JP2016151326A - Hydrogen supply system - Google Patents

Hydrogen supply system Download PDF

Info

Publication number
JP2016151326A
JP2016151326A JP2015029736A JP2015029736A JP2016151326A JP 2016151326 A JP2016151326 A JP 2016151326A JP 2015029736 A JP2015029736 A JP 2015029736A JP 2015029736 A JP2015029736 A JP 2015029736A JP 2016151326 A JP2016151326 A JP 2016151326A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen supply
valve
sliding
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015029736A
Other languages
Japanese (ja)
Inventor
優介 松屋
yusuke Matsuya
優介 松屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2015029736A priority Critical patent/JP2016151326A/en
Publication of JP2016151326A publication Critical patent/JP2016151326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen supply device which is hardly worn out and can suppress dust and outgas even without lubrication by adopting a novel configuration using any one of resins selected from a group of polyethylene, polypropylene and polyethylene terephthalate as a material for a sliding part of a hydrogen supply system.SOLUTION: A hydrogen supply system of this invention includes a hydrogen supply source for supplying hydrogen gas to a hydrogen consumption part, and a mechanical element connected to the hydrogen supply source and having a sliding surface. Any one of resins selected from a group of polyethylene, polypropylene and polyethylene terephthalate is used as a material of at least one of sliding parts of the mechanical element.SELECTED DRAWING: Figure 3

Description

本発明は水素消費部に水素ガスを供給する水素供給システムに関する。   The present invention relates to a hydrogen supply system that supplies hydrogen gas to a hydrogen consumption unit.

従来、水素ガスを供給する水素供給源としての水素タンクと、水素タンクに接続され水素タンクからの水素ガスが通過可能な流路を形成する機械要素とを備える水素供給システムが知られている(特許文献1)。機械要素は摺動面を備える。摺動面は、水素脆性に対して耐久性を有する金属で形成されている。このような金属としては、JIS−SUS316L等のステンレス鋼、A6061−T6等のアルミニウム合金が挙げられる。これにより、機械要素を構成する摺動面における水素脆性に対する耐久性が向上している。   2. Description of the Related Art Conventionally, a hydrogen supply system including a hydrogen tank as a hydrogen supply source that supplies hydrogen gas and a mechanical element that is connected to the hydrogen tank and that allows passage of hydrogen gas from the hydrogen tank is known ( Patent Document 1). The machine element comprises a sliding surface. The sliding surface is made of a metal having durability against hydrogen embrittlement. Examples of such metals include stainless steel such as JIS-SUS316L and aluminum alloys such as A6061-T6. Thereby, the durability with respect to hydrogen embrittlement in the sliding surface which comprises a machine element is improving.

上記した水素供給システムによれば、水素脆性に対する耐久性が向上しているものの、このような金属は摺動性が充分ではない。使用条件によっては、摺動面の母材において焼き付きが発生する可能性がある。また、水素ガスが高圧である場合には、通過する高圧の水素ガスの経路に潤滑グリースが存在するとき、高圧の水素ガスにより潤滑グリースの基油が蒸発したり、物理的に飛ばされたりすることも考えられる。この場合、摺動面の母材の焼き付きが一層発生し易いおそれがある。   According to the hydrogen supply system described above, although durability against hydrogen embrittlement is improved, such a metal is not sufficiently slidable. Depending on the use conditions, seizure may occur in the base material of the sliding surface. In addition, when the hydrogen gas is high pressure, when the lubricating grease is present in the passage of the high-pressure hydrogen gas that passes through, the base oil of the lubricating grease evaporates or is physically blown off by the high-pressure hydrogen gas. It is also possible. In this case, there is a possibility that the base material of the sliding surface is more likely to be seized.

