JP2016150949A - Molding and method for producing the same - Google Patents

Molding and method for producing the same Download PDF

Info

Publication number
JP2016150949A
JP2016150949A JP2015027217A JP2015027217A JP2016150949A JP 2016150949 A JP2016150949 A JP 2016150949A JP 2015027217 A JP2015027217 A JP 2015027217A JP 2015027217 A JP2015027217 A JP 2015027217A JP 2016150949 A JP2016150949 A JP 2016150949A
Authority
JP
Japan
Prior art keywords
evoh
sample
resin
film
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015027217A
Other languages
Japanese (ja)
Inventor
勝久 徳満
Katsuhisa Tokumitsu
勝久 徳満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shiga Prefecture
Original Assignee
University of Shiga Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shiga Prefecture filed Critical University of Shiga Prefecture
Priority to JP2015027217A priority Critical patent/JP2016150949A/en
Publication of JP2016150949A publication Critical patent/JP2016150949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding excellent in gas barrier properties to both oxygen and water vapor.MEANS FOR SOLVING THE PROBLEM: The molding is provided that is obtained by molding a blended resin containing PP and EVOH as main components into a film shape or the like. EVOH is dispersed into PP to form a disperse phase. The disperse phase is a layer substantially parallel to a surface direction in at least the vicinity of the surface. A weight ratio of PP and EVOH is 15:85 to 85:15. Oxygen gas is effectively blocked by presence of a layer, and water vapor is effectively blocked by presence of a PP matrix phase.SELECTED DRAWING: Figure 1

Description

本発明は、成形体及びその製造方法に関する。   The present invention relates to a molded body and a manufacturing method thereof.

ガスバリア性に優れた包装材や容器、代表的には食品用包装材として各種の樹脂フィルムや樹脂ケースが用いられている。しかし、多くの樹脂には、特定の気体に対してガスバリア性を有するものの、その特定の気体以外の気体に対してガスバリア性に劣るという問題がある。例えば、ポリプロピレン(以下「PP」という。)等のオレフィン系樹脂のフィルムは、水蒸気に対してガスバリア性に優れているが、酸素に対してガスバリア性に劣る。逆に、例えば、エチレン‐ビニルアルコール共重合体(以下「EVOH」という。)等の親水性樹脂のフィルムは、酸素に対してガスバリア性に優れているが、水蒸気に対してガスバリア性に劣る。このため、酸素と水蒸気との両方に対してガスバリア性に優れた材料が求められている。   Various resin films and resin cases are used as packaging materials and containers having excellent gas barrier properties, typically as food packaging materials. However, many resins have a gas barrier property against a specific gas, but have a problem that the gas barrier property is inferior to a gas other than the specific gas. For example, a film of an olefin resin such as polypropylene (hereinafter referred to as “PP”) has an excellent gas barrier property against water vapor but is inferior to a gas barrier property against oxygen. On the other hand, for example, a film of a hydrophilic resin such as an ethylene-vinyl alcohol copolymer (hereinafter referred to as “EVOH”) is excellent in gas barrier properties against oxygen, but is poor in gas barrier properties against water vapor. For this reason, the material excellent in gas barrier property with respect to both oxygen and water vapor | steam is calculated | required.

一方で、従来、酸素に対してガスバリア性に優れた樹脂フィルムと、水蒸気に対してガスバリア性に優れた樹脂フィルム等複数諸種のフィルムとを、2層又は多層に積層して、酸素と水蒸気との両方に対してガスバリア性に優れた材料を得てきた(例えば、特許文献1を参照)。しかし、積層フィルムには、その製造工程が複雑であり、各々フィルム間の接着性が必ずしも良くはないという問題がある。   On the other hand, conventionally, a resin film having an excellent gas barrier property against oxygen and a plurality of kinds of films such as a resin film having an excellent gas barrier property against water vapor are laminated in two layers or multiple layers to form oxygen and water vapor. In both cases, a material having excellent gas barrier properties has been obtained (see, for example, Patent Document 1). However, the laminated film has a problem that the manufacturing process is complicated and the adhesion between the films is not always good.

他方で、酸素に対してガスバリア性に優れた樹脂と、水蒸気に対してガスバリア性に優れた樹脂をブレンドして、酸素と水蒸気との両方に対してガスバリア性に優れた材料を得ることが考えられる。   On the other hand, it is considered to blend a resin with excellent gas barrier properties against oxygen and a resin with excellent gas barrier properties against water vapor to obtain a material with excellent gas barrier properties against both oxygen and water vapor. It is done.

特開平10−080984号公報JP-A-10-080984

しかし、酸素に対してガスバリア性に優れた樹脂と、水蒸気に対してガスバリア性に優れた樹脂とを、任意に混ぜ合わせて溶融することによりブレンドするだけでは、酸素と水蒸気との両方に対してガスバリア性に劣る材料になってしまうおそれがある。   However, a resin that has excellent gas barrier properties with respect to oxygen and a resin that has excellent gas barrier properties with respect to water vapor can be mixed and melted arbitrarily to blend with both oxygen and water vapor. There is a possibility that the material becomes inferior in gas barrier properties.

また、水蒸気に対してガスバリア性に優れた樹脂と、酸素に対してガスバリア性に優れた樹脂とでは、その親和性が必ずしも良いとは限らない。これらの樹脂をブレンドした樹脂は、その成形性や力学的特性に問題が生ずるおそれがある。   In addition, a resin excellent in gas barrier property against water vapor and a resin excellent in gas barrier property against oxygen do not necessarily have good affinity. A resin obtained by blending these resins may cause a problem in moldability and mechanical properties.

そこで、本発明は、酸素と水蒸気との両方に対してガスバリア性に優れた成形体とその製造方法を提供することを目的とする。さらに、本発明は、酸素と水蒸気との両方に対してガスバリア性に優れ、力学的特性に優れた成形体とその製造方法を提供することを目的とする。   Then, an object of this invention is to provide the molded object excellent in gas barrier property with respect to both oxygen and water vapor | steam, and its manufacturing method. Furthermore, an object of the present invention is to provide a molded article having excellent gas barrier properties against both oxygen and water vapor and excellent mechanical properties, and a method for producing the same.

前述の目的を達成するために本発明に係る成形体は、ポリプロピレン(PP)とエチレン‐ビニルアルコール共重合体(EVOH)を主成分とするブレンド樹脂を、殻状、板状、筒状、もしくはフィルム状の形状に成形した成形体であり、前記EVOHが前記PP中に分散して分散相を形成し、該分散相が少なくとも表面近傍において面方向と略平行な層をなし、前記PPと前記EVOHとの重量比が15:85〜85:15である。   In order to achieve the above-mentioned object, the molded product according to the present invention is made of a blend resin mainly composed of polypropylene (PP) and an ethylene-vinyl alcohol copolymer (EVOH) in a shell shape, a plate shape, a cylindrical shape, or A molded body formed into a film-like shape, wherein the EVOH is dispersed in the PP to form a dispersed phase, and the dispersed phase forms a layer substantially parallel to the surface direction at least in the vicinity of the surface. The weight ratio with EVOH is 15:85 to 85:15.

前記成形体においては、前記PPの温度200℃、荷重2.16kgにおけるメルトフローレート(MFR)が、前記EVOHの温度200℃、荷重2.16kgにおけるMFRより小さいものであり得る。   In the molded body, the melt flow rate (MFR) at a PP temperature of 200 ° C. and a load of 2.16 kg may be smaller than the EVOH temperature of 200 ° C. and a load of 2.16 kg.

前記成形体においては、前記PPと前記EVOHとの重量比が15:85〜75:25であり、前記ブレンド樹脂が相溶化剤を0.5〜10phr含み得る。   In the molded body, a weight ratio of the PP to the EVOH is 15:85 to 75:25, and the blend resin may include a compatibilizing agent of 0.5 to 10 phr.

また、本発明に係る成形体の製造方法は、PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得る溶融ブレンド工程と、前記ブレンド樹脂を殻状、板状、筒状もしくはフィルム状の形状に成形して成形物となす成形工程と、前記成形物を該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸する延伸工程とを含み、前記ブレンド樹脂の前記PPと前記EVOHとの重量比が15:85〜85:15であり得る。   Further, the method for producing a molded body according to the present invention includes a melt blending step of obtaining a blend resin by melting while shearing PP and EVOH as main components, and the blend resin in a shell shape, a plate shape, a cylindrical shape or a film shape. Forming a molded product into a shape, and extending the molded product in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction. A weight ratio between the PP and the EVOH in the blend resin may be 15:85 to 85:15.

さらに、本発明に係る成形体の製造方法は、PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得る溶融ブレンド工程と、前記ブレンド樹脂を殻状、板状、筒状もしくはフィルム状の形状に成形して成形物となす成形工程と、前記成形物を該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸する延伸工程とを含み、前記ブレンド樹脂の前記PPと前記EVOHとの重量比が15:85〜75:25であり、該ブレンド樹脂が相溶化剤を0.5〜10phr含み得る。   Furthermore, the method for producing a molded body according to the present invention includes a melt blending step of obtaining a blend resin by melting while shearing PP and EVOH as main components, and the blend resin in a shell shape, a plate shape, a cylindrical shape, or a film shape. Forming a molded product into a shape, and extending the molded product in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction. A weight ratio of the PP and EVOH of the blend resin of 15:85 to 75:25, and the blend resin may include a compatibilizer of 0.5 to 10 phr.

上記の構成からなる本発明に係る成形体によれば、PPとEVOHとがフィルム状等の形状に成形され、EVOHがPP中に分散して分散相を形成し、分散相が成形体の面方向と略平行な層をなすため、当該層の存在により酸素気体が効果的に遮断され、PPマトリックス相の存在により水蒸気が効果的に遮断される。このため、本発明に係る成形体は、酸素と水蒸気との両方に対してガスバリア性に優れる。   According to the molded body according to the present invention having the above-described configuration, PP and EVOH are molded into a film-like shape, EVOH is dispersed in PP to form a dispersed phase, and the dispersed phase is the surface of the molded body. Since a layer substantially parallel to the direction is formed, oxygen gas is effectively blocked by the presence of the layer, and water vapor is effectively blocked by the presence of the PP matrix phase. For this reason, the molded object which concerns on this invention is excellent in gas barrier property with respect to both oxygen and water vapor | steam.

さらに、本発明に係る成形体は、PPとEVOHとの重量比が15:85〜75:25であってかつ、相溶化剤が0.5〜10phr含まれる場合に、弾性率、降伏応力、破断伸びが向上するため、酸素と水蒸気との両方に対してガスバリア性に優れるだけでなく、更に力学的特性に優れる。   Furthermore, the molded body according to the present invention has an elastic modulus, a yield stress, when the weight ratio of PP to EVOH is 15:85 to 75:25 and the compatibilizer is contained in an amount of 0.5 to 10 phr. Since the elongation at break is improved, not only is the gas barrier property excellent against both oxygen and water vapor, but also the mechanical properties are excellent.

本発明に係る成形体の形態の概念を説明する模式図。The schematic diagram explaining the concept of the form of the molded object which concerns on this invention. 実験例1に係る各試料フィルム断面のX線CT写真であり、(a)は試料A−PP60EV40、(b)は試料A−PP60EV40 with、(c)は試料A−PP80EV20、(d)は試料A−PP80EV20 withを示す。It is a X-ray CT photograph of each sample film cross section concerning Experimental Example 1, (a) is sample A-PP 60 EV 40 , (b) is sample A-PP 60 EV 40 with, (c) is sample A-PP. 80 EV 20 , (d) shows Sample A-PP 80 EV 20 with. 実験例1に係る各試料フィルムからEVOHを抽出後のフィルム断面のSEM写真であり、(a)は試料A−PP60EV40、(b)は試料A−PP60EV40 with、(c)は試料A−PP80EV20、(d)は試料A−PP80EV20 withを示す。A SEM photograph of the film section after extracting EVOH from each sample film according to Experimental Example 1, (a) Samples A-PP 60 EV 40 is, (b) the sample A-PP 60 EV 40 with, (c) Represents Sample A-PP 80 EV 20 , and (d) represents Sample A-PP 80 EV 20 with. 実験例2に係る各試料の酸素透過量と時間の関係を示すグラフ。The graph which shows the oxygen permeation amount of each sample which concerns on Experimental example 2, and the relationship of time. 実験例2に係る試料B−PP60EV40をフィルムの斜め上方から見たX線CT画像であり、(a)は当該フィルムおもて側表面、(b)は当該フィルム中層、(c)は当該フィルム裏側表面を示す。An X-ray CT images viewed Samples B-PP 60 EV 40 according to Experiment 2 obliquely from above of the film, (a) represents the film table surface, (b) is the film middle, (c) Indicates the back surface of the film. 実験例2に係る各試料フィルムからEVOHを抽出後のフィルム断面のSEM写真であり、(a)は試料B−PP90EV10、(b)は試料B−PP70EV30、(c)は試料B−PP60EV40を示す。A SEM photograph of the film section after extracting EVOH from each sample film according to Experimental Example 2, (a) the sample B-PP 90 EV 10, ( b) the sample B-PP 70 EV 30, ( c) is Sample B-PP 60 EV 40 is shown. PPとEVOHの200℃における溶融粘度と剪断角速度との関係を示すグラフ。The graph which shows the relationship between 200 degreeC melt viscosity and shear angular velocity of PP and EVOH. 実験例3に係る各試料の酸素透過量と時間の関係を示すグラフ。10 is a graph showing the relationship between the oxygen permeation amount and time of each sample according to Experimental Example 3. 実験例2,3に係る各試料フィルムにおける酸素の気体透過係数Gの削減率RとEVOHの混合比率との関係を示すグラフ。Graph showing the relationship between the mixing ratio of reduction rate R P and EVOH of the oxygen in the sample film gas permeability coefficient G P according to Experimental Examples 2 and 3. 実験例4に係る試料B−LvPP60EV40からEVOH抽出後のフィルム断面のSEM写真。The SEM photograph of the film cross section after EVOH extraction from sample B-LvPP 60 EV 40 which concerns on Experimental example 4. FIG.

