JP2016145081A - Cold insulating container - Google Patents

Cold insulating container Download PDF

Info

Publication number
JP2016145081A
JP2016145081A JP2016015725A JP2016015725A JP2016145081A JP 2016145081 A JP2016145081 A JP 2016145081A JP 2016015725 A JP2016015725 A JP 2016015725A JP 2016015725 A JP2016015725 A JP 2016015725A JP 2016145081 A JP2016145081 A JP 2016145081A
Authority
JP
Japan
Prior art keywords
hole
cold storage
container
storage container
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016015725A
Other languages
Japanese (ja)
Other versions
JP6427124B2 (en
Inventor
田島 一雄
Kazuo Tajima
一雄 田島
出 島袋
Izuru Shimabukuro
出 島袋
翔太 大野
Shota Ono
翔太 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Publication of JP2016145081A publication Critical patent/JP2016145081A/en
Application granted granted Critical
Publication of JP6427124B2 publication Critical patent/JP6427124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
  • Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cold insulating container capable of rapidly cooling an article to be packaged inside thereof and increasing the cold retaining capacity of the cooled article to be packaged.SOLUTION: A cold insulating container 10 comprises a container body 20 and a lid body 30 attachable to the container body 20, and a storage space S is formed inside the cold insulating container in a state where the container body 20 is covered with the lid body 30. A through hole 12 through which the outside of the cold insulating container 10 is communicated with the storage space S is formed on a side wall part 11 of the cold insulating container 10. In a side view when the side wall part 11 of the cold insulating container 10 is viewed from a horizontal direction H, the storage space S cannot be seen via the through hole 12 from the outside of the cold insulating container 10, and the through hole 12 is formed in such a manner that the storage space S can be seen via the through hole 12 from the outside of the cold insulating container 10 when the wall side part 11 of the cold insulating container 10 is seen from an obliquely upper direction R with respect to the horizontal direction H.SELECTED DRAWING: Figure 7

Description

本発明は、イカ、鮮魚等の被梱包物を好適に冷却することができる保冷容器に関する。   The present invention relates to a cold container capable of suitably cooling an object to be packed such as squid and fresh fish.

従来から、日本国内で水揚げされたイカ、太刀魚等の鮮魚の一部は水揚げされた後、一旦凍結させ、凍結状態で海外に船便などで大量に輸送し、海外現地で消費地まで陸送され消費されている。   Traditionally, some fresh fish such as squid and sword fish that have been landed in Japan have been landed and then frozen, then transported in large quantities overseas by sea, etc. Has been.

この物流で一般的に使用される容器は穴の開いた段ボール容器であるが、船便のコンテナでは多段積みされるため、段ボール単体では水濡れ強度がなくポリエチレン製の袋などを容器内にセットし使用されている。さらに容器に梱包したのちフタを閉じた状態で凍結し、凍結後リーファーコンテナなどを用い海外に船便で輸送し、着地でトラックに積み替えしながら消費地で消費される。   Containers commonly used in this distribution are corrugated cardboard containers with holes, but since shipping containers are stacked in multiple stages, corrugated cardboard alone does not have water-wetting strength, and a polyethylene bag is set in the container. It is used. In addition, after being packed in a container, it is frozen with the lid closed, and after freezing, it is transported overseas using a reefer container, etc., and is consumed at the consumption area while being transferred to a truck on the landing.

たとえば、特許文献1には、発泡合成樹脂からなる容器本体と蓋体とからなる保冷容器であって、容器本体と蓋体との接合面近辺である保冷容器の側壁部にオリフィス構造を有する貫通孔を少なくとも2つ設けた保冷容器が提案されている。   For example, Patent Document 1 discloses a cold storage container including a container main body and a lid made of foamed synthetic resin, and has a through-hole having an orifice structure in a side wall portion of the cold storage container that is near the joint surface between the container main body and the lid. A cold storage container having at least two holes has been proposed.

また、特許文献2には、発泡合成樹脂からなる容器本体と蓋体とからなる保冷容器が提案されている。この保冷容器の容器本体には、その側壁部の一部を残して切れ込まれた外側舌片と、これに対向して同じく一部を残して切り込まれた内側舌片とが形成されており、外側舌片と内側舌片との間には貫通孔が形成されている。   Further, Patent Document 2 proposes a cold storage container including a container main body and a lid made of foamed synthetic resin. The container body of the cold insulation container is formed with an outer tongue piece cut away leaving a part of the side wall portion, and an inner tongue piece cut away leaving the same part facing the same. A through hole is formed between the outer tongue piece and the inner tongue piece.

このように、特許文献1および2に係る保冷容器は、発泡合成樹脂からなるため、段ボール容器に比べて保冷性および水濡れ強度を高めることができる。   As described above, since the cold insulating containers according to Patent Documents 1 and 2 are made of the foamed synthetic resin, the cold insulating property and the wettability can be improved as compared with the corrugated cardboard container.

実公昭63−616号公報Japanese Utility Model Publication No. 63-616 実公昭63−615号公報Japanese Utility Model Publication No. 63-615

しかしながら、特許文献1および特許文献2のいずれの保冷容器も、側壁部に貫通孔が形成されているが、保冷容器内に梱包したイカ、鮮魚等の被梱包物を冷凍するには長時間かかった。特に、特許文献1の保冷容器の場合には、貫通孔がオリフィス構造であるため、保冷容器の内部に冷気を送り込むには、より長時間かかるので、真空予冷により内部を冷却しなければならなかった。さらに、特許文献2の保冷容器の場合には、冷却時間がかかるに加え、保冷後の外側舌片を内側舌片に掛止めする作業が発生し、その作業が煩雑なものであった。   However, although both of the cold storage containers of Patent Document 1 and Patent Document 2 have through holes formed in the side walls, it takes a long time to freeze packed objects such as squid and fresh fish packed in the cold storage container. It was. In particular, in the case of the cold storage container of Patent Document 1, since the through-hole has an orifice structure, it takes a longer time to send the cold air into the cold storage container, so the inside must be cooled by vacuum precooling. It was. Furthermore, in the case of the cold storage container of Patent Document 2, in addition to the cooling time, an operation for hooking the outer tongue piece after the cold insulation to the inner tongue piece occurs, and the operation is complicated.

さらに、特許文献1および特許文献2に係る保冷容器では、保冷容器の貫通孔から、外部から暖気を入り込み易く、冷凍または冷却された被梱包物の保冷性が、損なわれることがあった。   Furthermore, in the cold storage container according to Patent Document 1 and Patent Document 2, warm air can easily enter from the outside through the through hole of the cold storage container, and the cold storage property of the frozen or cooled packaged object may be impaired.

本発明は、このような点を鑑みてなされたものであり、内部の被梱包物を迅速に冷却し、冷却された被梱包物の保冷性を高めることができる保冷容器を提供することにある。   This invention is made | formed in view of such a point, and it is providing the cold storage container which can cool the inside to-be-packaged goods rapidly, and can improve the cool keeping property of the cooled to-be-packaged goods. .

前記課題を解決すべく、本明細書では、以下に示す第1発明および第2発明に係る保冷容器を開示する。第1発明に係る保冷容器は、上方に開口した開口部が形成された容器本体と、前記容器本体の前記開口部を覆うように被着自在な蓋体とを備え、前記容器本体に前記蓋体を被着した状態で、内部に被梱包物を収容する収容空間が形成される保冷容器であって、前記容器本体に前記蓋体を被着した状態で、前記保冷容器の側壁部には、前記保冷容器の外部と前記収容空間とを連通する貫通孔が形成されており、前記保冷容器の前記側壁部を水平方向から見た側面視において、前記保冷容器の外部から前記貫通孔を介して前記収容空間が見えず、前記保冷容器の前記側壁部を前記水平方向に対して斜め上方向から見たときに、前記保冷容器の外部から前記貫通孔を介して前記収容空間が見えるように、前記貫通孔が形成されていることを特徴とする。   In order to solve the above-described problems, the present specification discloses a cold insulating container according to the first invention and the second invention described below. According to a first aspect of the present invention, there is provided a cold storage container comprising: a container body having an opening that opens upward; and a lid body that is attachable so as to cover the opening of the container body. A cold storage container in which an accommodation space for accommodating an object to be packed is formed in a state where the body is attached, and in a state where the lid is attached to the container body, A through hole is formed to communicate the outside of the cold storage container and the housing space, and the side wall portion of the cold storage container is viewed from the side in a horizontal direction through the through hole from the outside of the cold storage container. The housing space cannot be seen, and the housing space can be seen from the outside of the cold storage container through the through hole when the side wall portion of the cold storage container is viewed obliquely upward with respect to the horizontal direction. The through hole is formed. .

本発明によれば、貫通孔が、側面視において、保冷容器の外部から貫通孔を介して前記収容空間が見えず、斜め上方向から見たときに、保冷容器の外部から貫通孔を介して収容空間が見えるように、形成されている。これにより、保冷容器の外部上方から下方に向かって一般的に冷気が流れやすいところ、本発明では、この冷気を貫通孔に沿って(前記斜め上方向に沿って)流し易く、保冷容器の外部の冷気を貫通孔を介して収容空間に取り込みやすい。このような結果、保冷容器内の被梱包物を迅速に冷却することができる。   According to the present invention, in the side view, the accommodation space is not visible from the outside of the cold insulation container through the through hole, and when viewed from an obliquely upward direction, the through hole is visible from the outside of the cold insulation container through the through hole. It is formed so that the accommodation space can be seen. As a result, cold air generally tends to flow downward from above the cold storage container. In the present invention, this cold air can easily flow along the through-holes (along the diagonally upward direction). The cold air can be easily taken into the accommodation space through the through hole. As a result, the object to be packed in the cold container can be quickly cooled.

