JP2016145785A - Reactor core internal structure assembly adjustment device and assembly method - Google Patents

Reactor core internal structure assembly adjustment device and assembly method Download PDF

Info

Publication number
JP2016145785A
JP2016145785A JP2015023674A JP2015023674A JP2016145785A JP 2016145785 A JP2016145785 A JP 2016145785A JP 2015023674 A JP2015023674 A JP 2015023674A JP 2015023674 A JP2015023674 A JP 2015023674A JP 2016145785 A JP2016145785 A JP 2016145785A
Authority
JP
Japan
Prior art keywords
lower core
core support
plate
support plate
reactor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023674A
Other languages
Japanese (ja)
Other versions
JP6522975B2 (en
Inventor
伸一 石原
Shinichi Ishihara
伸一 石原
和昭 矢野
Kazuaki Yano
和昭 矢野
正彦 片平
Masahiko Katahira
正彦 片平
年紀 北野
Toshiki Kitano
年紀 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2015023674A priority Critical patent/JP6522975B2/en
Publication of JP2016145785A publication Critical patent/JP2016145785A/en
Application granted granted Critical
Publication of JP6522975B2 publication Critical patent/JP6522975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily perform height adjustment of lower part reactor core support columns.SOLUTION: The assembly adjustment device for a reactor core internal structure, which comprises a lower part reactor core plate with an outer edge attached to a ring-formed fixing member 141 secured to an inner wall of a reactor core tank 127, a lower part reactor core support plate 124 secured at a bottom end of the reactor core tank 127, and a plurality of lower part reactor core support columns 129 that are provided between the lower part reactor core plate and the lower part reactor core support plate 124 and support the lower part reactor core plate, is provided with: a swivel base 181 attached at a center of the lower part reactor core support plate 124 so as to be rotatable around a vertical axis; a beam member 182 having a base end attached to the swivel base 181 and a top end supported by the fixing member 141 via a roller 182A such that the beam member is horizontally bridged and rotationally moves with a rotation of the swivel base 181; and a measurement device 183 that measures dimensions of an upper end surface of the lower part reactor core support columns 129 provided so as to stand on the lower part reactor core support plate 124, and a bottom surface of the beam member 182.SELECTED DRAWING: Figure 3

Description

本発明は、加圧水型原子炉の炉内構造物の組立方法および組立調整装置に関するものである。   The present invention relates to a method for assembling an internal structure of a pressurized water reactor and an assembling adjustment apparatus.

従来、例えば、特許文献1に示すように、加圧水型原子炉(PWR:Pressurized Water Reactor)は、圧力容器を形成する原子炉容器の内部に、炉内構造物(内部構造)が配置される。炉内構造物は、下部炉心構造物と上部炉心構造物とを有する。下部炉心構造物は、原子炉容器の上部開口の部分から垂下支持される炉心槽の内部下方に下部炉心板が設けられ下端に下部炉心支持板が設けられている。下部炉心板は、燃料(燃料集合体)を複数支持する。下部炉心支持板は、下部炉心板を支持すると共に、燃料集合体に対して中性子束検出器が装着されたシンブルチューブの挿抜を案内する炉内計装案内管を支持する。一方、上部炉心構造物は、上部炉心支持板の下方に炉心支持ロッドを介して上部炉心板が支持されている。この上部炉心構造物は、下部炉心構造物の内部に上方から挿入され、上部炉心支持板が炉心槽の上端に対して位置決め固定されると共に、上部炉心板が炉心槽の内部に位置決め支持される。上部炉心支持板は、燃料集合体に制御棒を挿抜する制御棒クラスタ案内管が複数固定される。上部炉心板は、燃料集合体の上部を押さえる。   Conventionally, for example, as shown in Patent Document 1, in a pressurized water reactor (PWR: Pressurized Water Reactor), an in-reactor structure (internal structure) is arranged inside a reactor vessel forming a pressure vessel. The in-core structure has a lower core structure and an upper core structure. In the lower core structure, a lower core plate is provided in the lower part of the core tank supported from the upper opening of the reactor vessel, and a lower core support plate is provided at the lower end. The lower core plate supports a plurality of fuels (fuel assemblies). The lower core support plate supports the lower core plate and also supports an in-core instrumentation guide tube that guides insertion / extraction of a thimble tube with a neutron flux detector attached to the fuel assembly. On the other hand, in the upper core structure, the upper core plate is supported below the upper core support plate via a core support rod. The upper core structure is inserted into the lower core structure from above, the upper core support plate is positioned and fixed with respect to the upper end of the core tank, and the upper core plate is positioned and supported inside the core tank. . The upper core support plate is fixed with a plurality of control rod cluster guide tubes through which the control rods are inserted into and extracted from the fuel assembly. The upper core plate holds the upper part of the fuel assembly.

特開平10−111379号公報JP-A-10-111379

ところで、上述した加圧水型原子炉は、十分な安全性や信頼性を確保するために各種の構造物などを定期的に検査し、必要に応じて必要箇所を補修したり、炉内構造物を取り替えたりする。炉内構造物を取り替える場合、新たな下部炉心板は、燃料集合体を支持するものであり、炉心槽に対して水平度を精度良く保った状態で取り付ける必要がある。この下部炉心板は、下部炉心支持板との間に立設された複数の下部炉心支持柱を介して支持される。従って、下部炉心板を炉心槽に取り付ける場合、下部炉心支持板が水平となるように調整する必要がある。   By the way, the pressurized water reactor described above periodically inspects various structures in order to ensure sufficient safety and reliability, and repairs necessary parts as necessary, Or replace it. When replacing the in-core structure, the new lower core plate supports the fuel assembly and needs to be attached to the core tank in a state in which the level is kept accurately. The lower core plate is supported via a plurality of lower core support columns provided between the lower core support plate and the lower core support plate. Therefore, when the lower core plate is attached to the core tank, it is necessary to adjust the lower core support plate to be horizontal.

一般に、下部炉心支持柱の高さを調整する場合、下部炉心板の外周縁を取り付けるために炉心槽の内壁に固定されている扇形板とよばれる固定部材に対し、ストレッチと呼ばれる剛構造の梁材を掛け渡し、このストレッチの上面に水準器を載置して、ストレッチを水平にするべく、ストレッチに載置した水準器が水平をあらわすように各下部炉心支持柱の上端をストレッチの下面に当接させて各下部炉心支持柱の高さを調整する。   Generally, when adjusting the height of the lower core support column, a rigid structure beam called a stretch is used against a fixed member called a fan-shaped plate that is fixed to the inner wall of the core tank in order to attach the outer periphery of the lower core plate. In order to level the stretch by placing a level on the upper surface of this stretch and leveling the stretch, the upper end of each lower core support column is placed on the lower surface of the stretch. The height of each lower core support column is adjusted by contact.