[成形体]
図1に示すように、本発明に係る成形体2は、PPとEVOHを主成分とするブレンド樹脂からなる。成形体2は、殻状、筒状、板状もしくはフィルム状の形状に成形されてなる。
[Molded body]
As shown in FIG. 1, the molded object 2 which concerns on this invention consists of blend resin which has PP and EVOH as a main component. The molded body 2 is formed into a shell shape, a cylindrical shape, a plate shape, or a film shape.

成形体2は、EVOH相4を島(分散相)とし、PPマトリックス相6を海とする海島相構造を有する。また、成形体2の成形時にブレンド樹脂が延伸されるため、EVOH相4は薄板状の層10をなしている。延伸とは、成形物が所定の方向に延びるような力を、成形物に作用させることをいう。   The molded body 2 has a sea-island phase structure in which the EVOH phase 4 is an island (dispersed phase) and the PP matrix phase 6 is the sea. Further, since the blend resin is stretched when the molded body 2 is molded, the EVOH phase 4 forms a thin plate-like layer 10. Stretching means that a force that causes the molded product to extend in a predetermined direction is applied to the molded product.

層10の面方向は成形体2の面方向8と略平行であり、層10は少なくとも1層が成形体2の表面近傍に存在している。層10は、複数個が存在して、図1に示すように成形体2の厚さ方向12に積層されて多層構造をなしていることが好ましい。すなわち、成形体2中では、EVOHがPP中に分散して分散相を形成し、この分散相が成形体2の少なくとも表面近傍において成形体2の面方向8と略平行な層10をなす。   The surface direction of the layer 10 is substantially parallel to the surface direction 8 of the molded body 2, and at least one layer 10 exists in the vicinity of the surface of the molded body 2. It is preferable that a plurality of layers 10 exist and are laminated in the thickness direction 12 of the molded body 2 as shown in FIG. 1 to form a multilayer structure. That is, in the molded body 2, EVOH is dispersed in PP to form a dispersed phase, and this dispersed phase forms a layer 10 substantially parallel to the surface direction 8 of the molded body 2 at least near the surface of the molded body 2.

層10の厚さtは1〜30μmであり、たて幅、よこ幅は厚さtの2〜100倍であることが好ましい。EVOH相4の上面視形状は、略角のまるまった方形、略長円形、略楕円形、略小判型、略紡錘型、あるいはこれらの形状を有する複数個のものが部分的に面方向8に合わさった形状等である。   The thickness t of the layer 10 is 1 to 30 μm, and the vertical width and width are preferably 2 to 100 times the thickness t. The shape of the EVOH phase 4 viewed from above is a substantially rounded square, a substantially oval, a substantially oval, a substantially oval, a substantially spindle, or a plurality of these having a surface direction of 8 in part. The shape is suitable for

成形体2におけるPPとEVOHとの混合比率は、重量比で15:85〜85:15の範囲内である。この混合比率を下回ってPPの比率が少ないと、成形体2の厚さ方向12で隣り合う層10の間に介在するPPマトリックス相6の量が不足して、水蒸気を遮断する能力が不足する。この混合比率を上回ってPPの比率が多くなると、層10の量が不足して、酸素を遮断する能力が不足する。   The mixing ratio of PP and EVOH in the molded body 2 is in the range of 15:85 to 85:15 by weight. If the PP ratio is small below this mixing ratio, the amount of the PP matrix phase 6 interposed between the adjacent layers 10 in the thickness direction 12 of the molded body 2 is insufficient, and the ability to block water vapor is insufficient. . If the PP ratio increases above this mixing ratio, the amount of the layer 10 is insufficient and the ability to block oxygen is insufficient.

以上の構成により、成形体2では、層10の存在により酸素気体が効果的に遮断され、PPマトリックス相6の存在により水蒸気が効果的に遮断される。   With the above configuration, in the molded body 2, oxygen gas is effectively blocked by the presence of the layer 10, and water vapor is effectively blocked by the presence of the PP matrix phase 6.

このため、成形体2は、PPフィルムに比べて酸素気体の透過を50%以上低減し、かつ、EVOHフィルムに比べて水蒸気の透過を50%以上低減することができる。PPとEVOHの配合比等の条件をさらに適切に選択すれば、成形体2は、PPフィルムに比べて酸素気体の透過を90%以上低減し、かつ、EVOHフィルムに比べて水蒸気の透過を80%以上低減することができる。PPとEVOHの配合比等の条件をまたさらに適切に選択すれば、成形体2は、PPフィルムに比べて酸素気体の透過を95%以上低減し、かつ、EVOHフィルムに比べて水蒸気の透過を80%以上低減することができる。   For this reason, the molded body 2 can reduce oxygen gas permeation by 50% or more compared to the PP film, and can reduce water vapor permeation by 50% or more compared to the EVOH film. If the conditions such as the blending ratio of PP and EVOH are further appropriately selected, the molded body 2 reduces oxygen gas permeation by 90% or more compared to the PP film, and 80 permeation of water vapor compared to the EVOH film. % Or more can be reduced. If the conditions such as the blending ratio of PP and EVOH are further appropriately selected, the molded body 2 reduces oxygen gas permeation by 95% or more compared to the PP film, and water vapor permeation compared to the EVOH film. It can be reduced by 80% or more.

よって、本発明によれば、酸素と水蒸気との両方に対してガスバリア性に優れた成形体2を提供することができる。   Therefore, according to this invention, the molded object 2 excellent in gas barrier property with respect to both oxygen and water vapor | steam can be provided.

成形体2において、PPの温度200℃、荷重2.16kgにおけるメルトフローレート(以下「MFR」という。)が、EVOHの温度200℃、荷重2.16kgにおけるMFRより小さいことが好ましい。成形体2において、更に好ましくは、PPの温度200℃、荷重2.16kgにおけるMFRが、EVOHの温度200℃、荷重2.16kgにおけるMFRの1/10〜1/2である。なお、前述のMFRの値は、JIS K 7210に準拠した試験方法での測定値である。   In the molded body 2, the melt flow rate (hereinafter referred to as “MFR”) at a PP temperature of 200 ° C. and a load of 2.16 kg is preferably smaller than the MFR at an EVOH temperature of 200 ° C. and a load of 2.16 kg. In the molded body 2, the MFR at a PP temperature of 200 ° C. and a load of 2.16 kg is more preferably 1/10 to 1/2 of the MFR at an EVOH temperature of 200 ° C. and a load of 2.16 kg. In addition, the above-mentioned MFR value is a value measured by a test method based on JIS K 7210.

PPのMFRがEVOHのMFRより小さいと、延伸時にEVOH相がPP相より流動性が大きい、あるいは軟らかくなる可能性が大きい。そのような場合、ブレンド樹脂を延伸したときに、EVOH相4が薄板状の層10になりやすい。薄板状の層10の存在により、酸素気体が成形体2を透過しにくくなるため、成形体2は酸素に対してガスバリア性に優れた性能を発揮しやすい。   If the MFR of PP is smaller than the MFR of EVOH, there is a high possibility that the EVOH phase will have greater fluidity or softer than the PP phase during stretching. In such a case, when the blend resin is stretched, the EVOH phase 4 tends to become the thin plate-like layer 10. The presence of the thin plate-like layer 10 makes it difficult for oxygen gas to permeate the molded body 2, so that the molded body 2 tends to exhibit performance with excellent gas barrier properties against oxygen.

成形体2の原料となったブレンド樹脂には、実質的に相溶化剤が含まれないが、PPとEVOHとの相溶化剤が含まれても良い。相溶化剤とは、ブレンド樹脂における2種のポリマーの界面張力を低下させ、性質の違いを緩和させ、相分離構造を安定化させる高分子物質である。   The blend resin used as the raw material of the molded body 2 contains substantially no compatibilizing agent, but may contain a compatibilizing agent of PP and EVOH. The compatibilizer is a polymer substance that lowers the interfacial tension between two types of polymers in the blend resin, relaxes the difference in properties, and stabilizes the phase separation structure.

相溶化剤としては、例えば、極性基を有する炭化水素系重合体が挙げられる。ここで極性基としては、例えば、スルホン酸基、スルフェン酸基、スルフィン酸基等の硫黄含有基、水酸基、エポキシ基、ケトン基、エステル基、アルデヒド基、カルボキシル基、酸無水物基等のカルボニル基含有基、グリシジル基、ニトロ基、アミド基、ウレア基、イソシアナート基等の窒素含有基、ホスホン酸エステル基、ホスフィン酸エステル基等のリン含有基、ボロン酸基、ボロン酸エステル基、ボロン酸無水物基、ボロン酸塩基等のホウ素含有基等が挙げられる。   Examples of the compatibilizing agent include hydrocarbon polymers having a polar group. Examples of polar groups include sulfur-containing groups such as sulfonic acid groups, sulfenic acid groups, and sulfinic acid groups, and carbonyl groups such as hydroxyl groups, epoxy groups, ketone groups, ester groups, aldehyde groups, carboxyl groups, and acid anhydride groups. Nitrogen-containing groups such as group-containing groups, glycidyl groups, nitro groups, amide groups, urea groups, isocyanate groups, phosphorus-containing groups such as phosphonic acid ester groups, phosphinic acid ester groups, boronic acid groups, boronic acid ester groups, boron Examples thereof include boron-containing groups such as acid anhydride groups and boronate groups.

相溶化剤としては、具体的には、マレイン酸変性PP(以下「PP−g−MAH」という。)が例示される。PP−g−MAHは、PP鎖に無水マレイン酸(以下「MAH」という。)をグラフト重合させた重合物である。ブレンド樹脂において、酸無水物であるMAHがEVOHの親水基と反応し、PP−g−MAHのPP鎖が当該PP鎖に似た構造であるマトリックスPPと相互作用することで、本来非相溶であるPP/EVOHブレンド系を、ある程度相溶させる。   Specific examples of the compatibilizer include maleic acid-modified PP (hereinafter referred to as “PP-g-MAH”). PP-g-MAH is a polymer obtained by graft polymerization of maleic anhydride (hereinafter referred to as “MAH”) to a PP chain. In the blend resin, MAH which is an acid anhydride reacts with the hydrophilic group of EVOH, and the PP chain of PP-g-MAH interacts with the matrix PP having a structure similar to the PP chain. The PP / EVOH blend system is to some extent compatible.

ブレンド樹脂に含まれる相溶化剤の濃度が高すぎると、EVOH相が微分散するため、層10の形成が妨げられてしまう。EVOH相が微分散することを避けるため、相溶化剤がブレンド樹脂に0.5〜10phrの範囲の濃度で含まれるように、相溶化剤を添加することが好ましい。   If the concentration of the compatibilizing agent contained in the blend resin is too high, the EVOH phase is finely dispersed, which prevents the formation of the layer 10. In order to avoid fine dispersion of the EVOH phase, it is preferable to add the compatibilizer so that the compatibilizer is contained in the blend resin at a concentration in the range of 0.5 to 10 phr.