さらに、保冷容器の外部の暖気は、保冷容器の下方から上方に向かって一般的に流れやすいところ、本発明では、上述した貫通孔を保冷容器に形成したので、このような暖気が保冷容器の外部から貫通孔に沿って(前記斜め上方向に沿って)収容空間に入り込み難い。一方、予冷された被梱包物の冷気は、収容空間の上方から下方に向かって一般的に流れやすいところ、本発明では、上述した貫通孔を保冷容器に形成したので、このような冷気が保冷容器の収容空間から貫通孔に沿って(前記斜め上方向に沿って)外部に流れ出し難い。このような結果、収容空間に収容された被梱包物の保冷性を高めることができる。   Furthermore, the warm air outside the cold storage container is generally easy to flow from the lower side to the upper side of the cold storage container. In the present invention, since the above-described through hole is formed in the cold storage container, such warm air is generated in the cold storage container. It is difficult to enter the accommodation space from the outside along the through hole (along the diagonally upward direction). On the other hand, the cold air of the pre-cooled package is generally easy to flow from the upper side to the lower side of the accommodation space. In the present invention, since the above-described through hole is formed in the cold storage container, such cold air is cooled. It is difficult to flow out of the container housing space along the through hole (along the diagonally upward direction). As a result, it is possible to improve the cold insulation property of the packed object accommodated in the accommodation space.

第2発明に係る保冷容器は、上方に開口した開口部が形成された容器本体と、前記容器本体の前記開口部を覆うように被着自在な蓋体とを備え、前記容器本体に前記蓋体を被着した状態で、内部に被梱包物を収容する収容空間が形成される保冷容器であって、前記容器本体に前記蓋体を被着した状態で、前記保冷容器の側壁部には、前記保冷容器の外部と前記収容空間とを連通する貫通孔が形成されており、前記容器本体に前記蓋体を被着し、前記貫通孔のみで前記保冷容器の外部と前記収容空間とを連通した連通状態で、X=0.96、Y=0.58、Y=2.875X−1.975で囲まれた範囲を満たすように、前記貫通孔が形成されていることを特徴とする。   A cold storage container according to a second aspect of the present invention includes a container main body in which an opening that opens upward is formed, and a lid that is attachable so as to cover the opening of the container main body. A cold storage container in which an accommodation space for accommodating an object to be packed is formed in a state where the body is attached, and in a state where the lid is attached to the container body, A through-hole that communicates between the outside of the cold storage container and the storage space is formed, the lid is attached to the container main body, and the outside of the cold storage container and the storage space are connected only by the through-hole. The through hole is formed so as to satisfy a range surrounded by X = 0.96, Y = 0.58, and Y = 2.875X-1.975 in a connected state. .

ただし、Xは、対恒温槽冷却速度比であり、前記連通状態の前記保冷容器を恒温槽内に配置し、前記恒温槽を20℃から−10℃まで冷却速度Vco(−1.60)℃/分で冷却する冷却条件で、前記収容空間内の内部温度が15℃に達した時点から−5℃に達した時点までの冷却速度をVci℃/分としたとき、X=Vci/Vcoであり、
Yは、対恒温槽加熱速度比であり、前記連通状態の前記保冷容器を恒温槽内に配置し、前記恒温槽を20℃から50℃まで加熱速度Vho(3.61)℃/分で加熱する加熱条件で、前記収容空間内の内部温度が25℃に達した時点から45℃に達した時点までの加熱速度をVhi℃/分としたとき、Y=Vhi/Vhoである。
However, X is a cooling rate ratio with respect to a constant temperature bath, the cold storage container in the communication state is arranged in a constant temperature bath, and the constant temperature bath is cooled from 20 ° C. to −10 ° C. at a cooling rate Vco (−1.60) ° C. When the cooling rate from the time when the internal temperature in the accommodation space reaches 15 ° C. to the time when it reaches −5 ° C. is Vci ° / min under the cooling condition of cooling at / min, X = Vci / Vco Yes,
Y is the ratio of the heating rate to the constant temperature bath, the cold storage container in the communication state is placed in the constant temperature bath, and the constant temperature bath is heated from 20 ° C. to 50 ° C. at a heating rate Vho (3.61) ° C./min. Y = Vhi / Vho where the heating rate from the time when the internal temperature in the housing space reaches 25 ° C. to the time when it reaches 45 ° C. is Vhi ° C./min.

第2発明によれば、保冷容器に、X=0.96、Y=0.58、Y=2.875X−1.975で囲まれた範囲を満たす貫通孔を形成することにより、保冷容器内の被梱包物を迅速に冷却することができ、かつ、収容空間に収容された被梱包物の保冷性を高めることができる。対恒温槽冷却速度比Xおよび対恒温槽加熱速度比Yのパラメータの意義、および、これらのパラメータで特定した前記範囲については、以下に示す実施例等で、詳述する。   According to the second aspect of the present invention, by forming a through hole that fills the range surrounded by X = 0.96, Y = 0.58, and Y = 2.875X-1.975 in the cold storage container, The to-be-packaged item can be quickly cooled, and the cold insulation property of the to-be-packaged item accommodated in the accommodation space can be improved. The significance of the parameters of the constant temperature chamber cooling rate ratio X and the constant temperature chamber heating rate ratio Y, and the range specified by these parameters will be described in detail in the following examples and the like.

ここで、第1および第2発明に係る保冷容器の貫通孔を形成する下側壁面は、例えば、収容空間側に進むに従って、凸状、または凹上の壁面であってもよく、水平方向に沿った壁面を一部有していてもよく、上述した貫通孔を形成することができるのであれば、貫通孔を形成する上側壁面および下側壁面は特に限定されない。   Here, the lower side wall surface forming the through hole of the cold insulation container according to the first and second inventions may be, for example, a convex or concave wall surface as it goes to the accommodation space side, and in the horizontal direction. The upper wall surface and the lower wall surface forming the through hole are not particularly limited as long as the through wall described above may be formed.

しかしながら、より好ましい態様としては、第1および第2発明に係る保冷容器の前記貫通孔を形成する下側壁面は、前記収容空間側に進むに従って、前記水平方向に対して下方に傾斜した傾斜面を有する。この態様によれば、貫通孔を形成する下側壁面が上述した傾斜面を有するので、冷却時において保冷容器の外部から下方に向かう冷気を収容空間に取り込み易い。   However, as a more preferable aspect, the lower wall surface forming the through hole of the cold insulation container according to the first and second inventions is an inclined surface inclined downward with respect to the horizontal direction as it goes to the accommodation space side. Have According to this aspect, since the lower side wall surface forming the through hole has the above-described inclined surface, it is easy to take in cold air that goes downward from the outside of the cold insulation container during cooling.

また、第1および第2発明に係る保冷容器のより好ましい態様としては、前記側壁部には、前記貫通孔を形成する下側壁面が前記貫通孔を形成する上側壁面よりも、前記保冷容器の外部に向かって張り出すように形成された張り出し部を有する。この態様によれば、側壁部に張り出し部を設けることにより、上面視において、貫通孔を形成する下側壁面が見えるように形成される。この結果、保冷容器の外部からの冷気が下側壁面に溜まり易くなり、保冷容器の外部からの冷気を収容空間に取り込み易くなる。   Moreover, as a more preferable aspect of the cold storage container according to the first and second inventions, the lower wall surface forming the through hole is formed on the side wall portion of the cold storage container than the upper wall surface forming the through hole. It has a projecting portion formed so as to project outward. According to this aspect, by providing the overhanging portion on the side wall portion, the lower side wall surface forming the through hole is formed so as to be visible when viewed from above. As a result, the cold air from the outside of the cold insulation container is likely to accumulate on the lower wall surface, and the cold air from the outside of the cold insulation container is easily taken into the accommodation space.

さらに、第1および第2発明に係る保冷容器の収容空間を形成する側壁部の内壁面は、保冷容器の外部から貫通孔を介して冷気を取り込むことができるのであれば、平面、曲面など特に限定されない。第1および第2発明に係る保冷容器のより好ましい態様としては、前記収容空間を形成する前記側壁部の内壁面には、前記貫通孔から前記容器本体の底部に向かって、前記貫通孔に連続するように複数の溝部が形成されている。この態様によれば、貫通孔から取り込まれた冷気は、側壁部の内壁面に沿って形成された複数の溝部に沿って案内されるので、保冷容器の収容空間内に外部からの冷気が回り込みやすい。   Furthermore, the inner wall surface of the side wall part that forms the storage space for the cold storage container according to the first and second inventions may be a flat surface, a curved surface, etc., as long as it can take in cold air from the outside of the cold storage container through the through hole. It is not limited. As a more preferable aspect of the cold storage container according to the first and second inventions, the inner wall surface of the side wall part forming the accommodation space is continuous with the through hole from the through hole toward the bottom part of the container body. A plurality of groove portions are formed as described above. According to this aspect, since the cold air taken in from the through hole is guided along the plurality of grooves formed along the inner wall surface of the side wall portion, the cold air from the outside flows into the storage space of the cold storage container. Cheap.

溝部のより好ましい態様としては、前記溝部は、前記貫通孔と前記容器本体の底部との間に、先端部を有する。この態様によれば、貫通孔から取り込まれ、溝部に案内された冷気は、貫通孔と容器本体の底部との間に形成された溝部の先端部から収容空間の内方に流れやすくなる。これにより、より効率的に冷気を収容空間内に送り込むことができる。   As a more preferable aspect of the groove portion, the groove portion has a tip portion between the through hole and the bottom portion of the container body. According to this aspect, the cold air taken in from the through hole and guided to the groove portion easily flows from the tip end portion of the groove portion formed between the through hole and the bottom portion of the container body to the inside of the accommodation space. Thereby, cold air can be sent into the accommodation space more efficiently.

