて圧力発生室RaおよびRbとは異なる箇所に設けられた圧力発生室に伝搬チューブを介して接続されるものであり、その外周部にはらせん状の凹凸部10が形成されている。
Embodiment 2
In the first embodiment, the two connection portions 9a and 9b protruding from the housing 7 are provided. However, a plurality of connection portions may be provided, and the number of connection portions is not limited to two.
For example, as shown in FIG. 4, a connection portion 9c can be newly provided in the housing 7 of the first embodiment. The connecting portion 9c is connected to a pressure generating chamber provided at a location different from the pressure generating chambers Ra and Rb in the automobile M via a propagation tube, and has a helical concavo-convex portion 10 on its outer peripheral portion. Is formed.

接続部9cの内部には、圧力検出室Dまで延びる圧力波伝搬路11cが形成されている。圧力波伝搬路11cには、圧力波伝搬路11cを分割して圧力波Vcの伝搬距離が互いに異なる3つの分割路21,22,23を形成する分割路形成部24が設けられている。   A pressure wave propagation path 11c extending to the pressure detection chamber D is formed inside the connection portion 9c. The pressure wave propagation path 11c is provided with a division path forming unit 24 that divides the pressure wave propagation path 11c and forms three division paths 21, 22, and 23 having different propagation distances of the pressure wave Vc.

具体的には、分割路形成部24は、圧力波伝搬路11cを3つの分割路21,22,23に分割する分割壁25と、分割路22および23内に突出して圧力波Vcの伝搬方向を変更する突出部26とを有する。突出部26は、分割路22および23をそれぞれ圧力波Vcが蛇行して伝搬するように、圧力波伝搬路11cが延びる方向に向かって互いに対向する内壁から交互に突出して設けられている。ここで、分割路22に設けられた突出部26は、分割路23に設けられた突出部26と比較して少ない数で構成されており、これにより分割路22を伝搬する圧力波Vcの伝搬距離を分割路23の伝搬距離と比較して短くすることができる。   Specifically, the dividing path forming unit 24 projects into the dividing walls 25 that divide the pressure wave propagation path 11c into three dividing paths 21, 22, and 23, and the propagation directions of the pressure waves Vc protruding into the dividing paths 22 and 23. And a projecting portion 26 for changing. The protrusions 26 are provided so as to alternately protrude from the inner walls facing each other in the direction in which the pressure wave propagation path 11c extends so that the pressure waves Vc meander and propagate through the division paths 22 and 23, respectively. Here, the protrusions 26 provided in the dividing path 22 are configured with a smaller number than the protrusions 26 provided in the dividing path 23, and thereby the propagation of the pressure wave Vc propagating through the dividing path 22. The distance can be shortened compared to the propagation distance of the dividing path 23.

このように、圧力波Vcの伝搬距離が順次長くなるように分割路21,22,23を形成することにより、自動車の圧力発生室で生じた圧力波Vcが分割路21,22,23を別れて伝搬する時に、分割路21を伝搬した圧力波Vcに対して分割路22および23を伝搬した圧力波Vcが順次遅れて圧力検出室D内に導入される。このため、図5に示すように、圧力検出素子8で検出される圧力波Vcの強度分布は、分割路21を伝搬した圧力波Vcに起因して検出時間T1に最初の極大値が得られ、続いて分割路22を伝搬した圧力波Vcに起因して検出時間T3に2つ目の極大値が得られ、最後に分割路23を伝搬した圧力波Vcに起因して検出時間T2に3つ目の極大値が得られることになる。   In this way, by forming the dividing paths 21, 22, and 23 so that the propagation distance of the pressure wave Vc becomes longer sequentially, the pressure wave Vc generated in the pressure generation chamber of the automobile separates the dividing paths 21, 22, and 23. The pressure waves Vc propagated through the divided paths 22 and 23 with respect to the pressure wave Vc propagated through the divided path 21 are sequentially introduced into the pressure detection chamber D with a delay. For this reason, as shown in FIG. 5, the intensity distribution of the pressure wave Vc detected by the pressure detection element 8 has the first maximum value at the detection time T1 due to the pressure wave Vc propagated through the dividing path 21. Subsequently, the second maximum value is obtained at the detection time T3 due to the pressure wave Vc propagating through the dividing path 22, and finally at the detection time T2 due to the pressure wave Vc propagating through the dividing path 23. The first maximum value will be obtained.