ブレンド樹脂が相溶化剤を含む場合、PPとEVOHとの混合比率が重量比で15:85〜75:25であることが、EVOHの層10のような層構造を形成させる上で好ましい。PPとEVOHとの混合比率が重量比で25:75〜75:25であることが、酸素気体の透過度を低減させる上でさらに好ましい。PPとEVOHとの混合比率が重量比で35:65〜75:25であることが、水蒸気透過度を低減させる上で最も好ましい。   When the blend resin contains a compatibilizing agent, the mixing ratio of PP and EVOH is preferably 15:85 to 75:25 in terms of weight ratio in order to form a layer structure such as the EVOH layer 10. It is further preferable that the mixing ratio of PP and EVOH is 25:75 to 75:25 by weight to reduce the permeability of oxygen gas. It is most preferable that the mixing ratio of PP and EVOH is 35:65 to 75:25 by weight to reduce the water vapor permeability.

以上のように、ブレンド樹脂が相溶化剤を含む場合には、成形体2の脆弱的な力学特性を改善することができる。すなわち、ブレンド樹脂が相溶化剤を含む場合には、相溶化剤を含まない場合と比べて、成形体2の弾性率、降伏応力、破断伸びが向上する。よって、本発明によれば、酸素と水蒸気との両方に対してガスバリア性に優れ、力学的特性に優れた成形体2を提供することができる。   As described above, when the blend resin contains a compatibilizing agent, the fragile mechanical characteristics of the molded body 2 can be improved. That is, when the blend resin includes a compatibilizing agent, the elastic modulus, yield stress, and elongation at break of the molded body 2 are improved as compared with the case where the compatibilizing agent is not included. Therefore, according to this invention, the molded object 2 which was excellent in gas barrier property with respect to both oxygen and water vapor | steam, and was excellent in the mechanical characteristic can be provided.

ブレンド樹脂には、PP、EVOH以外の第三成分が10phr以下の範囲で添加されていても良い。例えば、顔料、安定剤等の樹脂用の通常の添加剤が、通常の添加剤の混合率の範囲内で添加されていても良い。   A third component other than PP and EVOH may be added to the blend resin in a range of 10 phr or less. For example, ordinary additives for resins such as pigments and stabilizers may be added within the range of the mixing ratio of ordinary additives.

[成形体の製造方法]
成形体2は、PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得る溶融ブレンド工程と、ブレンド樹脂を殻状、板状、筒状もしくはフィルム状に成形して成形物となす成形工程と、成形物を該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸する延伸工程とを含み、ブレンド樹脂のPPとEVOHとの重量比が15:85〜85:15である成形方法により製造されることが好ましい。
[Method for producing molded article]
Molded body 2 is a melt blending step in which PP and EVOH are sheared as main components to obtain a blend resin by melting and molding the blend resin into a shell, plate, cylinder, or film to form a molded product And a stretching step of stretching the molded product in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction. It is preferably produced by a molding method having a weight ratio with EVOH of 15:85 to 85:15.

溶融ブレンド工程では、PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得て、溶融したブレンド樹脂中でEVOHがPP中に球状に分散して分散相を形成する。成形工程では、溶融したブレンド樹脂を、そのまま、あるいは一旦冷却後、溶融状態でフィルム状等の形状に成形して、溶融状の成形物となす。延伸工程では、成形物を溶融状態で該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸することにより、EVOH相が溶融状成形物の面方向に延ばされて扁平化して、層10が形成される。   In the melt blending process, PP and EVOH are sheared and melted as main components to obtain a blend resin, and EVOH is dispersed spherically in PP in the melted blend resin to form a dispersed phase. In the molding step, the melted blended resin is molded as it is or after being cooled and then molded into a film shape or the like in a molten state to form a molten molded product. In the stretching step, the EVOH phase is melted by stretching the molded product in a molten state in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction. The layer 10 is formed by extending in the surface direction of the shaped product and flattening.

よって、本発明に係る成形体2の製造方法によれば、ブレンド樹脂のPPとEVOHとの重量比が15:85〜85:15である場合には、ブレンド樹脂に図1に示すような層構造が形成され、延伸工程後に、酸素と水蒸気との両方に対してガスバリア性に優れる成形体2を得ることができる。この製造方法において、ブレンド樹脂は、実質的に相溶化剤を含まない。   Therefore, according to the manufacturing method of the molded body 2 according to the present invention, when the weight ratio of PP and EVOH of the blend resin is 15:85 to 85:15, the layer shown in FIG. A structure is formed, and after the stretching step, a molded body 2 having excellent gas barrier properties against both oxygen and water vapor can be obtained. In this production method, the blend resin is substantially free of a compatibilizing agent.

あるいは、成形体2は、PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得る溶融ブレンド工程と、ブレンド樹脂を殻状、板状、筒状もしくはフィルム状に成形して成形物となす成形工程と、成形物を該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸する延伸工程とを含み、ブレンド樹脂のPPとEVOHとの重量比が15:85〜75:25であり、ブレンド樹脂が相溶化剤を0.5〜10phr含む成形方法により製造されることが好ましい。   Alternatively, the molded body 2 includes a melt blending step in which PP and EVOH are sheared as main components and melted to obtain a blend resin, and the blend resin is molded into a shell shape, a plate shape, a cylindrical shape, or a film shape, A molding step, and a stretching step of stretching the molded product in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction. The weight ratio of PP to EVOH is preferably 15:85 to 75:25, and the blend resin is preferably produced by a molding method containing a compatibilizing agent in an amount of 0.5 to 10 phr.

本発明に係る成形体2の製造方法において、ブレンド樹脂のPPとEVOHとの重量比が15:85〜75:25であり、ブレンド樹脂が相溶化剤を0.5〜10phr含む場合には、得られる成形体2は、酸素と水蒸気との両方に対してガスバリア性に優れ、力学的特性に優れたものとなる。   In the method for producing the molded body 2 according to the present invention, when the weight ratio of PP and EVOH of the blend resin is 15:85 to 75:25, and the blend resin contains a compatibilizer of 0.5 to 10 phr, The obtained molded body 2 has excellent gas barrier properties against both oxygen and water vapor, and has excellent mechanical properties.

成形工程と延伸工程は、同時又は連続で行われても良い。溶融ブレンド工程、成形工程及び延伸工程が、同時又は連続して行われても良い。   The forming step and the stretching step may be performed simultaneously or continuously. The melt blending step, the forming step, and the stretching step may be performed simultaneously or sequentially.

溶融ブレンド工程におけるブレンド樹脂の剪断速度に相当する剪断速度の条件下、及び、溶融ブレンド工程におけるブレンド樹脂の溶融温度に相当する温度条件下で測定されたPPの溶融粘度は、当該PPと同じ条件下で測定されたEVOHの溶融粘度以上であることが好ましい。   The melt viscosity of PP measured under the condition of shear rate corresponding to the shear rate of the blend resin in the melt blending process and the temperature condition corresponding to the melt temperature of the blend resin in the melt blending process is the same as that of the PP. It is preferably greater than or equal to the melt viscosity of EVOH measured below.

PPの溶融ブレンド工程での剪断速度及び溶融温度における溶融粘度が、EVOHのこの剪断速度及び溶融温度における溶融粘度より小さい場合、成形工程で成形物中においてEVOH相(島相)が微分散し、個々のEVOH相の直径が例えば5μm程度より小さくなってしまう。この場合、延伸工程で延伸によるEVOH層10の形成がなされにくい。この場合、成形体2において酸素気体が、透過しにくいEVOH相4を避けてPPマトリックス相6を優先して透過すると考えられる。   When the melt viscosity at the melt rate at the melt blending step of PP and the melt viscosity at the melt temperature of EVOH is smaller than the melt viscosity at the shear rate and melt temperature of EVOH, the EVOH phase (island phase) is finely dispersed in the molded product in the molding step. The diameter of each EVOH phase becomes smaller than about 5 μm, for example. In this case, it is difficult to form the EVOH layer 10 by stretching in the stretching process. In this case, it is considered that oxygen gas passes through the PP matrix phase 6 preferentially while avoiding the EVOH phase 4 which is difficult to permeate in the molded body 2.

逆に、PPの溶融ブレンド工程での剪断速度及び溶融温度における溶融粘度が、EVOHのこの剪断速度及び溶融温度における溶融粘度より大きい場合、成形工程で成形物中において個々のEVOH相(島相)の直径が例えば10μm以上と比較的大きくなる。この場合、延伸工程で延伸により比較的大きな面積のEVOH層10の形成がなされる。これにより、成形体2において酸素気体が効果的に遮断されると考えられる。   Conversely, if the melt viscosity at the melt rate at the melt blending step of PP is greater than the melt viscosity at the melt rate at the EVOH, the individual EVOH phase (island phase) in the molding during the molding step. Is relatively large, for example, 10 μm or more. In this case, the EVOH layer 10 having a relatively large area is formed by stretching in the stretching step. Thereby, it is considered that oxygen gas is effectively blocked in the molded body 2.

延伸工程では、互いに隣接するEVOHの相が延伸時に面方向に合体して、広い層10が形成されることもある。このEVOHの層10は、成形体2の厚さ方向に多層に積層されて、多層構造を形成していることが最も好ましい。このとき、積層されたEVOHの層10に対面する各層間7には、PPが存在する。すなわち、EVOHの層10が、PPを介して積層されて多層状に存在する。延伸前の成形物に含まれるEVOHの相の大半が、その個々の相の直径が5μm以下に微分散している場合には、酸素気体遮断のために有効な層10が形成されにくい。   In the stretching step, EVOH phases adjacent to each other may be combined in the surface direction during stretching to form a wide layer 10. The EVOH layer 10 is most preferably laminated in multiple layers in the thickness direction of the molded body 2 to form a multilayer structure. At this time, PP exists in each of the layers 7 facing the stacked EVOH layer 10. That is, the EVOH layer 10 is laminated via PP and exists in a multilayered form. When most of the EVOH phases contained in the molded product before stretching are finely dispersed with the individual phase diameters of 5 μm or less, it is difficult to form an effective layer 10 for blocking oxygen gas.

PPの温度200℃、荷重2.16kgにおけるMFRが、EVOHの温度200℃、荷重2.16kgにおけるMFRより小さいことが、層10を延伸時に形成させる上で好ましい。PPの温度200℃、荷重2.16kgにおけるMFRが、EVOHの温度200℃、荷重2.16kgにおけるMFRの1/10〜1/2であることが、延伸時に層10を形成させる上で更に好ましい。   The MFR at a PP temperature of 200 ° C. and a load of 2.16 kg is preferably smaller than the MFR at an EVOH temperature of 200 ° C. and a load of 2.16 kg in order to form the layer 10 during stretching. The MFR at a PP temperature of 200 ° C. and a load of 2.16 kg is more preferably 1/10 to 1/2 of the MFR at an EVOH temperature of 200 ° C. and a load of 2.16 kg in order to form the layer 10 during stretching. .

あるいは、成形体2の製造方法において、成形工程は、溶融したブレンド樹脂をそのまま、あるいは一旦冷却固化後、殻状、筒状、板状もしくはフィルム状(膜状)の形状に成形して成形物となし、延伸工程は、成形物を好ましくは軟化もしくは溶融状態で該成形物の面方向と平行な一の方向及びその一の方向と直交してその面方向と平行な他の方向に延伸するのであっても良い。この場合、EVOHの相が成形物の面方向に延ばされて扁平化して、層10が形成される。   Alternatively, in the method of manufacturing the molded body 2, the molding step is to form the molded blended resin as it is or after cooling and solidifying, and then molding into a shell, cylinder, plate, or film (film) shape. The stretching step preferably stretches the molded product in a softened or molten state in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction. It may be. In this case, the phase of EVOH is extended in the surface direction of the molded product and flattened to form the layer 10.

延伸工程で成形物を軟化もしくは溶融状態で延伸する場合も、互いに隣接するEVOHの相が延伸時に面方向に合体して、広い層10が形成されることもある。この場合も、EVOHの層10は、成形体2の厚さ方向12に多層に積層されて、多層構造を形成していることが最も好ましい。このとき、積層されたEVOHの層10に対面する各層間7にはPPが存在する。すなわち、EVOHの層10がPPを介して積層されて多層状に存在する。この場合も、延伸前の溶融物中に形成された個々のEVOHの相の直径が5μm以下に微分散していると、酸素気体遮断において有効な層10が形成されにくい。   Even when the molded product is stretched in a softened or molten state in the stretching step, the phases of EVOH adjacent to each other may be combined in the surface direction during stretching to form a wide layer 10. Also in this case, it is most preferable that the EVOH layers 10 are laminated in multiple layers in the thickness direction 12 of the molded body 2 to form a multilayer structure. At this time, PP exists in each layer 7 facing the layer 10 of the stacked EVOH. That is, the EVOH layer 10 is laminated through PP and exists in a multilayered form. Also in this case, if the diameter of each EVOH phase formed in the melt before stretching is finely dispersed to 5 μm or less, it is difficult to form the layer 10 effective in blocking oxygen gas.