さらに、第1および第2発明に係る保冷容器では、上述した貫通孔からの冷気を保冷容器の内部に効率良く流すことが好ましい。このような態様としては、第1および第2発明に係る保冷容器の前記容器本体には、前記貫通孔よりも下側において、前記保冷容器を貫通する下側貫通孔が形成されている。この態様によれば、収容空間の冷気が、下側貫通孔から下方に流れやすくなるため、収容空間内の冷気による冷却効率を高めることができる。   Furthermore, in the cold storage container according to the first and second inventions, it is preferable that the cold air from the above-described through holes flow efficiently into the cold storage container. As such an aspect, the container body of the cold storage container according to the first and second inventions has a lower through hole penetrating the cold storage container below the through hole. According to this aspect, since the cool air in the storage space easily flows downward from the lower through hole, the cooling efficiency by the cool air in the storage space can be increased.

下側貫通孔のより好ましい態様としては、前記下側貫通孔は、前記保冷容器の前記側壁部と前記保冷容器の底部との境界部分に形成された縁部貫通孔を有する。この態様によれば、保冷容器の底面が地面に設置された場合であっても、収容空間に取り込まれた縁部貫通孔から冷気が流れるので、収容空間内の冷気の冷却効率を高めることができる。   As a more preferable aspect of the lower through hole, the lower through hole has an edge through hole formed at a boundary portion between the side wall portion of the cold insulation container and the bottom portion of the cold insulation container. According to this aspect, even when the bottom surface of the cold storage container is installed on the ground, the cold air flows from the edge through hole taken into the accommodation space, so that the cooling efficiency of the cold air in the accommodation space can be improved. it can.

縁部貫通孔のより好ましい態様としては、前記縁部貫通孔は、前記側面視において、前記保冷容器の外部から前記縁部貫通孔を介して前記収容空間が見えず、前記保冷容器の前記底部を鉛直方向から見た底面視において、前記保冷容器の外部から前記縁部貫通孔を介して前記収容空間が見えないように形成されている。   As a more preferable aspect of the edge through hole, the edge through hole is not visible from the outside of the cold storage container through the edge through hole in the side view, and the bottom portion of the cold storage container is not visible. When viewed from the bottom, the housing space is formed so as not to be seen from the outside of the cold storage container through the edge through hole.

この態様によれば、縁部貫通孔が、側面視および底面視において、保冷容器の外部から縁部貫通孔を介して収容空間が見えないので、冷却後の保冷容器の搬送時等に、保冷容器の外部の下方から暖気が収容空間内に入り込み難い。   According to this aspect, the edge through hole cannot be seen from the outside of the cold storage container through the edge through hole in the side view and the bottom view. It is difficult for warm air to enter the housing space from below the outside of the container.

より好ましい下側貫通孔の態様としては、前記下側貫通孔は、前記容器本体の底部に複数形成された底部貫通孔を有する。この態様によれば、冷却時において、保冷容器の収容空間から底部貫通孔に向かって冷気が流れやすくなるため、収容空間の冷却効率を高めることができる。   As a more preferable aspect of the lower through hole, the lower through hole has a plurality of bottom through holes formed in the bottom of the container body. According to this aspect, at the time of cooling, the cool air easily flows from the storage space of the cold storage container toward the bottom through-hole, so that the cooling efficiency of the storage space can be increased.

底部貫通孔を有することを前提としたより好ましい態様としては、前記底部貫通孔が形成された前記容器本体の外側底面には、前記保冷容器を支持する複数の支持突起が形成されている。この態様によれば、支持突起が保冷容器の外側底面を支持するので底部貫通孔が塞がれることがない。この結果、保冷容器を地面等の載置面に載置して冷却した場合であっても、底部貫通孔による収容空間の冷却効率を高めることができる。   As a more preferable aspect on the premise that the bottom through hole is provided, a plurality of support protrusions for supporting the cold storage container are formed on the outer bottom surface of the container body in which the bottom through hole is formed. According to this aspect, since the support protrusion supports the outer bottom surface of the cold storage container, the bottom through hole is not blocked. As a result, even when the cold insulation container is placed on a placement surface such as the ground and cooled, the cooling efficiency of the accommodation space by the bottom through hole can be increased.

より好ましい態様としては、前記貫通孔は、前記容器本体に前記蓋体を被着した状態で、前記蓋体と前記容器本体との間に形成されている。この態様によれば、貫通孔と容器本体との間、すなわち接合部分の近傍に設けることができるので、製造時に保冷容器に貫通孔を成形し易い。   As a more preferred aspect, the through hole is formed between the lid body and the container body in a state where the lid body is attached to the container body. According to this aspect, since it can be provided between the through hole and the container body, that is, in the vicinity of the joint portion, it is easy to form the through hole in the cold storage container at the time of manufacture.

第1および第2発明に係る保冷容器によれば、内部の被梱包物を迅速に冷却し、冷却された被梱包物の保冷性を高めることができる。   According to the cold container according to the first and second inventions, it is possible to quickly cool the packed object inside and to improve the cold retaining property of the cooled packed object.

第1実施形態(第1発明)に係る保冷容器の模式的分解斜視図である。It is a typical disassembled perspective view of the cold storage container which concerns on 1st Embodiment (1st invention). 図1に示す容器本体を上方から見た斜視図である。It is the perspective view which looked at the container main body shown in FIG. 1 from upper direction. 図1に示す容器本体を下方から見た斜視図である。It is the perspective view which looked at the container main body shown in FIG. 1 from the downward direction. (a)は、図1に示す容器本体の上面図であり、(b)は、図1に示す容器本体の底面図である。(A) is a top view of the container main body shown in FIG. 1, (b) is a bottom view of the container main body shown in FIG. (a)は、図1に示す蓋体を上方から見た斜視図、(b)は、図1に示す容器本体を下方から見た斜視図である。(A) is the perspective view which looked at the cover body shown in FIG. 1 from upper direction, (b) is the perspective view which looked at the container main body shown in FIG. 1 from the downward direction. 図1に示す保冷容器の模式的斜視図である。It is a typical perspective view of the cold storage container shown in FIG. 図6のA−A線に沿った矢視断面図である。It is arrow sectional drawing along the AA of FIG. 図6のB−B線に沿った矢視断面図である。It is arrow sectional drawing along the BB line of FIG. (a)は、図2に示す容器本体の変形例に係る斜視図であり、(b)は、図7に相当する位置における変形例に係る保冷容器の断面図である。(A) is a perspective view which concerns on the modification of the container main body shown in FIG. 2, (b) is sectional drawing of the cold storage container which concerns on the modification in the position corresponded in FIG. 第2発明の実施形態に係る保冷容器の貫通孔の特性を示したグラフ。The graph which showed the characteristic of the through-hole of the cold storage container which concerns on embodiment of 2nd invention. (a)〜(e)は、実施例1、2および比較例1〜3に係る保冷容器の貫通孔の断面図である。(A)-(e) is sectional drawing of the through-hole of the cold storage container which concerns on Examples 1, 2 and Comparative Examples 1-3. (a)は、恒温槽内の温度プロフィール、実施例2−1、比較例3−1、比較例4に係る保冷容器の箱内内容物の温度プロフィールであり、(b)は、恒温槽内の温度プロフィール、実施例2−1、比較例3−1、比較例4に係る保冷容器の箱内内容物の温度プロフィールである。(A) is a temperature profile in a thermostat, Example 2-1, Comparative Example 3-1, and the temperature profile of the contents in the box of the cold storage container according to Comparative Example 4, and (b) is in the thermostat. These are the temperature profiles of the contents in the box of the cold storage container according to Example 2-1, Comparative Example 3-1, and Comparative Example 4. 実施例1−1〜1−3、実施例2−1〜2−3、比較例1−1,比較例2−1,比較例3−1,比較例3−2,比較例4に係る保冷容器の凍結時間および解凍時間の関係を示したグラフである。Cold Insulation According to Examples 1-1 to 1-3, Examples 2-1 to 2-3, Comparative Example 1-1, Comparative Example 2-1, Comparative Example 3-1, Comparative Example 3-2, and Comparative Example 4 It is the graph which showed the relationship between the freezing time of a container, and thawing | decompression time.

<第1実施形態(第1発明)>
以下に、図1〜図9を参照して、第1実施形態に係る保冷容器10を説明する。
本実施形態に係る保冷容器10は、水揚げされたイカ、太刀魚等の鮮魚である被梱包物を収容し、収容された被梱包物を冷凍室で冷凍し、被梱包物を消費する消費地まで保冷する容器である。
<First embodiment (first invention)>
Below, with reference to FIGS. 1-9, the cold storage container 10 which concerns on 1st Embodiment is demonstrated.
The cold storage container 10 according to the present embodiment accommodates an object to be packed which is a fresh fish such as squid, sword fish and the like, freezes the accommodated object to be packed in a freezer, and consumes the packed object It is a container to keep cold.

図1に示すように、保冷容器10は、容器本体20および蓋体30からなる。蓋体30は、容器本体20の開口部20eを覆うように被着自在となっており、容器本体20に蓋体30を被着した状態で、内部に上述した被梱包物を収容する収容空間Sが形成される(例えば図7,8参照)。   As shown in FIG. 1, the cold container 10 includes a container body 20 and a lid 30. The lid 30 is attachable so as to cover the opening 20e of the container body 20, and in the state where the lid 30 is attached to the container body 20, the accommodation space for accommodating the above-described packaged items inside. S is formed (see, for example, FIGS. 7 and 8).