それに対して、特許文献2の摺動部潤滑に関する構成は、200℃における蒸気圧が1×10−2Pa以下に設定されている基油を主要成分とする潤滑グリースであり、その基油にはフッ素系高分子樹脂ポリマーで形成された微粒子を包含しているものである。 On the other hand, the configuration related to sliding portion lubrication in Patent Document 2 is a lubricating grease whose main component is a base oil whose vapor pressure at 200 ° C. is set to 1 × 10 −2 Pa or less. Includes fine particles formed of a fluoropolymer resin polymer.

特開2005−23975号公報JP-A-2005-23975 特開2007−271075号公報JP 2007-271075 A

しかしながら、この構成ではフッ素系グリースを用いており、これは非常に蒸気圧が低いものではあるが、耐摩耗性は不十分であった。さらに、化学的に付着していない余分のフッ素系潤滑油が蒸発することによりアウトガスが発生しやすい。さらに、余分なフッ素系潤滑油は発塵粒子としても放出されることから、アウトガスや発塵による有機汚染がほとんど許容されない環境下で使用するためには、アウトガスや発塵を、より高度に抑制可能な対策が要求されることとなる.   However, this configuration uses a fluorine-based grease, which has a very low vapor pressure, but has insufficient wear resistance. Furthermore, outgassing is likely to occur due to evaporation of excess fluorine-based lubricating oil that is not chemically attached. In addition, excess fluorine-based lubricating oil is released as dust particles, so that outgas and dust are suppressed to a higher degree for use in environments where organic contamination due to outgas and dust generation is almost unacceptable. Possible measures will be required.

そこで、本発明は水素供給システムの摺動部の素材としてポリエチレン、ポリプロピレン、ポリエチレンテレフタレートのいずれかを用いるという新規な構成を採用することにより、無潤滑でも、摩耗し難く、発塵やアウトガスを抑制できる。   Therefore, the present invention adopts a new configuration in which any one of polyethylene, polypropylene, and polyethylene terephthalate is used as the material of the sliding portion of the hydrogen supply system, so that it is difficult to wear even without lubrication and suppresses dust generation and outgassing. it can.

上記課題を解決するために、本発明の水素供給システムは、水素消費部に水素ガスを供給する水素供給源と、水素供給源に接続され摺動面を備える機械要素とを具備し、前記機械要素の少なくとも1つの摺動部の素材として、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートのいずれかの樹脂を用いることを特徴とする。   In order to solve the above problems, a hydrogen supply system of the present invention includes a hydrogen supply source that supplies hydrogen gas to a hydrogen consuming unit, and a mechanical element that is connected to the hydrogen supply source and includes a sliding surface. As a material for at least one sliding portion of the element, any one of polyethylene, polypropylene, and polyethylene terephthalate is used.

好ましくは、前記機械要素が弁装置であれば、弁体を金属、弁体の相手側である弁座を前記樹脂とすることができる。前記金属として、機械要素の摺動面は、特に高圧水素中での耐水素ぜい性を有する金属で形成されていることが好ましい。このような金属としては、オーステナイト系の鋼(JIS−SUS316L等のステンレス鋼)、A6061−T6等のアルミニウム合金が挙げられる。また、前記金属の摩耗を抑制する為には、窒化処理することが好ましい。   Preferably, if the mechanical element is a valve device, the valve body can be made of metal and the valve seat on the other side of the valve body can be made of the resin. As the metal, the sliding surface of the machine element is preferably formed of a metal having hydrogen embrittlement resistance particularly in high-pressure hydrogen. Examples of such metals include austenitic steel (stainless steel such as JIS-SUS316L) and aluminum alloys such as A6061-T6. In order to suppress wear of the metal, nitriding treatment is preferable.

摺動部の粗さは、前記金属、前記樹脂ともに、中心線平均粗さRaを0.002〜1.6μmとすることが好ましい。粗さが小さすぎると、焼き付きが発生し易くなり、粗さが大きすぎると、摩耗の進行が速くなるためである。また、樹脂部品の成型方法は削り出しと射出成型のどちらでも可能であるが、量産する場合は射出成型が望ましい。   As for the roughness of the sliding portion, it is preferable that the center line average roughness Ra is 0.002 to 1.6 μm for both the metal and the resin. This is because if the roughness is too small, seizure is likely to occur, and if the roughness is too large, the progress of wear is accelerated. In addition, the resin component can be molded by either cutting or injection molding, but injection molding is desirable for mass production.