延伸工程で成形物を軟化もしくは溶融状態で延伸する場合、延伸倍率は両方向とも1.5〜15倍であることが好ましい。延伸倍率が1.5倍未満であると、EVOH相の扁平化が不完全となる箇所が生じるおそれがある。15倍を超えると、延伸が不安定であったり、EVOH相が極端に細くなったり千切れたりする箇所が生じる可能性がある。これらの現象を防ぐために、延伸倍率は、更に好ましくは、両方向とも2〜10倍である。延伸は、成形物が溶融状態、あるいは常温状態より高温で成形物が常温状態より軟化した状態で行われることが、層構造を発現する上で好ましい。   When the molded product is stretched in a softened or molten state in the stretching step, the stretching ratio is preferably 1.5 to 15 times in both directions. If the draw ratio is less than 1.5 times, there may be a portion where EVOH phase flattening is incomplete. If it exceeds 15 times, stretching may be unstable, or the EVOH phase may become extremely thin or broken. In order to prevent these phenomena, the draw ratio is more preferably 2 to 10 times in both directions. Stretching is preferably performed in a molten state or in a state where the molded product is softened from the normal temperature state at a temperature higher than the normal temperature state in order to develop a layer structure.

成形物を該成形物の面方向と平行な一の方向及びその一の方向と直交してその面方向と平行な他の方向に軟化状態で延伸する方法としては、例えば、インフレーション法による製膜や、ブロー成形による殻状物(容器状物等)の製造が挙げられる。インフレーション法は、溶融状態のブレンド樹脂をリングダイから押出して得られるチューブの内側に圧縮空気を吹き込んでチューブを膨らませる方式による製膜法であり、チューブが膨らむときに膜の面方向と平行な一の方向及びその一の方向と直交してその面方向と平行な他の方向に膜が延伸される。ブロー成形においても、インフレーション法と類似の膨張のメカニズムで延伸がなされる。   As a method of stretching a molded product in a softened state in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction, for example, film formation by an inflation method And production of shells (such as containers) by blow molding. The inflation method is a film-forming method in which a compressed air is blown into the inside of a tube obtained by extruding a blend resin in a molten state from a ring die to expand the tube. When the tube expands, it is parallel to the surface direction of the film. The film is stretched in one direction and in another direction orthogonal to the one direction and parallel to the surface direction. In blow molding, stretching is performed by an expansion mechanism similar to that of the inflation method.

成形物を該成形物の面方向と平行な一の方向及びその一の方向と直交してその面方向と平行な他の方向に溶融状態で延伸する方法としては、他の例として、プレス法による膜状物や殻状物(容器状物等)の製造方法が挙げられる。プレス法においては、PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得て、このブレンド樹脂を一旦冷却してチップ化し、そのチップを所定の型中に面状に配して溶融熱プレスすることにより、成形体2が得られる。熱プレスにより、チップが成形物になるとともに、プレス方向と直交する方向に成形物に生ずる力により成形物が延伸される。PPの溶融ブレンド工程の温度における溶融粘度が、EVOHのこの温度における溶融粘度より大きい場合は、EVOH相がこの延伸により面状に流動して層化しやすく、酸素気体の遮断性の向上に寄与する。   As another example of a method of stretching a molded product in a molten state in one direction parallel to the surface direction of the molded product and another direction perpendicular to the one direction and parallel to the surface direction, a press method is used as another example. And a method for producing a film or shell (a container or the like). In the press method, PP and EVOH are melted while shearing with PPOH as a main component to obtain a blend resin, the blend resin is once cooled to form chips, and the chips are arranged in a plane in a predetermined mold and melted. The compact 2 is obtained by hot pressing. By hot pressing, the chip becomes a molded product, and the molded product is stretched by a force generated in the molded product in a direction orthogonal to the pressing direction. If the melt viscosity of PP at the temperature of the melt blending process is higher than the melt viscosity of EVOH at this temperature, the EVOH phase tends to flow into a layer by this stretching and stratify, which contributes to the improvement of oxygen gas barrier properties. .

また、成形物を成形物の面方向と平行な一の方向及びその一の方向と直交してその面方向と平行な他の方向に延伸する方法としては、更に他の例として、直線状のスリットダイから溶融状態のブレンド樹脂を押出して得られたフィルム状の成形物を二軸延伸する方法が挙げられる。   Further, as another example of a method of extending a molded product in one direction parallel to the surface direction of the molded product and in another direction orthogonal to the one direction and parallel to the surface direction, Examples thereof include a method of biaxially stretching a film-like molded product obtained by extruding a melted blend resin from a slit die.

実施例を含む以下の実験例1〜4により、本発明のベースとなった現象と、本発明に係る成形体及びその製造方法の構成及び効果を詳述する。   The following experimental examples 1 to 4 including examples will explain in detail the phenomenon that is the basis of the present invention and the configuration and effects of the molded body and the manufacturing method thereof according to the present invention.

[実験例1]
[実験例1に係る試料の製造方法]
PPとしては、Isotactic−PP:F113−G(株式会社プライムポリマー社製)を準備した。また、EVOHとしては、J−E105B(株式会社クラレ製)を準備した。準備したPPとEVOHの特性値を表1に示す。なお、PP、EVOHのMFR測定は、IMC−1540(株式会社井元製作所製)を用いて、JIS K 7210に準拠して、温度200℃の樹脂に荷重2.16kgをかける条件で行なった。
[Experiment 1]
[Method for Producing Sample According to Experimental Example 1]
As PP, Isotactic-PP: F113-G (manufactured by Prime Polymer Co., Ltd.) was prepared. Moreover, as EVOH, J-E105B (made by Kuraray Co., Ltd.) was prepared. Table 1 shows the characteristic values of the prepared PP and EVOH. In addition, MFR measurement of PP and EVOH was performed using IMC-1540 (manufactured by Imoto Seisakusho Co., Ltd.) under a condition in which a load of 2.16 kg was applied to a resin having a temperature of 200 ° C. in accordance with JIS K 7210.

相溶化剤としては、PP−g−MAH:P772.0(化薬アクゾ株式会社製)を準備した。準備した相溶化剤の特性値を表2に示す。
As a compatibilizer, PP-g-MAH: P 77 M 2.0 (manufactured by Kayaku Akzo Corporation) was prepared. The characteristic values of the prepared compatibilizer are shown in Table 2.

次に、二軸押出機としてKZW 15HG(株式会社テクノベル製)を用いて、溶融ブレンドによりブレンド樹脂を調製した。準備したヴァージン樹脂原料を、あらかじめドライブレンドをしてから二軸押出機に投入した。ブレンド樹脂の調製は、空気雰囲気下で、混練温度200℃、スクリュー回転速度250rpm、ブレンド樹脂の吐出量30g/minの条件で行ない、吐出後のブレンド樹脂を水冷した。   Next, a blend resin was prepared by melt blending using KZW 15HG (manufactured by Technobell Co., Ltd.) as a twin screw extruder. The prepared virgin resin raw material was dry blended in advance and then charged into a twin screw extruder. The blend resin was prepared in an air atmosphere under conditions of a kneading temperature of 200 ° C., a screw rotation speed of 250 rpm, and a discharge amount of the blend resin of 30 g / min, and the discharged blend resin was water-cooled.

ブレンド樹脂調製の際に、準備したPPとEVOHを、その混合比率(重量%)が60:40、又は、80:20となるように混練させた。さらに、ブレンド樹脂に相溶化剤を含ませる場合には、ブレンド樹脂の全体量に対して相溶化剤が5phrを占めるように相溶化剤を加えてから、PPやEVOHと共に相溶化剤を混練させた。表3に示すように、ブレンド樹脂として樹脂A−PP60EV40、樹脂A−PP60EV40 with、樹脂A−PP80EV20、樹脂A−PP80EV20 withを調製した。ここでのwithは、ブレンド樹脂に相溶化剤が含まれることを示す。
When preparing the blend resin, the prepared PP and EVOH were kneaded so that the mixing ratio (% by weight) was 60:40 or 80:20. Furthermore, when a compatibilizing agent is included in the blend resin, the compatibilizing agent is added so that the compatibilizing agent occupies 5 phr with respect to the total amount of the blend resin, and then the compatibilizing agent is kneaded with PP and EVOH. It was. As shown in Table 3, resin A-PP 60 EV 40 , resin A-PP 60 EV 40 with, resin A-PP 80 EV 20 , and resin A-PP 80 EV 20 with were prepared as blend resins. The “with” here indicates that the blend resin contains a compatibilizing agent.

表3に示すブレンド樹脂の調製後、押出しブロー成形機としてTYPE EAW−50(株式会社モダンマシナリー社製)により、インフレーション法にて当該ブレンド樹脂を用いて各々試料フィルムを製造した。試料フィルムの製造は、空気雰囲気下で、溶融温度210℃、スクリュー回転速度70rpm、MD方向(流れ方向)の延伸倍率4倍、TD方向(MD方向と垂直な方向)の延伸倍率2倍、延伸後の成形物を空冷する条件で行なった。   After preparing the blend resins shown in Table 3, each sample film was produced using the blend resin by an inflation method with TYPE EAW-50 (manufactured by Modern Machinery Co., Ltd.) as an extrusion blow molding machine. The sample film was manufactured under an air atmosphere at a melting temperature of 210 ° C., a screw rotation speed of 70 rpm, a stretching ratio of 4 times in the MD direction (flow direction), and a stretching ratio of 2 times in the TD direction (direction perpendicular to the MD direction). The subsequent molding was performed under the condition of air cooling.

得られた試料フィルムについて、樹脂A−PP60EV40を用いて製造したものを試料A−PP60EV40とし、樹脂A−PP60EV40 withを用いて製造したものを試料A−PP60EV40 withとし、樹脂A−PP80EV20を用いて製造したものを試料A−PP80EV20とし、樹脂A−PP80EV20 withを用いて製造したものを試料A−PP80EV20 withとした。また、比較対象として、同様の条件のインフレーション法にて、PPを用いて製造したPPフィルムAと、EVOHを用いて製造したEVOHフィルムAを得た。 About the obtained sample film, what was manufactured using resin A-PP 60 EV 40 is set to sample A-PP 60 EV 40, and what was manufactured using resin A-PP 60 EV 40 with is sample A-PP 60. What was manufactured using resin A-PP 80 EV 20 as sample EV 40 with sample A-PP 80 EV 20 and sample manufactured using resin A-PP 80 EV 20 with sample A-PP 80 EV 20 It was with. Moreover, as a comparison object, PP film A manufactured using PP and EVOH film A manufactured using EVOH were obtained by an inflation method under the same conditions.

[実験例1における引張り試験]
試料フィルムをダンベル型に切り取り、試験片とした。試験片のサイズは、全長60mm、中央部長さ10mm、中央部幅4mmであった。EZ−Test(島津製作所株式会社製)により、チャック間距離10mm、引っ張り速度20mm/minの条件で、試験片を定速引張り試験に供した。
[Tensile test in Experimental Example 1]
The sample film was cut into a dumbbell shape and used as a test piece. The test piece had a total length of 60 mm, a central portion length of 10 mm, and a central portion width of 4 mm. Using EZ-Test (manufactured by Shimadzu Corporation), the test piece was subjected to a constant-speed tensile test under conditions of a distance between chucks of 10 mm and a pulling speed of 20 mm / min.

引張試験により得られた各試料フィルムの弾性率、降伏応力、破断伸びのデータを表4に示す。
Table 4 shows the data of the elastic modulus, yield stress, and elongation at break of each sample film obtained by the tensile test.

表4から明らかなように、ブレンド樹脂に相溶化剤が含まれる試料は、相溶化剤が含まれない試料と比べて、弾性率、降伏応力、破断伸びの数値が大きかった。つまり、ブレンド樹脂に相溶化剤が含まれる試料では、脆弱的な力学特性が改善された。   As is clear from Table 4, the samples containing the compatibilizer in the blend resin had higher values of elastic modulus, yield stress, and elongation at break than the samples containing no compatibilizer. That is, in the sample in which the compatibilizer is included in the blend resin, the fragile mechanical properties are improved.