容器本体20及び蓋体30は、発泡樹脂からなり、たとえば、ポリスチレン、スチレン改質ポリオレフィン系樹脂、ハイインパクトポリスチレン、スチレン−エチレン共重合体、スチレン−無水マレイン酸共重合体、スチレン−アクリロニトリル共重合体等のポリスチレン系樹脂、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂等の各種合成樹脂の発泡体を用いることができる。   The container body 20 and the lid body 30 are made of foamed resin, such as polystyrene, styrene-modified polyolefin resin, high impact polystyrene, styrene-ethylene copolymer, styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer. Various synthetic resin foams such as polystyrene resins such as coalescence, polyolefin resins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymer, and polyester resins such as polyethylene terephthalate can be used.

中でも、ポリスチレンまたはスチレン改質ポリオレフィン系樹脂のビーズ発泡による成型体が好適に用いられる。スチレン改質ポリオレフィン系樹脂は、ポリオレフィン系樹脂粒子にスチレン系単量体を含浸重合させて得られるものであり、スチレン改質ポリオレフィン系樹脂の中でも、スチレン改質ポリエチレン樹脂が好ましく、例えば、スチレン成分の割合は40〜90重量%、好ましくは50〜85重量%、さらに好ましくは55〜75重量%のものが用いられる。   Among these, a molded body by bead foaming of polystyrene or styrene-modified polyolefin resin is preferably used. The styrene-modified polyolefin resin is obtained by impregnating and polymerizing a polyolefin resin particle with a styrene monomer. Among the styrene-modified polyolefin resins, a styrene-modified polyethylene resin is preferable, for example, a styrene component The ratio is 40 to 90% by weight, preferably 50 to 85% by weight, more preferably 55 to 75% by weight.

また、ポリスチレンの発泡体の発泡倍率は30〜80倍が好ましい。本実施形態の保冷容器10で使用する発泡樹脂は、従来に比較して発泡倍率を高めに設定している。このように発泡倍率を高めることで、荷重が加わったときに従来の発泡倍率の場合と比較して、より潰れやすく緩衝効果に優れた構成となっている。   Further, the expansion ratio of the polystyrene foam is preferably 30 to 80 times. The foamed resin used in the cold insulation container 10 of the present embodiment has a higher foaming ratio than the conventional one. By increasing the expansion ratio in this way, the structure is more easily crushed and has an excellent buffering effect when a load is applied compared to the conventional expansion ratio.

図1,2に示すように、容器本体20は、長辺及び短辺を有する上面視矩形状の形状であり、長辺および短辺を有する矩形状の底部24から立ち上った4つの側壁部21により、上方に開口した開口部20eが形成されている。容器本体20に蓋体30を被着した状態で、容器本体20の側壁部21が保冷容器10の側壁部11となり、容器本体20の底部24が保冷容器10の底部14となる。   As shown in FIGS. 1 and 2, the container body 20 has a rectangular shape in a top view having a long side and a short side, and four side wall portions 21 rising from a rectangular bottom portion 24 having a long side and a short side. Thus, an opening 20e opened upward is formed. With the lid 30 attached to the container main body 20, the side wall 21 of the container main body 20 becomes the side wall 11 of the cold storage container 10, and the bottom 24 of the container main body 20 becomes the bottom 14 of the cold storage container 10.

また、容器本体20の開口部20eを形成する開口縁20dには、容器本体20に蓋体30を被着した状態で、蓋体30の裏面30bに形成された嵌合溝38に嵌合する嵌合突条28が形成されている(図2、図5(b)、および図8等参照)。   Further, the opening edge 20d forming the opening 20e of the container body 20 is fitted into a fitting groove 38 formed on the back surface 30b of the lid body 30 with the lid body 30 attached to the container body 20. A fitting protrusion 28 is formed (see FIG. 2, FIG. 5 (b), FIG. 8, etc.).

容器本体20の短辺側の開口縁20dには、指係凹部29aが形成されており、容器本体20に被着した状態の蓋体30を、作業者が指係凹部29aに指を挿入して蓋体30を持ち上げることにより、蓋体30を容器本体20から容易に取り外すことができる。   A finger engagement recess 29a is formed in the opening edge 20d on the short side of the container body 20, and the operator inserts the lid 30 in a state of being attached to the container body 20 into the finger engagement recess 29a. The lid 30 can be easily removed from the container body 20 by lifting the lid 30.

また、図3に示すように、容器本体20の外側底面20bの短辺側の周縁部20fには、把持凹部29bが形成されており、作業者は把持凹部29bを利用して保冷容器10を容易に運搬することができる。   In addition, as shown in FIG. 3, a grip recess 29b is formed in the peripheral edge 20f on the short side of the outer bottom surface 20b of the container body 20, and an operator uses the grip recess 29b to hold the cold container 10. It can be easily transported.

さらに、容器本体20の外側底面20bの四隅には、係合凹部29cが形成されている。短辺および長辺が一致するように、保冷容器10を上下方向に段積みした際に、上位の保冷容器10の係合凹部29cは、下位の保冷容器10の蓋体30の上面30aに形成された係合凸部39に係合するように構成されている。なお、蓋体30の上面30aの長辺方向に沿って形成された係合凸部39は、段積み時に上位の保冷容器10の縁部貫通孔25に係合する。このように蓋体30の上面30aの係合凸部39と、容器本体20の底面20bに形成された係合凹部29cとは、上下方向に保冷容器10を、短辺および長辺が一致するように段積みする際の位置決め部として作用する。   Furthermore, engagement concave portions 29 c are formed at the four corners of the outer bottom surface 20 b of the container body 20. When the cold storage containers 10 are stacked in the vertical direction so that the short side and the long side coincide with each other, the engagement concave portion 29c of the upper cold storage container 10 is formed on the upper surface 30a of the lid 30 of the lower cold storage container 10. The engaging projection 39 is configured to be engaged. In addition, the engagement convex part 39 formed along the long side direction of the upper surface 30a of the cover body 30 engages with the edge through-hole 25 of the upper cold storage container 10 at the time of stacking. Thus, the engagement convex part 39 of the upper surface 30a of the cover body 30 and the engagement concave part 29c formed in the bottom face 20b of the container main body 20 have the short side and the long side of the cold storage container 10 in the vertical direction. It acts as a positioning part when stacking.

保冷容器10の上面10aに相当する、蓋体30の上面30aには、係合凸部39の他に、突起収納凹部37が形成されている。突起収納凹部37は、保冷容器10を段積みした際に、上位の保冷容器10の支持突起27を収容した状態で、蓋体30の上面30aで上位の保冷容器10の底部貫通孔26を塞ぐように形成されている。蓋体30の裏面30bには、上述した嵌合溝38の他に、蓋体30の剛性を高めるべく補強リブ34および補強縁部35が形成されている。   In addition to the engaging convex portion 39, a protrusion accommodating concave portion 37 is formed on the upper surface 30 a of the lid 30, which corresponds to the upper surface 10 a of the cold container 10. The protrusion housing recess 37 closes the bottom through-hole 26 of the upper cold storage container 10 with the upper surface 30a of the lid 30 in a state where the support protrusion 27 of the upper cold storage container 10 is stored when the cold storage containers 10 are stacked. It is formed as follows. In addition to the fitting groove 38 described above, a reinforcing rib 34 and a reinforcing edge 35 are formed on the back surface 30 b of the lid 30 in order to increase the rigidity of the lid 30.

さらに、容器本体20の長辺側の各側壁部21には、2つの切欠き部22が離間して形成されており、長辺側の対向する一対の側壁部21,21に形成された切欠き部22,22は、開口部20eを挟んで対向する位置に形成されている。一方、図5(a),(b)に示すように、蓋体30の裏面30bの長辺側の縁部には、容器本体20に蓋体30を被着した状態で、容器本体20の各切欠き部22に入り込む位置に、下方に突出した突縁部31が形成されている。   Further, two cutouts 22 are formed on each side wall 21 on the long side of the container body 20 so as to be separated from each other, and the cuts formed on the pair of side walls 21 and 21 facing each other on the long side. The notch parts 22 and 22 are formed in the position which opposes on both sides of the opening part 20e. On the other hand, as shown in FIGS. 5 (a) and 5 (b), in the state where the lid body 30 is attached to the container body 20 at the edge on the long side of the back surface 30 b of the lid body 30, A protruding edge portion 31 that protrudes downward is formed at a position that enters each notch portion 22.

このように、容器本体20の開口縁20dの切欠き部22と、蓋体30の裏面30bの突縁部31とを設けることにより、容器本体20に蓋体30を被着した状態で、切欠き部22と突縁部31との間には、間隙が形成される。すなわち、図6および7に示すように保冷容器10の側壁部11に、保冷容器10の外部と収容空間Sとを連通する貫通孔12が形成され、これが容器本体20と蓋体30との間に形成されることになる。   Thus, by providing the notch portion 22 of the opening edge 20d of the container body 20 and the protruding edge portion 31 of the back surface 30b of the lid body 30, the lid body 30 is attached to the container body 20 in a state where the lid body 30 is attached. A gap is formed between the notch 22 and the protruding edge 31. That is, as shown in FIGS. 6 and 7, a through-hole 12 that communicates the outside of the cold storage container 10 and the accommodation space S is formed in the side wall 11 of the cold storage container 10, and this is between the container body 20 and the lid body 30. Will be formed.

具体的には、容器本体20の切欠き部22は、上側に向いた上方縁面22aを有しており、上方縁面22aには、容器本体20の内方に進むに従って、水平方向Hに対して下方に傾斜した傾斜面22bが形成されている。一方、蓋体30の突縁部31は、蓋体30の内方に進むに従って、水平方向Hに対して下方に傾斜した傾斜面31cが形成されている。   Specifically, the cutout portion 22 of the container body 20 has an upper edge surface 22a facing upward, and the upper edge surface 22a has a horizontal direction H as it goes inward of the container body 20. An inclined surface 22b that is inclined downward is formed. On the other hand, the projecting edge portion 31 of the lid body 30 is formed with an inclined surface 31 c that is inclined downward with respect to the horizontal direction H as it goes inward of the lid body 30.