好ましくは、水素供給システム内の摺動部に上記の樹脂を使用すると、無潤滑でも摩耗し難い為、発塵やアウトガスを抑制できる。特に、超高分子量ポリエチレン(分子量100万〜700万)を使用した場合、摺動材料にPEEKを用いてグリースで潤滑した場合と同等の寿命を維持できる。さらに、潤滑剤に必要であったコストも削減できる。   Preferably, when the above resin is used for the sliding portion in the hydrogen supply system, it is difficult to wear even without lubrication, so that dust generation and outgassing can be suppressed. In particular, when ultra high molecular weight polyethylene (molecular weight 1 million to 7 million) is used, the same life as when lubricated with grease using PEEK as the sliding material can be maintained. Furthermore, the cost required for the lubricant can be reduced.

また、前記水素供給システムの摩耗を抑制する為には、前記摺動部の摺動時の滑り速度は、150mm/s以下、または、前記摺動部の接触面圧は0.1〜5MPaのいずれかまたは両方の条件を満たすことが好ましい。   Further, in order to suppress wear of the hydrogen supply system, the sliding speed during sliding of the sliding portion is 150 mm / s or less, or the contact surface pressure of the sliding portion is 0.1 to 5 MPa. It is preferable to satisfy either or both conditions.

本発明によれば、水素供給システムの摺動部が、無潤滑でも、摩耗し難く、発塵やアウトガスを抑制できる。   According to the present invention, even if the sliding portion of the hydrogen supply system is unlubricated, it is difficult to wear and dust generation and outgassing can be suppressed.

本発明の水素供給システムの断面図である。It is sectional drawing of the hydrogen supply system of this invention. 図1の異なる方向の断面図である。It is sectional drawing of the different direction of FIG. 本発明の水素供給システムの要部の拡大断面図である。It is an expanded sectional view of the important section of the hydrogen supply system of the present invention. 図3のIV−IV線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. 3. 減圧弁の可動弁体が閉弁している状態を示す断面図である。It is sectional drawing which shows the state which the movable valve body of a pressure-reduction valve has closed. 燃料電池の概念を示す図である。It is a figure which shows the concept of a fuel cell.

以下、本発明に関して詳細に説明する。   Hereinafter, the present invention will be described in detail.

本実施形態は、主に、燃料電池車に搭載される水素供給システムに適用する。水素供給システムは、図1に示すように、水素ガス(圧力:最高圧100MPa)を貯蔵するタンク室1aを備える水素供給源である水素タンク1と、水素タンク1に組み付けられた基部2とを有する。なお水素ガスは次の特性をもつ。水素ガスは粘性が非常に小さく、空気の約半分であり、比重が軽い。更に水素ガスは比熱が大きく、熱伝導度が高い。また、ガス充填時には、ガス温度が上昇し、ガス放出時にはガス温度が低下するため、広い温度域で使用可能な摺動部が必要となる。   This embodiment is mainly applied to a hydrogen supply system mounted on a fuel cell vehicle. As shown in FIG. 1, the hydrogen supply system includes a hydrogen tank 1 that is a hydrogen supply source including a tank chamber 1 a that stores hydrogen gas (pressure: maximum pressure 100 MPa), and a base 2 that is assembled to the hydrogen tank 1. Have. Hydrogen gas has the following characteristics. Hydrogen gas has a very low viscosity, about half that of air, and a low specific gravity. Furthermore, hydrogen gas has a large specific heat and high thermal conductivity. Further, since the gas temperature rises when the gas is filled and the gas temperature falls when the gas is released, a sliding part that can be used in a wide temperature range is required.