ここで、分割路形成部24は、圧力波伝搬路11cを伝搬する圧力波Vcの伝搬距離の差が、圧力波伝搬路11aを伝搬する圧力波Vaの伝搬距離の差(ゼロ)と異なると共に、圧力波伝搬路11bを伝搬する圧力波Vbの伝搬距離の差と異なるように分割路21,22,23を形成している。例えば、分割路21と分割路22の間における圧力波Vcの伝搬距離の差が、分割路13と分割路14の間における圧力波Vbの伝搬距離の差と異なるように形成する。これにより、圧力波Vcの強度分布において、圧力波VaおよびVbの強度分布における極大値の検出時間T1およびT2とずれた検出時間T3に極大値を得ることができる。
このように、圧力波Va、圧力波Vbおよび圧力波Vcの強度分布が互いに異なる形状で得られるため、衝突演算部3は、例えば極大値の数に基づいて自動車Mの衝突箇所を算出することができる。
Here, the dividing path forming unit 24 is configured such that the difference in the propagation distance of the pressure wave Vc propagating through the pressure wave propagation path 11c is different from the difference (zero) in the propagation distance of the pressure wave Va propagating through the pressure wave propagation path 11a. The dividing paths 21, 22, and 23 are formed to be different from the difference in propagation distance of the pressure wave Vb propagating through the pressure wave propagation path 11b. For example, the difference in the propagation distance of the pressure wave Vc between the dividing path 21 and the dividing path 22 is different from the difference in the propagation distance of the pressure wave Vb between the dividing path 13 and the dividing path 14. Thereby, in the intensity distribution of the pressure wave Vc, the maximum value can be obtained at the detection time T3 that deviates from the detection times T1 and T2 of the maximum value in the intensity distribution of the pressure waves Va and Vb.
Thus, since the intensity distributions of the pressure wave Va, the pressure wave Vb, and the pressure wave Vc are obtained in different shapes, the collision calculation unit 3 calculates the collision location of the automobile M based on the number of local maximum values, for example. Can do.

本実施の形態によれば、接続部9a、接続部9bおよび接続部9cの間で圧力波の伝搬距離の差が互いに異なるように圧力波伝搬路11a,11b,11cを設けることにより、圧力検出素子8で検出される圧力波Va,Vb,Vcの強度分布を互いに異なる形状で得ることができ、自動車の複数箇所における衝突を区別して検出することができる。   According to the present embodiment, pressure detection is performed by providing the pressure wave propagation paths 11a, 11b, and 11c so that the difference in the propagation distance of the pressure wave is different between the connection part 9a, the connection part 9b, and the connection part 9c. The intensity distributions of the pressure waves Va, Vb, and Vc detected by the element 8 can be obtained in different shapes, and collisions at a plurality of locations of the automobile can be distinguished and detected.

なお、分割路形成部24は、圧力波伝搬路11cを3つの分割路21,22,23に分割したが、接続部9a、接続部9bおよび接続部9cの間で圧力波の伝搬距離の差が互いに異なればよく、これに限られるものではない。
例えば、図6に示すように、圧力波伝搬路11cを分割して圧力波Vcの伝搬距離が異なる2つの分割路27および28を形成する分割路形成部29を設けることができる。
The dividing path forming unit 24 divides the pressure wave propagation path 11c into three dividing paths 21, 22, and 23. However, the difference in the propagation distance of the pressure wave between the connecting part 9a, the connecting part 9b, and the connecting part 9c. However, they are not limited to this as long as they are different from each other.
For example, as shown in FIG. 6, it is possible to provide a dividing path forming portion 29 that divides the pressure wave propagation path 11c to form two dividing paths 27 and 28 having different propagation distances of the pressure wave Vc.