しかし、このような下部炉心支持柱の高さ調整において、水準器を最終的な水平度の計測に用いているが、水準器は気泡の安定に時間がかかるため必要以上に作業時間がかかることになる。しかも、ストレッチを水平にするには、ストレッチの下側にある多数の下部炉心支持柱のうちの複数を併せて調整するため作業性が悪い。しかも、ストレッチは、その下側にある各下部炉心支持柱を調整した後に、他の下部炉心支持柱に対応して移動させるため作業工数が多く、かつストレッチが剛構造であるためクレーンによりハンドリングしなければないためストレッチを炉心槽の内壁に衝突させないように注意を払わなければならず作業時間がかかる。しかも、ストレッチは、各下部炉心支持柱の上端が当接した状態で水平とされており固定部材の上面から離れるようになるため、各下部炉心支持柱の上端と固定部材の上面との高さを揃えることが難しい。   However, in such adjustment of the height of the lower core support column, a level is used for the final level measurement. However, the level takes more time than necessary because it takes time to stabilize the bubbles. become. Moreover, in order to make the stretch horizontal, workability is poor because a plurality of lower core support pillars on the lower side of the stretch are adjusted together. In addition, the stretch is handled by a crane because the lower core support pillars underneath it are adjusted and then moved in response to the other lower core support pillars, and the stretch is a rigid structure. Therefore, care must be taken not to allow the stretch to collide with the inner wall of the reactor core, which takes time. In addition, since the stretch is horizontal with the upper ends of the lower core support columns in contact with each other and is away from the upper surface of the fixing member, the height between the upper ends of the lower core support columns and the upper surface of the fixing member It is difficult to align.

本発明は、上述した課題を解決するものであり、下部炉心支持柱の高さ調整を容易かつ正確に行うことのできる炉内構造物の組立調整装置および組立方法を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide an assembly adjustment device and an assembly method for an in-core structure capable of easily and accurately adjusting the height of a lower core support column. .

上述の目的を達成するために、本発明の炉内構造物の組立調整装置は、炉心槽の内壁に固定されたリング状の固定部材に対して下部炉心板が外縁を取り付けられると共に前記炉心槽の下端に下部炉心支持板が固定され、前記下部炉心板と前記下部炉心支持板との間に前記下部炉心板を支持する下部炉心支持柱が複数設けられる炉内構造物の組立調整装置において、前記下部炉心支持板の中央に取り付けられて鉛直軸を中心に回転可能に設けられる旋回台と、前記旋回台に基端が取り付けられ前記固定部材に先端がローラを介して支持されて水平を保って掛け渡されて前記旋回台の回転に伴って回転移動する梁材と、前記下部炉心支持板に立設される前記下部炉心支持柱の上端面と前記梁材の下面との寸法を計測する計測器と、を備えることを特徴とする。   In order to achieve the above-described object, an assembly adjustment device for an in-core structure according to the present invention includes a lower core plate having an outer edge attached to a ring-shaped fixing member fixed to an inner wall of the core tank, and the core tank. A lower core support plate is fixed to the lower end of the lower core plate, and an assembly adjustment apparatus for an in-core structure in which a plurality of lower core support columns for supporting the lower core plate are provided between the lower core plate and the lower core support plate. A swivel mounted at the center of the lower core support plate and provided so as to be rotatable about a vertical axis, and a base end is mounted on the swivel and the distal end is supported on the fixing member via a roller to maintain the level. Measure the dimensions of the beam material that is stretched over and rotated with the rotation of the swivel base, and the upper end surface of the lower core support column that is erected on the lower core support plate and the lower surface of the beam material. And having a measuring instrument And butterflies.

上述の目的を達成するために、本発明の炉内構造物の組立方法は、炉心槽の内壁に固定されたリング状の固定部材に対して下部炉心板が外縁を取り付けられると共に前記炉心槽の下端に下部炉心支持板が固定され、前記下部炉心板と前記下部炉心支持板との間に前記下部炉心板を支持する下部炉心支持柱が複数設けられる炉内構造物の組立方法において、前記下部炉心支持板の中央に取り付けられて鉛直軸を中心に回転可能に設けられる旋回台と、前記旋回台に基端が取り付けられ前記固定部材に先端がローラを介して支持されて水平を保って掛け渡されて前記旋回台の回転に伴って回転移動する梁材と、前記下部炉心支持板に立設される前記下部炉心支持柱の上端面と前記梁材の下面との寸法を計測する計測器と、を備える組立調整装置を用い、前記炉心槽の下端に前記下部炉心支持板を取り付け、かつ前記下部炉心支持板に各前記下部炉心支持柱を取り付けて、前記固定部材の水平度を保った状態で、前記旋回台を介して前記梁材を回転移動させ、前記梁材の下方にある前記下部炉心支持柱の上端面と前記梁材の下面との寸法を前記計測器により計測して、前記固定部材の上面と前記梁材の下面との寸法に合わせるように前記下部炉心支持板への前記下部炉心支持柱の取り付け高さを調整し、高さが調整された全ての前記下部炉心支持柱に前記下部炉心板を取り付けることを特徴とする。   In order to achieve the above-described object, the method for assembling a reactor internal structure according to the present invention includes a lower core plate having an outer edge attached to a ring-shaped fixing member fixed to an inner wall of the core tank, In the method of assembling a reactor internal structure, a lower core support plate is fixed to a lower end, and a plurality of lower core support pillars for supporting the lower core plate are provided between the lower core plate and the lower core support plate. A swivel mounted at the center of the core support plate and provided to be rotatable around a vertical axis, and a base end is mounted on the swivel and the tip is supported on the fixed member via a roller so as to be kept horizontal. A measuring instrument that measures the dimensions of the beam material passed and rotated as the swivel rotates, and the upper end surface of the lower core support column and the lower surface of the beam material that are erected on the lower core support plate An assembly adjustment device comprising: The lower core support plate is attached to the lower end of the core tank, and the lower core support pillars are attached to the lower core support plate, and the level of the fixing member is maintained. The beam member is rotated and the dimensions of the upper end surface of the lower core support column below the beam member and the lower surface of the beam member are measured by the measuring instrument, and the upper surface of the fixing member and the beam are measured. The height of the lower core support column attached to the lower core support plate is adjusted so as to match the size of the lower surface of the material, and the lower core plate is attached to all the lower core support columns adjusted in height. It is characterized by that.

本発明によれば、下部炉心支持柱の高さ確認は、下部炉心支持柱の上端面と梁材の下面との寸法を計測する計測器を用い、水準器を用いないため、確認作業時間を短縮することができる。しかも、下部炉心支持柱ごとに高さ確認および調整を行うため作業性が良く正確である。しかも、高さ確認に用いる梁材を回転移動させるため、クレーンを用いることなく作業工数を低減することができる。しかも、梁材の先端がローラを介して固定部材の上面に載置されているため、固定部材の上面と梁材の下面との寸法を基準として下部炉心支持柱の上端面と梁材の下面との寸法を合わせることで、各下部炉心支持柱の上端と固定部材の上面との高さを容易に揃えることができ、作業性を向上できる。従って、本発明によれば、下部炉心支持柱の高さ調整を容易かつ正確に行うことができる。   According to the present invention, the height confirmation of the lower core support column uses a measuring instrument that measures the dimensions of the upper end surface of the lower core support column and the lower surface of the beam material, and does not use a level. It can be shortened. Moreover, since the height is confirmed and adjusted for each lower core support column, the workability is good and accurate. Moreover, since the beam material used for height confirmation is rotationally moved, the number of work steps can be reduced without using a crane. Moreover, since the tip of the beam member is placed on the upper surface of the fixing member via a roller, the upper end surface of the lower core support column and the lower surface of the beam member are based on the dimensions of the upper surface of the fixing member and the lower surface of the beam member. By matching these dimensions, the heights of the upper ends of the lower core support columns and the upper surfaces of the fixing members can be easily aligned, and workability can be improved. Therefore, according to the present invention, the height of the lower core support pillar can be adjusted easily and accurately.