図1に示すように、基部2は、電磁弁3と、出口マニュアル弁4と、ガス充填孔5と、ス充填孔5に連通しタンク室1aに対面する供給孔6とを備える。電磁弁3は基部2の作動孔2hに嵌め込まれている。電磁弁3は、フィルタ3aと、プランジャ3bと、スプリング3cと、主弁体3dと、主弁座3eとを備える。出口マニュアル弁4は、ニードル4aと、アジャストスクリュー4bと、ニードル4aを付勢するスプリング4cと、弁座シート4eと、通路孔4fを備えるスリーブ4hとを有する。図2に示すように、基部2は、水素ガスを水素タンク1に充填するためのインポート2iと、水素ガスを燃料電池に向けて吐出するアウトポート2oと、水素ガスの圧力を減圧してアウトポート2oに供給する減圧弁7と、入口マニュアル弁8と、逆止弁9と、水素ガスの圧力を検知する圧力センサ10と、非常時に水素ガスを抜き取る圧抜き弁11と、溶栓弁14とを備える。水素タンク1に水素ガスを充填する場合には、水素ガスは、図2に矢印A1、矢印A2、矢印A3として示すように、インポート2i、入口マニュアル弁8、逆止弁9、通過孔12、通過孔13を順に経てガス充填孔5に至り、更に、図1に矢印B1、矢印B2として示すように、ガス充填孔5および供給孔6を経て、水素タンク1のタンク室1aに供給されて水素タンク1に高圧状態で貯蔵される。これに対して、水素タンク1に貯蔵されている水素ガスを燃料電池に供給する場合には、電磁弁3が開弁する。この場合、水素タンク1のタンク室1aに貯蔵されている高圧(使用範囲は0.5〜100MPa)の水素ガスは、電磁弁3のフィルタ3a、主弁体3dと主弁座3eとの流路、スリーブ4hの通過孔4f、出口マニュアル弁4を経て通過孔4mに至り、更に図2に示すように通過孔2r、減圧弁7の弁口7d、通過孔2t、2u、アウトポート2oを順に経て、更に他の減圧弁900(図6参照)を経て燃料電池の水素極に供給される。   As shown in FIG. 1, the base 2 includes an electromagnetic valve 3, an outlet manual valve 4, a gas filling hole 5, and a supply hole 6 that communicates with the filling hole 5 and faces the tank chamber 1 a. The electromagnetic valve 3 is fitted in the operating hole 2 h of the base 2. The electromagnetic valve 3 includes a filter 3a, a plunger 3b, a spring 3c, a main valve body 3d, and a main valve seat 3e. The outlet manual valve 4 includes a needle 4a, an adjustment screw 4b, a spring 4c that urges the needle 4a, a valve seat 4e, and a sleeve 4h having a passage hole 4f. As shown in FIG. 2, the base 2 includes an import 2i for filling the hydrogen gas into the hydrogen tank 1, an out port 2o for discharging the hydrogen gas toward the fuel cell, and the pressure of the hydrogen gas is reduced. Pressure reducing valve 7 to be supplied to the port 2, inlet manual valve 8, check valve 9, pressure sensor 10 for detecting the pressure of hydrogen gas, pressure release valve 11 for extracting hydrogen gas in an emergency, and a plug valve 14 With. When the hydrogen tank 1 is filled with hydrogen gas, the hydrogen gas is imported as shown by arrows A1, A2 and A3 in FIG. 2, import 2i, inlet manual valve 8, check valve 9, passage hole 12, The gas passes through the passage hole 13 to reach the gas filling hole 5 and is further supplied to the tank chamber 1a of the hydrogen tank 1 through the gas filling hole 5 and the supply hole 6 as shown by arrows B1 and B2 in FIG. The hydrogen tank 1 is stored under high pressure. On the other hand, when the hydrogen gas stored in the hydrogen tank 1 is supplied to the fuel cell, the electromagnetic valve 3 is opened. In this case, high-pressure (usage range: 0.5 to 100 MPa) hydrogen gas stored in the tank chamber 1a of the hydrogen tank 1 flows through the filter 3a, the main valve body 3d, and the main valve seat 3e of the solenoid valve 3. The passage, the passage hole 4f of the sleeve 4h, and the outlet manual valve 4 lead to the passage hole 4m. Further, as shown in FIG. 2, the passage hole 2r, the valve port 7d of the pressure reducing valve 7, the passage holes 2t, 2u, and the out port 2o Then, the fuel is supplied to the hydrogen electrode of the fuel cell through another pressure reducing valve 900 (see FIG. 6).