この時、分割路形成部29は、分割路27と分割路28の間における圧力波Vcの伝搬距離の差が、分割路13と分割路14の間における圧力波Vbの伝搬距離の差より小さくなるように分割路27および28を形成する。これにより、図7に示すように、圧力検出素子8で検出される圧力波Vcの強度分布は、分割路27および28をそれぞれ伝搬した圧力波Vcに起因して検出時間T1と検出時間T3に2つの極大値を有し、その形状が圧力波伝搬路11bを伝搬した圧力波Vbの強度分布と異なるものとなる。そこで、衝突演算部3は、例えば1つ目の極大値が現れる検出時間T1と2つ目の極大値が現れる検出時間T3との差に基づいて自動車Mの衝突箇所を算出することができる。
このように、接続部9a、接続部9bおよび接続部9cの間で圧力波の伝搬距離の差が互いに異なるように圧力波伝搬路11a,11b,11cを設けることにより、圧力波Va,Vb,Vcの強度分布を互いに異なる形状で得ることができ、自動車の複数箇所における衝突を区別して検出することができる。
At this time, the dividing path forming unit 29 has a difference in propagation distance of the pressure wave Vc between the dividing path 27 and the dividing path 28 smaller than a difference in propagation distance of the pressure wave Vb between the dividing path 13 and the dividing path 14. Dividing paths 27 and 28 are formed so that Thereby, as shown in FIG. 7, the intensity distribution of the pressure wave Vc detected by the pressure detection element 8 is caused by the pressure wave Vc propagated through the dividing paths 27 and 28 at the detection time T1 and the detection time T3. It has two local maximum values, and its shape is different from the intensity distribution of the pressure wave Vb propagated through the pressure wave propagation path 11b. Therefore, for example, the collision calculation unit 3 can calculate the collision location of the automobile M based on the difference between the detection time T1 at which the first maximum value appears and the detection time T3 at which the second maximum value appears.
Thus, by providing the pressure wave propagation paths 11a, 11b, and 11c so that the difference in the propagation distance of the pressure wave is different between the connecting portion 9a, the connecting portion 9b, and the connecting portion 9c, the pressure waves Va, Vb, Vc intensity distributions can be obtained in different shapes, and collisions at a plurality of locations in an automobile can be distinguished and detected.

実施の形態3
実施の形態1および2では、筐体7から突出する接続部に分割路形成部が設けられたが、圧力波伝搬路を介して圧力波を筐体7の圧力検出室D内に導入する導入部に設けられていればよく、接続部に限られるものではない。
例えば、図8に示すように、実施の形態1の接続部9aおよび9bに換えて接続部31aおよび31bを設けると共に自動車Mの圧力発生室Rbと接続部9bを接続する伝搬チューブ2に換えて圧力発生室Rbと接続部31bを接続する伝搬チューブ32を設けることができる。ここで、伝搬チューブ2および32は、本発明における導入部を構成するものである。
Embodiment 3
In the first and second embodiments, the dividing path forming portion is provided in the connection portion protruding from the housing 7, but the introduction of introducing the pressure wave into the pressure detection chamber D of the housing 7 through the pressure wave propagation path. As long as it is provided in the part, it is not limited to the connection part.
For example, as shown in FIG. 8, connection portions 31 a and 31 b are provided instead of the connection portions 9 a and 9 b of the first embodiment, and the propagation tube 2 that connects the pressure generation chamber Rb of the automobile M and the connection portion 9 b is replaced. A propagation tube 32 that connects the pressure generating chamber Rb and the connecting portion 31b can be provided. Here, the propagation tubes 2 and 32 constitute the introduction part in the present invention.

接続部31aは、圧力発生室Raから延びる伝搬チューブ2を筐体7に接続するためのもので円筒形状を有し、その外周部には図示しない凹凸部が形成されている。接続部31aの内部には、伝搬チューブ2の圧力波伝搬路6から連通して筐体7の圧力検出室Dまで直線状に延びる圧力波伝搬路33aが形成されている。
接続部31bは、圧力発生室Rbから延びる伝搬チューブ32を接続するためのもので、接続部31aと同様の形状を有し、その内部には伝搬チューブ32内と連通して圧力検出室Dまで直線状に延びる圧力波伝搬路33bが形成されている。
The connecting portion 31a is for connecting the propagation tube 2 extending from the pressure generating chamber Ra to the housing 7, has a cylindrical shape, and an uneven portion (not shown) is formed on the outer peripheral portion thereof. A pressure wave propagation path 33a that extends from the pressure wave propagation path 6 of the propagation tube 2 and extends linearly to the pressure detection chamber D of the housing 7 is formed inside the connection portion 31a.
The connection portion 31b is for connecting the propagation tube 32 extending from the pressure generating chamber Rb, has the same shape as the connection portion 31a, and communicates with the inside of the propagation tube 32 to reach the pressure detection chamber D. A pressure wave propagation path 33b extending in a straight line is formed.

