JP2016147926A - Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material - Google Patents

Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material Download PDF

Info

Publication number
JP2016147926A
JP2016147926A JP2015023911A JP2015023911A JP2016147926A JP 2016147926 A JP2016147926 A JP 2016147926A JP 2015023911 A JP2015023911 A JP 2015023911A JP 2015023911 A JP2015023911 A JP 2015023911A JP 2016147926 A JP2016147926 A JP 2016147926A
Authority
JP
Japan
Prior art keywords
epoxy resin
fiber
reinforced composite
resin composition
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015023911A
Other languages
Japanese (ja)
Inventor
和範 本遠
Kazunori Hondo
和範 本遠
森 綾子
Ayako Mori
綾子 森
富岡 伸之
Nobuyuki Tomioka
伸之 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015023911A priority Critical patent/JP2016147926A/en
Publication of JP2016147926A publication Critical patent/JP2016147926A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for a fiber-reinforced composite material, which has both high storage stability and high-speed curability and is capable of imparting high heat resistance and high strength to a fiber-reinforced composite material.SOLUTION: The epoxy resin composition for a fiber-reinforced composite material contains the following components (A) and (B): (A) a glycidyl amine type epoxy resin; and (B) a fluorene type curing agent. The component (A) is contained in an amount of 20 mass% or more based on the total mass of epoxy resin components in the epoxy resin composition.SELECTED DRAWING: None

Description

本発明は、航空機部材、宇宙機部材、自動車部材等の繊維強化複合材料に好適に用いられる繊維強化複合材料用エポキシ樹脂組成物、およびそれを用いたエポキシ樹脂硬化物、繊維強化複合材料に関するものである。   The present invention relates to an epoxy resin composition for a fiber reinforced composite material suitably used for a fiber reinforced composite material such as an aircraft member, a spacecraft member, and an automobile member, and an epoxy resin cured product and a fiber reinforced composite material using the same. It is.

強化繊維とマトリックス樹脂とからなる繊維強化複合材料は、強化繊維とマトリックス樹脂の利点を生かした材料設計が出来るため、航空宇宙分野を始め、スポーツ分野、一般産業分野等に用途が拡大されている。   Fiber reinforced composite materials composed of reinforced fibers and matrix resins can be designed using the advantages of reinforced fibers and matrix resins, so the applications are expanding to the aerospace field, sports field, general industrial field, etc. .

強化繊維としては、ガラス繊維、アラミド繊維、炭素繊維、ボロン繊維等が用いられる。マトリックス樹脂としては、熱硬化性樹脂、熱可塑性樹脂のいずれも用いられるが、強化繊維への含浸が容易な熱硬化樹脂が用いられることが多い。熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂等が用いられる。この中で、樹脂と強化繊維との接着性や寸法安定性、および得られる複合材料の強度や剛性といった力学特性の観点からエポキシ樹脂が好適に用いられる。   As the reinforcing fiber, glass fiber, aramid fiber, carbon fiber, boron fiber or the like is used. As the matrix resin, either a thermosetting resin or a thermoplastic resin is used, but a thermosetting resin that can be easily impregnated into the reinforcing fiber is often used. As the thermosetting resin, epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, bismaleimide resin, cyanate resin and the like are used. Among these, an epoxy resin is preferably used from the viewpoints of adhesive properties between the resin and the reinforcing fibers, dimensional stability, and mechanical properties such as strength and rigidity of the obtained composite material.

繊維強化複合材料の成形方法としては、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM(Resin Transfer Molding)法等の方法が適用される。プリプレグ法は、強化繊維にエポキシ樹脂組成物を含浸したプリプレグを所望の形状に積層し、加熱することによって成形物を得る方法である。しかし、このエポキシ樹脂組成物、あるいはプリプレグを室温で長期間に渡り保存しておくと、意図しない硬化反応が進行するため、貯蔵安定性に問題があった。これまでにこの貯蔵安定性を確保する手段としてジシアンジアミド、BF−アミン錯体、アミン塩、変性イミダゾール化合物等の潜在性硬化剤を、エポキシ樹脂に配合したものが知られている。しかし、これらのエポキシ樹脂組成物は、貯蔵安定性に優れているものは硬化性に劣る傾向となり、硬化性に優れるものは貯蔵安定性に劣る傾向となる。 As a forming method of the fiber reinforced composite material, a prepreg method, a hand lay-up method, a filament winding method, a pultrusion method, an RTM (Resin Transfer Molding) method, or the like is applied. In the prepreg method, a prepreg obtained by impregnating a reinforcing fiber with an epoxy resin composition is laminated in a desired shape and heated to obtain a molded product. However, if this epoxy resin composition or prepreg is stored at room temperature for a long period of time, there is a problem in storage stability because an unintended curing reaction proceeds. To date, as a means for ensuring the storage stability, a compound in which a latent curing agent such as dicyandiamide, a BF 3 -amine complex, an amine salt, and a modified imidazole compound is blended in an epoxy resin is known. However, in these epoxy resin compositions, those having excellent storage stability tend to be inferior in curability, and those having excellent curability tend to be inferior in storage stability.

このような事情のもと、フルオレン型硬化剤を固体状で分散させたエポキシ樹脂組成物(特許文献1)やアミン系硬化剤を含むコアを特定のシェルで被覆した、いわゆるマイクロカプセル型の硬化剤(特許文献2)が提案されている。しかしながら、従来の技術では、貯蔵安定性と高速硬化性を高いレベルで両立することはできておらず、未だ改善の余地がある。また、フルオレン型硬化剤とナフタレン型エポキシ樹脂を併用したエポキシ樹脂組成物(特許文献3)が提案されているが、やはり高い貯蔵安定性と高速硬化性の両方を実現することはできておらず、さらにエポキシ樹脂組成物の粘度が高いため用途や成形法に制限があり、そのエポキシ樹脂組成物から得られる繊維強化複合材料の強度も不十分なものであった。このように高い貯蔵安定性と高速硬化性を兼ね備え、さらに飛行機や自動車等の構造材用途で要求される高耐熱かつ高強度な繊維強化複合材料が得られるエポキシ樹脂組成物は、これまで存在しなかった。   Under such circumstances, a so-called microcapsule type curing in which a core containing an epoxy resin composition (Patent Document 1) in which a fluorene type curing agent is dispersed in a solid state and an amine curing agent is coated with a specific shell. An agent (Patent Document 2) has been proposed. However, the conventional techniques cannot achieve both storage stability and high-speed curability at a high level, and there is still room for improvement. In addition, an epoxy resin composition (Patent Document 3) using a combination of a fluorene type curing agent and a naphthalene type epoxy resin has been proposed, but it still cannot achieve both high storage stability and high-speed curability. Furthermore, since the viscosity of the epoxy resin composition is high, there is a limit to applications and molding methods, and the strength of the fiber reinforced composite material obtained from the epoxy resin composition is insufficient. Thus far, there are epoxy resin compositions that have both high storage stability and high-speed curability, and that can provide high heat-resistant and high-strength fiber-reinforced composite materials required for structural materials such as airplanes and automobiles. There wasn't.

特表平11−511503号公報Japanese National Patent Publication No. 11-511503 特開平01−070523号公報Japanese Patent Laid-Open No. 01-070523 国際公開2014/049028号公報International Publication No. 2014/049028

本発明の目的は、斯かる従来技術の欠点を改良し、高い貯蔵安定性と高速硬化性を兼ね備え、さらに高耐熱かつ高強度な繊維強化複合材料が得られる繊維強化複合材料用エポキシ樹脂組成物を提供することにある。   The object of the present invention is to improve the drawbacks of the prior art, and have an epoxy resin composition for a fiber reinforced composite material that has both high storage stability and high-speed curability, and further provides a fiber reinforced composite material with high heat resistance and high strength. Is to provide.

上記課題を解決するため、本発明の繊維強化複合材料用エポキシ樹脂組成物は次の構成を有する。すなわち、次の(A)、(B)の成分を含むエポキシ樹脂組成物であって、エポキシ樹脂組成物中のエポキシ樹脂成分の全体質量に対して、成分(A)を20質量%以上含む繊維強化複合材料用エポキシ樹脂組成物である。
(A)グリシジルアミン型エポキシ樹脂
(B)フルオレン型硬化剤
In order to solve the above problems, the epoxy resin composition for fiber-reinforced composite material of the present invention has the following constitution. That is, an epoxy resin composition containing the following components (A) and (B), the fiber containing 20% by mass or more of the component (A) with respect to the total mass of the epoxy resin component in the epoxy resin composition It is an epoxy resin composition for reinforced composite materials.
(A) Glycidylamine type epoxy resin (B) Fluorene type curing agent

また、上記課題を解決するため、本発明のエポキシ樹脂硬化物は、前記した繊維強化複合材料用エポキシ樹脂組成物を硬化してなり、本発明の繊維強化複合材料は、前記した繊維強化複合材料用エポキシ樹脂組成物と強化繊維を組み合わせて、硬化してなる。   In order to solve the above-mentioned problems, the cured epoxy resin of the present invention is obtained by curing the above-described epoxy resin composition for fiber-reinforced composite material, and the fiber-reinforced composite material of the present invention is the above-described fiber-reinforced composite material. It is formed by combining an epoxy resin composition for use with reinforcing fibers.

本発明によれば、高い貯蔵安定性と高速硬化性を兼ね備え、さらに高耐熱かつ高強度な繊維強化複合材料が得られる繊維強化複合材料用エポキシ樹脂組成物を提供することができ、また高い生産性で繊維強化複合材料を提供することが可能になる。   According to the present invention, it is possible to provide an epoxy resin composition for a fiber reinforced composite material that has both high storage stability and high-speed curability, and further provides a high heat resistance and high strength fiber reinforced composite material. It becomes possible to provide a fiber-reinforced composite material.

以下に、本発明の望ましい実施の形態について、説明する。
まず、本発明に係る繊維強化複合材料用エポキシ樹脂組成物について説明する。
The preferred embodiments of the present invention will be described below.
First, the epoxy resin composition for fiber-reinforced composite materials according to the present invention will be described.

エポキシ樹脂とは、分子内にエポキシ基を1つ以上含む化合物を意味する。   The epoxy resin means a compound containing one or more epoxy groups in the molecule.