減圧弁7の要部を図3に示す。図3の右半分の(A)は減圧弁7が閉弁している状態を示す。図3の左半分の(B)は減圧弁7が開弁している状態を示す。図3に示すように、減圧弁7は、基部2に搭載された固定筒体であるプラグ7aと、プラグ7aの中央孔7bに嵌合された可動子である可動弁体7cと、ポリアミド樹脂で形成されている弁口7dを備える弁座シート7eと、可動弁体7cを閉弁方向(矢印Y1方向)に付勢するバネ7ko、バネ座7mとを備える。   The principal part of the pressure reducing valve 7 is shown in FIG. FIG. 3A shows a state where the pressure reducing valve 7 is closed. (B) in the left half of FIG. 3 shows a state where the pressure reducing valve 7 is open. As shown in FIG. 3, the pressure reducing valve 7 includes a plug 7a that is a fixed cylinder mounted on the base 2, a movable valve body 7c that is a mover fitted in a central hole 7b of the plug 7a, and a polyamide resin. The valve seat 7e provided with the valve port 7d formed in the above, the spring 7ko for urging the movable valve body 7c in the valve closing direction (arrow Y1 direction), and the spring seat 7m are provided.

図5は可動弁体7cの先端部を示す。図5に示すように、可動弁体7cの先端部には、先方に向かうにつれて外径が小さくなる円錐形状となる閉鎖面7xを備える。バネ7ko(図3参照)による閉弁力により、可動弁体7cが閉弁方向(矢印Y1方向)に移動すると、可動弁体7cの閉鎖面7xが弁座シート7eの弁口7dを区画するシール面7kに当たり、減圧弁7の弁口7dは閉弁される(図3の(A)、図5参照)。可動弁体7cが開弁方向(矢印Y2方向)に移動すると、可動弁体7cの閉鎖面7xが弁座シート7eから離脱し、減圧弁7の弁口7dは開弁される(図3の(B)参照)。   FIG. 5 shows the tip of the movable valve body 7c. As shown in FIG. 5, the distal end portion of the movable valve body 7 c is provided with a closed surface 7 x having a conical shape with an outer diameter that decreases toward the front. When the movable valve body 7c moves in the valve closing direction (arrow Y1 direction) by the valve closing force of the spring 7ko (see FIG. 3), the closing surface 7x of the movable valve body 7c defines the valve port 7d of the valve seat 7e. The valve opening 7d of the pressure reducing valve 7 hits the sealing surface 7k (see FIG. 3A and FIG. 5). When the movable valve body 7c moves in the valve opening direction (arrow Y2 direction), the closing surface 7x of the movable valve body 7c is detached from the valve seat 7e, and the valve port 7d of the pressure reducing valve 7 is opened (FIG. 3). (See (B)).

(実施例1)
本形態によれば、水素供給システムの摺動部の少なくとも1つの素材に、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートのいずれかの樹脂を用いる。換言すると、図3に示すように、プラグ7aの中央孔7bを形成する内周壁面7i(摺動面に相当)と可動弁体7cの外周壁面7o(摺動面に相当)等の摺動面を有する摺動部の少なくとも1つの素材に、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートのいずれかの樹脂を用いる。
Example 1
According to this embodiment, a resin of polyethylene, polypropylene, or polyethylene terephthalate is used as at least one material of the sliding portion of the hydrogen supply system. In other words, as shown in FIG. 3, sliding of the inner peripheral wall surface 7i (corresponding to the sliding surface) forming the central hole 7b of the plug 7a, the outer peripheral wall surface 7o (corresponding to the sliding surface) of the movable valve element 7c, etc. A resin of any one of polyethylene, polypropylene, and polyethylene terephthalate is used for at least one material of the sliding portion having a surface.