図1は、加圧水型原子炉の縦断面図である。FIG. 1 is a longitudinal sectional view of a pressurized water reactor. 図2は、本発明の実施形態に係る炉内構造物の組立方法の工程図である。FIG. 2 is a process diagram of the method for assembling the in-furnace structure according to the embodiment of the present invention. 図3は、本発明の実施形態に係る炉内構造物の組立方法の工程図である。FIG. 3 is a process diagram of the method for assembling the in-furnace structure according to the embodiment of the present invention.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

原子力発電プラントは、図示しないが、原子炉格納容器内に配置される原子炉および蒸気発生器と、蒸気タービン発電設備とを有している。本実施形態の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水型原子炉(PWR:Pressurized Water Reactor)である。   Although not shown, the nuclear power plant has a nuclear reactor and a steam generator arranged in a reactor containment vessel, and a steam turbine power generation facility. The nuclear reactor of the present embodiment uses light water as a reactor coolant and a neutron moderator, and produces high-temperature and high-pressure water that does not boil over the entire core, and sends this high-temperature and high-pressure water to a steam generator to generate steam by heat exchange. This is a pressurized water reactor (PWR) that generates electricity by sending this steam to a turbine generator.

原子炉は、燃料の核分裂により一次冷却水を加熱し、蒸気発生器は、この高温高圧の一次冷却水と二次冷却水との間で熱交換し、高圧の蒸気を生成する。蒸気タービン発電設備は、この蒸気により蒸気タービンを駆動することで発電を行う。一方、蒸気タービンを駆動した蒸気は、復水器で冷却されて復水となり、蒸気発生器に戻される。   The nuclear reactor heats the primary cooling water by fuel fission, and the steam generator exchanges heat between the high-temperature and high-pressure primary cooling water and the secondary cooling water to generate high-pressure steam. The steam turbine power generation facility generates power by driving the steam turbine with the steam. On the other hand, the steam that has driven the steam turbine is cooled by a condenser to become condensate, and is returned to the steam generator.

図1は、加圧水型原子炉の縦断面図である。上述した原子力発電プラントの加圧水型原子炉において、図1に示すように、原子炉容器101は、圧力容器であって、その内部に燃料集合体120を含む炉内構造物が収容できるように、原子炉容器本体101aに対して原子炉容器蓋101bが複数のスタッドボルト121およびナット122により固定されている。原子炉容器本体101aは、原子炉容器蓋101bを取り外すことで上部が開口可能であり、下部が半球形状をなす下鏡101eにより閉塞された円筒形状をなす。   FIG. 1 is a longitudinal sectional view of a pressurized water reactor. In the pressurized water reactor of the nuclear power plant described above, as shown in FIG. 1, the reactor vessel 101 is a pressure vessel, and the reactor internal structure including the fuel assembly 120 can be accommodated therein. A reactor vessel lid 101b is fixed to the reactor vessel main body 101a by a plurality of stud bolts 121 and nuts 122. The reactor vessel main body 101a has a cylindrical shape in which an upper portion can be opened by removing the reactor vessel lid 101b and a lower portion is closed by a lower mirror 101e having a hemispherical shape.

炉内構造物について、原子炉容器本体101aの入口側管台101cおよび出口側管台101dより上方に上部炉心支持板123が配置され、下方の下鏡101eの近傍に下部炉心支持板124が配置される。上部炉心支持板123および下部炉心支持板124は、円板形状で図示しない多数の連通孔が形成されている。そして、上部炉心支持板123は、複数の炉心支持ロッド125を介して下方に上部炉心板126が連結されている。上部炉心板126は、図示しない多数の連通孔が形成されている。なお、上部炉心支持板123、および上部炉心支持板123に対して炉心支持ロッド125を介して上部炉心板126が連結された構造物を上部炉心構造物という。   For the reactor internal structure, an upper core support plate 123 is disposed above the inlet side nozzle 101c and the outlet side nozzle 101d of the reactor vessel main body 101a, and a lower core support plate 124 is disposed near the lower mirror 101e below. Is done. The upper core support plate 123 and the lower core support plate 124 are disk-shaped and have many communication holes (not shown). The upper core support plate 123 is connected to the upper core plate 126 downward via a plurality of core support rods 125. The upper core plate 126 has a large number of communication holes (not shown). The upper core support plate 123 and a structure in which the upper core plate 126 is connected to the upper core support plate 123 via the core support rod 125 are referred to as an upper core structure.

また、炉内構造物について、原子炉容器本体101aの内部に、その内壁面と所定の隙間をおいて円筒形状の炉心槽127が配置される。炉心槽127は、下端に下部炉心支持板124が固定される。また、炉心槽127は、その内部下方に下部炉心板128が設けられる。下部炉心板128は、円板形状で図示しない多数の連通孔が形成されており、複数の下部炉心支持柱129を介して下部炉心支持板124に支持される。なお、炉心槽127、および炉心槽127に対して設けられる下部炉心板128、並びに下部炉心支持板124を下部炉心構造物という。そして、この下部炉心構造物の炉心槽127は、上方から上部炉心構造物が挿入され、上端に上部炉心板126が連結される。下部炉心構造物の下部炉心支持板124は、原子炉容器本体101aに固定される。即ち、下部炉心構造物および上部炉心構造物は、下部炉心支持板124を介して原子炉容器本体101aに支持されることとなる。   Further, for the reactor internal structure, a cylindrical reactor core 127 is disposed inside the reactor vessel main body 101a with a predetermined gap from the inner wall surface. The lower core support plate 124 is fixed to the lower end of the core tank 127. Further, the core tank 127 is provided with a lower core plate 128 below the inside thereof. The lower core plate 128 is disk-shaped and has a large number of communication holes (not shown), and is supported by the lower core support plate 124 via a plurality of lower core support columns 129. The core core 127, the lower core plate 128 provided for the core tank 127, and the lower core support plate 124 are referred to as a lower core structure. In the core tank 127 of the lower core structure, the upper core structure is inserted from above, and the upper core plate 126 is connected to the upper end. The lower core support plate 124 of the lower core structure is fixed to the reactor vessel main body 101a. That is, the lower core structure and the upper core structure are supported by the reactor vessel main body 101a via the lower core support plate 124.

また、炉内構造物について、上部炉心板126と炉心槽127と下部炉心板128とにより炉心130が形成される。炉心130は、多数の燃料集合体120が炉心槽127の内部に配置され、かつ下部炉心板128上に装荷される。また、炉心130は、内部に多数の制御棒135が配置される。この多数の制御棒135は、上端部がまとめられて制御棒クラスタ136となり、燃料集合体120内に挿入可能に設けられる。上部炉心支持板123は、多数の制御棒クラスタ案内管137が貫通して固定される。   Further, a core 130 is formed by the upper core plate 126, the core tank 127, and the lower core plate 128 of the internal structure. In the core 130, a large number of fuel assemblies 120 are disposed inside the core tank 127 and loaded on the lower core plate 128. The core 130 has a large number of control rods 135 disposed therein. A large number of control rods 135 are combined at the upper end portion to form a control rod cluster 136 that can be inserted into the fuel assembly 120. The upper core support plate 123 is fixed with a large number of control rod cluster guide tubes 137 passing therethrough.