本発明に係る繊維強化複合材料用エポキシ樹脂組成物は、次の(A)、(B)の成分を含むエポキシ樹脂組成物である。
(A)グリシジルアミン型エポキシ樹脂
(B)フルオレン型硬化剤
The epoxy resin composition for fiber-reinforced composite materials according to the present invention is an epoxy resin composition containing the following components (A) and (B).
(A) Glycidylamine type epoxy resin (B) Fluorene type curing agent

本発明における成分(A)はグリシジルアミン型エポキシ樹脂であり、具体例としては、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、N,N−ジグリシジルアニリン、N,N,N’,N’−テトラグリシジルキシリレンジアミン、およびそれらのアルキル、アリール、アルコキシ、アリールオキシ、ハロゲン置換体等の誘導体や異性体、水添品等が挙げられる。その中でも多官能のグリシジルアミン型エポキシ樹脂が好ましい。斯かるエポキシ樹脂は、架橋密度が高く、それを用いることにより、エポキシ樹脂硬化物や繊維強化複合材料の耐熱性を向上させることができる。多官能のグリシジルアミン型エポキシ樹脂として、上述した中でも、3官能以上のグリシジルアミン型エポキシ樹脂、特に、3官能以上のグリシジルアミン型芳香族エポキシ樹脂であることが好ましい。ここで、多官能とは、1分子中にグリシジル基が複数存在することを意味し、3官能以上とは、1分子中にグリシジル基が3個以上存在することを意味する。   Component (A) in the present invention is a glycidylamine type epoxy resin. Specific examples thereof include N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, N, N-diglycidylaniline, N , N, N ′, N′-tetraglycidylxylylenediamine, and their derivatives, isomers, hydrogenated products such as alkyl, aryl, alkoxy, aryloxy, and halogen-substituted products. Of these, polyfunctional glycidylamine type epoxy resins are preferred. Such an epoxy resin has a high crosslinking density, and by using it, the heat resistance of the cured epoxy resin or the fiber-reinforced composite material can be improved. Among the above-described polyfunctional glycidylamine type epoxy resins, trifunctional or higher glycidylamine type epoxy resins, particularly trifunctional or higher functional glycidylamine type epoxy resins are preferable. Here, polyfunctional means that a plurality of glycidyl groups exist in one molecule, and trifunctional or more means that three or more glycidyl groups exist in one molecule.

3官能以上のグリシジルアミン型エポキシ樹脂としては、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、またはこれらの誘導体もしくは異性体が好ましく用いられる。   As the tri- or higher functional glycidylamine type epoxy resin, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, or a derivative or isomer thereof is preferably used.

例えば、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン、またはその誘導体もしくは異性体としては、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジエチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジイソプロピル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジ−t−ブチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジメチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジイソプロピル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジイソプロピル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジ−t−ブチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジ−t−ブチル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’,5,5’−テトライソプロピル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’,5,5’−テトラ−t−ブチル−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、N,N,N’,N’−テトラグリシジル−3,3’−ジブロモ−4,4’−ジアミノジフェニルメタン、等を挙げることができる。   For example, N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, or derivatives or isomers thereof include N, N, N ′, N′-tetraglycidyl-4,4′-diaminodiphenylmethane, N, N , N ′, N′-tetraglycidyl-3,3′-dimethyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3′-diethyl-4,4′- Diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3′-diisopropyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3′-di -T-butyl-4,4'-diaminodiphenylmethane, N, N, N ', N'-tetraglycidyl-3,3'-dimethyl-5,5'-diethyl-4,4'-diaminodi Phenylmethane, N, N, N ′, N′-tetraglycidyl-3,3′-diisopropyl-5,5′-diethyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl- 3,3′-diisopropyl-5,5′-dimethyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3′-di-t-butyl-5,5 ′ -Diethyl-4,4'-diaminodiphenylmethane, N, N, N ', N'-tetraglycidyl-3,3'-di-t-butyl-5,5'-dimethyl-4,4'-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3 ′, 5,5′-tetramethyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3 ', 5,5'-Tet Ethyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3 ′, 5,5′-tetraisopropyl-4,4′-diaminodiphenylmethane, N, N, N ′ , N′-tetraglycidyl-3,3 ′, 5,5′-tetra-t-butyl-4,4′-diaminodiphenylmethane, N, N, N ′, N′-tetraglycidyl-3,3′-dichloro -4,4'-diaminodiphenylmethane, N, N, N ', N'-tetraglycidyl-3,3'-dibromo-4,4'-diaminodiphenylmethane, and the like.

また、例えば、トリグリシジルアミノフェノール、またはその誘導体もしくは異性体としては、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール、またはこれらの誘導体もしくは異性体等を挙げることができる。   Further, for example, triglycidylaminophenol, or a derivative or isomer thereof includes N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol, or derivatives thereof. Or an isomer etc. can be mentioned.

グリシジルアミン型エポキシ樹脂は貯蔵安定性および耐熱性を高める効果があり、その割合はエポキシ樹脂組成物中のエポキシ樹脂成分の全体質量に対して、20質量%以上含まれていることが必要(但し、100質量%を超えることはない)であり、好ましい割合は30質量%以上である。エポキシ樹脂成分におけるグリシジルアミン型エポキシ樹脂の割合を前記した範囲内とすることで、エポキシ樹脂硬化物や繊維強化複合材料の強度が向上、耐熱性が良好になる。斯かるエポキシ樹脂成分とは、エポキシ樹脂組成物中の全てのエポキシ樹脂を合わせた成分である。   The glycidylamine type epoxy resin has an effect of enhancing storage stability and heat resistance, and the proportion thereof must be 20% by mass or more with respect to the total mass of the epoxy resin component in the epoxy resin composition (however, The preferred ratio is 30% by mass or more. By making the ratio of the glycidylamine type epoxy resin in the epoxy resin component within the above-described range, the strength of the cured epoxy resin and the fiber reinforced composite material is improved and the heat resistance is improved. Such an epoxy resin component is a component in which all the epoxy resins in the epoxy resin composition are combined.

また、本発明において、成分(A)以外のエポキシ樹脂が、エポキシ樹脂成分の全体質量に対して80質量%以下であれば、エポキシ樹脂組成物に含まれていても良い。   Moreover, in this invention, if epoxy resins other than a component (A) are 80 mass% or less with respect to the whole mass of an epoxy resin component, you may be contained in the epoxy resin composition.

成分(A)以外のエポキシ樹脂としては、ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、イソシアネート変性エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。成分(A)以外のエポキシ樹脂としてはより具体的には、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、テトラブロモビスフェノールAジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、2,2’,6,6’−テトラメチル−4,4’−ビフェノールジグリシジルエーテル、9,9−ビス(4−ヒドロキシフェニル)フルオレンのジグリシジルエーテル、トリス(p−ヒドロキシフェニル)メタンのトリグリシジルエーテル、テトラキス(p−ヒドロキシフェニル)エタンのテトラグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル、フェノールとジシクロペンタジエンの縮合物のグリシジルエーテル、ビフェニルアラルキル樹脂のグリシジルエーテル、トリグリシジルイソシアヌレート、5−エチル−1,3−ジグリシジル−5−メチルヒダントイン、ビスフェノールAジグリシジルエーテルとトリレンイソシアネートの付加により得られるオキサゾリドン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂等が挙げられる。その中でもビスフェノール型エポキシ樹脂は、得られるエポキシ樹脂硬化物の靭性、耐熱性のバランスに優れるため好ましく、特に液状ビスフェノール型エポキシ樹脂は強化繊維への含浸性に優れるため好ましい。   Epoxy resins other than component (A) include bisphenol type epoxy compounds, phenol novolac type epoxy resins, cresol novolac type epoxy resins, resorcinol type epoxy resins, phenol aralkyl type epoxy resins, naphthol aralkyl type epoxy resins, dicyclopentadiene type epoxy resins. Examples thereof include resins, epoxy resins having a biphenyl skeleton, isocyanate-modified epoxy resins, tetraphenylethane type epoxy resins, and triphenylmethane type epoxy resins. More specific examples of the epoxy resin other than the component (A) include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, tetrabromobisphenol A diglycidyl ether, bisphenol AD diglycidyl ether, 2,2 ′, 6,6. '-Tetramethyl-4,4'-biphenol diglycidyl ether, diglycidyl ether of 9,9-bis (4-hydroxyphenyl) fluorene, triglycidyl ether of tris (p-hydroxyphenyl) methane, tetrakis (p-hydroxy Phenyl) ethane tetraglycidyl ether, phenol novolac glycidyl ether, cresol novolac glycidyl ether, glycidyl ether of phenol and dicyclopentadiene condensate, biphenyl aralkyl tree Glycidyl ether, triglycidyl isocyanurate, 5-ethyl-1,3-diglycidyl-5-methylhydantoin, oxazolidone type epoxy resin obtained by addition of bisphenol A diglycidyl ether and tolylene isocyanate, phenol aralkyl type epoxy resin, etc. Can be mentioned. Among them, the bisphenol type epoxy resin is preferable because it is excellent in the balance between toughness and heat resistance of the obtained cured epoxy resin, and the liquid bisphenol type epoxy resin is particularly preferable because it is excellent in impregnation into reinforcing fibers.

本発明において、「液状」とは、25℃における粘度が1000Pa・s以下であることを指し、「固体状」とは、25℃において流動性をもたない、もしくは極めて流動性が低く、具体的には25℃における粘度が1000Pa・sより大きいことを指す。粘度の測定はJIS Z8803(1991)における「円すい−平板形回転粘度計による粘度測定方法」に従い、標準コーンローター(1°34’×R24)を装着したE型粘度計(たとえば、(株)トキメック製TVE−30H)を使用して測定する。ここで、ビスフェノール型エポキシ樹脂とは、ビスフェノール化合物の2つのフェノール性水酸基がグリシジル化されたものであり、ビスフェノール型としては、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型、もしくはこれらビスフェノールのハロゲン、アルキル置換体、水添品等が挙げられる。また、ビスフェノール型エポキシ樹脂としては、単量体に限らず、複数の繰り返し単位を有する高分子量体も好適に使用することができる。   In the present invention, “liquid” means that the viscosity at 25 ° C. is 1000 Pa · s or less, and “solid” means that there is no fluidity at 25 ° C or very low fluidity. Specifically, it means that the viscosity at 25 ° C. is larger than 1000 Pa · s. Viscosity was measured in accordance with JIS Z8803 (1991) "cone-viscosity measurement method using a plate-type rotational viscometer" and an E-type viscometer equipped with a standard cone rotor (1 ° 34 '× R24) (for example, Tokimec Co., Ltd.) Measured using TVE-30H). Here, the bisphenol type epoxy resin is obtained by glycidylation of two phenolic hydroxyl groups of a bisphenol compound. As the bisphenol type, bisphenol A type, bisphenol F type, bisphenol AD type, bisphenol S type, or these Examples include halogens of bisphenol, alkyl-substituted products, and hydrogenated products. Moreover, as a bisphenol-type epoxy resin, not only a monomer but the high molecular weight body which has several repeating units can also be used conveniently.