[実験例1におけるガス透過量測定]
試料フィルムを直径22mmの円形に切り取り、試験片とした。GTR−10XCT,2700T(GTR株式会社製)により、試験片について酸素透過量と、水蒸気透過量を測定した。
[Measurement of gas permeation amount in Experimental Example 1]
The sample film was cut into a circle with a diameter of 22 mm to obtain a test piece. The oxygen permeation amount and water vapor permeation amount of the test piece were measured by GTR-10XCT, 2700T (manufactured by GTR Corporation).

酸素透過量については、キャリアガスとしてヘリウムガスを用いて、測定温度23℃、測定有効面積15.2cm、サンプリング間隔5分又は10分、サンプリング回数2回の条件で、差圧法により測定した。測定により得られたデータから、JIS K 7126−1に準拠して下記の数式1により、酸素透過度POを算出した。なお、POの数値は、フィルムの厚み20μmで規格化したものとなっている。 The oxygen permeation amount was measured by a differential pressure method using helium gas as a carrier gas under the conditions of a measurement temperature of 23 ° C., a measurement effective area of 15.2 cm 2 , a sampling interval of 5 or 10 minutes, and a sampling frequency of 2 times. From the data obtained by the measurement, the oxygen permeability PO 2 was calculated by the following formula 1 in accordance with JIS K 7126-1. The numerical value of PO 2 is standardized with a film thickness of 20 μm.

(Dv−Db):透過量(cm
k:装置係数
A:測定有効面積(0.00152m
t:測定時間(h)
ΔP:高圧側ガスの分圧(mmHg)
T:フィルムの厚み(μm)
(Dv-Db): Transmission amount (cm 3 )
k: apparatus coefficient A: effective measurement area (0.00152 m 2 )
t: Measurement time (h)
ΔP: partial pressure of high-pressure side gas (mmHg)
T: Film thickness (μm)

さらに、比較対象としたPPフィルムAのPOの数値と、試料フィルムのPOの数値に基づき、下記の数式2によりRO2の値を算出した。算出されたROの値を、PPフィルムに対するPOの削減率Rの値とした。
数式2で、Pは気体透過度POを示す。なお、数式2において、Pには対象の試料の種類を上付きのサフィックスで示している。
Furthermore, the value of the PO 2 of the PP film A was compared, based on the value of the PO 2 of the sample film was calculated value of R O2 by Equation 2 below. The calculated value of the RO 2, and the value of the reduction rate R P of PO 2 for PP films.
In Equation 2, P X represents a gas permeability PO 2. Note that in Equation 2 is shown in suffix superscript types of samples of interest to P X.

各試料フィルムの酸素透過度POと、PPフィルムに対する酸素透過度POの削減率Rを表5に示す。
And oxygen permeability PO 2 of each sample film, showing a reduction ratio R P of the oxygen permeability PO 2 for PP film are shown in Table 5.

表5に示すように、酸素気体に対して、試料A−PP60EV40、試料A−PP60EV40 withでは、Rが95%以上という非常に高いガスバリア性が発揮された。酸素気体に対して、試料A−PP80EV20では、Rが90%以上という高いガスバリア性が発揮された。酸素気体に対して、試料A−PP80EV20 withでは、そのRが30.1%であり、PPフィルムAと比べて高いガスバリア性が発揮された。 As shown in Table 5, with respect to oxygen gas, the sample A-PP 60 EV 40, in Sample A-PP 60 EV 40 with, a very high gas barrier properties that R P is 95% or more is exhibited. To oxygen gas, in Sample A-PP 80 EV 20, high gas barrier properties that R P is 90% or more is exhibited. To oxygen gas, in Sample A-PP 80 EV 20 with, its R P is 30.1%, high gas barrier property as compared with PP film A was exhibited.

水蒸気透過量については、キャリアガスとしてヘリウムガスを用いて、測定温度40℃、設定湿度85%RH以上、サンプリング間隔1時間、サンプリング回数1回の条件で、差圧法により測定した。測定により得られたデータから、下記の数式3により、水蒸気透過度PHOを算出した。なお、PHOの数値は、フィルムの厚み20μmで規格化したものとなっている。 The water vapor transmission amount was measured by a differential pressure method using helium gas as a carrier gas under the conditions of a measurement temperature of 40 ° C., a set humidity of 85% RH or more, a sampling interval of 1 hour, and a sampling frequency of 1 time. From the data obtained by the measurement, the water vapor permeability PH 2 O was calculated by the following mathematical formula 3. The numerical value of PH 2 O is standardized with a film thickness of 20 μm.

q:透過量(cm
k´:装置係数
A:測定有効面積(0.00152m
t:測定時間(min)
T:フィルムの厚み(μm)
q: Transmission amount (cm 3 )
k ′: device coefficient A: effective measurement area (0.00152 m 2 )
t: Measurement time (min)
T: Film thickness (μm)

さらに、比較対象としたEVOHフィルムAのPHOの数値と、試料フィルムのPHOの数値に基づき、下記の数式4によりRH2Oの値を算出した。算出されたRH2Oの値を、EVOHフィルムに対するPHOの削減率Rの値とした。
数式4で、Pは気体透過度PHOを示す。なお、数式4において、Pには対象の試料の種類を上付きのサフィックスで示している。
Furthermore, the value of the PH 2 O of the EVOH film A was compared, based on the value of the PH 2 O of sample film was calculated value of R H2 O by Equation 4 below. The value of the calculated R H2 O, and the value of the reduction rate R P of PH 2 O for EVOH film.
In Equation 4, P X represents a gas permeability PH 2 O. Note that in Equation 4, are indicated by the suffix superscript a type of sample of interest to P X.

各試料フィルムの水蒸気透過度PHOと、EVOHフィルムに対する水蒸気透過度PHOの削減率Rを表6に示す。
And water vapor permeability PH 2 O of each sample film, the reduction ratio R P of the water vapor transmission rate PH 2 O for EVOH films are shown in Table 6.

表6に示すように、水蒸気に対して、試料A−PP60EV40 with、試料A−PP80EV20では、Rが80%以上という高いガスバリア性が発揮された。水蒸気に対して、試料A−PP60EV40、試料A−PP80EV20 withでは、Rが50%以上というガスバリア性が発揮された。 As shown in Table 6, to water vapor, the sample A-PP 60 EV 40 with, in Sample A-PP 80 EV 20, high gas barrier properties that R P is 80% or more is exhibited. To water vapor, the sample A-PP 60 EV 40, in Sample A-PP 80 EV 20 with, gas barrier properties that R P is 50% or more is exhibited.

[実験例1における構造観察]
試料フィルム内でのEVOH分散相の三次元的なモルフォロジーを観察するために、試料をX線でコンピュータ断層撮影(以下「X線CT」という。)をすることとした。X線CTをするために、厚さ0.3mmの試料フィルムから、縦5mm、横2mm、厚さ0.3mm程度の切片を切り取り、試験片とした。試験片について、ELEX−M345(BEAMSENSE社製)により、管電圧70kVの条件でX線CTをした。X線CT写真を、画像編集ソフト3DViewを用いて編集し、観察した。
[Structural observation in Experimental Example 1]
In order to observe the three-dimensional morphology of the EVOH dispersed phase in the sample film, the sample was subjected to computer tomography (hereinafter referred to as “X-ray CT”) with X-rays. In order to perform X-ray CT, a specimen having a length of 5 mm, a width of 2 mm, and a thickness of about 0.3 mm was cut from a sample film having a thickness of 0.3 mm to obtain a test piece. The test piece was subjected to X-ray CT using ELEX-M345 (BEAMSENSE) under a tube voltage of 70 kV. X-ray CT photographs were edited and observed using image editing software 3DView.

X線CT写真を観察した結果、図2(a)に示す試料A−PP60EV40、図2(b)に示す試料A−PP60EV40 with、図2(c)に示す試料A−PP80EV20では、その断面中にEVOHの層が確認された。一方、図2(d)に示す試料A−PP80EV20 withでは、その断面中にEVOHの層が確認されなかった。 As a result of observing the X-ray CT photograph, sample A-PP 60 EV 40 shown in FIG. 2 (a), sample A-PP 60 EV 40 with shown in FIG. 2 (b), sample A- shown in FIG. 2 (c). In PP 80 EV 20 , a layer of EVOH was confirmed in the cross section. On the other hand, in the sample A-PP 80 EV 20 with shown in FIG. 2 (d), an EVOH layer was not confirmed in the cross section.

また、X線CTとは別に、走査型電子顕微鏡(以下「SEM」という。)により試料のモルフォロジーを観察することとした。SEMで観察するために、厚さ0.3mmの試料フィルム液体窒素に浸して極低温にしたものを破断させた。その後、50℃に調整したジメチルスルホキシドを試料破断面に20分間浸透させて、破断面中のEVOH相のみを溶解させたものを試験片とした。試験片を白金蒸着によりコーティングした後、SEMとしてS−3200N(株式会社日立製作所製)を用いて、加速電圧15kVの条件で、高真空雰囲気中でコーティングした試験片をSEMで撮影した。   In addition to the X-ray CT, the morphology of the sample was observed with a scanning electron microscope (hereinafter referred to as “SEM”). In order to observe with an SEM, a sample film having a thickness of 0.3 mm immersed in liquid nitrogen to be cryogenic was broken. Thereafter, dimethyl sulfoxide adjusted to 50 ° C. was permeated into the sample fracture surface for 20 minutes, and a test piece was prepared by dissolving only the EVOH phase in the fracture surface. After coating the test piece by platinum vapor deposition, the test piece coated in a high vacuum atmosphere was photographed with SEM using S-3200N (manufactured by Hitachi, Ltd.) as an SEM under the condition of an acceleration voltage of 15 kV.

試験片のSEM写真を観察した結果、図3(a)に示す試料A−PP60EV40、図3(b)に示す試料A−PP60EV40 with、図3(c)に示す試料A−PP80EV20では、その断面中に層状の構造が確認された。一方、図3(d)に示す試料A−PP80EV20 withでは、EVOH相が微分散していることが確認された。X線CT写真やSEM写真の観察結果により、試料A−PP60EV40、試料A−PP60EV40 with、試料A−PP80EV20では、EVOH相の多層構造が形成され、試料A−PP80EV20 withではEVOH相が一様に分散していることが示された。 As a result of observing the SEM photograph of the test piece, the sample A-PP 60 EV 40 shown in FIG. 3A, the sample A-PP 60 EV 40 with shown in FIG. 3B, and the sample A shown in FIG. In -PP 80 EV 20 , a layered structure was confirmed in the cross section. On the other hand, in the sample A-PP 80 EV 20 with shown in FIG. 3D, it was confirmed that the EVOH phase was finely dispersed. According to the observation results of the X-ray CT photograph and the SEM photograph, in the sample A-PP 60 EV 40 , the sample A-PP 60 EV 40 with and the sample A-PP 80 EV 20 , a multilayer structure of the EVOH phase is formed, and the sample A- PP 80 EV 20 with indicates that the EVOH phase is uniformly dispersed.

構造観察の結果より、各々の試料での構造の違いを考察する。PPとEVOHは非相溶であるため、相溶化剤を含まない樹脂A−PP60EV40、樹脂A−PP80EV20では、溶融状態においてPPがマトリックス、EVOHが分散相として存在したと考えられる。この状態で延伸処理を行いながらフィルム調製を行うと、EVOH相が板のように広がっていき、試料フィルム内で多層構造が形成されたと考えられる。 Based on the results of structural observation, the difference in the structure of each sample is considered. Since PP and EVOH are incompatible, it is considered that in resin A-PP 60 EV 40 and resin A-PP 80 EV 20 , which do not contain a compatibilizing agent, PP was present as a matrix and EVOH as a dispersed phase in the molten state. It is done. When the film is prepared while performing the stretching treatment in this state, the EVOH phase spreads like a plate, and it is considered that a multilayer structure is formed in the sample film.

一方、樹脂A−PP80EV20 withは,相溶化剤を含んでおり、PPとEVOHが相溶化することでEVOH相が微分散し、延伸処理を行ってもEVOHは板状に広がらず、試料フィルム内に一様に分散したと考えられる。しかし、試料A−PP60EV40 withでは、相溶化剤を含むにも関わらず多層構造が維持されていた。これはEVOHの混合比率が40%と高いため、EVOH相は相溶化されたものの、微分散されるには至らなかったと考えられる。 On the other hand, the resin A-PP 80 EV 20 with contains a compatibilizing agent, and the EVOH phase is finely dispersed by compatibilization of PP and EVOH. It is thought that it was uniformly dispersed in the sample film. However, in the sample A-PP 60 EV 40 with, a multilayer structure was maintained despite containing the compatibilizer. This is because the EVOH mixing ratio is as high as 40%, so that the EVOH phase was compatibilized but was not finely dispersed.