伝搬チューブ32は、円筒形状を有し、その内部には一端部から他端部まで延びる圧力波伝搬路34が形成されている。伝搬チューブ32には、圧力波伝搬路34の一部を分割して圧力波Vbの伝搬距離が互いに異なる2つの分割路35および36を形成する分割路形成部37が設けられている。   The propagation tube 32 has a cylindrical shape, and a pressure wave propagation path 34 extending from one end to the other end is formed therein. The propagation tube 32 is provided with a division path forming portion 37 that divides a part of the pressure wave propagation path 34 to form two division paths 35 and 36 having different propagation distances of the pressure wave Vb.

これにより、圧力発生室Raで生じた圧力波Vaが圧力検出素子8で検出された際の強度分布は、図3(A)に示す強度分布とほぼ同じ形状で得られ、圧力発生室Rbで生じた圧力波Vbが圧力検出素子8で検出された際の強度分布は、図3(B)に示す強度分布とほぼ同じ形状で得られる。
本実施の形態によれば、伝搬チューブ32の圧力波伝搬路34に分割路形成部37を設けることにより、圧力検出素子8で検出される圧力波Vaと圧力波Vbの強度分布を異なる形状で得ることができ、自動車の複数箇所における衝突を区別して検出することができる。
Thereby, the intensity distribution when the pressure wave Va generated in the pressure generating chamber Ra is detected by the pressure detecting element 8 is obtained in substantially the same shape as the intensity distribution shown in FIG. The intensity distribution when the generated pressure wave Vb is detected by the pressure detection element 8 is obtained in substantially the same shape as the intensity distribution shown in FIG.
According to the present embodiment, by providing the dividing path forming part 37 in the pressure wave propagation path 34 of the propagation tube 32, the intensity distributions of the pressure wave Va and the pressure wave Vb detected by the pressure detection element 8 are different in shape. Thus, it is possible to distinguish and detect collisions at a plurality of locations of the automobile.

実施の形態4
実施の形態1〜3では、筐体7内の圧力検出室Dは接続部の圧力波伝搬路と常に連通されていたが、圧力検出室Dと圧力波伝搬路との間に圧力波が通過可能な弁を配置することもできる。
例えば、図9に示すように、実施の形態1の筐体7において、圧力検出室Dと圧力波伝搬路11aの間および圧力検出室Dと圧力波伝搬路11bの間に、シート状の弁41を配置することができる。この弁41は、圧力波伝搬路11aおよび11bから圧力検出室Dへのみ圧力波VaおよびVbの伝搬を可能とし、圧力検出室Dから圧力波伝搬路11aおよび11bへの圧力波VaおよびVbの伝搬を遮断する、いわゆる逆止弁の機能を有するものである。
これにより、例えば圧力波伝搬路11aから圧力検出室Dに導入された圧力波Vaが圧力波伝搬路11b内に侵入することを抑制し、圧力検出素子8により圧力波VaおよびVbの強度を正確に検出することができる。
Embodiment 4
In the first to third embodiments, the pressure detection chamber D in the housing 7 is always in communication with the pressure wave propagation path of the connecting portion, but a pressure wave passes between the pressure detection chamber D and the pressure wave propagation path. Possible valves can also be arranged.
For example, as shown in FIG. 9, in the casing 7 of the first embodiment, a sheet-like valve is provided between the pressure detection chamber D and the pressure wave propagation path 11a and between the pressure detection chamber D and the pressure wave propagation path 11b. 41 can be arranged. This valve 41 allows the propagation of the pressure waves Va and Vb only from the pressure wave propagation paths 11a and 11b to the pressure detection chamber D, and the pressure waves Va and Vb from the pressure detection chamber D to the pressure wave propagation paths 11a and 11b. It has the function of a so-called check valve that blocks propagation.
Accordingly, for example, the pressure wave Va introduced from the pressure wave propagation path 11a into the pressure detection chamber D is prevented from entering the pressure wave propagation path 11b, and the pressure waves Va and Vb are accurately determined by the pressure detection element 8. Can be detected.