エポキシ樹脂組成物の貯蔵安定性、エポキシ樹脂硬化物の靭性および耐熱性等のバランスの観点から、エポキシ樹脂成分として、成分(A)以外のエポキシ樹脂をさらに含むことが好ましく、その含有量は、エポキシ樹脂成分の全体質量に対して、好ましくは20質量%以上80質量%以下、より好ましくは20質量%以上70質量%以下とし、グリシジルアミン型エポキシ樹脂の含有量は、エポキシ樹脂成分の全体質量に対して、20質量%以上80質量%以下、好ましくは30質量%以上80質量%以下とする。   From the viewpoint of the balance of the storage stability of the epoxy resin composition, the toughness of the cured epoxy resin and the heat resistance, it is preferable to further include an epoxy resin other than the component (A) as the epoxy resin component, The total mass of the epoxy resin component is preferably 20% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 70% by mass or less, and the content of the glycidylamine type epoxy resin is the total mass of the epoxy resin component. Is 20% by mass or more and 80% by mass or less, preferably 30% by mass or more and 80% by mass or less.

本発明における成分(B)は、フルオレン型硬化剤であり、分子内に少なくともひとつのフルオレン骨格を有するアミン型硬化剤である。フルオレン型硬化剤は通常、9,9−ビス(アミノフェニル)フルオレン骨格を有するものであり、具体的には、下記構造式〔1〕で表される。   Component (B) in the present invention is a fluorene type curing agent, and is an amine type curing agent having at least one fluorene skeleton in the molecule. The fluorene type curing agent usually has a 9,9-bis (aminophenyl) fluorene skeleton, and is specifically represented by the following structural formula [1].

Figure 2016147926
Figure 2016147926

ここで、RとRは水素、直鎖あるいは分岐状の炭素数1から6のアルキル基から選ばれる置換基である。また、9,9−ビス(アミノフェニル)フルオレン骨格に含まれるフェニル基およびフルオレン基は、ひとつあるいはそれ以上の原子または置換基で置換されていても良く、それらは通常、水素、ハロゲン、アルキル基、アリール基、アルコキシ基、アリールオキシ基、ニトロ基、アセチル基、あるいはトリメチルシリル基から選ばれ、特に好ましくは水素が選ばれる。 Here, R 1 and R 2 are a substituent selected from hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms. In addition, the phenyl group and fluorene group contained in the 9,9-bis (aminophenyl) fluorene skeleton may be substituted with one or more atoms or substituents, and these are usually hydrogen, halogen, alkyl groups. , Aryl group, alkoxy group, aryloxy group, nitro group, acetyl group, or trimethylsilyl group, particularly preferably hydrogen.

フルオレン型硬化剤の具体例としては、9,9−ビス(4−アミノフェニル)フルオレン、4−メチル−9,9−ビス(4−アミノフェニル)フルオレン、4−クロロ−9,9−ビス(4−アミノフェニル)フルオレン、2−エチル−9,9−ビス(4−アミノフェニル)フルオレン、2−ヨード−9,9−ビス(4−アミノフェニル)フルオレン、3−ブロモ−9,9−ビス(4−アミノフェニル)フルオレン、9−(4−メチルアミノフェニル)−9−(4−エチルアミノフェニル)フルオレン、1−クロロ−9,9−ビス(4−アミノフェニル)フルオレン、2−メチル−9,9−ビス(4−アミノフェニル)フルオレン、2−フルオロ−9,9−ビス(4−アミノフェニル)フルオレン、1,2,3,4,5,6,7,8−オクタフルオロ−9,9−ビス(4−アミノフェニル)フルオレン、2,7−ジニトロ−9,9−ビス(4−アミノフェニル)フルオレン、2−クロロ−4−メチル−9,9−ビス(4−アミノフェニル)フルオレン、2,7−ジクロロ−9,9−ビス(4−アミノフェニル)フルオレン、2−アセチル−9,9−ビス(4−アミノフェニル)フルオレン、2−メチル−9,9−ビス(4−アミノフェニル)フルオレン、2−クロロ−9,9−ビス(4−アミノフェニル)フルオレン、および2−t−ブチル−9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(4−メチルアミノフェニル)フルオレン、9−(4−メチルアミノフェニル)−9−(4−アミノフェニル)フルオレン、9,9−ビス(4−エチルアミノフェニル)フルオレン、9−(4−エチルアミノフェニル)−9−(4−アミノフェニル)フルオレン、9,9−ビス(4−プロピルアミノフェニル)フルオレン、9,9−ビス(4−イソプロピルアミノフェニル)フルオレン、9,9−ビス(4−ブチルアミノフェニル)フルオレン、9,9−ビス(3−メチル−4−メチルアミノフェニル)フルオレン、9,9−ビス(3−クロロ−4−メチルアミノフェニル)フルオレン、9−(4−メチルアミノフェニル)−9−(4−エチルアミノフェニル)フルオレン、9,9−ビス(3,5−ジメチル−4−メチルアミノフェニル)フルオレン、9−(3,5−ジメチル−4−メチルアミノフェニル)−9−(4−メチルアミノフェニル)フルオレン、1,5−ジメチル−9,9−ビス(3,5−ジメチル−4−メチルアミノフェニル)フルオレン、4−メチル−9,9−ビス(4−メチルアミノフェニル)フルオレン、4−クロロ−9,9−ビス(4−メチルアミノフェニル)フルオレン、9,9−ビス(3,5−ジエチル−4−メチルアミノフェニル)フルオレンが挙げられる。特に好ましくは、前記構造式[1]において、RとRがともに水素であるフルオレン型硬化剤である。 Specific examples of the fluorene type curing agent include 9,9-bis (4-aminophenyl) fluorene, 4-methyl-9,9-bis (4-aminophenyl) fluorene, 4-chloro-9,9-bis ( 4-aminophenyl) fluorene, 2-ethyl-9,9-bis (4-aminophenyl) fluorene, 2-iodo-9,9-bis (4-aminophenyl) fluorene, 3-bromo-9,9-bis (4-aminophenyl) fluorene, 9- (4-methylaminophenyl) -9- (4-ethylaminophenyl) fluorene, 1-chloro-9,9-bis (4-aminophenyl) fluorene, 2-methyl- 9,9-bis (4-aminophenyl) fluorene, 2-fluoro-9,9-bis (4-aminophenyl) fluorene, 1,2,3,4,5,6,7,8-octafluor Oro-9,9-bis (4-aminophenyl) fluorene, 2,7-dinitro-9,9-bis (4-aminophenyl) fluorene, 2-chloro-4-methyl-9,9-bis (4- Aminophenyl) fluorene, 2,7-dichloro-9,9-bis (4-aminophenyl) fluorene, 2-acetyl-9,9-bis (4-aminophenyl) fluorene, 2-methyl-9,9-bis (4-aminophenyl) fluorene, 2-chloro-9,9-bis (4-aminophenyl) fluorene, and 2-t-butyl-9,9-bis (4-aminophenyl) fluorene, 9,9-bis (4-methylaminophenyl) fluorene, 9- (4-methylaminophenyl) -9- (4-aminophenyl) fluorene, 9,9-bis (4-ethylaminophenyl) fluorene 9- (4-ethylaminophenyl) -9- (4-aminophenyl) fluorene, 9,9-bis (4-propylaminophenyl) fluorene, 9,9-bis (4-isopropylaminophenyl) fluorene, 9, 9-bis (4-butylaminophenyl) fluorene, 9,9-bis (3-methyl-4-methylaminophenyl) fluorene, 9,9-bis (3-chloro-4-methylaminophenyl) fluorene, 9- (4-methylaminophenyl) -9- (4-ethylaminophenyl) fluorene, 9,9-bis (3,5-dimethyl-4-methylaminophenyl) fluorene, 9- (3,5-dimethyl-4- Methylaminophenyl) -9- (4-methylaminophenyl) fluorene, 1,5-dimethyl-9,9-bis (3,5-dimethyl-4-methyl) Ruaminophenyl) fluorene, 4-methyl-9,9-bis (4-methylaminophenyl) fluorene, 4-chloro-9,9-bis (4-methylaminophenyl) fluorene, 9,9-bis (3 5-diethyl-4-methylaminophenyl) fluorene. Particularly preferred is a fluorene-type curing agent in which R 1 and R 2 are both hydrogen in the structural formula [1].

そのような特に好ましいフルオレン型硬化剤の具体例としては、9,9−ビス(4−アミノフェニル)フルオレン、9,9−ビス(3−メチル−4−アミノフェニル)フルオレン、9,9−ビス(3−エチル−4−アミノフェニル)フルオレン、9,9−ビス(3−フェニル−4−アミノフェニル)フルオレン、9,9−ビス(3,5−ジメチル−4−アミノフェニル)フルオレン、9−(3,5−ジエチル−4−アミノフェニル)−9−(3−メチル−4−アミノフェニル)フルオレン、9−(3−メチル−4−アミノフェニル)−9−(3−クロロ−4−アミノフェニル)フルオレン、9,9−ビス(3,5−ジイソプロピル−4−アミノフェニル)フルオレン、9,9−ビス(3−クロロ−4−アミノフェニル)フルオレンが挙げられる。   Specific examples of such a particularly preferred fluorene type curing agent include 9,9-bis (4-aminophenyl) fluorene, 9,9-bis (3-methyl-4-aminophenyl) fluorene, and 9,9-bis. (3-ethyl-4-aminophenyl) fluorene, 9,9-bis (3-phenyl-4-aminophenyl) fluorene, 9,9-bis (3,5-dimethyl-4-aminophenyl) fluorene, 9- (3,5-diethyl-4-aminophenyl) -9- (3-methyl-4-aminophenyl) fluorene, 9- (3-methyl-4-aminophenyl) -9- (3-chloro-4-amino Phenyl) fluorene, 9,9-bis (3,5-diisopropyl-4-aminophenyl) fluorene, 9,9-bis (3-chloro-4-aminophenyl) fluorene. .