このようにして、容器本体20に蓋体30を被着した状態で、容器本体20の傾斜面22bと、蓋体30の傾斜面31cとは、離間して平行な位置に配置される。容器本体20の上方縁面22aが、貫通孔12を形成する下側壁面12aとなり、容器本体20の傾斜面22bが下側壁面12aの一部を構成する傾斜面12bとなり、傾斜面12bは、収容空間S側に進むに従って、水平方向Hに対して下方に傾斜することになる。一方、蓋体30の傾斜面31cは、貫通孔12を形成する上側壁面12cとなる。   In this manner, the inclined surface 22b of the container body 20 and the inclined surface 31c of the lid body 30 are spaced apart and arranged in parallel with the lid body 30 attached to the container body 20. The upper edge surface 22a of the container body 20 becomes the lower wall surface 12a that forms the through-hole 12, the inclined surface 22b of the container body 20 becomes the inclined surface 12b that constitutes a part of the lower wall surface 12a, and the inclined surface 12b As it moves to the accommodation space S side, it tilts downward with respect to the horizontal direction H. On the other hand, the inclined surface 31 c of the lid body 30 becomes the upper wall surface 12 c that forms the through hole 12.

ここで、保冷容器10に形成された貫通孔12は、図7に示すように、保冷容器10の側壁部11を水平方向Hから見た側面視において、保冷容器10の外部から貫通孔12を介して収容空間Sが見えず、保冷容器10の側壁部11を水平方向Hに対して斜め上方向Rから見たときに、保冷容器10の外部から貫通孔12を介して収容空間Sが見えるように、形成されている。   Here, as shown in FIG. 7, the through hole 12 formed in the cold insulation container 10 has the through hole 12 from the outside of the cold insulation container 10 in a side view when the side wall portion 11 of the cold insulation container 10 is viewed from the horizontal direction H. When the side wall 11 of the cold storage container 10 is viewed from the diagonally upward direction R with respect to the horizontal direction H, the storage space S is visible from the outside of the cold storage container 10 through the through hole 12. So that it is formed.

さらに、本実施形態では、図2に示すように、保冷容器10の収容空間Sを形成する側壁部11(容器本体20)の内壁面11a(21a)に、貫通孔12から容器本体20の底部24に向かって、貫通孔12に連続するように複数の溝部21b,21b,…が形成されている。各溝部21bは、一方側(基端側)で貫通孔12に連続しており、他方側(先端側)では、貫通孔12と容器本体20の底部24との間に、先端部21cを有している。   Further, in the present embodiment, as shown in FIG. 2, the inner wall surface 11 a (21 a) of the side wall portion 11 (container body 20) that forms the accommodation space S of the cold container 10, and the bottom portion of the container body 20 from the through hole 12. A plurality of groove portions 21 b, 21 b,... Each groove portion 21 b is continuous to the through hole 12 on one side (base end side), and has a tip end portion 21 c between the through hole 12 and the bottom portion 24 of the container body 20 on the other side (tip end side). doing.

本実施形態では、図3に示すように、容器本体20には、被着状態で形成された貫通孔12よりも下側の位置に、保冷容器10を貫通する4つの縁部貫通孔25および複数の底部貫通孔26が形成されている。本明細書では、縁部貫通孔25と底部貫通孔26を総称して下側貫通孔といい、保冷容器10の外部と収容空間Sとを連通する孔である。   In the present embodiment, as shown in FIG. 3, the container body 20 has four edge through holes 25 penetrating the cold storage container 10 at positions lower than the through holes 12 formed in the attached state, and A plurality of bottom through holes 26 are formed. In this specification, the edge through hole 25 and the bottom through hole 26 are collectively referred to as a lower through hole, and are a hole that communicates the outside of the cold storage container 10 with the accommodation space S.

縁部貫通孔25は、保冷容器10の側壁部11を構成する容器本体20の側壁部21と、容器本体20の底部24との境界部分25aに形成された貫通孔であり、各縁部貫通孔25は、上述した貫通孔12および複数の溝部21bよりも下方に形成されている。   The edge through-hole 25 is a through-hole formed in a boundary portion 25a between the side wall 21 of the container main body 20 and the bottom 24 of the container main body 20 constituting the side wall 11 of the cold insulation container 10, and passes through each edge. The hole 25 is formed below the through hole 12 and the plurality of groove portions 21b described above.

縁部貫通孔25は、図7に示すように、保冷容器10を水平方向Hから見た側面視において、保冷容器10の外部から縁部貫通孔25を介して収容空間Sが見えず、保冷容器10の底部24を鉛直方向Uから見た底面視において、保冷容器10の外部から縁部貫通孔25を介して収容空間Sが見えないように形成されている。   As shown in FIG. 7, the edge through-hole 25 cannot be seen from the outside of the cold storage container 10 through the edge through-hole 25 in the side view when the cold storage container 10 is viewed from the horizontal direction H. When the bottom 24 of the container 10 is viewed from the bottom in the vertical direction U, the housing space S is formed so as not to be seen from the outside of the cold storage container 10 through the edge through hole 25.

本実施形態では、容器本体20の側壁部21と、容器本体20の底部24との境界部分25aにおいて、水平方向Hに沿って側壁部21の肉厚分と、鉛直方向に沿って容器本体20の底部24の肉厚分を刳り貫いた形状とし、さらにこの形状から、側壁部21の収容空間に面した一部25bを刳り貫いた形状とすることにより、縁部貫通孔25が得られる。   In the present embodiment, at the boundary portion 25a between the side wall 21 of the container main body 20 and the bottom 24 of the container main body 20, the thickness of the side wall 21 along the horizontal direction H and the container main body 20 along the vertical direction. The edge through-hole 25 is obtained by forming a shape that penetrates the thickness of the bottom portion 24 of the bottom portion 24 and further forms a shape that penetrates a portion 25b facing the accommodation space of the side wall portion 21 from this shape.

このようにして、側面視では、保冷容器10(容器本体20)の底部14(底部24)の端面と、保冷容器10(容器本体20)の外壁面10c(20c)により、縁部貫通孔25を介して保冷容器10の内部である収容空間Sが見えない。一方、底面視では、保冷容器10(容器本体20)の側壁部11(21)の端面と、保冷容器10(容器本体20)の底面10b(20b)により、縁部貫通孔25を介して保冷容器10の内部である収容空間Sが見えない。   Thus, in the side view, the edge through hole 25 is formed by the end face of the bottom 14 (bottom 24) of the cold insulation container 10 (container main body 20) and the outer wall surface 10c (20c) of the cold insulation container 10 (container main body 20). The accommodation space S which is the inside of the cold storage container 10 cannot be seen through. On the other hand, in the bottom view, the cold insulation is performed via the edge through hole 25 by the end face of the side wall 11 (21) of the cold insulation container 10 (container main body 20) and the bottom face 10b (20b) of the cold insulation container 10 (container main body 20). The accommodation space S which is the inside of the container 10 cannot be seen.

一方、図3および図4(a),(b)に示すように、底部貫通孔26は、容器本体20の底部24を貫通するように複数形成されており、保冷容器10の外部と収容空間Sとを連通する孔である。容器本体20の外側底面20bは、長辺と短辺からなる矩形状の表面であり、底部貫通孔26は、外側底面20bの一対の対角線L,Lから外れた位置に、形成されている(図4(b)参照)。   On the other hand, as shown in FIGS. 3 and 4A, 4B, a plurality of bottom through-holes 26 are formed so as to penetrate the bottom 24 of the container body 20, and the outside of the cold insulation container 10 and the accommodation space It is a hole communicating with S. The outer bottom surface 20b of the container body 20 is a rectangular surface having a long side and a short side, and the bottom through-hole 26 is formed at a position deviating from the pair of diagonal lines L and L of the outer bottom surface 20b ( (Refer FIG.4 (b)).

さらに、底部貫通孔26が形成された容器本体20の外側底面20bには、保冷容器10を支持する複数の円板状の支持突起27,27,…が形成されている。本実施形態では、複数の支持突起27,27,…は、周縁支持突起27a,27a…と内側支持突起27b,27bとで構成される。   Further, on the outer bottom surface 20b of the container body 20 in which the bottom through hole 26 is formed, a plurality of disk-shaped support protrusions 27, 27,. In the present embodiment, the plurality of support protrusions 27, 27,... Are composed of peripheral support protrusions 27a, 27a, and inner support protrusions 27b, 27b.

周縁支持突起27aは、容器本体20の外側底面20bの周縁部20fに形成されている。内側支持突起27bは、容器本体20の外側底面20bの周縁部20fよりも内側に形成されている。内側支持突起27bは、容器本体20の外側底面20bの短辺の2等分線Cに沿った位置に形成されている。   The peripheral support protrusion 27 a is formed on the peripheral portion 20 f of the outer bottom surface 20 b of the container body 20. The inner support protrusion 27 b is formed on the inner side of the peripheral edge portion 20 f of the outer bottom surface 20 b of the container body 20. The inner support protrusion 27 b is formed at a position along the bisector C of the short side of the outer bottom surface 20 b of the container body 20.

このように、複数の支持突起27,27,…を設けることにより、冷却時に、支持突起27が保冷容器10の外側底面10bを支持するので、保冷容器10の底部14に形成した底部貫通孔26が塞がれることを防止することができる。この結果、保冷容器10を地面等の載置面に載置して冷却した場合であっても、底部貫通孔26による収容空間Sの冷却効率を高めることができる。   As described above, by providing the plurality of support protrusions 27, 27,..., The support protrusion 27 supports the outer bottom surface 10b of the cold storage container 10 during cooling, and therefore the bottom through-hole 26 formed in the bottom 14 of the cold storage container 10. Can be prevented from being blocked. As a result, the cooling efficiency of the accommodation space S by the bottom through-hole 26 can be improved even when the cold container 10 is placed and cooled on a placement surface such as the ground.