なお、上記の実施の形態1〜4では、自動車Mの圧力発生室Raで生じた圧力波Vaを伝搬する圧力波伝搬路には分割路形成部が設けられていない、すなわち分割路形成部は複数の導入部のうち1つ以外に設けられたが、複数の導入部の間で圧力波の伝搬距離の差が互いに異なればよく、分割路形成部を全ての導入部に設けることもできる。ただし、分割路形成部を設けることで圧力波の検出時間が遅くなるおそれがあるため、分割路形成部は複数の導入部のうち1つ以外に設けることが好ましい。   In the first to fourth embodiments described above, the dividing path forming section is not provided in the pressure wave propagation path for propagating the pressure wave Va generated in the pressure generating chamber Ra of the automobile M, that is, the dividing path forming section is Although it provided in other than one of several introduction parts, the difference of the propagation distance of a pressure wave should just differ among several introduction parts, and a division path formation part can also be provided in all the introduction parts. However, since the detection time of the pressure wave may be delayed by providing the dividing path forming portion, it is preferable to provide the dividing path forming portion other than one of the plurality of introducing portions.

また、上記の実施の形態1〜4では、圧力波伝搬路に形成された複数の分割路のうち1つの分割路には突出部が設けられていない、すなわち突出部は複数の分割路のうち1つ以外に設けられたが、複数の導入部の間で圧力波の伝搬距離の差が互いに異なればよく、突出部を全ての分割路に設けることもできる。ただし、突出部を設けることで圧力波の検出時間が遅くなるおそれがあるため、複数の分割路のうち1つ以外について圧力波の伝搬距離が長くなるように変形することが好ましい。   Moreover, in said Embodiment 1-4, the protrusion part is not provided in one division path among the some division paths formed in the pressure wave propagation path, ie, a protrusion part is among several division paths. However, it is only necessary that the difference in the propagation distance of the pressure wave is different between the plurality of introducing portions, and the protruding portions can be provided in all the dividing paths. However, since there is a possibility that the detection time of the pressure wave may be delayed by providing the protrusion, it is preferable that the propagation distance of the pressure wave is increased for other than one of the plurality of division paths.

また、自動車Mの圧力発生室Raで生じた圧力波Vaを伝搬する圧力波伝搬路は、互いに同じ伝搬距離を有する複数の分割路に分割することもできる。例えば、図10に示すように、実施の形態1の接続部9aに形成された圧力波伝搬路11aに分割壁51を設けて、互いに同じ伝搬距離を有する2つの分割路52および53を形成することができる。
この時、分割路52および53は、圧力波伝搬路11bに形成された2つの分割路13および14と同じ路幅となるように形成されており、これにより圧力波Vaと圧力波Vbが圧力検出素子8で検出された際にその強度分布の歪みをある程度一致させることができ、強度分布を正確に対比することができる。
Further, the pressure wave propagation path for propagating the pressure wave Va generated in the pressure generation chamber Ra of the automobile M can be divided into a plurality of division paths having the same propagation distance. For example, as shown in FIG. 10, the dividing wall 51 is provided in the pressure wave propagation path 11a formed in the connection part 9a of Embodiment 1, and the two division paths 52 and 53 which have the same propagation distance are formed. be able to.
At this time, the dividing paths 52 and 53 are formed to have the same path width as the two dividing paths 13 and 14 formed in the pressure wave propagation path 11b, whereby the pressure wave Va and the pressure wave Vb When detected by the detection element 8, the distortion of the intensity distribution can be matched to some extent, and the intensity distribution can be accurately compared.