成分(B)は130℃以上で主に硬化反応が進行し、潜在的な熱反応性を示す。これにより、それを用いたエポキシ樹脂組成物は130℃未満では硬化剤が早期反応を起こすことなく、取り扱い性に優れている。   Component (B) mainly undergoes a curing reaction at 130 ° C. or higher, and exhibits latent thermal reactivity. Thereby, the epoxy resin composition using the same is excellent in handleability without causing an early reaction of the curing agent at less than 130 ° C.

本発明のエポキシ樹脂組成物は、硬化性や貯蔵安定性等の物性を調節する目的で成分(B)以外の硬化剤を含んでいても良い。斯かる硬化剤は、活性水素を有するアミノ基を有し、エポキシ樹脂と架橋構造を形成するアミン硬化剤であって、成分(B)以外であれば特に限定されるものではないが、高耐熱性かつ高弾性率のエポキシ樹脂硬化物が得られる芳香族アミン硬化剤が好ましい。斯かる芳香族アミン硬化剤としては具体的には、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジイソプロピル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−4,4’−ジアミノジフェニルメタン、3,3’−ジエチル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−5,5’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジイソプロピル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−5,5’−ジエチル−4,4’−ジアミノジフェニルメタン、3,3’−ジ−t−ブチル−5,5’−ジイソプロピル−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラ−t−ブチル−4,4’−ジアミノジフェニルメタン等の固体状の芳香族アミン硬化剤や2,2’−ジエチルジアミノジフェニルメタン、2,4−ジエチル−6−メチル−m−フェニレンジアミン、4,6−ジエチル−2−メチル−m−フェニレンジアミン等のジエチルトルエンジアミン、4,4’−メチレンビス(N−メチルアニリン)、4,4’−メチレンビス(N−エチルアニリン)、4,4’−メチレンビス(N−sec−ブチルアニリン)、N,N’−ジ−sec−ブチル−p−フェニレンジアミン等の液状の芳香族アミン硬化剤、または固体状および液状芳香族アミン硬化剤の混合物が挙げられる。特に斯かる芳香族アミン硬化剤が液状であれば、強化繊維への含浸性に優れ、高耐熱性かつ高弾性率のエポキシ樹脂硬化物が得られるため好ましい。   The epoxy resin composition of the present invention may contain a curing agent other than the component (B) for the purpose of adjusting physical properties such as curability and storage stability. Such a curing agent is an amine curing agent having an amino group having active hydrogen and forming a crosslinked structure with an epoxy resin, and is not particularly limited as long as it is other than the component (B). An aromatic amine curing agent that can provide a cured epoxy resin cured with high elasticity is preferred. Specific examples of the aromatic amine curing agent include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, and 3,3′-diisopropyl-4,4. '-Diaminodiphenylmethane, 3,3'-di-t-butyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-5,5'-dimethyl-4,4'-diaminodiphenylmethane, 3,3' -Di-t-butyl-5,5'-dimethyl-4,4'-diaminodiphenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diaminodiphenylmethane, 3,3'-diisopropyl-5 , 5'-diethyl-4,4'-diaminodiphenylmethane, 3,3'-di-t-butyl-5,5'-diethyl-4,4'-diaminodiphenylmeta 3,3′-di-t-butyl-5,5′-diisopropyl-4,4′-diaminodiphenylmethane, 3,3 ′, 5,5′-tetra-t-butyl-4,4′-diamino Solid aromatic amine curing agent such as diphenylmethane, 2,2′-diethyldiaminodiphenylmethane, 2,4-diethyl-6-methyl-m-phenylenediamine, 4,6-diethyl-2-methyl-m-phenylenediamine Such as diethyltoluenediamine, 4,4′-methylenebis (N-methylaniline), 4,4′-methylenebis (N-ethylaniline), 4,4′-methylenebis (N-sec-butylaniline), N, N Examples include liquid aromatic amine curing agents such as' -di-sec-butyl-p-phenylenediamine, or a mixture of solid and liquid aromatic amine curing agents.In particular, if the aromatic amine curing agent is in a liquid state, it is preferable because an epoxy resin cured product having excellent heat impregnation property and high heat resistance and high elastic modulus can be obtained.

エポキシ樹脂組成物において、成分(B)を含む全ての硬化剤の含有量は、硬化剤の全活性水素数(H)と、全てのエポキシ樹脂成分中のエポキシ基総数(E)との比、いわゆるH/Eで示すことができ、そのH/Eが0.8以上1.1以下の範囲を満たす含有量であることが好ましく、0.85以上1.05以下の範囲を満たす含有量であることがより好ましい。H/Eが0.8を下回る場合、エポキシ樹脂硬化物の反応率が不足し、耐熱性や材料強度が低下する場合がある。また、H/Eが1.1を上回る場合はエポキシ樹脂硬化物の反応率は充分であるが、塑性変形能力が不足するため、繊維強化複合材料の耐衝撃性が不足する場合がある。また、成分(B)の含有程度は、エポキシ樹脂組成物中の硬化剤の全活性水素数(H)に対する成分(B)由来の活性水素数の割合、いわゆる成分(B)の活性水素割合で示すことができ、その成分(B)の活性水素割合が20%以上であることが好ましく、この場合に成分(B)が有するエポキシ樹脂組成物の貯蔵安定性やエポキシ樹脂硬化物の耐熱性を高める効果が十分に発揮される。   In the epoxy resin composition, the content of all curing agents including the component (B) is the ratio of the total active hydrogen number (H) of the curing agent to the total number of epoxy groups (E) in all epoxy resin components, It can be represented by so-called H / E, and the H / E is preferably a content satisfying a range of 0.8 to 1.1, and a content satisfying a range of 0.85 to 1.05 More preferably. When H / E is less than 0.8, the reaction rate of the cured epoxy resin is insufficient, and heat resistance and material strength may be reduced. When H / E exceeds 1.1, the reaction rate of the cured epoxy resin is sufficient, but the plastic deformation capability is insufficient, and the impact resistance of the fiber-reinforced composite material may be insufficient. The content of component (B) is the ratio of the number of active hydrogens derived from component (B) to the total number of active hydrogens (H) of the curing agent in the epoxy resin composition, the so-called active hydrogen ratio of component (B). It is preferable that the active hydrogen ratio of the component (B) is 20% or more. In this case, the storage stability of the epoxy resin composition that the component (B) has and the heat resistance of the cured epoxy resin are shown. The effect of increasing is fully exhibited.

また、繊維強化複合材料の力学特性の観点から、成分(B)以外の硬化剤、たとえば成分(B)以外の芳香族アミン型硬化剤を併用することも好ましく、この場合は、成分(B)の活性水素割合が20%以上80%以下であるようにし、成分(B)以外の硬化剤の活性水素割合を20%以上80%以下であるようにする。   From the viewpoint of the mechanical properties of the fiber-reinforced composite material, it is also preferable to use a curing agent other than the component (B), for example, an aromatic amine type curing agent other than the component (B). In this case, the component (B) The active hydrogen ratio of the curing agent other than the component (B) is 20% or more and 80% or less.

本発明のエポキシ樹脂組成物は、反応促進剤としてアルミニウム塩化物、アルミニウム臭化物、三フッ化ホウ素、五フッ化アンチモン、五フッ化リン、四フッ化チタン等のルイス酸、脂肪族あるいは芳香族の第三級アミン、イミダゾール類、アルコール類、フェノール類を含んでいても良い。   The epoxy resin composition of the present invention comprises a Lewis acid such as aluminum chloride, aluminum bromide, boron trifluoride, antimony pentafluoride, phosphorus pentafluoride, titanium tetrafluoride, etc. as a reaction accelerator, aliphatic or aromatic. Tertiary amines, imidazoles, alcohols, and phenols may be included.

本発明の繊維強化複合材料用エポキシ樹脂組成物を使用した繊維強化複合材料は、産業材料用途、特に航空機、自動車材料に好適に用いることができる。繊維強化複合材料の成形法としてはプリプレグ法等が挙げられ、斯かる方法では、成形温度よりも低温では長期間に渡り意図しない硬化反応が進行しにくく、かつ成形温度では短時間で硬化することが好ましいため、高い貯蔵安定性と高速硬化性を有するエポキシ樹脂組成物を用いる必要があり、本発明の繊維強化複合材料用エポキシ樹脂組成物が好適に用いられる。エポキシ樹脂組成物の貯蔵安定性は、成形温度以下の低温、例えば120℃でのゲル化時間に依存しており、ゲル化時間が長時間であるほど貯蔵安定性が高い。また、エポキシ樹脂組成物の硬化性は、成形温度、例えば180℃でのガラス化時間に依存しており、ガラス化時間が短時間であるほど硬化性が高い。よって、プリプレグ法等に使用されるエポキシ樹脂組成物としては、成形温度以下の低温ではゲル化時間が長く、成形温度ではガラス化時間が短いエポキシ樹脂組成物が好ましく、本発明のエポキシ樹脂組成物は斯かる要求を満足し、具体的には、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときに、Y<0.72X+9の関係を満たすものであり、さらに好ましくはY<0.7X+8の関係を満たすものである。   The fiber reinforced composite material using the epoxy resin composition for fiber reinforced composite material of the present invention can be suitably used for industrial material applications, particularly aircraft and automobile materials. Examples of the molding method of the fiber reinforced composite material include a prepreg method. In such a method, an unintended curing reaction hardly proceeds for a long time at a temperature lower than the molding temperature, and the molding temperature is cured in a short time. Therefore, it is necessary to use an epoxy resin composition having high storage stability and high-speed curability, and the epoxy resin composition for fiber-reinforced composite materials of the present invention is suitably used. The storage stability of the epoxy resin composition depends on the gelation time at a low temperature not higher than the molding temperature, for example, 120 ° C., and the longer the gelation time, the higher the storage stability. Further, the curability of the epoxy resin composition depends on the vitrification time at a molding temperature, for example, 180 ° C., and the curability is higher as the vitrification time is shorter. Therefore, the epoxy resin composition used in the prepreg method or the like is preferably an epoxy resin composition having a long gelation time at a low temperature below the molding temperature and a short vitrification time at the molding temperature, and the epoxy resin composition of the present invention. Satisfies such a requirement. Specifically, when the gelation time at 120 ° C. heating is X minutes and the vitrification time at 180 ° C. heating is Y minutes, the relationship of Y <0.72X + 9 is satisfied. More preferably, the relationship of Y <0.7X + 8 is satisfied.