以上の構造観察の結果とガス透過量測定の結果から、酸素気体に対して試料A−PP60EV40、試料A−PP60EV40 with、試料A−PP80EV20で非常に高いガスバリア性が発揮された要因は、フィルム内に多層構造が形成されたことにあると考えられる。ガス透過において、気体は、より透過しやすい(自由体積の大きい)ところから透過していく性質を持つ。フィルム内に多層構造が形成されると、従来のラミネート材料のようにPPとEVOHの層が繰り返し設けられるため、酸素気体は自由体積の小さいEVOHの層により透過を妨げられ、酸素透過度POが大きく削減されたと考えられる。 From the results of the structural observation and the gas permeation amount measurement results, the sample A-PP 60 EV 40 , the sample A-PP 60 EV 40 with, and the sample A-PP 80 EV 20 have extremely high gas barrier properties against oxygen gas. It is considered that the reason why is exhibited is the formation of a multilayer structure in the film. In gas permeation, gas has a property of permeating from a place where it easily permeates (large free volume). When a multilayer structure is formed in a film, layers of PP and EVOH are repeatedly provided as in a conventional laminate material, so that oxygen gas is prevented from permeation by a layer of EVOH having a small free volume, and oxygen permeability PO 2 Is thought to have been greatly reduced.

一方、試料A−PP80EV20 withでは、EVOH相が微分散したため、酸素気体は透過しにくいEVOH相を避け、自由体積が大きく透過しやすいPPマトリックス相を優先的に透過したと考えられる。したがって、EVOH相が一様に分散した試料フィルムにおけるガスバリア性は,PPフィルムと比べると高いが,多層構造を有する試料フィルムと比べて低い傾向が示唆された。 On the other hand, in the sample A-PP 80 EV 20 with, since the EVOH phase was finely dispersed, it is considered that the oxygen gas preferentially permeated the PP matrix phase having a large free volume and easily permeating, avoiding the EVOH phase that is difficult to permeate. Therefore, it was suggested that the gas barrier property in the sample film in which the EVOH phase is uniformly dispersed is higher than that of the PP film, but is lower than that of the sample film having a multilayer structure.

[実験例2]
[実験例2に係る試料の製造方法]
樹脂原料としては、実験例1で準備したものと同様のPPとEVOHを準備した。次に、混練機としてLABOPLASTOMILL 50M(東洋精機株式会社製)を用いて、溶融ブレンドによりブレンド樹脂を調製することとした。準備したヴァージン樹脂原料を、あらかじめドライブレンドをしてから混練機に投入した。ブレンド樹脂の調製は、空気雰囲気下で、混練温度200℃の条件で、攪拌速度200rpmで2分間攪拌してから攪拌速度50rpmで3分間攪拌する条件で行なった。混練後のブレンド樹脂を、粉砕機(株式会社吉田製作所製 強力ロータリーカッターミル 1005)を用いて粉砕し、約5mm角の粉砕状試料とした。
[Experiment 2]
[Method for Producing Sample According to Experimental Example 2]
As resin materials, PP and EVOH similar to those prepared in Experimental Example 1 were prepared. Next, using a LABOPLASTOMILL 50M (manufactured by Toyo Seiki Co., Ltd.) as a kneader, a blend resin was prepared by melt blending. The prepared virgin resin raw material was dry blended in advance and then charged into a kneader. The blended resin was prepared in an air atmosphere at a kneading temperature of 200 ° C. under a stirring rate of 200 rpm for 2 minutes and then at a stirring rate of 50 rpm for 3 minutes. The blended resin after kneading was pulverized using a pulverizer (strong rotary cutter mill 1005 manufactured by Yoshida Seisakusho Co., Ltd.) to obtain a pulverized sample of about 5 mm square.

ブレンド樹脂調製の際に、準備したPPとEVOHを、その混合比率(重量%)が90:10,80:20,70:30,60:40、又は、40:60のいずれかとなるように混練させた。実験例2に係るブレンド樹脂には、相溶化剤を加えなかった。表7に示すように、ブレンド樹脂として樹脂B−PP90EV10、樹脂B−PP80EV20、樹脂B−PP70EV30、樹脂B−PP60EV40、樹脂B−PP40EV60を調製した。
In preparing the blend resin, the prepared PP and EVOH are kneaded so that the mixing ratio (% by weight) is 90:10, 80:20, 70:30, 60:40, or 40:60. I let you. No compatibilizer was added to the blend resin according to Experimental Example 2. As shown in Table 7, resin B-PP 90 EV 10 , resin B-PP 80 EV 20 , resin B-PP 70 EV 30 , resin B-PP 60 EV 40 , resin B-PP 40 EV 60 are blended resins. Prepared.

表7に示すブレンド樹脂の調製後、MH−10(株式会社井元製作所製)により、当該ブレンド樹脂を用いて各々試料フィルムを製造した。操作としては、アルミ板(200mm×200mm×1mm)、フッ素系樹脂フィルム、ブレンド樹脂を充填したアルミ製型枠、フッ素系樹脂フィルム、アルミ板の順にサンドイッチ状に挟み、溶融加圧成形を行なった。成形後、直ちに氷水中にて急冷処理を施した。ブレンド樹脂の充填量は、アルミ製型枠の容積のおよそ1.2倍多くした。粉砕状であった各ブレンド樹脂は、溶融加圧成形時に、加圧されて加圧方向と直交する方向に延びて変形し、扁平化した。   After preparing the blend resin shown in Table 7, each sample film was manufactured using the blend resin by MH-10 (manufactured by Imoto Seisakusho Co., Ltd.). As an operation, an aluminum plate (200 mm × 200 mm × 1 mm), a fluororesin film, an aluminum mold frame filled with a blend resin, a fluororesin film, and an aluminum plate were sandwiched in this order, and melt pressure molding was performed. . Immediately after molding, it was quenched in ice water. The filling amount of the blend resin was about 1.2 times larger than the volume of the aluminum mold. Each blended resin in a pulverized state was pressurized and melted and deformed by extending in a direction perpendicular to the pressurizing direction during melt press molding.

また、定速引張試験用の試料フィルムや、示差走査熱量測定用の試料フィルムについては、溶融温度200℃、ゲージ圧10MPa、型枠寸法100mm×100mm×0.3mmの条件で、加圧操作として無加圧溶融を1.5分間行なった後、圧抜きを1分間行なってから加圧を1分間行ない、成形物を水中にて急冷して試料フィルムを製造した。ガス透過率測定用の試料フィルムについては、溶融温度200℃、ゲージ圧14〜16MPa、型枠なしの条件で、加圧操作として無加圧溶融を1.5分間行なった後、圧抜きを1分間行なってから加圧を1分間行ない、成形物を水中にて急冷して試料フィルムを製造した。   For sample films for constant-speed tensile tests and differential scanning calorimetry sample films, the pressing operation was performed under the conditions of a melting temperature of 200 ° C., a gauge pressure of 10 MPa, and a mold size of 100 mm × 100 mm × 0.3 mm. After performing pressureless melting for 1.5 minutes, pressure was released for 1 minute, pressure was applied for 1 minute, and the molded product was rapidly cooled in water to produce a sample film. The sample film for gas permeability measurement was subjected to pressureless melting for 1.5 minutes as a pressing operation under the conditions of a melting temperature of 200 ° C., a gauge pressure of 14 to 16 MPa, and no mold, and then the pressure was released by 1 Then, pressurization was performed for 1 minute, and the molded product was rapidly cooled in water to produce a sample film.

得られた試料フィルムについて、樹脂B−PP90EV10を用いて製造したものを試料B−PP90EV10とし、樹脂B−PP80EV20を用いて製造したものを試料B−PP80EV20とし、樹脂B−PP70EV30を用いて製造したものを試料B−PP70EV30とし、樹脂B−PP60EV40を用いて製造したものを試料B−PP60EV40とし、樹脂B−PP40EV60を用いて製造したものを試料B−PP40EV60とした。また、比較対象として、同様の加圧方法にて、PPを用いて製造したPPフィルムBと、EVOHを用いて製造したEVOHフィルムBを得た。 About the obtained sample film, what was manufactured using resin B-PP 90 EV 10 was used as sample B-PP 90 EV 10, and what was manufactured using resin B-PP 80 EV 20 was used as sample B-PP 80 EV. and 20, those produced by using the resin B-PP 70 EV 30 as sample B-PP 70 EV 30, those produced by using the resin B-PP 60 EV 40 as sample B-PP 60 EV 40, resin A sample produced using B-PP 40 EV 60 was designated as Sample B-PP 40 EV 60 . Moreover, the PPOH film B manufactured using PP and EVOH film B manufactured using EVOH with the same pressurization method as a comparison object were obtained.

[実験例2における引張り試験]
実験例2では、実験例1と同様に引張り試験を行なった。応力−歪み曲線から得られた各試料フィルムの弾性率、降伏応力、破断伸び、引張強力を表8に示す。
[Tensile test in Experimental Example 2]
In Experimental Example 2, a tensile test was performed as in Experimental Example 1. Table 8 shows the elastic modulus, yield stress, elongation at break, and tensile strength of each sample film obtained from the stress-strain curve.

[実験例2におけるガス透過量測定]
実験例2では、実験例1と同じ装置を用いて、同じ測定条件で、酸素のガス透過量を測定した。図4に示すように、実験例2に係る各試料は、そのブレンド樹脂におけるEVOHの混合比率が高くなるほど、酸素のガス透過量が少ないことが示された。
[Measurement of gas permeation amount in Experimental Example 2]
In Experimental Example 2, the gas permeation amount of oxygen was measured using the same apparatus as in Experimental Example 1 under the same measurement conditions. As shown in FIG. 4, it was shown that each sample according to Experimental Example 2 has a smaller oxygen gas permeation amount as the mixing ratio of EVOH in the blend resin increases.

また、実験例2に係る各試料について、酸素のガス透過量の測定結果から、下記の数式5により、酸素の気体透過係数Gを算出した。なお、Gの数値は、フィルムの厚さ20μmで換算した。
A:測定有効面積(0.005m
α:図4におけるグラフの勾配
P:気体圧(1atm)
L:フィルムの厚み(μm)
Further, for each sample according to Experimental Example 2, an oxygen gas permeation coefficient GP was calculated from the measurement result of the oxygen gas permeation amount according to the following Equation 5. In addition, the numerical value of GP was converted with the film thickness of 20 μm.
A: Measurement effective area (0.005 m 2 )
α: slope of graph in FIG. 4: gas pressure (1 atm)
L: Film thickness (μm)

さらに、比較対象としたPPフィルムBのGの数値と、試料フィルムのGの数値に基づき、下記の数式6により、PPフィルムに対するGの削減率Rの値を算出した。
PP PP:PPフィルムの気体透過係数
sample:各試料フィルムの気体透過係数
Furthermore, the value of G P of PP film B which was compared, based on the value of G P of the sample film by Equation 6 below, and calculate the value of the reduction rate R P of G P for PP film.
G PP PP : Gas permeability coefficient of PP film G P sample : Gas permeability coefficient of each sample film

各試料フィルムにおける、酸素の気体透過係数Gと、PPフィルムに対する酸素の気体透過度Gの削減率Rを表9に示す。
In each sample film shows an oxygen gas permeability coefficient G P, the reduction ratio R P of oxygen gas permeability G P for PP film are shown in Table 9.

表9に示すように、酸素気体に対して、試料B−PP60EV40、試料B−PP40EV60では、Rが95%以上という非常に高いガスバリア性が発揮された。試料B−PP80EV20、試料B−PP70EV30では、Rが50%以上という高いガスバリア性が発揮された。酸素気体に対して、試料B−PP90EV10では、そのRが28.2%であり、PPフィルムBと比べて高いガスバリア性が発揮された。 As shown in Table 9, to the oxygen gas, the sample B-PP 60 EV 40, in Sample B-PP 40 EV 60, very high gas barrier properties that R P is 95% or more is exhibited. Samples B-PP 80 EV 20, in Sample B-PP 70 EV 30, high gas barrier properties that R P is 50% or more is exhibited. To oxygen gas, in Sample B-PP 90 EV 10, the R P is 28.2%, high gas barrier property as compared with PP film B is exerted.