1 圧力センサ、2,32 伝搬チューブ、3 衝突演算部、4 エアバッグ制御部、5a,5b エアバッグ装置、6,11a,11b,11c,33a,33b,34 圧力波伝搬路、7 筐体、8 圧力検出素子、9a,9b,9c,31a,31b 接続部、10 凹凸部、12,24,37 分割路形成部、13,14,21,22,23,35,36,52,53 分割路、15,25,51 分割壁、16,26 突出部、17a,17b インフレータ、18a,18b カーテンエアバッグ、41 弁、Ra,Rb 圧力発生室、Va,Vb,Vc 圧力波、D 圧力検出室、M 自動車、S1 フロントドア、P センターピラー、S2 リヤドア、T0 検出開始時間、T1,T2,T3 極大値の検出時間。   DESCRIPTION OF SYMBOLS 1 Pressure sensor, 2, 32 Propagation tube, 3 Collision calculating part, 4 Air bag control part, 5a, 5b Air bag apparatus, 6, 11a, 11b, 11c, 33a, 33b, 34 Pressure wave propagation path, 7 housing | casing, 8 Pressure detecting element, 9a, 9b, 9c, 31a, 31b Connection part, 10 Concavity and convexity part, 12, 24, 37 Dividing path forming part, 13, 14, 21, 22, 23, 35, 36, 52, 53 Dividing path 15, 25, 51 Split wall, 16, 26 Projection, 17a, 17b Inflator, 18a, 18b Curtain airbag, 41 Valve, Ra, Rb Pressure generation chamber, Va, Vb, Vc Pressure wave, D Pressure detection chamber, M car, S1 front door, P center pillar, S2 rear door, T0 detection start time, T1, T2, T3 local maximum detection time.

Claims (7)

筐体と、
前記筐体内に配置される圧力検出素子と、
自動車が圧迫されることにより生じた圧力波を伝搬させる圧力波伝搬路を有し、前記圧力波伝搬路を介して前記圧力波を前記筐体内に導入する複数の導入部と、
前記複数の導入部のうち全てまたは1つ以外に形成された前記圧力波伝搬路を分割して前記圧力波の伝搬距離が異なる複数の分割路を形成する分割路形成部と
を備え、
前記複数の導入部の間で前記圧力波の伝搬距離の差が互いに異なる圧力センサ。
A housing,
A pressure detecting element disposed in the housing;
A pressure wave propagation path for propagating a pressure wave generated by the automobile being compressed, and a plurality of introduction parts for introducing the pressure wave into the housing through the pressure wave propagation path;
A dividing path forming section that divides the pressure wave propagation path formed in all or other than the plurality of introduction sections to form a plurality of dividing paths having different propagation distances of the pressure wave, and
A pressure sensor having a difference in propagation distance of the pressure wave between the plurality of introduction portions.
前記分割路形成部は、前記複数の導入部のうち1つ以外に設けられる請求項1に記載の圧力センサ。   The pressure sensor according to claim 1, wherein the dividing path forming portion is provided in addition to one of the plurality of introducing portions. 前記分割路形成部は、前記複数の分割路のうち1つ以外を前記圧力波の伝搬距離が長くなるように変形する請求項1または2に記載の圧力センサ。   3. The pressure sensor according to claim 1, wherein the dividing path forming unit is deformed so that a propagation distance of the pressure wave becomes long except for one of the plurality of dividing paths. 前記複数の導入部は、前記自動車の複数箇所から延びて前記圧力波を伝搬する複数の伝搬チューブを接続するために前記筐体から外部に突出すると共に内部に前記圧力波伝搬路が形成された複数の接続部に設けられる請求項1〜3のいずれか一項に記載の圧力センサ。   The plurality of introduction portions protrude from the housing to the outside and connect the plurality of propagation tubes that propagate the pressure wave extending from a plurality of locations of the automobile, and the pressure wave propagation path is formed therein. The pressure sensor as described in any one of Claims 1-3 provided in a some connection part. 前記複数の導入部は、前記自動車の複数箇所から延びて前記筐体に接続されると共に内部に前記圧力波伝搬路が形成された伝搬チューブに設けられる請求項1〜4のいずれか一項に記載の圧力センサ。   The plurality of introduction portions are provided in a propagation tube that extends from a plurality of locations of the automobile and is connected to the housing and has the pressure wave propagation path formed therein. The described pressure sensor. 前記筐体内に配置され、前記圧力波伝搬路から前記筐体内にのみ前記圧力波を通過させる弁をさらに有する請求項1〜5のいずれか一項に記載の圧力センサ。   The pressure sensor according to any one of claims 1 to 5, further comprising a valve that is disposed in the casing and allows the pressure wave to pass only from the pressure wave propagation path into the casing. 前記複数の導入部は、前記圧力波伝搬路がそれぞれ形成された第1の導入部と第2の導入部からなり、
前記分割路形成部は、前記第1の導入部に形成された前記圧力波伝搬路のみに2つの分割路を形成すると共に、前記2つの分割路を伝搬する前記圧力波の伝搬距離が異なるように一方の分割路を変形する請求項1〜6のいずれか一項に記載の圧力センサ。
The plurality of introduction parts are composed of a first introduction part and a second introduction part in which the pressure wave propagation paths are respectively formed,
The dividing path forming section forms two dividing paths only in the pressure wave propagation path formed in the first introduction section, and the propagation distance of the pressure wave propagating through the two dividing paths is different. The pressure sensor according to claim 1, wherein one of the dividing paths is deformed.
JP2015028806A 2015-02-17 2015-02-17 Pressure sensor Active JP6373202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028806A JP6373202B2 (en) 2015-02-17 2015-02-17 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028806A JP6373202B2 (en) 2015-02-17 2015-02-17 Pressure sensor