ここで、ゲル化時間およびガラス化時間は次のようにして測定することができる。すなわち、ATD−1000(Alpha Technologies(株)製)等の熱硬化測定装置を用いて所定温度でのエポキシ樹脂組成物の動的粘弾性測定を行い、硬化反応進行に伴うトルク上昇から複素粘性率を求める。このとき、複素粘性率が1.0×10Pa・sに達するまでの時間をゲル化時間、1.0×10Pa・sに達するまでの時間をガラス化時間とする。 Here, the gelation time and the vitrification time can be measured as follows. That is, the dynamic viscoelasticity measurement of the epoxy resin composition at a predetermined temperature is performed using a thermosetting measuring device such as ATD-1000 (manufactured by Alpha Technologies), and the complex viscosity is determined from the torque increase accompanying the progress of the curing reaction. Ask for. At this time, the time until the complex viscosity reaches 1.0 × 10 3 Pa · s is the gelation time, and the time until the complex viscosity reaches 1.0 × 10 7 Pa · s is the vitrification time.

本発明の繊維強化複合材料用エポキシ樹脂組成物を使用して得られる繊維強化複合材料の耐熱性は、エポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物のガラス転移温度に依存するため、高耐熱性を有した繊維強化複合材料を得るためには、例えば180℃の温度下で2時間加熱して完全硬化して得られるエポキシ樹脂硬化物のガラス転移温度は、180℃以上250℃以下であることが好ましく、180℃以上220℃以下であればさらに好ましい。ガラス転移温度が180℃に満たない場合はエポキシ樹脂硬化物の耐熱性が不十分な場合がある。ガラス転移温度が250℃を越える場合、3次元架橋構造の架橋密度が高くなることからエポキシ樹脂硬化物が脆くなり、繊維強化複合材料の引張強度や耐衝撃性が低下する場合がある。ここでガラス転移温度は、動的粘弾性測定装置(DMA)を用いた測定により求められる。   The heat resistance of the fiber reinforced composite material obtained by using the epoxy resin composition for fiber reinforced composite material of the present invention depends on the glass transition temperature of the cured epoxy resin obtained by curing the epoxy resin composition. In order to obtain a fiber-reinforced composite material having heat resistance, for example, the glass transition temperature of a cured epoxy resin obtained by heating for 2 hours at a temperature of 180 ° C. is 180 ° C. or higher and 250 ° C. or lower. It is preferable that it is 180 ° C. or higher and 220 ° C. or lower. When the glass transition temperature is less than 180 ° C., the heat resistance of the cured epoxy resin may be insufficient. When the glass transition temperature exceeds 250 ° C., the cross-linked density of the three-dimensional cross-linked structure becomes high, so that the cured epoxy resin becomes brittle, and the tensile strength and impact resistance of the fiber reinforced composite material may be lowered. Here, the glass transition temperature is determined by measurement using a dynamic viscoelasticity measuring device (DMA).

本発明の繊維強化複合材料用エポキシ樹脂組成物と強化繊維を組み合わせ、硬化して本発明の繊維強化複合材料が得られる。本発明の繊維強化複合材料の成形方法は特に限定されるものではないが、プリプレグ法、ハンドレイアップ法、フィラメントワインディング法、プルトルージョン法、RTM(Resin Transfer Molding)法等の方法が好適に用いられる。   The fiber reinforced composite material of the present invention is obtained by combining the epoxy resin composition for fiber reinforced composite material of the present invention and the reinforcing fiber and curing. The method for molding the fiber-reinforced composite material of the present invention is not particularly limited, but methods such as a prepreg method, a hand lay-up method, a filament winding method, a pultrusion method, and an RTM (Resin Transfer Molding) method are preferably used. It is done.

本発明で用いられる強化繊維としては、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、ボロン繊維、アルミナ繊維および炭化ケイ素繊維等が挙げられる。これらの強化繊維を2種以上混合して用いても構わないが、より軽量で、より耐久性の高い成形品を得るために、炭素繊維や黒鉛繊維を用いることが好ましい。特に、材料の軽量化や高強度化の要求が高い用途においては、その優れた比弾性率と比強度のため、炭素繊維が好適に用いられる。   Examples of the reinforcing fiber used in the present invention include glass fiber, carbon fiber, graphite fiber, aramid fiber, boron fiber, alumina fiber, and silicon carbide fiber. Two or more kinds of these reinforcing fibers may be mixed and used, but in order to obtain a molded product that is lighter and more durable, it is preferable to use carbon fibers or graphite fibers. In particular, in applications where there is a high demand for reducing the weight and strength of materials, carbon fibers are preferably used because of their excellent specific modulus and specific strength.

炭素繊維としては、用途に応じてあらゆる種類の炭素繊維を用いることが可能であるが、耐衝撃性の点から高くとも400GPaの引張弾性率を有する炭素繊維であることが好ましい。また、強度の観点からは、高い剛性および機械強度を有する複合材料が得られることから、引張強度が好ましくは4.4〜6.5GPaの炭素繊維が用いられる。また、引張伸度も重要な要素であり、1.7〜2.3%の高強度高伸度炭素繊維であることが好ましい。従って、引張弾性率が少なくとも230GPaであり、引張強度が少なくとも4.4GPaであり、引張伸度が少なくとも1.7%であるという特性を兼ね備えた炭素繊維が最も適している。   As the carbon fiber, any type of carbon fiber can be used depending on the application, but a carbon fiber having a tensile elastic modulus of at most 400 GPa is preferable from the viewpoint of impact resistance. From the viewpoint of strength, a carbon fiber having a tensile strength of preferably 4.4 to 6.5 GPa is preferably used because a composite material having high rigidity and mechanical strength can be obtained. Further, the tensile elongation is also an important factor, and it is preferably a high-strength, high-stretch carbon fiber of 1.7 to 2.3%. Accordingly, carbon fibers having the characteristics that the tensile modulus is at least 230 GPa, the tensile strength is at least 4.4 GPa, and the tensile elongation is at least 1.7% are most suitable.

炭素繊維の市販品としては、“トレカ(登録商標)”T800G−24K、“トレカ(登録商標)”T800S−24K、“トレカ(登録商標)”T700G−24K、“トレカ(登録商標)”T300−3K、および“トレカ(登録商標)”T700S−12K(以上東レ(株)製)等が挙げられる。   Commercially available carbon fibers include "Torayca (registered trademark)" T800G-24K, "Torayca (registered trademark)" T800S-24K, "Torayca (registered trademark)" T700G-24K, and "Torayca (registered trademark)" T300- 3K, and “Torayca (registered trademark)” T700S-12K (manufactured by Toray Industries, Inc.).

以下、実施例により、本発明の繊維強化複合材料用エポキシ樹脂組成物についてさらに詳細に説明する。   Hereinafter, the epoxy resin composition for fiber-reinforced composite material of the present invention will be described in more detail with reference to examples.

〈樹脂原料〉
各実施例の樹脂組成物を得るために、以下の樹脂原料を用いた。なお、表1中の樹脂組成物の含有割合の単位は、特に断らない限り「質量部」を意味する。
<Resin raw material>
In order to obtain the resin composition of each Example, the following resin raw materials were used. In addition, unless otherwise indicated, the unit of the content rate of the resin composition of Table 1 means a "mass part".

1.成分(A)であるエポキシ樹脂
・“アラルダイト”(登録商標)MY721(ハンツマン・アドバンスド・マテリアルズ社製):テトラグリシジルジアミノジフェニルメタン
・“アラルダイト”(登録商標)MY0600(ハンツマン・アドバンスド・マテリアルズ社製):トリグリシジル−m−アミノフェノール
1. Component (A) epoxy resin “Araldite” (registered trademark) MY721 (manufactured by Huntsman Advanced Materials): Tetraglycidyldiaminodiphenylmethane “Araldite” (registered trademark) MY0600 (manufactured by Huntsman Advanced Materials) ): Triglycidyl-m-aminophenol

2.成分(A)以外のエポキシ樹脂
・“エピクロン”(登録商標)EPC830(大日本インキ(株)製):ビスフェノールF型エポキシ樹脂(粘度:3500mPa・s(25℃))
・“アラルダイト”(登録商標)MY816(ハンツマン・アドバンスド・マテリアルズ社製):ナフタレン型エポキシ樹脂(粘度:300mPa・s(150℃))
2. Epoxy resin other than component (A), “Epicron” (registered trademark) EPC830 (manufactured by Dainippon Ink Co., Ltd.): Bisphenol F type epoxy resin (viscosity: 3500 mPa · s (25 ° C.))
“Araldite” (registered trademark) MY816 (manufactured by Huntsman Advanced Materials): naphthalene type epoxy resin (viscosity: 300 mPa · s (150 ° C.))

3.成分(B)である硬化剤
・BAFL(東京化成工業(株)製):9,9−ビス(4−アミノフェニル)フルオレン
・BTFL(東京化成工業(株)製):9,9−ビス(3−メチル−4−アミノフェニル)フルオレン
・CAF(東京化成工業(株)製):9,9−ビス(3−クロロ−4−アミノフェニル)フルオレン
3. Ingredient (B), curing agent, BAFL (manufactured by Tokyo Chemical Industry Co., Ltd.): 9,9-bis (4-aminophenyl) fluorene, BTFL (manufactured by Tokyo Chemical Industry Co., Ltd.): 9,9-bis ( 3-methyl-4-aminophenyl) fluorene / CAF (manufactured by Tokyo Chemical Industry Co., Ltd.): 9,9-bis (3-chloro-4-aminophenyl) fluorene

4.成分(B)以外の硬化剤
・3,3’−DAS(三井化学ファイン(株)製):3,3’−ジアミノジフェニルスルホン(25℃で固体状(粘度>1000Pa・s))
・“jERキュア”(登録商標)W(三菱化学(株)製):ジエチルトルエンジアミン(粘度:160mPa・s(25℃))
4). Curing agent other than component (B), 3,3′-DAS (manufactured by Mitsui Chemicals Fine Co., Ltd.): 3,3′-diaminodiphenyl sulfone (solid at 25 ° C. (viscosity> 1000 Pa · s))
"JER Cure" (registered trademark) W (manufactured by Mitsubishi Chemical Corporation): diethyltoluenediamine (viscosity: 160 mPa · s (25 ° C))

〈エポキシ樹脂組成物の調製〉
(A)グリシジルアミン型エポキシ樹脂等のエポキシ樹脂、(B)フルオレン型硬化剤等の硬化剤、および硬化促進剤を表1に記載した含有比で混合し、エポキシ樹脂組成物を調製した。
<Preparation of epoxy resin composition>
(A) An epoxy resin such as a glycidylamine type epoxy resin, (B) a curing agent such as a fluorene type curing agent, and a curing accelerator were mixed at a content ratio shown in Table 1 to prepare an epoxy resin composition.