この様な構成にすることにより、水素の清浄度を保ったまま、耐摩耗性を改善できる。例えば、前記摺動部の一方をSUS316L(ステンレス鋼)、これに対する他方の摺動部材をEnsinger社のポリエチレン、TECAFINE PE 10bhとし、両者の表面粗さを0.1〜1μmRa、無潤滑、すべり速度を60mm/s、接触面圧2MPaとした場合、同じ条件で「TECAFINE PE→PEEK」「無潤滑→フッ素グリース潤滑」という点のみ変更した場合と比較して、摩耗量は同等となる。その上で、先に述べたように低発塵、低アウトガス、低コストという改善を実現できる。   By adopting such a configuration, the wear resistance can be improved while maintaining the cleanliness of hydrogen. For example, one of the sliding parts is SUS316L (stainless steel) and the other sliding member is polyethylene of Ensinger, TECAFINE PE 10bh. Is 60 mm / s and the contact surface pressure is 2 MPa, the amount of wear is the same as when only “TECAFINE PE → PEEK” and “no lubrication → fluorine grease lubrication” are changed under the same conditions. In addition, as described above, improvements such as low dust generation, low outgas, and low cost can be realized.

(実施例2)
実施例1で、構造上、すべり速度を上げる(100〜150mm/s)必要がある場合、ポリエチレンの代わりにポリプロピレンを用いると、耐熱性が高い為、焼き付きを更に抑制することができる。
(Example 2)
In Example 1, when it is necessary to increase the sliding speed (100 to 150 mm / s) due to the structure, if polypropylene is used instead of polyethylene, the heat resistance is high, so that seizure can be further suppressed.

またバネ支持部材7fの外周壁面7fi(摺動面に相当)と第2基部2Sの中央孔2kの内周壁面2ki(摺動面に相当)の少なくとも1つの摺動面100を有する摺動部の素材に、前記樹脂を有することが好ましい。さらに図3に示すように、可動弁体7c、バネ支持部材7fとの間に挟まれるように、これらの可動弁体7c、バネ支持部材7fと同軸上に設けられた弁軸70の外周壁面70p(摺動面に相当)と弁軸ガイド部材72の中央孔73の内周壁面73i(摺動面に相当)の少なくとも1つの摺動面100を有する摺動部の素材には、前記樹脂を有することが好ましい。なお、図4は図3のIV−IV線に沿った断面を示す。図4において、プラグ7aの内周壁面7iは円形である。可動弁体7cは、ほぼ正方形を基礎とし、その隅部7coを、前記内周壁面7iと嵌合可能な大きさの円形に面取りし、外周壁面7oを形成した形状を呈している。弁軸ガイド部材72(内周壁面)、弁軸70も同様な形状としている。   The sliding portion having at least one sliding surface 100 of the outer peripheral wall surface 7fi (corresponding to the sliding surface) of the spring support member 7f and the inner peripheral wall surface 2ki (corresponding to the sliding surface) of the central hole 2k of the second base 2S. It is preferable to have the resin in the material. Further, as shown in FIG. 3, the outer peripheral wall surface of the valve shaft 70 provided coaxially with the movable valve body 7c and the spring support member 7f so as to be sandwiched between the movable valve body 7c and the spring support member 7f. 70 p (corresponding to the sliding surface) and the material of the sliding part having at least one sliding surface 100 of the inner peripheral wall surface 73 i (corresponding to the sliding surface) of the central hole 73 of the valve shaft guide member 72 include the resin It is preferable to have. FIG. 4 shows a cross section taken along line IV-IV in FIG. In FIG. 4, the inner peripheral wall surface 7i of the plug 7a is circular. The movable valve body 7c has a substantially square shape, and has a shape in which a corner 7co is chamfered into a circle of a size that can be fitted to the inner peripheral wall surface 7i to form an outer peripheral wall surface 7o. The valve shaft guide member 72 (inner peripheral wall surface) and the valve shaft 70 have the same shape.