ここで、保冷容器10を上下方向に多段積みして、収容空間Sの被梱包物を冷凍する際には、収容空間からの冷気が流れやすくなるように底部貫通孔26を塞がないことが好ましい。しかしながら、冷凍後、例えば海外現地の消費地で、常温状態で保冷容器10を搬送および一時的に保管する場合には、収容空間の最下部から冷気が逃げやすいため、底部貫通孔26を塞ぐことが好ましい。   Here, when the cold storage containers 10 are stacked in multiple stages in the up-down direction and the packaged items in the storage space S are frozen, the bottom through hole 26 may not be blocked so that the cool air from the storage space can easily flow. preferable. However, after freezing, for example, when transporting and temporarily storing the cold storage container 10 at room temperature at a consumption place overseas, cold air easily escapes from the bottom of the accommodation space, so the bottom through hole 26 is blocked. Is preferred.

このとき、上下方向に段積みした最下段以外の保冷容器は、下位の蓋体の形状、段積み時の配置状態等を工夫することにより、底部貫通孔26を段積み時に塞ぐことができる。しかしながら、最下段の保冷容器は、地面などの載置面に直接接触するため、底部貫通孔26を塞ぐことが難しい。このため、最下段の保冷容器の収容空間の温度は、他の保冷容器の収容空間の温度よりも高くなる傾向にある。この結果、上下方向に保冷容器を多段積みした場合には、保冷容器の収容空間内の温度にばらつきが生じることがあり、保冷容器内の被梱包物の品質にばらつきが生じることがあった。   At this time, the cold storage containers other than the lowest stage stacked in the up-down direction can block the bottom through-hole 26 during stacking by devising the shape of the lower lid, the arrangement state at the time of stacking, and the like. However, since the lowermost cold storage container is in direct contact with the mounting surface such as the ground, it is difficult to close the bottom through hole 26. For this reason, the temperature of the storage space of the lowermost cold storage container tends to be higher than the temperature of the storage space of other cold storage containers. As a result, when the cold storage containers are stacked in multiple stages in the vertical direction, the temperature in the storage space of the cold storage containers may vary, and the quality of the items to be packed in the cold storage containers may vary.

ここで、保冷容器10を上下方向に多段積みして、収容空間Sの被梱包物を冷凍する際には、保冷容器10は、3段で段積みされ、最大でも6段で段積みが想定される。一方、保冷容器10を上下方向に多段積みして、常温状態で保冷容器10を搬送および一時的に保管する場合には、少なくとも7段以上の段積みがされているのが現状である。この際、段積みされる保冷容器の収容空間に梱包される被梱包物の平均的な重量は、収容空間の体積の80%の水に相当する重量である。   Here, when the cold storage containers 10 are stacked in multiple stages in the vertical direction and the packaged items in the storage space S are frozen, the cold storage containers 10 are stacked in three stages and assumed to be stacked in six stages at the maximum. Is done. On the other hand, when the cold storage containers 10 are stacked in multiple stages in the vertical direction, and the cold storage containers 10 are transported and temporarily stored at room temperature, at least seven or more stages are stacked. Under the present circumstances, the average weight of the to-be-packaged object packed in the storage space of the cold storage container stacked is a weight equivalent to 80% of the volume of the storage space.

本実施形態では、このような点を踏まえて、以下のように支持突起27を形成する。具体的には、収容空間Sの体積の80%の水に相当する重量の被梱包物を収容空間Sに収容した保冷容器10を、載置面上に上下方向に3段から6段のいずれかの選択された段数(例えば選択段数6段)で段積みして載置した際に、載置面で底部貫通孔26を塞がず、最下段の保冷容器10の支持突起27で段積みされた保冷容器を支持するように、複数の支持突起27が形成されている。   In the present embodiment, in consideration of such points, the support protrusions 27 are formed as follows. Specifically, the cold storage container 10 in which the object to be packed having a weight corresponding to 80% of the volume of the storage space S is stored in the storage space S is placed on any one of the three to six stages in the vertical direction on the placement surface. When stacking and mounting at the selected number of stages (for example, 6 selected stages), the bottom through hole 26 is not blocked by the mounting surface, and the stacking is performed by the support protrusions 27 of the cooler container 10 at the lowest stage. A plurality of support protrusions 27 are formed so as to support the cooled container.

一方、収容空間Sの体積の80%の水に相当する重量の被梱包物を収容空間Sに収容した保冷容器10を、載置面上に上下方向に選択された段数を超えた段数(例えば選択段数が6段の場合には7段以上)で段積みして載置した際に、最下段の保冷容器10の支持突起27が圧縮変形することにより、載置面で底部貫通孔26を塞ぐように、複数の支持突起27が形成されている。   On the other hand, the number of stages (for example, the number of stages exceeding the number of stages selected in the vertical direction on the placement surface is stored in the cold storage container 10 in which the object to be packed having a weight corresponding to 80% of the volume of the accommodation space S is accommodated in the accommodation space S. When the number of selected stages is 6 and 7 or more), the support protrusion 27 of the cooler container 10 at the lowest stage is compressed and deformed, so that the bottom through-hole 26 is formed on the placing surface. A plurality of support protrusions 27 are formed so as to be closed.

なお、本実施形態では、上述した「3段から6段のいずれかの選択された段数」に、その一例として6段を選択して、複数の支持突起27を形成しているが、例えば、3段、4段、または5段を選定した場合、選定された段数に応じて、上述した作用が発揮するように、複数の支持突起の形状、大きさ、材質等を選定すればよい。   In the present embodiment, the above-mentioned “number of stages selected from any one of 3 to 6 stages” is selected as an example of 6 stages, and a plurality of support protrusions 27 are formed. When 3, 4, or 5 stages are selected, the shape, size, material, and the like of the plurality of support protrusions may be selected so that the above-described effect is exhibited according to the selected number of stages.

このように支持突起27を形成することで、冷却(冷凍)時には、選択された段数6段(6段以下)で保冷容器10が上下方向に段積みされたときに、最下段の保冷容器10の支持突起27が保冷容器10の外側底面10bを支持する。これにより載置面で保冷容器10の底部14に形成した底部貫通孔26が塞がれることを防止することができ、底部貫通孔26により収容空間Sの冷却効率を高めることができる。   By forming the support protrusions 27 in this way, at the time of cooling (freezing), when the cold insulating containers 10 are stacked in the vertical direction with the selected number of stages of six (less than six), the lowermost cold insulating container 10 The support protrusions 27 support the outer bottom surface 10 b of the cold container 10. Thereby, it is possible to prevent the bottom through-hole 26 formed in the bottom 14 of the cold insulation container 10 from being blocked by the mounting surface, and the cooling efficiency of the accommodation space S can be increased by the bottom through-hole 26.

一方、常温状態で保冷容器10を一時的に搬送および保管する場合には、少なくとも6段を超えた段数(7段以上)で、保冷容器10が段積みされるので、最下段の保冷容器10の支持突起27が圧縮変形することによりつぶれ、載置面で底部貫通孔26が塞がれる。   On the other hand, when the cold storage container 10 is temporarily transported and stored at room temperature, the cold storage containers 10 are stacked in at least six stages (seven or more), so that the lowermost cold storage container 10 is stacked. The support protrusion 27 is crushed by compressive deformation, and the bottom through-hole 26 is closed by the mounting surface.

なお、「収容空間Sの体積」とは、貫通孔12、縁部貫通孔25、および底部貫通孔26を含まない空間の体積である。すなわち、「収容空間Sの体積」は、蓋体30および容器本体20の内面を連続して繋いだ空間の体積であり、貫通孔12、縁部貫通孔25、および底部貫通孔26を内側から仮想平面で塞いだ状態の収容空間の体積である。   The “volume of the accommodation space S” is the volume of the space that does not include the through hole 12, the edge through hole 25, and the bottom through hole 26. That is, the “volume of the accommodation space S” is the volume of the space that continuously connects the lid 30 and the inner surface of the container body 20, and the through hole 12, the edge through hole 25, and the bottom through hole 26 from the inside. This is the volume of the accommodation space that is closed by a virtual plane.

<冷却(冷凍)時の状態>
以下に、保冷容器10を用いた被梱包物の冷却(冷凍)時の状態について詳述する。まず、容器本体20の内部に、例えばPE袋をセットし、被梱包物を収容する。この状態で、図8に示すように、蓋体30の裏面30bの嵌合溝38に、容器本体20の嵌合突条28が嵌合するように、容器本体20に蓋体30を被着する。これにより、保冷容器10の収容空間Sに、被梱包物が収容される。
<State during cooling (freezing)>
Below, the state at the time of cooling (freezing) of the to-be-packaged goods using the cold storage container 10 is explained in full detail. First, a PE bag, for example, is set inside the container body 20 to accommodate an object to be packed. In this state, as shown in FIG. 8, the lid body 30 is attached to the container body 20 so that the fitting protrusions 28 of the container body 20 are fitted into the fitting grooves 38 on the back surface 30 b of the lid body 30. To do. As a result, the article to be packed is accommodated in the accommodation space S of the cold container 10.