原子炉容器101を構成する原子炉容器蓋101bには、磁気式ジャッキの制御棒駆動装置138が設けられる。制御棒駆動装置138は、原子炉容器蓋101bと一体をなすハウジング139内に収容される。そして、制御棒駆動装置138から下方に延出された制御棒クラスタ駆動軸140が、制御棒クラスタ案内管137内を通って燃料集合体120まで延出され、制御棒クラスタ136を把持可能に設けられる。   The reactor vessel lid 101 b constituting the reactor vessel 101 is provided with a magnetic jack control rod drive device 138. The control rod driving device 138 is housed in a housing 139 that is integral with the reactor vessel lid 101b. The control rod cluster drive shaft 140 extending downward from the control rod drive device 138 extends through the control rod cluster guide tube 137 to the fuel assembly 120 so that the control rod cluster 136 can be gripped. It is done.

また、原子炉容器101は、上述した構成により、炉心130に対して、炉心槽127の内部であって、上部炉心板126の上方域に出口側管台101dに連通する上部プレナム142が形成される一方、炉心槽127の外部であって、下部炉心支持板124の下方域に下部プレナム143が形成される。そして、原子炉容器101の内壁と炉心槽127との間に入口側管台101cおよび下部プレナム143に連通するダウンカマー部144が形成される。   Further, in the reactor vessel 101, the upper plenum 142 communicating with the outlet side nozzle 101 d is formed in the reactor core 127 and in the upper region of the upper core plate 126 with respect to the core 130 with the above-described configuration. On the other hand, a lower plenum 143 is formed outside the core tank 127 and below the lower core support plate 124. A downcomer portion 144 that communicates with the inlet side nozzle 101 c and the lower plenum 143 is formed between the inner wall of the reactor vessel 101 and the core tank 127.

なお、原子炉容器本体101aは、下鏡101eを貫通する多数の計装管台145が設けられる。各計装管台145は、炉内側の上端部に炉内計装案内管146が連結される一方、炉外側の下端部にコンジットチューブ147が連結される。各炉内計装案内管146は、上端部が下部炉心支持板124に連結される。そして、中性子束を計測可能な中性子束検出器(図示せず)が装着されたシンブルチューブ148が、コンジットチューブ147から計装管台145および炉内計装案内管146を通り、下部炉心板128を貫通して燃料集合体120まで挿入可能となる。また、各炉内計装案内管146は、振動を抑制するための上下の連接板150,151が取り付けられる。連接板150,151は、支持柱152を介して下部炉心支持板124に連結される。また、連接板150,151は、ショックアブソーバ153により支持される。ショックアブソーバ153は、下鏡101eの最も底に固定される底板154と下側の連接板151との間に配置される。   The reactor vessel main body 101a is provided with a number of instrumentation nozzles 145 that penetrate the lower mirror 101e. In each instrumentation nozzle 145, an in-core instrumentation guide tube 146 is connected to the upper end portion inside the furnace, and a conduit tube 147 is connected to the lower end portion outside the furnace. Each in-core instrumentation guide tube 146 has an upper end connected to the lower core support plate 124. Then, a thimble tube 148 equipped with a neutron flux detector (not shown) capable of measuring a neutron flux passes from the conduit tube 147 through the instrumentation nozzle 145 and the in-core instrumentation guide tube 146, and passes through the lower core plate 128. And the fuel assembly 120 can be inserted. Each in-core instrumentation guide tube 146 is provided with upper and lower connecting plates 150 and 151 for suppressing vibration. The connecting plates 150 and 151 are connected to the lower core support plate 124 through support columns 152. In addition, the connecting plates 150 and 151 are supported by a shock absorber 153. The shock absorber 153 is disposed between the bottom plate 154 fixed to the bottom of the lower mirror 101e and the lower connecting plate 151.

図2および図3は、本発明の実施形態に係る炉内構造物の組立方法の工程図である。   2 and 3 are process diagrams of the method for assembling the in-furnace structure according to the embodiment of the present invention.

上述した炉内構造物において、下部炉内構造物は、図2に示すように、円筒形状の炉心槽127の下端に下部炉心支持板124が取り付けられ、この下部炉心支持板124に多数の下部炉心支持柱129が立設して取り付けられる。また、炉心槽127の内壁にリング状の固定部材(扇形板ともいう)141が固定され、この固定部材141に対して下部炉心板128の外縁がボルト(図示せず)により取り付けられる。さらに、下部炉心板128は、各下部炉心支持柱129の上端面にボルト(図示せず)により取り付けられる。   In the above-described reactor internal structure, as shown in FIG. 2, the lower reactor core structure is provided with a lower core support plate 124 attached to the lower end of a cylindrical core tank 127, and a number of lower core support plates 124 are attached to the lower core support plate 124. A core support column 129 is installed upright. In addition, a ring-shaped fixing member (also referred to as a fan-shaped plate) 141 is fixed to the inner wall of the core tank 127, and the outer edge of the lower core plate 128 is attached to the fixing member 141 with bolts (not shown). Further, the lower core plate 128 is attached to the upper end surface of each lower core support column 129 by bolts (not shown).

下部炉心板128は、燃料集合体120を支持するものであり、炉心槽127に対して水平度を精度良く保った状態で取り付ける必要がある。このため、各下部炉心支持柱129の高さが揃っていないと下部炉心板128の水平度が損なわれることになる。従って、下部炉心板128を炉心槽127に取り付ける場合、各下部炉心支持柱129の高さを調整する必要がある。ここで、下部炉心支持柱129は、下部炉心支持板124において上下方向(下部炉心支持板124を水平に配置した場合の鉛直方向)に貫通する雌ネジ孔124aにねじ込まれて取り付けられ、雌ネジ孔124aから支柱本体129aが突出される。下部炉心支持柱129は、支柱本体129aの下側であって、雌ネジ孔124aにねじ込まれる下端部に雄ネジ部129bが形成されている。また、下部炉心支持柱129は、下部炉心支持板124の下面側から雄ネジ部129bにナット129cが螺合され、このナット129cが雌ネジ孔124aの下端の段部に締め付けられることで下部炉心支持板124に固定される。また、下部炉心支持柱129は、ナット129cを緩め、雌ネジ孔124aにねじ込まれる雄ネジ部129bの位置を変えることで支柱本体129aの突出高さが変わる。このようにして、下部炉心支持柱129の高さが調整できる。   The lower core plate 128 supports the fuel assembly 120 and needs to be attached to the core tank 127 in a state where the levelness is kept accurately. For this reason, if the height of each lower core support column 129 is not uniform, the level of the lower core plate 128 is impaired. Therefore, when the lower core plate 128 is attached to the core tank 127, it is necessary to adjust the height of each lower core support column 129. Here, the lower core support column 129 is attached by being screwed into a female screw hole 124a penetrating vertically in the lower core support plate 124 (vertical direction when the lower core support plate 124 is horizontally disposed). The column main body 129a protrudes from the hole 124a. The lower core support column 129 is formed on the lower side of the column main body 129a, and a male screw portion 129b is formed at a lower end portion screwed into the female screw hole 124a. Further, the lower core support column 129 has a nut 129c screwed into the male screw portion 129b from the lower surface side of the lower core support plate 124, and the nut 129c is fastened to a stepped portion at the lower end of the female screw hole 124a. It is fixed to the support plate 124. Further, the lower core support column 129 changes the protruding height of the column main body 129a by loosening the nut 129c and changing the position of the male screw portion 129b screwed into the female screw hole 124a. In this way, the height of the lower core support column 129 can be adjusted.