図1に示すように、プランジャ3bの外周壁面3bo(摺動面に相当)と作動孔2hの内周壁面2hi(摺動面に相当)の少なくとも1つの摺動面100を有する摺動部の素材には、前記樹脂を有することが好ましい。   As shown in FIG. 1, the sliding part having at least one sliding surface 100 of the outer peripheral wall surface 3bo (corresponding to the sliding surface) of the plunger 3b and the inner peripheral wall surface 2hi (corresponding to the sliding surface) of the operating hole 2h. The material preferably has the resin.

1…水素タンク
2…基部
3…電磁弁
7…減圧弁
100…摺動面
DESCRIPTION OF SYMBOLS 1 ... Hydrogen tank 2 ... Base 3 ... Solenoid valve 7 ... Pressure reducing valve 100 ... Sliding surface

Claims (1)

水素消費部に水素ガスを供給する水素供給源と、水素供給源に接続され摺動面を備える機械要素とを具備する水素供給システムにおいて、機械要素の少なくとも1つの摺動部の素材には、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートのいずれかの樹脂を用いることを特徴とする水素供給システム。   In a hydrogen supply system including a hydrogen supply source that supplies hydrogen gas to a hydrogen consumption unit and a mechanical element that is connected to the hydrogen supply source and includes a sliding surface, the material of at least one sliding part of the mechanical element includes: A hydrogen supply system using a resin selected from polyethylene, polypropylene, and polyethylene terephthalate.
JP2015029736A 2015-02-18 2015-02-18 Hydrogen supply system Pending JP2016151326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029736A JP2016151326A (en) 2015-02-18 2015-02-18 Hydrogen supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029736A JP2016151326A (en) 2015-02-18 2015-02-18 Hydrogen supply system

Publications (1)

Publication Number Publication Date
JP2016151326A true JP2016151326A (en) 2016-08-22

Family

ID=56695235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029736A Pending JP2016151326A (en) 2015-02-18 2015-02-18 Hydrogen supply system

Country Status (1)

Country Link
JP (1) JP2016151326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573789A (en) * 2018-01-30 2019-12-13 株式会社龙野 Filling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573789A (en) * 2018-01-30 2019-12-13 株式会社龙野 Filling device

Similar Documents

Publication Publication Date Title
CN105508874A (en) Valve device
JP2017532496A (en) Pumps, especially high pressure fuel pumps
CN105909956B (en) Lubrication system and speed changer
US20140147190A1 (en) Ballpoint pen tip and ballpoint pen using the same
BRPI0601341A (en) piston type compressor
JP2016151326A (en) Hydrogen supply system
CN105089730A (en) Mechanical system forming a cam follower or a rocker arm, including an inner cavity adapted to contain an oil bath
CN204212966U (en) A kind of axial piston pump thrust plate
JP2016145602A (en) Hydrogen feed system
RU106928U1 (en) VALVE ASSEMBLY OF THE PLUNGER PUMP FOR WELL SERVICE
JP6841658B2 (en) Roller type rocker arm
JP6911996B2 (en) Bearing member
CN106715927B (en) Hydraulic cylinder
EP2042690A3 (en) Turbocharger
JP6565811B2 (en) Connecting rod
CN104747605A (en) Bearing block structure
JP2007303622A (en) Sliding member
CN104390004A (en) Technology for manufacturing embedded type solid self-lubricating plunger
JP5045409B2 (en) Rolling bearing
CN102425539A (en) Stroke adjusting device for metering pump
JP2017045249A (en) Pressure regulating valve
JP2002004978A (en) Forced lubrication device of high pressure plunger pump
CN208619831U (en) A kind of rocker arm component
JP4166123B2 (en) Linear motion bearing
ES2536585B1 (en) Sliding bearing