〈ゲル化時間の測定〉
熱硬化測定装置ATD−1000(Alpha Technologies(株)製)を用いて120℃に加熱したステージにサンプルを投入し、周波数1.0Hz、歪み1%で動的粘弾性測定を行い、硬化反応進行に伴うトルク上昇から複素粘性率を求めた。このとき、複素粘性率が1.0×10Pa・sに達するまでの時間をゲル化時間とした。
<Measurement of gelation time>
The sample was put into a stage heated to 120 ° C. using a thermosetting measurement device ATD-1000 (manufactured by Alpha Technologies), and dynamic viscoelasticity measurement was performed at a frequency of 1.0 Hz and a strain of 1%, and the curing reaction proceeded. The complex viscosity was obtained from the torque increase accompanying the. At this time, the time until the complex viscosity reached 1.0 × 10 3 Pa · s was defined as the gel time.

〈ガラス化時間の測定〉
熱硬化測定装置ATD−1000(Alpha Technologies(株)製)を用いて180℃に加熱したステージにサンプルを投入し、周波数1.0Hz、歪み1%で動的粘弾性測定を行い、硬化反応進行に伴うトルク上昇から複素粘性率を求めた。このとき、複素粘性率が1.0×10Pa・sに達するまでの時間をゲル化時間とした。
<Measurement of vitrification time>
A sample was put into a stage heated to 180 ° C. using a thermosetting measurement device ATD-1000 (manufactured by Alpha Technologies), and a dynamic viscoelasticity measurement was performed at a frequency of 1.0 Hz and a strain of 1%, and a curing reaction proceeded. The complex viscosity was obtained from the torque increase accompanying the. At this time, the time until the complex viscosity reached 1.0 × 10 7 Pa · s was defined as the gel time.

〈樹脂硬化板の作製〉
上記で調製したエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中に注入した。180℃の温度で2時間硬化させ、厚さ2mmの樹脂硬化板を得た。
<Preparation of cured resin plate>
The epoxy resin composition prepared above was degassed in vacuum, and then poured into a mold set to a thickness of 2 mm with a 2 mm thick “Teflon (registered trademark)” spacer. Curing was performed at a temperature of 180 ° C. for 2 hours to obtain a cured resin plate having a thickness of 2 mm.

〈エポキシ樹脂硬化物のガラス転移温度Tg測定〉
樹脂硬化板から幅12.7mm、長さ40mmの試験片を切り出し、DMA(TAインスツルメンツ社製ARES)を用いてTg測定を行った。測定条件は、昇温速度5℃/分である。測定で得られた貯蔵弾性率G’の変曲点での温度をTgとした。
<Measurement of glass transition temperature Tg of cured epoxy resin>
A test piece having a width of 12.7 mm and a length of 40 mm was cut out from the cured resin plate, and Tg measurement was performed using DMA (ARES manufactured by TA Instruments). The measurement conditions are a heating rate of 5 ° C./min. The temperature at the inflection point of the storage elastic modulus G ′ obtained by the measurement was defined as Tg.

〈繊維強化複合材料の作製〉
400mm×400mm×1.2mmの板状キャビティーを有する金型に、395mm×395mmに切り出した炭素繊維一方向織物(平織、縦糸:炭素繊維T800S−24K−10C 東レ(株)製、炭素繊維目付295g/m、縦糸密度7.2本/25mm、横糸:ガラス繊維ECE225 1/0 1Z 日東紡(株)製、横糸密度7.5本/25mm)を、炭素繊維方向を0°として、0°方向に揃えて4枚積層したものをセットし、型締めを行った。続いて、金型を80℃に加温した後、別途予め80℃に加温したエポキシ樹脂組成物を、樹脂注入装置を用い、注入圧0.2MPaで型内に注入した。注入後、金型を速度5℃/minで180℃まで昇温して、180℃で2時間硬化した後、30℃まで降温して脱型し、繊維強化複合材料を得た。
<Production of fiber-reinforced composite material>
Carbon fiber unidirectional woven fabric (plain weave, warp: carbon fiber T800S-24K-10C, manufactured by Toray Industries, Inc., carbon fiber basis weight) cut into a mold having a plate-like cavity of 400 mm × 400 mm × 1.2 mm, 395 mm × 395 mm 295 g / m 2 , warp density 7.2 / 25 mm, weft: glass fiber ECE225 1/0 1Z Nittobo Co., Ltd., weft density 7.5 / 25 mm), carbon fiber direction 0 °, 0 A set of four laminated in the direction was set and clamped. Subsequently, after the mold was heated to 80 ° C., an epoxy resin composition separately heated to 80 ° C. was injected into the mold at an injection pressure of 0.2 MPa using a resin injection device. After the injection, the mold was heated to 180 ° C. at a rate of 5 ° C./min, cured at 180 ° C. for 2 hours, then cooled to 30 ° C. and demolded to obtain a fiber-reinforced composite material.

〈繊維強化複合材料の0°引張強度測定方法〉
得られた繊維強化複合材料を0°方向と長さ方向が同じになるように長さ229mm×幅12.7mmにカットして0°引張強度用試験片とし、繊維強化複合材料の0°引張強度をASTM−D3039に準拠し、材料万能試験機(インストロン・ジャパン(株)製4208型インストロン(登録商標))を用いて測定した。測定時のクロスヘッドスピードは1.27mm/min、測定温度は23℃とした。
<Method of measuring 0 ° tensile strength of fiber reinforced composite material>
The obtained fiber reinforced composite material was cut into a length of 229 mm and a width of 12.7 mm so that the length direction was the same as the 0 ° direction to obtain a 0 ° tensile strength test piece. The strength was measured using a universal material testing machine (Instron Japan Co., Ltd. Model 4208 Instron (registered trademark)) in accordance with ASTM-D3039. The crosshead speed during measurement was 1.27 mm / min, and the measurement temperature was 23 ° C.

(実施例1)
前記したようにして表1に記載した含有比で、エポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が25分、ガラス化時間が17分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが190℃、0°引張強度が2950MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
Example 1
As described above, the epoxy resin composition was prepared at the content ratio described in Table 1, and the gelation time and the vitrification time were measured. As a result, the gelation time was 25 minutes and the vitrification time was 17 minutes. Satisfying the relationship of Y <0.72X + 9 and Y <0.7X + 8 when the gelation time at 120 ° C. heating is X minutes and the vitrification time at 180 ° C. heating is Y minutes. And high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 190 ° C., 0 ° tensile strength was 2950 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例2)
エポキシ樹脂成分をMY0600/EPC830=30/70に変更した以外は実施例1と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が30分、ガラス化時間が22分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが189℃、0°引張強度が3050MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 2)
The result of producing an epoxy resin composition with the content ratio described in Table 1 in the same manner as in Example 1 except that the epoxy resin component was changed to MY0600 / EPC830 = 30/70, and measuring the gelation time and vitrification time. Y <0.72X + 9 when the gelation time is 30 minutes, the vitrification time is 22 minutes, the gelation time when heated at 120 ° C. is X minutes, and the vitrification time when heated at 180 ° C. is Y minutes, and The relationship of Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg, 0 ° tensile strength measurement was performed. As a result, Tg was 189 ° C., 0 ° tensile strength was 3050 MPa, heat resistance, tensile strength. Both obtained good fiber reinforced composite materials.

(実施例3)
MY0600とEPC830の含有比率をMY0600/EPC830=50/50に変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が20分、ガラス化時間が16分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが195℃、0°引張強度が3000MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 3)
Except having changed the content ratio of MY0600 and EPC830 to MY0600 / EPC830 = 50/50, an epoxy resin composition was prepared with the content ratio described in Table 1 in the same manner as in Example 2, and the gelation time and vitrification time measurement were performed. As a result, the gelation time is 20 minutes, the vitrification time is 16 minutes, the gelation time at 120 ° C. heating is X minutes, and the vitrification time at 180 ° C. heating is Y minutes. The relationship of 72X + 9 and Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 195 ° C., 0 ° tensile strength was 3000 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例4)
MY0600とEPC830の含有比率をMY0600/EPC830=100/0に、H/E=0.85に変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が10分、ガラス化時間が12分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが202℃、0°引張強度が2900MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
Example 4
Except for changing the content ratio of MY0600 and EPC830 to MY0600 / EPC830 = 100/0 and H / E = 0.85, an epoxy resin composition was prepared with the content ratio described in Table 1 in the same manner as in Example 2. As a result of measuring the gelation time and the vitrification time, the gelation time was 10 minutes, the vitrification time was 12 minutes, the gelation time when heated at 120 ° C was X minutes, and the vitrification time when heated at 180 ° C was Y %, The relationship of Y <0.72X + 9 and Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength measurement were performed. As a result, Tg was 202 ° C. and 0 ° tensile strength was 2900 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例5)
成分(B)であるBAFLをBTFLに変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が22分、ガラス化時間が16分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが190℃、0°引張強度が3050MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 5)
As a result of producing an epoxy resin composition with the content ratio described in Table 1 in the same manner as in Example 2 except that the component (B) BAFL was changed to BTFL, the gelation time and the vitrification time were measured. When the vitrification time is 22 minutes, the vitrification time is 16 minutes, the gelation time when heated at 120 ° C. is X minutes, and the vitrification time when heated at 180 ° C. is Y minutes, Y <0.72X + 9 and Y < The relationship of 0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 190 ° C., 0 ° tensile strength was 3050 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例6)
成分(B)であるBAFLをCAFに、H/E=1.05に変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が300分、ガラス化時間が200分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが180℃、0°引張強度が3050MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 6)
An epoxy resin composition was prepared at the content ratio described in Table 1 in the same manner as in Example 2 except that the component (B), BAFL, was changed to CAF and H / E = 1.05, and the gelation time, glass As a result of measuring the vitrification time, when the gelation time is 300 minutes, the vitrification time is 200 minutes, the gelation time at 120 ° C. heating is X minutes, and the vitrification time at 180 ° C. heating is Y minutes The relationship of Y <0.72X + 9 and Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 180 ° C., 0 ° tensile strength was 3050 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例7)
成分(B)であるBAFLとその他の硬化剤として3,3‘−DASを使用した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が45分、ガラス化時間が40分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY>0.7X+8とはなったが、Y<0.72X+9の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが184℃、0°引張強度が3150MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 7)
An epoxy resin composition was prepared at the content ratio described in Table 1 in the same manner as in Example 2 except that BAFL as component (B) and 3,3′-DAS were used as other curing agents, and the gelation time, As a result of measuring the vitrification time, when the gelation time is 45 minutes, the vitrification time is 40 minutes, the gelation time when heated at 120 ° C. is X minutes, and the vitrification time when heated at 180 ° C. is Y minutes Although Y> 0.7X + 8, the relationship of Y <0.72X + 9 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg, 0 ° tensile strength measurement was performed. As a result, Tg was 184 ° C., 0 ° tensile strength was 3150 MPa, and heat resistance, tensile strength. Both obtained good fiber reinforced composite materials.