本実施形態では、下部炉心支持柱129の高さを調整するにあたり、図3に示す組立調整装置180が用いられる。組立調整装置180は、旋回台181と、梁材(ストレッチともいう)182と、計測器183と、を備える。   In the present embodiment, the assembly adjusting device 180 shown in FIG. 3 is used to adjust the height of the lower core support column 129. The assembly adjustment apparatus 180 includes a swivel 181, a beam member (also referred to as a stretch) 182, and a measuring instrument 183.

組立調整装置180の旋回台181は、嵩上台181A、ベアリング受181B、ベアリング181Cを有する。   The swivel base 181 of the assembly adjustment apparatus 180 includes a bulkhead 181A, a bearing receiver 181B, and a bearing 181C.

嵩上台181Aは、下部炉心支持板124の中央の上面に取り付けられるものである。嵩上台181Aは、その下端から棒状の固定幹181Aaが延在している。固定幹181Aaは、その延在端に保持部材181Abが取り付けられる。そして、嵩上台181Aは、下部炉心支持板124の中央の上面に載置され、固定幹181Aaが下部炉心支持板124の中央に形成されたマンホール124bを介して下部炉心支持板124の下面に突出し、この突出部分に保持部材181Abが取り付けられて、嵩上台181Aと保持部材181Abとで下部炉心支持板124を挟むようにして取り付けられる。   The bulkhead 181 </ b> A is attached to the upper surface at the center of the lower core support plate 124. The bulkhead 181A has a rod-shaped fixed trunk 181Aa extending from the lower end thereof. The holding member 181Ab is attached to the extending end of the fixed trunk 181Aa. The bulkhead 181A is placed on the upper surface at the center of the lower core support plate 124, and the fixed trunk 181Aa protrudes from the lower surface of the lower core support plate 124 through a manhole 124b formed at the center of the lower core support plate 124. The holding member 181Ab is attached to the protruding portion, and the lower core support plate 124 is sandwiched between the bulkhead 181A and the holding member 181Ab.

ベアリング受181Bは、嵩上台181Aの上面に載置され、ベアリング181Cを支持するものである。ベアリング受181Bは、その下面にフランジ181Baが一体に設けられている。フランジ181Baは、ナットが固定され、このナットに螺合するように上からボルトが貫通して設けられている。ナットおよびボルトは、フランジ181Baの周方向に多数(少なくとも3箇)設けられており、ボルトは、先端が嵩上台181Aの上面に接触してベアリング受181Bの脚181Bbとなる。そして、ボルトをナットに対して回転させることで脚181Bbの長さが変化し、嵩上台181Aの上面に対するベアリング受181Bの上下位置が調整できる。   The bearing receiver 181B is placed on the upper surface of the bulkhead 181A and supports the bearing 181C. The bearing receiver 181B is integrally provided with a flange 181Ba on the lower surface thereof. The flange 181Ba has a nut fixed thereto, and is provided with a bolt penetrating from above so as to be screwed into the nut. Nuts and bolts are provided in a large number (at least three) in the circumferential direction of the flange 181Ba, and the ends of the bolts come into contact with the upper surface of the bulkhead 181A to become the legs 181Bb of the bearing receiver 181B. And the length of leg 181Bb changes by rotating a volt | bolt with respect to a nut, and the up-and-down position of the bearing receiver 181B with respect to the upper surface of the bulkhead 181A can be adjusted.

ベアリング181Cは、ベアリング受181Bの上面に載置され、鉛直軸Sの廻りに回転するものである。ベアリング181Cは、その回転子に旋回支持部181Caが設けられている。旋回支持部181Caは、梁材182を支持する。   The bearing 181C is mounted on the upper surface of the bearing receiver 181B and rotates around the vertical axis S. As for bearing 181C, the rotation support part 181Ca is provided in the rotor. The turning support portion 181Ca supports the beam member 182.

組立調整装置180の梁材182は、例えば、H鋼材などで構成された剛構造の長尺部材である。この梁材182は、基端が旋回台181におけるベアリング181Cの旋回支持部181Caに支持される。即ち、梁材182は、旋回台181に支持された状態で、ベアリング181Cを介して鉛直軸Sの廻りに回転移動する。また、梁材182は、その先端にローラ182Aが設けられている。ローラ182Aは、梁材182の先端に固定されるローラ支持部182Aaに支持されている。このローラ182Aは、下部炉心板128の外縁が取り付けられる固定部材141の上面に接触するように設けられる。即ち、梁材182は、ベアリング181Cの鉛直軸Sを固定部材141のリング状の中心に一致させることで、ローラ182Aが固定部材141の上面に沿って輪転しながら回転移動する。なお、梁材182は、ローラ182Aが固定部材141の上面に接触した状態で、旋回台181におけるベアリング受181Bの脚181Bbの長さを調整することで、水平に配置することができる。梁材182の水平度は、梁材182の上面に置いた水準器184で確認することができる。   The beam member 182 of the assembly adjusting device 180 is a long member having a rigid structure made of, for example, H steel. The base end of the beam member 182 is supported by the turning support portion 181Ca of the bearing 181C in the turntable 181. That is, the beam member 182 rotates around the vertical axis S via the bearing 181C while being supported by the swivel base 181. Further, the beam member 182 is provided with a roller 182A at the tip thereof. The roller 182A is supported by a roller support portion 182Aa fixed to the tip of the beam member 182. The roller 182A is provided so as to contact the upper surface of the fixing member 141 to which the outer edge of the lower core plate 128 is attached. That is, the beam member 182 rotates and moves while the roller 182A rotates along the upper surface of the fixing member 141 by causing the vertical axis S of the bearing 181C to coincide with the ring-shaped center of the fixing member 141. The beam member 182 can be arranged horizontally by adjusting the length of the leg 181Bb of the bearing receiver 181B in the swivel 181 in a state where the roller 182A is in contact with the upper surface of the fixing member 141. The level of the beam member 182 can be confirmed with a level 184 placed on the upper surface of the beam member 182.

組立調整装置180の計測器183は、下部炉心支持柱129の上端面と梁材182の下面との寸法を計測するものである。本実施形態の計測器183は、ダイアルゲージからなり、下部炉心支持柱129の上端面に設置されたダイアルゲージの測定子が梁材182の下面に接触することで上記寸法を計測する。また、図には明示しないが、計測器183は、下部炉心支持柱129の上端面と梁材182の下面との間にレーザや赤外線を照射させる光学式のセンサを用いるものであってもよい。   The measuring instrument 183 of the assembly adjustment apparatus 180 measures the dimensions of the upper end surface of the lower core support column 129 and the lower surface of the beam member 182. The measuring instrument 183 of the present embodiment is a dial gauge, and measures the above dimensions by contacting a dial gauge probe installed on the upper end surface of the lower core support column 129 with the lower surface of the beam member 182. Although not shown in the drawing, the measuring instrument 183 may use an optical sensor that irradiates a laser or infrared light between the upper end surface of the lower core support column 129 and the lower surface of the beam member 182. .