Publications (2)

Publication Number Publication Date
JP2016151477A true JP2016151477A (en) 2016-08-22
JP6373202B2 JP6373202B2 (en) 2018-08-15

Family

ID=56695301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028806A Active JP6373202B2 (en) 2015-02-17 2015-02-17 Pressure sensor

Country Status (1)

Country Link
JP (1) JP6373202B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070090931A1 (en) * 2005-09-28 2007-04-26 Hawes Kevin J Pedestrian impact sensing apparatus for a vehicle bumper
JP2007127537A (en) * 2005-11-04 2007-05-24 Denso Corp Collision detection system for vehicle
JP2007531888A (en) * 2004-04-07 2007-11-08 シーメンス アクチエンゲゼルシヤフト Device for identifying a collision with a vehicle
JP2014173844A (en) * 2013-03-05 2014-09-22 Seiko Instruments Inc Contact sensor, contact input device and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531888A (en) * 2004-04-07 2007-11-08 シーメンス アクチエンゲゼルシヤフト Device for identifying a collision with a vehicle
US20070090931A1 (en) * 2005-09-28 2007-04-26 Hawes Kevin J Pedestrian impact sensing apparatus for a vehicle bumper
JP2007127537A (en) * 2005-11-04 2007-05-24 Denso Corp Collision detection system for vehicle
JP2014173844A (en) * 2013-03-05 2014-09-22 Seiko Instruments Inc Contact sensor, contact input device and electronic device

Also Published As

Publication number Publication date
JP6373202B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP2007127537A (en) Collision detection system for vehicle
US7828350B2 (en) Vehicular collision detection apparatus
CN104943641A (en) Impact tubing for pedestrian protection sensor for automotive vehicle
JP2007269279A (en) Collision detection system for vehicle
JP2006306160A (en) Collision detection system for vehicle
JP2007137333A (en) Occupant crash protection device for vehicle
JP2006306155A (en) Collision detection system for vehicle
JP2008100659A (en) Collision detection means
JP4716145B2 (en) Vehicle collision detection device
WO2019193962A1 (en) Collision detection apparatus
CN111301338B (en) Airbag device for a vehicle
EP3150412B1 (en) Vehicle side door structure
JP6373202B2 (en) Pressure sensor
JP6335104B2 (en) Pressure sensor failure detection device
JP6390913B2 (en) Vehicle collision detection device
JP6532649B2 (en) Airbag
JP5429571B2 (en) Vehicle collision detection device
JP6450623B2 (en) Collision detection device and collision detection method
JP6028923B2 (en) Vehicle side collision detection device
JP7112870B2 (en) vehicle occupant protection
JP2008037233A (en) Hood airbag device
JP2008137606A (en) Collision detection structure for occupant crash protection device for vehicle
JP2018194365A (en) Failure diagnosis device and failure diagnosis method
KR101428407B1 (en) Apparatus and method for controlling impact
JP4970311B2 (en) Vehicle side collision detection device and vehicle occupant protection system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180717

R150 Certificate of patent or registration of utility model

Ref document number: 6373202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250