[実験例2における構造観察]
実験例2では、実験例1と同様の方法で、試料B−PP60EV40に対してX線CTを行なった。X線CTによれば、物質のX線吸収係数の差を利用して、試料の内部構造を破壊することなく撮影することができる。X線CT写真において、図5(a)に示すフィルムおもて側表面と、図5(b)に示すフィルム中層と、図5(c)に示すフィルム裏側表面で、EVOH相が高輝度で表示された。X線CT写真を観察した結果、おもて面と裏面の各々の表面付近に、表面方向と平行に広がる分散層の存在が見出された。しかし、フィルム中層では、表面方向と平行に広がる分散相を見出すことができなかった。
[Structural observation in Experimental Example 2]
In Experimental Example 2, X-ray CT was performed on the sample B-PP 60 EV 40 by the same method as in Experimental Example 1. According to the X-ray CT, it is possible to take an image without destroying the internal structure of the sample by using the difference in the X-ray absorption coefficient of the substance. In the X-ray CT photograph, the EVOH phase has high brightness on the film front side surface shown in FIG. 5 (a), the film middle layer shown in FIG. 5 (b), and the film back side surface shown in FIG. 5 (c). It was displayed. As a result of observing the X-ray CT photograph, the presence of a dispersed layer extending in parallel with the surface direction was found in the vicinity of the front and back surfaces. However, in the middle layer of the film, a dispersed phase spreading in parallel with the surface direction could not be found.

また、実験例2では、実験例1と同様の方法で、SEMにより試料を撮影した。SEM写真を観察した結果、図6(a)(b)(c)に示すように、実験例2に係る各試料(相溶化剤が含まれない各試料)では、EVOHの混合比率が多いほどEVOH分散相が大きくなり、その形状が扁平状に変化していることが確認された。特に図6(c)に示す、EVOHの混合比率が40重量%である試料B−PP60EV40では、大きく層状に広がる特異な分散相が確認された。X線CT写真やSEM写真の観察結果により、PPとEVOHを混合したブレンド樹脂をフィルム状に成形した試料内において、EVOH分散相は、フィルム表面近傍で層状に広がるという特異なモルフォロジーを有することが確認された。 In Experimental Example 2, a sample was photographed with an SEM in the same manner as in Experimental Example 1. As a result of observing the SEM photograph, as shown in FIGS. 6A, 6B, and 6C, in each sample according to Experimental Example 2 (each sample not including the compatibilizer), the EVOH mixing ratio increases. It was confirmed that the EVOH dispersed phase became large and its shape changed to a flat shape. In particular, in the sample B-PP 60 EV 40 in which the EVOH mixing ratio is 40% by weight as shown in FIG. According to the observation results of X-ray CT photographs and SEM photographs, the EVOH dispersed phase may have a unique morphology that spreads in a layer near the film surface in a sample obtained by forming a blend resin mixed with PP and EVOH into a film shape. confirmed.

[実験例2における粘度測定]
レオメータとしてCVO−100(Bohlin Instruments社製)を用いて、準備した樹脂原料のPPやEVOHの溶融粘度を測定することとした。準備したPP又はEVOHをレオメータに投入し、直径25mmの円盤状の枠内で、設定温度範囲180〜220℃、ステップ温度10℃、周波数範囲0.1〜20Hzの条件で、応力制御方式で樹脂原料の溶融粘度を測定した。なお、溶融粘度の測定において、ギャップ設定として、試料片厚み−100μmの条件で計算して、溶融粘度の測定値を得た。
[Viscosity Measurement in Experimental Example 2]
Using CVO-100 (manufactured by Bohlin Instruments) as a rheometer, the melt viscosity of PP or EVOH of the prepared resin raw material was measured. The prepared PP or EVOH is put into a rheometer, and a resin is used in a stress control method within a disk-shaped frame with a diameter of 25 mm under the conditions of a set temperature range of 180 to 220 ° C, a step temperature of 10 ° C, and a frequency range of 0.1 to 20 Hz. The melt viscosity of the raw material was measured. In the measurement of the melt viscosity, the gap setting was calculated under the condition that the sample piece thickness was −100 μm, and the measured value of the melt viscosity was obtained.

レオメータを用いた際の測定値により、PPとEVOHの200℃における溶融粘度と剪断角速度との関係を調べたところ、図7に示す結果となった。図7において、η´(Pa・s)は動的粘性率(G´´/ω)を示し、ω(rad・s)は剪断角速度を示す。なお、G´´は損失弾性率を示す。また、試料調製のために混練した際の剪断角速度は、logωでは0.7程度である。このため、図7は、混練時のPPの粘度がEVOHの粘度より大きかったことを示している。   When the relationship between the melt viscosity of PP and EVOH at 200 ° C. and the shear angular velocity was examined by the measured values when using a rheometer, the results shown in FIG. 7 were obtained. In FIG. 7, η ′ (Pa · s) represents the dynamic viscosity (G ″ / ω), and ω (rad · s) represents the shear angular velocity. G ″ represents a loss elastic modulus. Further, the shear angular velocity when kneaded for sample preparation is about 0.7 in log ω. For this reason, FIG. 7 shows that the viscosity of PP during kneading was greater than that of EVOH.

なお、実験例1では、実験例2と同様の樹脂原料を用いている。このため、図7に示すPPとEVOHの温度200℃での溶融粘度と剪断速度との関係により、実験例1におけるブレンド操作(混練)時の剪断速度(50rpm)では、PPの溶融粘度がEVOHの溶融粘度より大きいことが推定される。このことは、試料中で扁平なEVOH層が形成される上で有利に作用し、当該試料の酸素透過度POが削減されたと考えられる。 In Experimental Example 1, the same resin raw material as in Experimental Example 2 is used. Therefore, according to the relationship between the melt viscosity of PP and EVOH at a temperature of 200 ° C. shown in FIG. 7 and the shear rate, the melt viscosity of PP is EVOH at the shear rate (50 rpm) at the blending operation (kneading) in Experimental Example 1. Is estimated to be greater than the melt viscosity of This is considered to be advantageous in that a flat EVOH layer is formed in the sample, and the oxygen permeability PO 2 of the sample is considered to be reduced.

また、実験例2では、フィルム調製時のプレスにより、EVOHの分散相が扁平化したと推定される。プレスの際に、EVOHの溶融粘度がPPの溶融粘度と比べて小さい場合には、EVOHの相が優先的に変形して扁平化するため、EVOHの分散相の扁平化が起こりやすいと考えられる。逆に、プレスの際に、EVOHの溶融粘度がPPの溶融粘度と比べて大きい場合には、PPの相が優先的に変化するため、EVOHの分散相の扁平化が起こりにくいと考えられる。   In Experimental Example 2, it is presumed that the dispersed phase of EVOH was flattened by pressing during film preparation. When the EVOH melt viscosity is smaller than the PP melt viscosity during pressing, the EVOH phase is preferentially deformed and flattened. Therefore, it is considered that the EVOH dispersed phase tends to flatten. . On the other hand, when the EVOH melt viscosity is larger than the PP melt viscosity during pressing, the PP phase preferentially changes, and it is thought that flattening of the EVOH dispersed phase is unlikely to occur.

[実験例3]
[実験例3に係る試料の製造方法]
樹脂原料としては、実験例1で準備したものと同様のPP、EVOH、相溶化剤を準備した。次に、ブレンド樹脂の全体量に対して相溶化剤が5phrを占めるように相溶化剤を加えてから、PPやEVOHと共に相溶化剤を混練させた他は、実験例2と同様の装置、操作、調製条件でブレンド樹脂を調製した。
[Experiment 3]
[Method for Producing Sample According to Experimental Example 3]
As the resin raw material, the same PP, EVOH, and compatibilizer as those prepared in Experimental Example 1 were prepared. Next, after adding the compatibilizer so that the compatibilizer occupies 5 phr with respect to the total amount of the blend resin, the apparatus similar to Experimental Example 2 except that the compatibilizer was kneaded with PP and EVOH, A blended resin was prepared under the operation and preparation conditions.

ブレンド樹脂として、表10に示す樹脂B−PP90EV10 with、樹脂B−PP80EV20 with、樹脂B−PP70EV30 with、樹脂B−PP60EV40 with、樹脂B−PP40EV60 withを調製した。
As blend resins, resin B-PP 90 EV 10 with, resin B-PP 80 EV 20 with, resin B-PP 70 EV 30 with, resin B-PP 60 EV 40 with, resin B-PP 40 EV shown in Table 10 are used. 60 with was prepared.

表10に示すブレンド樹脂の調製後、実験例2と同様の装置、操作、製造条件で試料フィルムを製造した。得られた試料フィルムについて、樹脂B−PP90EV10 withを用いて製造したものを試料B−PP90EV10 withとし、樹脂B−PP80EV20 withを用いて製造したものを試料B−PP80EV20 withとし、樹脂B−PP70EV30 withを用いて製造したものを試料B−PP70EV30 withとし、樹脂B−PP60EV40 withを用いて製造したものを試料B−PP60EV40 withとし、樹脂B−PP40EV60 withを用いて製造したものを試料B−PP40EV60 withとした。 After preparation of the blend resin shown in Table 10, a sample film was produced under the same apparatus, operation and production conditions as in Experimental Example 2. About the obtained sample film, what was manufactured using resin B-PP 90 EV 10 with was used as sample B-PP 90 EV 10 with, and what was manufactured using resin B-PP 80 EV 20 with sample B- PP 80 EV 20 with a resin B-PP 70 EV 30 with a sample B-PP 70 EV 30 with a resin B-PP 60 EV 40 with a sample B-PP 70 EV 30 with PP 60 EV 40 with was used, and a sample produced using the resin B-PP 40 EV 60 with was used as sample B-PP 40 EV 60 with.

[実験例3における引張り試験]
実験例3では、実験例1,2と同様に引張り試験を行なった。応力−歪み曲線から得られた各試料フィルムの弾性率、降伏応力、破断伸び、引張強力を表11に示す。
[Tensile test in Experimental Example 3]
In Experimental Example 3, a tensile test was performed as in Experimental Examples 1 and 2. Table 11 shows the elastic modulus, yield stress, elongation at break, and tensile strength of each sample film obtained from the stress-strain curve.

表8,11に示す応力−歪み測定の結果を比べることで、ブレンド樹脂に相溶化剤が含まれると、試料フィルムの降伏応力、破断伸び、引張強力といった力学特性が向上することが明らかとなった。   By comparing the results of the stress-strain measurement shown in Tables 8 and 11, it becomes clear that when the blend resin contains a compatibilizing agent, the mechanical properties of the sample film such as yield stress, elongation at break and tensile strength are improved. It was.

[実験例3におけるガス透過量測定]
実験例3では、実験例1,2と同じ装置を用いて、同じ測定条件で、酸素のガス透過量を測定した。図8に示すように、実験例3に係る各試料は、そのブレンド樹脂におけるEVOHの混合比率が高くなるほど、酸素のガス透過量が少ないことが示された。
[Measurement of gas permeation amount in Experimental Example 3]
In Experimental Example 3, the gas permeation amount of oxygen was measured under the same measurement conditions using the same apparatus as in Experimental Examples 1 and 2. As shown in FIG. 8, it was shown that each sample according to Experimental Example 3 had a smaller oxygen gas permeation amount as the mixing ratio of EVOH in the blend resin was higher.

また、図8に示す酸素のガス透過量のデータに基づいて、実験例2と同様に前述の数式5,6により算出した、酸素の気体透過係数GとPPフィルムに対するGの削減率Rを表12に示す。なお、表12におけるG、Rの数値は、フィルム厚さ20μmに換算したものである。 Further, based on the oxygen gas permeation amount data shown in FIG. 8, the oxygen gas permeation coefficient GP and the GP reduction rate R with respect to the PP film, which are calculated by the above-described Equations 5 and 6 in the same manner as in Experimental Example 2. P is shown in Table 12. Incidentally, G P, value of R P in Table 12 are those obtained by converting a film thickness of 20 [mu] m.