このような組立調整装置180を用いた炉内構造物の組立方法について説明する。
(1)後の下部炉心支持柱129に対するボルトのトルク締めに際して、下部炉心支持柱129の軸力データを採取する。
(2)下部炉心板128における下部炉心支持柱129の取り付け位置における板厚と、固定部材141の板厚を計測する。
(3)下部炉心板128における下部炉心支持柱129の取り付け位置において、最も板厚が厚い値を「0」として差引計算する。なお、下部炉心支持柱129の高さ調整時の計測器183のオフセット量を±分考慮する。すなわち、(2)の計測値より下部炉心板128の上面レベルが水平となるように板厚を考慮して下部炉心支持柱129の高さを算出しておく。ここでは、固定部材141の接続部における板厚も加味する。なお、最も板厚が厚い値を「0」として差引計算するのは、下部炉心支持柱129の高さが最も低い箇所となるためである。
(4)下部炉心支持柱129を下部炉心支持板124にねじ込む。
(5)炉心槽127のレベル調整を行い固定部材141の水平度を確保する。
(6)下部炉心支持板124に嵩上台181A、ベアリング受181B、ベアリング181Cを設置する。
(7)ベアリング181Cの上面のレベル出しを行いベアリング181Cの回転中心を鉛直軸Sに合わせる。
(8)梁材182に対してベアリング181Cの旋回支持部181Caを取り付け、梁材182をベアリング181Cに設置すると共にローラ182Aを固定部材141の上面に載置する。
(9)水準器により確認しながら脚181Bbにより梁材182の水平出しを行う。そして、梁材182を回転移動させて全周において調整を行う。
(10)ベアリング受181Bとベアリング181Cとの間にシムを入れて微小(0.1mm単位)に中心の高さを高く設定する。なお、下部炉心板128および下部炉心支持柱129は、下部炉心支持板124に取り付けられ、燃料集合体120を全数装荷したとき、荷重により下部炉心支持板124がたわむため(例えば、0.1mm)、それを考慮し中心の高さをたわみ分高く設定する。また、中心の高さを高く設定すると、燃料集合体120を装荷する際に外側へ傾くこととなるので、挿入時や取り出し時における接触を回避することができる。例えば、燃料集合体120が内側に倒れていた場合、中心側の燃料集合体120を挿入する際の隙間がなくなり挿入や取り出しができなくなる。
(11)計測器183において、固定部材141の上面から梁材182の下面までの高さHを基準とする。計測器183がダイアルゲージの場合高さHで目盛を「0」に設定する。
(12)任意の下部炉心支持柱129の上に梁材182を回転移動させ、計測器183による目標値である高さH(下部炉心板128の板厚を考慮)になるように下部炉心支持柱129の高さを調整する。
(13)下部炉心支持柱129のナット129cをトルク締めする。
(14)下部炉心支持柱129の沈み込み量を記録し、ナット129cを緩めて沈み込み量を足して高さ調整を実施し、再度ナット129cをトルク締めする。
(15)全ての下部炉心支持柱129の調整が終わったら、組立調整装置180を取り外し、炉心槽127内に下部炉心板128を吊り込み、下部炉心板128を固定部材141および下部炉心支持柱129に対してボルトをトルク締めする。
(16)下部炉心板128の上面レベルを計測する(水準器)。記録にて微調整箇所があればナット129cを緩め下部炉心支持柱129のねじ込み量を微調整する。調整後は再度ナット129cをトルク締めする。そして、再度下部炉心板128の上面レベルを計測して確認する。
A method for assembling the in-furnace structure using the assembly adjusting device 180 will be described.
(1) The axial force data of the lower core support column 129 is collected when the bolt torque is tightened on the lower core support column 129 later.
(2) The plate thickness of the lower core plate 128 at the mounting position of the lower core support column 129 and the plate thickness of the fixing member 141 are measured.
(3) At the position where the lower core support column 129 is attached to the lower core plate 128, the value with the thickest plate thickness is set to “0” to perform subtraction calculation. Note that the offset amount of the measuring instrument 183 when adjusting the height of the lower core support column 129 is taken into account for ± minutes. That is, the height of the lower core support column 129 is calculated in consideration of the plate thickness so that the upper surface level of the lower core plate 128 is horizontal from the measured value of (2). Here, the plate thickness at the connection portion of the fixing member 141 is also taken into consideration. The reason why the subtraction calculation is performed by setting the thickest value as “0” is because the lower core support column 129 has the lowest height.
(4) Screw the lower core support column 129 into the lower core support plate 124.
(5) The level of the core tank 127 is adjusted to ensure the level of the fixing member 141.
(6) The bulkhead 181A, the bearing receiver 181B, and the bearing 181C are installed on the lower core support plate 124.
(7) Level the upper surface of the bearing 181C and align the rotation center of the bearing 181C with the vertical axis S.
(8) The turning support portion 181Ca of the bearing 181C is attached to the beam member 182, the beam member 182 is installed on the bearing 181C, and the roller 182A is placed on the upper surface of the fixed member 141.
(9) The beam material 182 is leveled by the legs 181Bb while checking with a level. Then, the beam member 182 is rotated to adjust the entire circumference.
(10) A shim is inserted between the bearing receiver 181B and the bearing 181C, and the center height is set to be small (in units of 0.1 mm). The lower core plate 128 and the lower core support column 129 are attached to the lower core support plate 124, and when all the fuel assemblies 120 are loaded, the lower core support plate 124 bends due to the load (for example, 0.1 mm). Considering this, the center height is set higher by the amount of deflection. Further, if the center height is set high, the fuel assembly 120 is inclined outward when being loaded, so that contact during insertion or removal can be avoided. For example, when the fuel assembly 120 is tilted inward, there is no gap when the central fuel assembly 120 is inserted, and insertion and removal are impossible.
(11) In the measuring instrument 183, the height H from the upper surface of the fixing member 141 to the lower surface of the beam member 182 is used as a reference. When the measuring instrument 183 is a dial gauge, the scale is set to “0” at the height H.
(12) Rotate and move the beam member 182 on an arbitrary lower core support column 129, and support the lower core so that the height H (which takes into account the thickness of the lower core plate 128) by the measuring instrument 183 is reached. The height of the column 129 is adjusted.
(13) Torque the nut 129c of the lower core support column 129.
(14) Record the sinking amount of the lower core support column 129, loosen the nut 129c, add the sinking amount, adjust the height, and tighten the nut 129c again with torque.
(15) When the adjustment of all the lower core support pillars 129 is finished, the assembly adjustment device 180 is removed, the lower core board 128 is suspended in the core tank 127, and the lower core board 128 is fixed to the fixing member 141 and the lower core support pillar 129. Torque the bolt against
(16) The upper surface level of the lower core plate 128 is measured (level). If there is a fine adjustment location in the recording, the nut 129c is loosened and the screwing amount of the lower core support column 129 is finely adjusted. After the adjustment, the nut 129c is torque-tightened again. Then, the upper surface level of the lower core plate 128 is again measured and confirmed.

このように、本実施形態の炉内構造物の組立調整装置は、炉心槽127の内壁に固定されたリング状の固定部材141に対して下部炉心板128が外縁を取り付けられると共に炉心槽127の下端に下部炉心支持板124が固定され、下部炉心板128と下部炉心支持板124との間に下部炉心板128を支持する下部炉心支持柱129が複数設けられる炉内構造物の組立調整装置において、下部炉心支持板124の中央に取り付けられて鉛直軸を中心に回転可能に設けられる旋回台181と、旋回台181に基端が取り付けられ固定部材141に先端がローラ182Aを介して支持されて水平を保って掛け渡されて旋回台181の回転に伴って回転移動する梁材182と、下部炉心支持板124に立設される下部炉心支持柱129の上端面と梁材182の下面との寸法を計測する計測器183と、を備える。   As described above, in the assembly adjustment apparatus for a reactor internal structure according to this embodiment, the outer core of the lower core plate 128 is attached to the ring-shaped fixing member 141 fixed to the inner wall of the core tank 127 and the core In an assembly adjustment apparatus for an in-core structure, a lower core support plate 124 is fixed to a lower end, and a plurality of lower core support columns 129 for supporting the lower core plate 128 are provided between the lower core plate 128 and the lower core support plate 124. A swivel base 181 that is attached to the center of the lower core support plate 124 and is provided so as to be rotatable about a vertical axis; a base end is attached to the swivel base 181; and a distal end is supported by the fixed member 141 via a roller 182A. A beam member 182 that is stretched while keeping the level and rotates as the swivel base 181 rotates, and an upper end surface of the lower core support column 129 erected on the lower core support plate 124. Comprising a measuring device 183 for measuring the dimensions of the lower surface of the beam member 182, a.