(実施例8)
BAFLと3,3‘−DASの含有比率を変更した以外は実施例7と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が36分、ガラス化時間が29分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが185℃、0°引張強度が3120MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 8)
The result which produced the epoxy resin composition by the content ratio described in Table 1 similarly to Example 7 except having changed the content ratio of BAFL and 3,3'-DAS, and measured gelation time and vitrification time. Y <0.72X + 9 when the gelation time is 36 minutes, the vitrification time is 29 minutes, the gelation time when heated at 120 ° C. is X minutes, and the vitrification time when heated at 180 ° C. is Y minutes, and The relationship of Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg, 0 ° tensile strength measurement was performed. As a result, Tg was 185 ° C., 0 ° tensile strength was 3120 MPa, and heat resistance, tensile strength. Both obtained good fiber reinforced composite materials.

(実施例9)
BAFLと3,3‘−DASの含有比率を変更した以外は実施例7と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が31分、ガラス化時間が24分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが187℃、0°引張強度が3060MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
Example 9
The result which produced the epoxy resin composition by the content ratio described in Table 1 similarly to Example 7 except having changed the content ratio of BAFL and 3,3'-DAS, and measured gelation time and vitrification time. Y <0.72X + 9 when the gelation time is 31 minutes, the vitrification time is 24 minutes, the gelation time when heated at 120 ° C. is X minutes, and the vitrification time when heated at 180 ° C. is Y minutes, and The relationship of Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg, 0 ° tensile strength measurement was performed. As a result, Tg was 187 ° C., 0 ° tensile strength was 3060 MPa, and heat resistance, tensile strength. Both obtained good fiber reinforced composite materials.

(実施例10)
成分(B)であるBAFLとその他の硬化剤としてjERキュアWを使用した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が4分、ガラス化時間が9分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが186℃、0°引張強度が3170MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 10)
Except for using BAFL as component (B) and jER Cure W as the other curing agent, an epoxy resin composition was prepared at the content ratio described in Table 1 in the same manner as in Example 2, and the gelation time and vitrification time were obtained. As a result of the measurement, the gelation time was 4 minutes, the vitrification time was 9 minutes, the gelation time at 120 ° C. heating was X minutes, and the vitrification time at 180 ° C. heating was Y minutes, Y < The relationship of 0.72X + 9 and Y <0.7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength measurement were performed. As a result, Tg was 186 ° C., 0 ° tensile strength was 3170 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例11)
BAFLとjERキュアWの含有比率を変更した以外は実施例10と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が14分、ガラス化時間が14分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが187℃、0°引張強度が3150MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 11)
Except having changed the content ratio of BAFL and jER cure W, the epoxy resin composition was produced by the content ratio described in Table 1 similarly to Example 10, and the gelation time and the vitrification time were measured. When time is 14 minutes, vitrification time is 14 minutes, gelation time when heated at 120 ° C. is X minutes, and vitrification time when heated at 180 ° C. is Y minutes, Y <0.72X + 9 and Y <0 The relationship of .7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 187 ° C., 0 ° tensile strength was 3150 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(実施例12)
BAFLとjERキュアWの含有比率を変更した以外は実施例10と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が22分、ガラス化時間が18分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY<0.72X+9、およびY<0.7X+8の関係を満足するものであり、貯蔵安定性、高速硬化性共に良好であった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが188℃、0°引張強度が3110MPaであり、耐熱性、引張強度共に良好な繊維強化複合材料が得られた。
(Example 12)
Except having changed the content ratio of BAFL and jER cure W, the epoxy resin composition was produced by the content ratio described in Table 1 similarly to Example 10, and the gelation time and the vitrification time were measured. When time is 22 minutes, vitrification time is 18 minutes, gelation time when heated at 120 ° C. is X minutes, and vitrification time when heated at 180 ° C. is Y minutes, Y <0.72X + 9 and Y <0 The relationship of .7X + 8 was satisfied, and both storage stability and high-speed curability were good. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 188 ° C. and 0 ° tensile strength was 3110 MPa, and heat resistance and tensile strength were obtained. Both obtained good fiber reinforced composite materials.

(比較例1)
MY0600とEPC830の含有比率をMY0600/EPC830=0/100に、成分(B)であるBAFLをCAFに変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が350分、ガラス化時間が360分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY>0.72X+9であり、貯蔵安定性、高速硬化性共に満足する結果は得られなかった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが162℃、0°引張強度が2700MPaであり、耐熱性および引張強度共に満足する結果は得られなかった。
(Comparative Example 1)
An epoxy resin composition was prepared in the same manner as in Example 2 except that the content ratio of MY0600 and EPC830 was changed to MY0600 / EPC830 = 0/100 and BAFL as the component (B) was changed to CAF. As a result of measuring the gelation time and the vitrification time, the gelation time was 350 minutes, the vitrification time was 360 minutes, the gelation time when heated at 120 ° C. was X minutes, and the vitrification time when heated at 180 ° C. When Y is Y, Y> 0.72X + 9, and storage stability and high-speed curability were not satisfied. In addition, as described above, a cured resin plate and a fiber-reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 162 ° C. and 0 ° tensile strength was 2700 MPa, and heat resistance and tensile strength were obtained. Both results were not satisfactory.

(比較例2)
MY721とEPC830の含有比率をMY721/EPC830=10/90に変更した以外は実施例1と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が36分、ガラス化時間が39分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY>0.72X+9であり、貯蔵安定性、高速硬化性共に満足する結果は得られなかった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが184℃、0°引張強度が2750MPaであり、耐熱性は良好であるものの、引張強度については満足する結果は得られなかった。
(Comparative Example 2)
Except having changed the content ratio of MY721 and EPC830 to MY721 / EPC830 = 10/90, the epoxy resin composition was produced by the content ratio described in Table 1 like Example 1, and gelation time and vitrification time measurement were carried out. As a result, the gelation time was 36 minutes, the vitrification time was 39 minutes, the gelation time at 120 ° C. heating was X minutes, and the vitrification time at 180 ° C. heating was Y minutes, Y> 0. It was 72X + 9, and the results satisfying both the storage stability and the high-speed curability were not obtained. Further, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength measurement were performed. As a result, Tg was 184 ° C., 0 ° tensile strength was 2750 MPa, and heat resistance was good. However, satisfactory results were not obtained for the tensile strength.

(比較例3)
成分(B)であるフルオレン型硬化剤の代わりに3,3‘−DASに変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が55分、ガラス化時間が60分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY>0.72X+9であり、貯蔵安定性、高速硬化性共に満足する結果は得られなかった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが183℃、0°引張強度が2800MPaであり、耐熱性は良好であるものの、引張強度については満足する結果は得られなかった。
(Comparative Example 3)
An epoxy resin composition was prepared at the content ratio described in Table 1 in the same manner as in Example 2 except that the component (B) was changed to 3,3′-DAS instead of the fluorene-type curing agent, and the gelation time, As a result of measuring the vitrification time, the gelation time is 55 minutes, the vitrification time is 60 minutes, the gelation time at 120 ° C. heating is X minutes, and the vitrification time at 180 ° C. heating is Y minutes And Y> 0.72X + 9, and satisfactory results were not obtained in both storage stability and high-speed curability. Further, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg, 0 ° tensile strength measurement was performed. As a result, Tg was 183 ° C., 0 ° tensile strength was 2800 MPa, and heat resistance was good. However, satisfactory results were not obtained for the tensile strength.

(比較例4)
成分(B)であるフルオレン型硬化剤の代わりにjERキュアWに変更した以外は実施例2と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が0.5分、ガラス化時間が12分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY>0.72X+9であり、貯蔵安定性、高速硬化性共に満足する結果は得られなかった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが185℃、0°引張強度が2850MPaであり、耐熱性は良好であるものの、引張強度については満足する結果は得られなかった。
(Comparative Example 4)
Except having changed into jER cure W instead of the fluorene type hardening | curing agent which is a component (B), an epoxy resin composition is produced by the content ratio described in Table 1 similarly to Example 2, and gelatinization time and vitrification time are produced. As a result of the measurement, when the gelation time is 0.5 minutes, the vitrification time is 12 minutes, the gelation time at 120 ° C. heating is X minutes, and the vitrification time at 180 ° C. heating is Y minutes. Y> 0.72X + 9, and satisfactory results for both storage stability and high-speed curability were not obtained. In addition, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength measurement were performed. As a result, Tg was 185 ° C., 0 ° tensile strength was 2850 MPa, and heat resistance was good. However, satisfactory results were not obtained for the tensile strength.

(比較例5)
EPC830とMY816の含有比率をEPC830/MY816=70/30に、H/E=1.3に変更した以外は実施例7と同様に表1に記載した含有比でエポキシ樹脂組成物を作製し、ゲル化時間、ガラス化時間測定を行った結果、ゲル化時間が330分、ガラス化時間が330分と、120℃加熱時のゲル化時間をX分、180℃加熱時のガラス化時間をY分としたときにY>0.72X+9であり、貯蔵安定性、高速硬化性共に満足する結果は得られなかった。また、前記したようにして樹脂硬化板および繊維強化複合材料を作製し、Tg、0°引張強度測定を行った結果、Tgが170℃、0°引張強度が2650MPaであり、耐熱性および引張強度共に満足する結果は得られなかった。
(Comparative Example 5)
An epoxy resin composition was prepared at the content ratio described in Table 1 in the same manner as in Example 7 except that the content ratio of EPC830 and MY816 was changed to EPC830 / MY816 = 70/30 and H / E = 1.3, As a result of measuring the gelation time and the vitrification time, the gelation time is 330 minutes, the vitrification time is 330 minutes, the gelation time when heated at 120 ° C. is X minutes, and the vitrification time when heated at 180 ° C. is Y As a result, Y> 0.72X + 9, and satisfactory results for both storage stability and high-speed curability were not obtained. Moreover, as described above, a cured resin plate and a fiber reinforced composite material were prepared, and Tg and 0 ° tensile strength were measured. As a result, Tg was 170 ° C. and 0 ° tensile strength was 2650 MPa, and heat resistance and tensile strength were obtained. Both results were not satisfactory.