表9,12に示すデータに基づき、実験例2に係る各試料(相溶化剤を含まない各試料)と、実験例3に係る各試料(相溶化剤を含む各試料)とで、EVOHの混合比率と酸素の気体透過係数Gの削減率Rとの関係を比べたところ、図9に示す結果となった。相溶化剤を含む各試料は、相溶化剤を含まない各試料よりも、PPフィルムに対する酸素気体の透過係数Gの削減率Rが小さいことが示された。相溶化剤を含まない各試料と比べて、相溶化剤を含む各試料は、EVOHの混合比率が15〜50重量%である場合に、特にEVOHの混合比率が20〜50重量%である場合に、酸素気体に対して顕著なガスバリア性を発揮することが示された。 Based on the data shown in Tables 9 and 12, EVOH of each sample according to Experimental Example 2 (each sample not including a compatibilizer) and each sample according to Experimental Example 3 (each sample including a compatibilizer). reduction of the gas permeability coefficient G P of the mixed ratio and the oxygen was compared the relationship between R P, was the result shown in FIG. Each sample containing the compatibilizing agent, than the sample containing no compatibilizer, it reduced rate R P transmission coefficient G P of the oxygen gas on PP film is small is indicated. Compared with each sample not containing the compatibilizer, each sample containing the compatibilizer has an EVOH mixing ratio of 15 to 50% by weight, particularly when the EVOH mixing ratio is 20 to 50% by weight. Thus, it was shown that a remarkable gas barrier property was exhibited against oxygen gas.

[実験例4]
[実験例4に係る試料の製造方法]
樹脂原料としては、実験例1〜3で準備したものと同様のEVOHと、実験例1〜3で準備したPP(以下「HvPP」という。)よりも低粘度のPP(以下「LvPP」という。)を準備した。実験例1と同様の方法で測定したLvPPの特性値を表13に示す。
[Experimental Example 4]
[Method for Producing Sample According to Experimental Example 4]
As a resin raw material, EVOH similar to that prepared in Experimental Examples 1 to 3, and PP having a lower viscosity than PP prepared in Experimental Examples 1 to 3 (hereinafter referred to as “HvPP”) (hereinafter referred to as “LvPP”). ) Was prepared. Table 13 shows LvPP characteristic values measured in the same manner as in Experimental Example 1.

実験例2で樹脂B−PP60EV40を調製した方法と同様の方法で、実験例4では、LvPPとEVOHとの混合比率60:40で相溶化剤を添加することなくブレンド樹脂B−LvPP60EV40を調製した。その後、実験例2に係る試料の製造方法と同様の製造方法で、樹脂B−LvPP60EV40を用いて、試料フィルムとして試料B−LvPP60EV40を製造した。 In the same manner as that for preparing resin B-PP 60 EV 40 in Experimental Example 2, in Experimental Example 4, blend resin B-LvPP was added at a mixing ratio of LvPP and EVOH of 60:40 without adding a compatibilizer. 60 EV 40 was prepared. Thereafter, a sample B-LvPP 60 EV 40 was produced as a sample film using the resin B-LvPP 60 EV 40 by the same production method as that of the sample according to Experimental Example 2.

[実験例4におけるガス透過量測定]
実験例4では、実験例1〜3と同じ装置を用いて、同じ測定条件で、酸素のガス透過量を測定した。その後、酸素のガス透過量のデータに基づいて、実験例2と同様に前述の数式5,6により、PPフィルムBに対する酸素の気体透過係数Gの削減率Rを算出した。試料B−LvPP60EV40は、PPフィルムBよりもGの値が小さかったが、そのRが50%未満であった。
[Measurement of gas permeation amount in Experimental Example 4]
In Experimental Example 4, the gas permeation amount of oxygen was measured under the same measurement conditions using the same apparatus as in Experimental Examples 1 to 3. Then, based on the oxygen gas permeation amount of data, according to Equation 5 and 6 described above in the same manner as in Experimental Example 2, was calculated reduction rate R P of the oxygen gas permeation coefficient G P for PP film B. Samples B-LvPP 60 EV 40 is the value of G P is smaller than the PP film B, the R P was less than 50%.

[実験例4における構造観察]
実験例4では、実験例1,2と同様の方法で、SEMにより試料を撮影した。図10に示すように、試料B−LvPP60EV40では、そのLvPPマトリックス中でEVOH分散相が大きな球を形成していることが確認された。
[Structural Observation in Experimental Example 4]
In Experimental Example 4, a sample was photographed with an SEM in the same manner as in Experimental Examples 1 and 2. As shown in FIG. 10, in sample B-LvPP 60 EV 40 , it was confirmed that the EVOH dispersed phase formed large spheres in the LvPP matrix.

前述の実験例2に係る試料B−PP60EV40では、図6(c)に示すように、そのHvPPマトリックス中の表面付近でEVOH分散相が層を形成していた。これに対して、図10に示す試料B−LvPP60EV40では、LvPPマトリックスの粘度が低いため、分散相がLvPPマトリックス相内で自由に動くことができ,結果として個々の分散相が表面積の最も小さい球状の相を形成したと考えられる。 In Sample B-PP 60 EV 40 according to Experimental Example 2 described above, the EVOH dispersed phase formed a layer near the surface in the HvPP matrix, as shown in FIG. 6C. On the other hand, in the sample B-LvPP 60 EV 40 shown in FIG. 10, since the viscosity of the LvPP matrix is low, the dispersed phase can move freely in the LvPP matrix phase, and as a result, the individual dispersed phases have the surface area. It is thought that the smallest spherical phase was formed.

本発明に係る成形体は、食品用、化粧品用の包装容器、揮発性液体の収容タンクの分野に広く適用される。   The molded body according to the present invention is widely applied to the fields of packaging containers for foods and cosmetics, and storage tanks for volatile liquids.

2:成形体
4:EVOH相
6:PPマトリックス相
10:層
2: Molded body 4: EVOH phase 6: PP matrix phase 10: Layer

Claims (5)

ポリプロピレン(PP)とエチレン‐ビニルアルコール共重合体(EVOH)を主成分とするブレンド樹脂を、殻状、板状、筒状、もしくはフィルム状の形状に成形した成形体であり、
前記EVOHが前記PP中に分散して分散相を形成し、該分散相が少なくとも表面近傍において面方向と略平行な層をなし、前記PPと前記EVOHとの重量比が15:85〜85:15である
成形体。
A molded product obtained by molding a blend resin mainly composed of polypropylene (PP) and an ethylene-vinyl alcohol copolymer (EVOH) into a shell shape, a plate shape, a cylindrical shape, or a film shape,
The EVOH is dispersed in the PP to form a dispersed phase, and the dispersed phase forms a layer substantially parallel to the plane direction at least near the surface, and the weight ratio of the PP to the EVOH is 15:85 to 85: 15 is a molded body.
前記PPの温度200℃、荷重2.16kgにおけるメルトフローレート(MFR)が、前記EVOHの温度200℃、荷重2.16kgにおけるMFRより小さい請求項1に記載の成形体。   2. The molded body according to claim 1, wherein a melt flow rate (MFR) at a temperature of 200 ° C. and a load of 2.16 kg of the PP is smaller than an MFR at a temperature of 200 ° C. and a load of 2.16 kg of the EVOH. 前記PPと前記EVOHとの重量比が15:85〜75:25であり、前記ブレンド樹脂が相溶化剤を0.5〜10phr含む請求項1又は2に記載の成形体。   The molded body according to claim 1 or 2, wherein a weight ratio of the PP to the EVOH is 15:85 to 75:25, and the blend resin contains a compatibilizer of 0.5 to 10 phr. 請求項1又は2に記載の成形体の製造方法であって、
PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得る溶融ブレンド工程と、
前記ブレンド樹脂を殻状、板状、筒状もしくはフィルム状の形状に成形して成形物となす成形工程と、
前記成形物を該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸する延伸工程とを含み、
前記ブレンド樹脂の前記PPと前記EVOHとの重量比が15:85〜85:15である成形体の製造方法。
It is a manufacturing method of the forming object according to claim 1 or 2,
A melt blending step of obtaining a blend resin by melting while shearing PP and EVOH as main components;
A molding step of molding the blended resin into a shell, plate, cylinder, or film shape to form a molded product;
Stretching the molded product in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction,
The manufacturing method of the molded object whose weight ratio of said PP of said blend resin and said EVOH is 15: 85-85: 15.
請求項3に記載の成形体の製造方法であって、
PPとEVOHを主成分として剪断しつつ溶融してブレンド樹脂を得る溶融ブレンド工程と、
前記ブレンド樹脂を殻状、板状、筒状もしくはフィルム状の形状に成形して成形物となす成形工程と、
前記成形物を該成形物の面方向と平行な一の方向及び該一の方向と直交して該面方向と平行な他の方向に延伸する延伸工程とを含み、
前記ブレンド樹脂の前記PPと前記EVOHとの重量比が15:85〜75:25であり、該ブレンド樹脂が相溶化剤を0.5〜10phr含む成形体の製造方法。
It is a manufacturing method of the forming object according to claim 3,
A melt blending step of obtaining a blend resin by melting while shearing PP and EVOH as main components;
A molding step of molding the blended resin into a shell, plate, cylinder, or film shape to form a molded product;
Stretching the molded product in one direction parallel to the surface direction of the molded product and in another direction perpendicular to the one direction and parallel to the surface direction,
The manufacturing method of the molded object whose weight ratio of said PP of said blend resin and said EVOH is 15: 85-75: 25, and this blend resin contains 0.5-10 phr of compatibilizers.
JP2015027217A 2015-02-16 2015-02-16 Molding and method for producing the same Pending JP2016150949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027217A JP2016150949A (en) 2015-02-16 2015-02-16 Molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027217A JP2016150949A (en) 2015-02-16 2015-02-16 Molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016150949A true JP2016150949A (en) 2016-08-22

Family

ID=56695952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027217A Pending JP2016150949A (en) 2015-02-16 2015-02-16 Molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016150949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325845A (en) * 2017-03-02 2019-10-11 住友精化株式会社 The non-demolition evaluation method of water-absorbing resins structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325845A (en) * 2017-03-02 2019-10-11 住友精化株式会社 The non-demolition evaluation method of water-absorbing resins structure
KR20190123737A (en) * 2017-03-02 2019-11-01 스미토모 세이카 가부시키가이샤 Nondestructive evaluation method of structure of absorbent resin
EP3591386A4 (en) * 2017-03-02 2021-03-03 Sumitomo Seika Chemicals Co., Ltd. Non-destructive method for evaluating structure of water-absorbing resin
US11193899B2 (en) 2017-03-02 2021-12-07 Sumitomo Seika Chemicals Co., Ltd. Non-destructive method for evaluating structure of water-absorbing resin
KR102449939B1 (en) 2017-03-02 2022-10-04 스미토모 세이카 가부시키가이샤 Method for non-destructive evaluation of structure of water absorbent resin

Similar Documents

Publication Publication Date Title
US11111343B2 (en) Gels and nanocomposites containing ANFS
KR20160020482A (en) Polyolefin film for use in packaging
CN101291788B (en) Process for production of thermoplastic resin microporous membranes
JP6161710B2 (en) Article comprising a polylactic acid layer and method of making the same
KR20170013901A (en) Thermoformed article formed from a porous polymeric sheet
JP5443477B2 (en) Microporous membrane for secondary battery
Feng et al. High oxygen barrier multilayer EVOH/LDPE film/foam
CN104582959A (en) Films
CN102627796B (en) Polyethylene composition for manufacturing lithium battery diaphragm
WO1993012920A1 (en) Biaxially oriented high-molecular polyethylene film and production thereof, and surface-modified, biaxially oriented high-molecular polyethylene film and production thereof
Honaker et al. Influence of processing methods on the mechanical and barrier properties of HDPE-GNP nanocomposites
US6649103B1 (en) Process for making multiphase polymeric film having a lamellar structure with controlled permeability and/or controlled mechanical properties
Wang et al. Compatibilization of poly (lactic acid)/ethylene‐propylene‐diene rubber blends by using organic montmorillonite as a compatibilizer
EP3694697A1 (en) Polymeric products having layer-like morphology formed from masterbatches
JP2016150949A (en) Molding and method for producing the same
Fang et al. Microporous formation and evolution mechanism of PTFE fibers/isotactic polypropylene membranes by interface separation
DE60300724T2 (en) Thermoplastic polymer compositions having barrier properties, film or layer, layered structure, packaging material, containers and packaging cushions
Marais et al. Multinanolayered PA6/Cloisite and PE/PA6/Cloisite composites: Structure, mechanical and barrier properties
JPWO2014181696A1 (en) Synthetic resin-based stretched film
EP4317279A1 (en) Resin pellet composition, production method therefor, and method for producing microporous film
JP6103602B2 (en) Chitin nanofiber dispersion plasticizer and method for producing polyolefin microporous stretch film containing chitin nanofiber
CN109679194A (en) Puncture-resistant polyethylene composition and its film
Berladir et al. Mechanically activated polytetrafluoroethylene: morphology and supramolecular structure
JP2017105174A (en) Multilayer film
KR101669206B1 (en) Breathable film composition improved printability and manufacturing method of breathable film including thereof