次に、保冷容器10を冷凍室内で上下方向に多段積みする。この際に、上位の保冷容器10(容器本体20)の底部14(24)に形成された支持突起27が、下位の保冷容器10の蓋体30の突起収納凹部37に収容されないように段積みする。具体的には、上下方向に保冷容器10を段積みする際には、上下に位置する保冷容器10を水平方向にずらす、または、相対的に90°回転させて段積みする。これにより、上位の保冷容器10の底部に形成された底部貫通孔26が、下位の蓋体30の上面30aにより塞がれない。   Next, the cold storage containers 10 are stacked in the vertical direction in the freezer compartment. At this time, the support protrusions 27 formed on the bottom 14 (24) of the upper cold storage container 10 (container body 20) are stacked so as not to be stored in the protrusion storage recesses 37 of the lid 30 of the lower cold storage container 10. To do. Specifically, when stacking the cold storage containers 10 in the vertical direction, the cold storage containers 10 positioned in the vertical direction are shifted in the horizontal direction or relatively rotated by 90 ° and stacked. Thereby, the bottom through-hole 26 formed in the bottom of the upper cold storage container 10 is not blocked by the upper surface 30 a of the lower lid 30.

このように段積みした保冷容器10の収容空間Sに冷気を送り込み、収容空間Sに収容された被梱包物を冷却(冷凍)する。本実施形態では、図7に示すように、貫通孔12が、水平方向Hから見た側面視において、保冷容器10の外部から貫通孔12を介して収容空間Sが見えず、斜め上方向Rから見たときに、保冷容器10の外部から貫通孔12を介して収容空間Sが見えるように、形成されている。これにより、保冷容器10の外部上方から下方に向かう冷気が貫通孔12に沿って(斜め上方向Rに沿って)流れやすく、保冷容器10の外部の冷気を貫通孔12を介して収容空間Sに取り込みやすい。このような結果、迅速に保冷容器10内の被梱包物を迅速に冷却(冷凍)することができる。   Cold air is sent into the storage space S of the cold storage containers 10 stacked in this manner, and the article to be packed stored in the storage space S is cooled (frozen). In the present embodiment, as shown in FIG. 7, the through-hole 12 cannot be seen from the outside of the cold storage container 10 through the through-hole 12 in the side view as seen from the horizontal direction H, and the diagonally upward direction R Is formed so that the accommodation space S can be seen through the through hole 12 from the outside of the cold insulation container 10 when viewed from above. As a result, the cool air from the outside to the bottom of the cold storage container 10 tends to flow along the through hole 12 (along the oblique upward direction R), and the cold air outside the cold storage container 10 is accommodated through the through hole 12 in the accommodation space S. Easy to capture. As a result, it is possible to quickly cool (freeze) the object to be packed in the cold insulation container 10.

特に、本実施形態では、貫通孔12を形成する下側壁面12aは、収容空間S側に進むに従って、水平方向Hに対して下方に傾斜した傾斜面12bを有するので、冷却(冷凍)時において保冷容器10の外部から下方に向かう冷気を収容空間Sに取り込み易い。   In particular, in this embodiment, the lower wall surface 12a that forms the through hole 12 has the inclined surface 12b that is inclined downward with respect to the horizontal direction H as it advances toward the accommodation space S. It is easy to take cold air that goes downward from the outside of the cold storage container 10 into the accommodation space S.

さらに、貫通孔12から取り込まれた冷気は、側壁部11の内壁面11aに沿って形成された複数の溝部21bに沿って案内されるので、保冷容器10の収容空間S内に外部からの冷気が回り込みやすい(図2参照)。貫通孔12から取り込まれ、溝部21bに案内された冷気は、貫通孔12と容器本体の底部24との間に形成された溝部21bの先端部21cから収容空間Sの内方に流れやすくなる。これにより、より効率的に冷気を収容空間S内に送り込むことができる。   Furthermore, since the cold air taken in from the through hole 12 is guided along the plurality of groove portions 21b formed along the inner wall surface 11a of the side wall portion 11, the cold air from the outside enters the accommodation space S of the cold storage container 10. Tends to wrap around (see FIG. 2). The cold air taken in from the through hole 12 and guided to the groove portion 21b is likely to flow inwardly from the distal end portion 21c of the groove portion 21b formed between the through hole 12 and the bottom portion 24 of the container body into the accommodation space S. Thereby, cold air can be sent into the accommodation space S more efficiently.

一旦、収容空間Sに送り込まれた冷気は、収容空間Sの下方に流れる。収容空間Sの下方には、貫通孔12よりも下側において、保冷容器10を貫通する縁部貫通孔25および底部貫通孔26が形成されている。これにより、収容空間Sの冷気が、保冷容器10から外部下方に流れやすくなるため、収容空間S内の冷気による冷却効率を高めることができる。   The cool air once sent into the accommodation space S flows below the accommodation space S. Below the accommodation space S, an edge through-hole 25 and a bottom through-hole 26 penetrating the cold container 10 are formed below the through-hole 12. Thereby, since the cold air of the storage space S is likely to flow downward from the cold storage container 10, the cooling efficiency by the cold air in the storage space S can be increased.

さらに、容器本体20の外側底面20bには、保冷容器10を支持する複数の支持突起27が形成されているため、支持突起27が最下段の保冷容器10の外側底面10bを支持する。これにより、保冷容器10の底部14に形成された底部貫通孔26が塞がれることがない。この結果、保冷容器10を地面等の載置面に載置して冷却した場合であっても、底部貫通孔26による収容空間Sの冷却効率を高めることができる。   Further, since a plurality of support protrusions 27 that support the cold storage container 10 are formed on the outer bottom surface 20 b of the container body 20, the support protrusions 27 support the outer bottom surface 10 b of the lowermost cold storage container 10. Thereby, the bottom part through-hole 26 formed in the bottom part 14 of the cold insulator 10 is not blocked. As a result, the cooling efficiency of the accommodation space S by the bottom through-hole 26 can be improved even when the cold container 10 is placed and cooled on a placement surface such as the ground.

特に、支持突起27として周縁支持突起27aを設けることにより、最下段の保冷容器10の容器本体20の側壁部21を介して作用する上位の保冷容器10の荷重を安定して支持することができる。これにより、最下段の保冷容器10の底部貫通孔26から冷気が流れる空間を安定して確保することができる。   In particular, by providing the peripheral support protrusion 27 a as the support protrusion 27, it is possible to stably support the load of the upper cold storage container 10 acting through the side wall portion 21 of the container body 20 of the lowermost cold storage container 10. . Thereby, the space through which cold air flows from the bottom through hole 26 of the lowermost cold insulating container 10 can be stably secured.

さらに、保冷容器10を介して被梱包物の重量を内側支持突起27bで支持し、容器本体20の底部24の撓みを抑えることができる。この結果、容器本体20の底部24の撓みが起因して、底部貫通孔26が載置面Gにより塞がれることをより確実に回避することができる。   Furthermore, the weight of the object to be packed can be supported by the inner support protrusion 27b through the cold insulation container 10, and the bending of the bottom 24 of the container body 20 can be suppressed. As a result, it is possible to more reliably avoid the bottom through-hole 26 from being blocked by the mounting surface G due to the bending of the bottom 24 of the container body 20.

特に、長辺と短辺からなる矩形状の(容器本体20の)外側底面20bの短辺の2等分線Cに沿った位置は、被梱包物の重量により最も撓み易いため、この位置に、内側支持突起27bを形成することで、このような撓みをより確実に抑えることができる。   In particular, since the position along the bisector C of the short side of the outer bottom surface 20b of the rectangular shape (the container body 20) having the long side and the short side is most easily bent due to the weight of the packaged object, it is at this position. By forming the inner support protrusion 27b, it is possible to more reliably suppress such bending.

また、底部貫通孔26は、外側底面20bの一対の対角線L,Lから外れた位置に、形成されているので、底部貫通孔26を設けることによる容器本体20の底部24の強度低下を抑えることができる。   Further, since the bottom through-hole 26 is formed at a position deviating from the pair of diagonal lines L, L of the outer bottom surface 20b, the strength reduction of the bottom 24 of the container body 20 due to the provision of the bottom through-hole 26 is suppressed. Can do.

<搬送・保管時>
このようにして、冷却(冷凍)された被梱包物を収容した保冷容器10を、長辺および短辺が一致するように、上下方向に7段以上段積みし、例えば海外現地の消費地などにおいて、常温状態で保冷容器10を一時的に搬送および保管することがある。
<During transportation / storage>
In this way, the cold storage container 10 containing the cooled (frozen) packaged items is stacked in seven or more levels in the vertical direction so that the long side and the short side coincide with each other. In this case, the cold container 10 may be temporarily transported and stored at room temperature.

この際、保冷容器10の外部の暖気は、保冷容器10の下方から上方に向かって流れやすいところ、上述した形状の貫通孔12を保冷容器10に設けたので、このような暖気が保冷容器10の外部から貫通孔12に沿って(斜め上方向Rに沿って)収容空間Sに入り込み難い。   At this time, the warm air outside the cold storage container 10 tends to flow upward from the lower side of the cold storage container 10. However, since the through hole 12 having the above-described shape is provided in the cold storage container 10, such warm air is generated by the cold storage container 10. It is difficult to enter the accommodation space S along the through-hole 12 (along the diagonally upward direction R) from the outside.

一方、冷却(冷凍)された被梱包物の冷気は、収容空間Sの上方から下方に向かって流れやすいところ、本実施形態では、上述した形状の貫通孔12を保冷容器10に設けたので、このような冷気が保冷容器10の収容空間Sから貫通孔12に沿って(斜め上方向Rに沿って)外部に流れ出し難い。このような結果、収容空間Sに収容された被梱包物の保冷性を高めることができる。   On the other hand, the cold air of the packaged object that has been cooled (frozen) is likely to flow downward from above the accommodation space S. In the present embodiment, since the through hole 12 having the above-described shape is provided in the cold insulation container 10, Such cold air is unlikely to flow out of the storage space S of the cold storage container 10 to the outside along the through hole 12 (in the diagonally upward direction R). As a result, it is possible to improve the cold insulation property of the packaged items accommodated in the accommodation space S.