また、本実施形態の炉内構造物の組立方法は、炉心槽127の内壁に固定されたリング状の固定部材141に対して下部炉心板128が外縁を取り付けられると共に炉心槽127の下端に下部炉心支持板124が固定され、下部炉心板128と下部炉心支持板124との間に下部炉心板128を支持する下部炉心支持柱129が複数設けられる炉内構造物の組立方法において、下部炉心支持板124の中央に取り付けられて鉛直軸を中心に回転可能に設けられる旋回台181と、旋回台181に基端が取り付けられ固定部材141に先端がローラ182Aを介して支持されて水平を保って掛け渡されて旋回台181の回転に伴って回転移動する梁材182と、下部炉心支持板124に立設される下部炉心支持柱129の上端面と梁材182の下面との寸法を計測する計測器183と、を備える組立調整装置180を用い、炉心槽127の下端に下部炉心支持板124を取り付け、かつ下部炉心支持板124に各下部炉心支持柱129を取り付けて、固定部材141の水平度を保った状態で、旋回台181を介して梁材182を回転移動させ、梁材182の下方にある下部炉心支持柱129の上端面と梁材182の下面との寸法を計測器183により計測して、固定部材141の上面と梁材182の下面との寸法に合わせるように下部炉心支持板124への下部炉心支持柱129の取り付け高さを調整し、高さが調整された全ての下部炉心支持柱129に下部炉心板128を取り付ける。   Further, in the method of assembling the reactor internal structure according to the present embodiment, the lower core plate 128 is attached to the ring-shaped fixing member 141 fixed to the inner wall of the core tank 127 and the lower edge of the core tank 127 is attached to the lower end. In a method of assembling a reactor internal structure in which a core support plate 124 is fixed and a plurality of lower core support columns 129 for supporting the lower core plate 128 are provided between the lower core plate 128 and the lower core support plate 124, the lower core support is provided. A swivel base 181 that is attached to the center of the plate 124 and is provided so as to be rotatable about a vertical axis, and a base end is attached to the swivel base 181 and a distal end is supported by the fixing member 141 via a roller 182A to maintain the level. The beam member 182 that is stretched and rotated along with the rotation of the swivel 181, the upper end surface of the lower core support column 129 erected on the lower core support plate 124, and the beam member 182 An assembly adjustment device 180 including a measuring instrument 183 that measures the dimensions of the surface, and a lower core support plate 124 is attached to the lower end of the reactor core 127, and each lower core support column 129 is attached to the lower core support plate 124. In this state, the beam member 182 is rotated and moved via the swivel 181 while maintaining the level of the fixing member 141, and the upper end surface of the lower core support column 129 below the beam member 182 and the lower surface of the beam member 182 Is measured by the measuring instrument 183, and the mounting height of the lower core support column 129 to the lower core support plate 124 is adjusted so as to match the dimensions of the upper surface of the fixing member 141 and the lower surface of the beam member 182, The lower core plate 128 is attached to all the lower core support columns 129 whose heights are adjusted.

この炉内構造物の組立調整装置および組立方法によれば、下部炉心支持柱129の高さ確認は、下部炉心支持柱129の上端面と梁材182の下面との寸法を計測する計測器183を用い、水準器を用いないため、確認作業時間を短縮することができる。しかも、下部炉心支持柱129ごとに高さ確認および調整を行うため作業性が良く正確である。しかも、高さ確認に用いる梁材182を回転移動させるため、クレーンを用いることなく作業工数を低減することができる。しかも、梁材182の先端がローラ182Aを介して固定部材141の上面に載置されているため、固定部材141の上面と梁材182の下面との寸法を基準として下部炉心支持柱129の上端面と梁材182の下面との寸法を合わせることで、各下部炉心支持柱129の上端と固定部材141の上面との高さを容易に揃えることができ、作業性を向上できる。従って、この炉内構造物の組立調整装置および組立方法によれば、下部炉心支持柱129の高さ調整を容易かつ正確に行うことができる。   According to the assembly adjustment apparatus and method for assembling the reactor internal structure, the height confirmation of the lower core support column 129 is performed by measuring the instrument 183 that measures the dimensions of the upper end surface of the lower core support column 129 and the lower surface of the beam member 182. Since the level is not used, the confirmation work time can be shortened. Moreover, since the height is confirmed and adjusted for each lower core support column 129, the workability is good and accurate. And since the beam material 182 used for height confirmation is rotationally moved, an operation man-hour can be reduced without using a crane. In addition, since the tip of the beam member 182 is placed on the upper surface of the fixing member 141 via the roller 182A, the upper surface of the lower core support column 129 is determined based on the dimensions of the upper surface of the fixing member 141 and the lower surface of the beam member 182. By matching the dimensions of the end surface and the lower surface of the beam member 182, the heights of the upper ends of the lower core support columns 129 and the upper surface of the fixing member 141 can be easily aligned, and workability can be improved. Therefore, according to the assembly adjustment apparatus and the assembly method for the reactor internal structure, the height adjustment of the lower core support pillar 129 can be easily and accurately performed.

124 下部炉心支持板
124a 雌ネジ孔
127 炉心槽
128 下部炉心板
129 下部炉心支持柱
129a 支柱本体
129b 雄ネジ部
129c ナット
141 固定部材
180 組立調整装置
181 旋回台
181A 嵩上台
181Aa 固定幹
181Ab 保持部材
181B ベアリング受
181Ba フランジ
181Bb 脚
181C ベアリング
181Ca 旋回支持部
182 梁材
182A ローラ
182Aa ローラ支持部
183 計測器
S 鉛直軸
124 Lower core support plate 124a Female screw hole 127 Core tank 128 Lower core plate 129 Lower core support column 129a Post body 129b Male screw portion 129c Nut 141 Fixing member 180 Assembly adjusting device 181 Swivel stand 181A Bulk stand 181Aa Fixed stem member 181A Bearing receiver 181Ba Flange 181Bb Leg 181C Bearing 181Ca Rotating support portion 182 Beam material 182A Roller 182Aa Roller support portion 183 Measuring instrument S Vertical axis

Claims (2)