以上のように、本発明の繊維強化複合材料用エポキシ樹脂組成物は貯蔵安定性、高速硬化性に優れており、プリプレグ法等により高性能な繊維強化複合材料を生産性良く短時間で得られる。また、本発明の繊維強化複合材料用エポキシ樹脂組成物は大きな形状の繊維強化複合材料の成形にも優れており、特に航空機、自動車部材への適用に好適である。   As described above, the epoxy resin composition for fiber-reinforced composite materials of the present invention is excellent in storage stability and high-speed curability, and a high-performance fiber-reinforced composite material can be obtained in a short time with high productivity by a prepreg method or the like. . Moreover, the epoxy resin composition for fiber-reinforced composite materials of the present invention is excellent in molding large-sized fiber-reinforced composite materials, and is particularly suitable for application to aircraft and automobile members.

Figure 2016147926
Figure 2016147926

本発明の繊維強化複合材料用エポキシ樹脂組成物は、貯蔵安定性および高速硬化性に優れるため、プリプレグ法等によって高耐熱かつ高強度な繊維強化複合材料を高い生産性で提供可能となる。これにより、特に航空機、自動車用途への繊維強化複合材料の適用が進み、更なる軽量化による燃費向上、地球温暖化ガス排出削減への貢献が期待できる。
Since the epoxy resin composition for fiber-reinforced composite material of the present invention is excellent in storage stability and high-speed curability, it becomes possible to provide a highly heat-resistant and high-strength fiber-reinforced composite material with high productivity by a prepreg method or the like. As a result, the application of fiber reinforced composite materials for aircraft and automobile applications will progress, and further contributions to improving fuel economy and reducing greenhouse gas emissions due to further weight reduction can be expected.

Claims (11)

次の(A)、(B)の成分を含むエポキシ樹脂組成物であって、エポキシ樹脂組成物中のエポキシ樹脂成分の全体質量に対して、成分(A)を20質量%以上含む繊維強化複合材料用エポキシ樹脂組成物。
(A)グリシジルアミン型エポキシ樹脂
(B)フルオレン型硬化剤
An epoxy resin composition comprising the following components (A) and (B), the fiber reinforced composite comprising 20% by mass or more of component (A) with respect to the total mass of the epoxy resin component in the epoxy resin composition: Epoxy resin composition for materials.
(A) Glycidylamine type epoxy resin (B) Fluorene type curing agent
成分(B)が、9,9−ビス(アミノフェニル)フルオレン骨格を有するフルオレン型硬化剤である、請求項1に記載の繊維強化複合材料用エポキシ樹脂組成物。   The epoxy resin composition for fiber-reinforced composite materials according to claim 1, wherein the component (B) is a fluorene type curing agent having a 9,9-bis (aminophenyl) fluorene skeleton. エポキシ樹脂組成物中の硬化剤として、成分(B)以外の芳香族アミン硬化剤をさらに含み、エポキシ樹脂組成物中の硬化剤の全活性水素数に対する成分(B)由来の活性水素数の割合が20%以上80%以下である、請求項1または2に記載の繊維強化複合材料用エポキシ樹脂組成物。   As a curing agent in the epoxy resin composition, an aromatic amine curing agent other than the component (B) is further included, and the ratio of the active hydrogen number derived from the component (B) to the total active hydrogen number of the curing agent in the epoxy resin composition The epoxy resin composition for fiber-reinforced composite materials according to claim 1 or 2, wherein is 20% or more and 80% or less. 前記芳香族アミン硬化剤が液状である、請求項3に記載の繊維強化複合材料用エポキシ樹脂組成物。   The epoxy resin composition for fiber-reinforced composite materials according to claim 3, wherein the aromatic amine curing agent is liquid. 成分(A)が、3官能以上のグリシジルアミン型エポキシ樹脂である、請求項1〜4のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。   The epoxy resin composition for fiber-reinforced composite materials according to any one of claims 1 to 4, wherein the component (A) is a tri- or higher functional glycidylamine type epoxy resin. 3官能以上のグリシジルアミン型エポキシ樹脂が、N,N,N’,N’−テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、またはこれらの誘導体もしくは異性体から選ばれる少なくとも1種である、請求項5に記載の繊維強化複合材料用エポキシ樹脂組成物。   6. The tri- or higher functional glycidylamine type epoxy resin is at least one selected from N, N, N ′, N′-tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, or derivatives or isomers thereof. The epoxy resin composition for fiber-reinforced composite materials described in 1. トリグリシジルアミノフェノール、またはその誘導体もしくは異性体が、N,N,O−トリグリシジル−p−アミノフェノール、N,N,O−トリグリシジル−m−アミノフェノール、またはこれらの誘導体もしくは異性体である、請求項6に記載の繊維強化複合材料用エポキシ樹脂組成物。   Triglycidylaminophenol, or a derivative or isomer thereof, is N, N, O-triglycidyl-p-aminophenol, N, N, O-triglycidyl-m-aminophenol, or a derivative or isomer thereof. The epoxy resin composition for fiber-reinforced composite materials according to claim 6. エポキシ樹脂成分として、ビスフェノール型エポキシ樹脂をさらに含み、エポキシ樹脂組成物中のエポキシ樹脂成分の全体質量に対して、成分(A)を20質量%以上80質量%以下含む、請求項1〜7のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物。   The epoxy resin component further includes a bisphenol type epoxy resin, and the component (A) is included in an amount of 20% by mass to 80% by mass with respect to the total mass of the epoxy resin component in the epoxy resin composition. The epoxy resin composition for fiber-reinforced composite materials according to any one of the above. 請求項1〜8のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物を硬化してなる、エポキシ樹脂硬化物。   The epoxy resin hardened | cured material formed by hardening | curing the epoxy resin composition for fiber reinforced composite materials in any one of Claims 1-8. 請求項1〜8のいずれかに記載の繊維強化複合材料用エポキシ樹脂組成物と強化繊維を組み合わせて、硬化してなる、繊維強化複合材料。   A fiber-reinforced composite material obtained by combining the epoxy resin composition for fiber-reinforced composite material according to any one of claims 1 to 8 and a reinforcing fiber and curing the combination. 強化繊維が炭素繊維である、請求項10に記載の繊維強化複合材料。
The fiber-reinforced composite material according to claim 10, wherein the reinforcing fibers are carbon fibers.
JP2015023911A 2015-02-10 2015-02-10 Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material Pending JP2016147926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023911A JP2016147926A (en) 2015-02-10 2015-02-10 Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023911A JP2016147926A (en) 2015-02-10 2015-02-10 Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2016147926A true JP2016147926A (en) 2016-08-18

Family

ID=56691108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023911A Pending JP2016147926A (en) 2015-02-10 2015-02-10 Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2016147926A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141143A (en) * 2017-02-27 2018-09-13 株式会社Adeka Resin composition for fiber-reinforced plastic, and cured product thereof, and fiber-reinforced plastic containing the cured product
WO2020040200A1 (en) * 2018-08-22 2020-02-27 東レ株式会社 Prepreg
CN114651025A (en) * 2019-11-14 2022-06-21 Dic株式会社 Curable composition, cured product, fiber-reinforced composite material, molded article, and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141143A (en) * 2017-02-27 2018-09-13 株式会社Adeka Resin composition for fiber-reinforced plastic, and cured product thereof, and fiber-reinforced plastic containing the cured product
JP7082496B2 (en) 2017-02-27 2022-06-08 株式会社Adeka A resin composition for fiber reinforced plastics, a cured product thereof, and a fiber reinforced plastic containing the cured product.
WO2020040200A1 (en) * 2018-08-22 2020-02-27 東レ株式会社 Prepreg
CN114651025A (en) * 2019-11-14 2022-06-21 Dic株式会社 Curable composition, cured product, fiber-reinforced composite material, molded article, and method for producing same
CN114651025B (en) * 2019-11-14 2024-06-04 Dic株式会社 Curable composition, cured product, fiber-reinforced composite material, molded article, and method for producing same

Similar Documents

Publication Publication Date Title
JP6617559B2 (en) Two-component epoxy resin composition for fiber reinforced composite material and fiber reinforced composite material
CA2865512C (en) Curable epoxy composition and short -cure method
RU2574054C2 (en) Epoxy resin-based curable compositions and composite materials obtained therefrom
JP4972851B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP5403184B1 (en) Fiber reinforced composite material
KR20200125579A (en) Thermosetting resin composition, prepreg and fiber reinforced composite material
WO2018216643A1 (en) Epoxy resin composition for fiber-reinforced composite materials, and fiber-reinforced composite material
JP2016147926A (en) Epoxy resin composition for fiber-reinforced composite material, epoxy resin cured product, and fiber-reinforced composite material
JP5842395B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2018053065A (en) Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material
JP2016138205A (en) Prepreg and fiber-reinforced composite material
US11111333B2 (en) Resin compositions and resin infusion process
JP2018135496A (en) Two-liquid type epoxy resin composition for fiber-reinforced composite material, and fiber-reinforced composite material
JPWO2018159574A1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2019167443A (en) Epoxy resin composition and prepreg for fiber-reinforced composite material
JP6421897B1 (en) Epoxy resin composition, prepreg, fiber reinforced composite material and method for producing the same
JP2023149614A (en) Epoxy resin composition, fiber-reinforced composite material, and molding
WO2021095627A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2023004897A (en) Prepreg, epoxy resin composition, and method for producing prepreg
WO2023176935A1 (en) Epoxy resin composition for resin transfer molding, cured resin product, fiber-reinforced composite material, and method for manufacturing same
JP2005120127A (en) Epoxy resin composition for fiber-reinforced composite material, fiber-reinforced composite material and method for producing the same
EP3880652A2 (en) Curable resin composition and fiber reinforced resin matrix composite material
WO2011087477A1 (en) Substantially solvent-free epoxy formulations