炉心槽の内壁に固定されたリング状の固定部材に対して下部炉心板が外縁を取り付けられると共に前記炉心槽の下端に下部炉心支持板が固定され、前記下部炉心板と前記下部炉心支持板との間に前記下部炉心板を支持する下部炉心支持柱が複数設けられる炉内構造物の組立調整装置において、
前記下部炉心支持板の中央に取り付けられて鉛直軸を中心に回転可能に設けられる旋回台と、
前記旋回台に基端が取り付けられ前記固定部材に先端がローラを介して支持されて水平を保って掛け渡されて前記旋回台の回転に伴って回転移動する梁材と、
前記下部炉心支持板に立設される前記下部炉心支持柱の上端面と前記梁材の下面との寸法を計測する計測器と、
を備えることを特徴とする炉内構造物の組立調整装置。
A lower core plate has an outer edge attached to a ring-shaped fixing member fixed to an inner wall of the core tank, and a lower core support plate is fixed to a lower end of the core tank, and the lower core plate, the lower core support plate, In the assembly adjustment apparatus for a reactor internal structure in which a plurality of lower core support pillars for supporting the lower core plate are provided between,
A swivel mounted at the center of the lower core support plate and provided rotatably about a vertical axis;
A beam member that is attached to the swivel base and has a distal end supported by the fixing member via a roller and stretched around the swivel base in a horizontal manner while being rotated horizontally;
A measuring instrument that measures the dimensions of the upper end surface of the lower core support column and the lower surface of the beam material that are erected on the lower core support plate;
An assembly adjustment apparatus for an in-furnace structure, comprising:
炉心槽の内壁に固定されたリング状の固定部材に対して下部炉心板が外縁を取り付けられると共に前記炉心槽の下端に下部炉心支持板が固定され、前記下部炉心板と前記下部炉心支持板との間に前記下部炉心板を支持する下部炉心支持柱が複数設けられる炉内構造物の組立方法において、
前記下部炉心支持板の中央に取り付けられて鉛直軸を中心に回転可能に設けられる旋回台と、
前記旋回台に基端が取り付けられ前記固定部材に先端がローラを介して支持されて水平を保って掛け渡されて前記旋回台の回転に伴って回転移動する梁材と、
前記下部炉心支持板に立設される前記下部炉心支持柱の上端面と前記梁材の下面との寸法を計測する計測器と、
を備える組立調整装置を用い、
前記炉心槽の下端に前記下部炉心支持板を取り付け、かつ前記下部炉心支持板に各前記下部炉心支持柱を取り付けて、前記固定部材の水平度を保った状態で、前記旋回台を介して前記梁材を回転移動させ、前記梁材の下方にある前記下部炉心支持柱の上端面と前記梁材の下面との寸法を前記計測器により計測して、前記固定部材の上面と前記梁材の下面との寸法に合わせるように前記下部炉心支持板への前記下部炉心支持柱の取り付け高さを調整し、高さが調整された全ての前記下部炉心支持柱に前記下部炉心板を取り付けることを特徴とする炉内構造物の組立方法。
A lower core plate has an outer edge attached to a ring-shaped fixing member fixed to an inner wall of the core tank, and a lower core support plate is fixed to a lower end of the core tank, and the lower core plate, the lower core support plate, In the method of assembling the in-core structure in which a plurality of lower core support columns for supporting the lower core plate are provided between
A swivel mounted at the center of the lower core support plate and provided rotatably about a vertical axis;
A beam member that is attached to the swivel base and has a distal end supported by the fixing member via a roller and stretched around the swivel base in a horizontal manner while being rotated horizontally;
A measuring instrument that measures the dimensions of the upper end surface of the lower core support column and the lower surface of the beam material that are erected on the lower core support plate;
Using an assembly adjustment device comprising
The lower core support plate is attached to the lower end of the core tank, and each lower core support column is attached to the lower core support plate, and the level of the fixing member is maintained, and the fixing member is maintained through the swivel. Rotating and moving the beam material, the dimensions of the upper end surface of the lower core support column below the beam material and the lower surface of the beam material are measured by the measuring instrument, and the upper surface of the fixing member and the beam material Adjusting the mounting height of the lower core support column to the lower core support plate so as to match the size of the lower surface, and mounting the lower core plate to all the lower core support columns adjusted in height A method for assembling a furnace internal structure.
JP2015023674A 2015-02-09 2015-02-09 Assembly adjustment device and method for reactor internals Active JP6522975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023674A JP6522975B2 (en) 2015-02-09 2015-02-09 Assembly adjustment device and method for reactor internals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023674A JP6522975B2 (en) 2015-02-09 2015-02-09 Assembly adjustment device and method for reactor internals

Publications (2)

Publication Number Publication Date
JP2016145785A true JP2016145785A (en) 2016-08-12
JP6522975B2 JP6522975B2 (en) 2019-05-29

Family

ID=56686207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023674A Active JP6522975B2 (en) 2015-02-09 2015-02-09 Assembly adjustment device and method for reactor internals

Country Status (1)

Country Link
JP (1) JP6522975B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034197A (en) * 1989-06-01 1991-01-10 Mitsubishi Heavy Ind Ltd Assembling method for lower reactor structure of nuclear reactor container
US5544206A (en) * 1994-06-17 1996-08-06 R. Brooks Associates, Inc. Reactor head work station
JPH10268078A (en) * 1997-03-27 1998-10-09 Mitsubishi Heavy Ind Ltd In-pile lower part structure of pressurized water reactor
JP2000356697A (en) * 1999-06-11 2000-12-26 Toshiba Corp Reactor core shroud inner diameter automatic measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH034197A (en) * 1989-06-01 1991-01-10 Mitsubishi Heavy Ind Ltd Assembling method for lower reactor structure of nuclear reactor container
US5544206A (en) * 1994-06-17 1996-08-06 R. Brooks Associates, Inc. Reactor head work station
JPH10268078A (en) * 1997-03-27 1998-10-09 Mitsubishi Heavy Ind Ltd In-pile lower part structure of pressurized water reactor
JP2000356697A (en) * 1999-06-11 2000-12-26 Toshiba Corp Reactor core shroud inner diameter automatic measuring device

Also Published As

Publication number Publication date
JP6522975B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP3036688B2 (en) Method for replacing lower furnace internal structure assembly and apparatus for aligning position of core vessel
JP6041688B2 (en) Water jet peening equipment
KR101705476B1 (en) Apparatus and method for installing reactor repairing device
EP2704152B1 (en) Nozzle repairing method
US6266386B1 (en) Lower reactor internals up-ending device
JP2014130108A (en) Nozzle repairing method and nuclear reactor vessel
JP6522975B2 (en) Assembly adjustment device and method for reactor internals
US8958519B2 (en) Incore instrumentation cable routing and support element for pressurized water reactor
JP6472258B2 (en) Method for assembling furnace structures
JP6564628B2 (en) Apparatus and method for reconstructing axial measurements in nuclear fuel
CN209515205U (en) A kind of centralising device
EP2940693B1 (en) Pipe base repair method and nuclear reactor vessel
JP6504786B2 (en) Guide tube manufacturing method
JP6425551B2 (en) Guide tube centering apparatus and method
JP6081206B2 (en) Reactor repair monitoring device and reactor repair method
CN108709546A (en) The installation of the highly dense screen work of Spent Fuel Pool dilatation and measuring for verticality method
JP2019144015A (en) Photograph device
WO2001069609A1 (en) Method of handling equipment
JP2014048115A (en) Nozzle stub repairing method and nuclear reactor vessel
Danforth et al. Design of a Test Article and Test Facility to Investigate Flow-Induced Vibration of a Helical Coil Steam Generator
JP2013040823A (en) Nozzle stub processing device of reactor vessel
JP6510244B2 (en) Guide tube transfer rack and guide tube assembly test method
JP6444199B2 (en) Assembly method of lower core structure
JP2015102394A (en) Support device of reactor vessel
JP2010066216A (en) Installation method of incore equipment of natural circulation type boiling water reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150