さらに実施形態では、縁部貫通孔25は、側面視および底面視において、保冷容器10の外部から縁部貫通孔25を介して収容空間Sが見えないので、保冷容器の10外部の下方から暖気が収容空間S内に入り込み難く、収容空間Sから冷気が抜け難い。   Further, in the embodiment, the edge through-hole 25 cannot be seen from the outside of the cold storage container 10 through the edge through-hole 25 in the side view and the bottom view. Does not easily enter the storage space S, and it is difficult for cold air to escape from the storage space S.

また、少なくとも7段以上、保冷容器10が段積みされたときに、上位の保冷容器10の底部14の支持突起27が、下位の蓋体30の上面30aの突起収納凹部37に収容される。これにより、最下段以外の保冷容器10の底部14の底部貫通孔26は、下位の保冷容器10の蓋体30の上面により塞がれる。   Further, when the cold storage containers 10 are stacked in at least seven steps, the support protrusions 27 on the bottom 14 of the upper cold storage container 10 are received in the protrusion storage recesses 37 on the upper surface 30a of the lower cover 30. Thereby, the bottom through-hole 26 of the bottom 14 of the cold insulating container 10 other than the lowermost stage is closed by the upper surface of the lid 30 of the lower cold insulating container 10.

一方、最下段の保冷容器10の支持突起27は、圧縮変形することにより潰れ、載置面で底部貫通孔26が塞がれる。このようにして、下方に流れやすい冷気を、最下段の保冷容器10の底部貫通孔26を介して、収容空間Sから流れ出すことを防止することができる。このような結果、最下段の保冷容器の収容空間Sの温度上昇を抑え、段積みした各保冷容器の収容空間Sの温度にばらつきを抑え、各保冷容器10の被梱包物の品質にばらつきを抑えることができる。   On the other hand, the support protrusion 27 of the lowermost cold storage container 10 is crushed by compressive deformation, and the bottom through-hole 26 is closed by the mounting surface. In this way, it is possible to prevent the cool air that tends to flow downward from flowing out of the accommodation space S through the bottom through hole 26 of the lowermost cold insulating container 10. As a result, the temperature rise of the storage space S of the lowermost cold storage container is suppressed, the temperature of the storage space S of each cold storage container is suppressed from variation, and the quality of the packaged items of each cold storage container 10 varies. Can be suppressed.

ここで、例えば、図9(a),(b)に容器本体の変形例に示すように、貫通孔12を形成する下側壁面12aが、貫通孔12を形成する上側壁面12cよりも、保冷容器10の外部に向かって張り出すように、側壁部11に張り出し部13をさらに設けてもよい。   Here, for example, as shown in a modified example of the container body in FIGS. 9A and 9B, the lower wall surface 12 a that forms the through hole 12 is cooler than the upper wall surface 12 c that forms the through hole 12. A protruding portion 13 may be further provided on the side wall portion 11 so as to protrude toward the outside of the container 10.

側壁部11に張り出し部13を設けることにより、上面視において、貫通孔12を形成する下側壁面12aが見えるように形成されることになる。この結果、保冷容器10Aの外部からの下方に向かう冷気が下側壁面12aに溜まり易くなり、保冷容器10Aの外部からの冷気を収容空間Sに取り込み易くなる。   By providing the overhanging portion 13 on the side wall portion 11, the lower side wall surface 12 a forming the through hole 12 is formed so as to be seen in a top view. As a result, the cold air from the outside of the cold insulation container 10A toward the lower side is easily accumulated on the lower wall surface 12a, and the cold air from the outside of the cold insulation container 10A is easily taken into the accommodation space S.

なお、本実施形態では、容器本体20に、縁部貫通孔25、底部貫通孔26、および支持突起27等を設けたが、これらは必要に応じて設けられればよく、少なくとも、保冷容器10に貫通孔12が形成されていれば、保冷容器10内の被梱包物を迅速に冷却することができ、かつ、保冷容器10の収容空間Sに収容された被梱包物の保冷性を高めることができる。   In the present embodiment, the container body 20 is provided with the edge through hole 25, the bottom through hole 26, the support protrusion 27, and the like. However, these may be provided as necessary, and at least in the cold container 10. If the through hole 12 is formed, the object to be packed in the cold insulation container 10 can be quickly cooled, and the cold insulation property of the object to be packed accommodated in the accommodation space S of the cold insulation container 10 can be improved. it can.

<第2実施形態(第2発明)>
第2実施形態に係る保冷容器では、上述した図1〜図9に示す保冷容器の貫通孔の形態を含むものであり、本実施形態では、保冷容器10の貫通孔12をパラメータにより特定する。
<Second Embodiment (Second Invention)>
The cold insulation container according to the second embodiment includes the form of the through hole of the cold insulation container shown in FIGS. 1 to 9 described above, and in this embodiment, the through hole 12 of the cold insulation container 10 is specified by a parameter.

第1実施形態(第1発明)に係る保冷容器では、図7および図11(b)に示すように、保冷容器10の側壁部11を水平方向Hから見た側面視において、保冷容器10の外部から貫通孔12を介して収容空間Sが見えなかった。しかしながら、本実施形態では、以下に示すパラメータの条件を満たすことを前提に、例えば、後述する図11(a)に示すように、保冷容器10の側壁部11を水平方向Hから見た側面視において、保冷容器10の外部から貫通孔12を介して収容空間Sが見えるような貫通孔12の形状をも含む。   In the cold insulation container according to the first embodiment (first invention), as shown in FIGS. 7 and 11B, the side wall 11 of the cold insulation container 10 is viewed from the side H when viewed from the horizontal direction H. The accommodation space S was not visible from the outside through the through hole 12. However, in the present embodiment, on the assumption that the following parameter conditions are satisfied, for example, as shown in FIG. 11A described later, a side view of the side wall portion 11 of the cold insulating container 10 viewed from the horizontal direction H is shown. 3 includes the shape of the through hole 12 so that the accommodation space S can be seen from the outside of the cold storage container 10 through the through hole 12.

なお、第1実施形態と同様に、第2実施形態でも、例えば、縁部貫通孔25、底部貫通孔26、および支持突起27等を必要に応じて設けても良く、その他の構成は、第1発明に係る保冷容器10と同じであるので、詳細な説明を省略する。   As in the first embodiment, in the second embodiment, for example, the edge through hole 25, the bottom through hole 26, the support protrusion 27, and the like may be provided as necessary. Since it is the same as the cold storage container 10 which concerns on 1 invention, detailed description is abbreviate | omitted.

保冷容器10は、第1発明に係る保冷容器と同様に、容器本体20に蓋体30を被着した状態で、保冷容器10の側壁部11には、保冷容器20の外部と収容空間Sとを連通する貫通孔12が形成されている。   Similarly to the cold insulation container according to the first invention, the cold insulation container 10 has the lid 30 attached to the container main body 20, and the side wall 11 of the cold insulation container 10 has the outside of the cold insulation container 20 and the storage space S. A through-hole 12 that communicates with each other is formed.

容器本体20に蓋体30を被着し、貫通孔12のみで保冷容器10の外部と収容空間Sとを連通した連通状態で、図10に示すように、X=0.96、Y=0.58、Y=2.875X−1.975で囲まれた範囲を満たすように、貫通孔12が形成されている。   As shown in FIG. 10, X = 0.96, Y = 0 in a communication state in which the lid body 30 is attached to the container body 20 and the outside of the cold storage container 10 communicates with the accommodation space S only through the through-hole 12. .58, Y = 2.875X-1.975, the through-hole 12 is formed so that the range enclosed may be satisfy | filled.

ここで、連通状態とは、例えば、図6および図7に示す保冷容器10の縁部貫通孔25および底部貫通孔26を形成せず、4つの貫通孔12のみで保冷容器10の外部と収容空間Sとを連通した状態のことをいう。   Here, the communication state means that, for example, the edge through hole 25 and the bottom through hole 26 of the cold insulation container 10 shown in FIGS. 6 and 7 are not formed, and the outside of the cold insulation container 10 is accommodated by only the four through holes 12. A state in which the space S is communicated.

Xは、対恒温槽冷却速度比である。対恒温槽冷却速度比Xは、Vci/Vcoを演算することで得られる値である。具体的には、上述した連通状態の保冷容器10を恒温槽内に配置し、恒温槽を20℃から−10℃まで冷却速度Vco(−1.60)℃/分で冷却する冷却条件で、保冷容器10の収容空間S内の内部温度が15℃に達した時点から−5℃に達した時点までの冷却速度をVci℃/分とする。すなわち、対恒温槽冷却速度比Xは、Vci/−1.60を演算した値である。   X is the ratio of cooling rate to the constant temperature bath. The temperature chamber cooling rate ratio X is a value obtained by calculating Vci / Vco. Specifically, the cooling container 10 in the above-described communication state is placed in a thermostat, and the thermostat is cooled at a cooling rate Vco (−1.60) ° C./min from 20 ° C. to −10 ° C., The cooling rate from the time when the internal temperature in the storage space S of the cold storage container 10 reaches 15 ° C. to the time when it reaches −5 ° C. is Vci ° C./min. That is, the constant temperature bath cooling rate ratio X is a value obtained by calculating Vci / −1.60.

対恒温槽冷却速度比Xの最大値は1であり、対恒温槽冷却速度比X=1の場合には、保冷容器10の内部の冷却速度は、外部からの冷却速度と同じであり、保冷容器10は、冷気を取り込み易く冷却性能が極めて高い。しかしながら、その反面、保冷容器10から冷気が逃げやすく、外部から暖気も入り易く、保冷性能が低下する。このような観点から、対恒温槽冷却速度比X≦0.96に設定している。   The maximum value of the cooling rate ratio X for the constant temperature bath is 1, and when the cooling rate ratio X for the constant temperature bath is X = 1, the cooling rate inside the cold container 10 is the same as the cooling rate from the outside. The container 10 is easy to take in cold air and has extremely high cooling performance. However, on the other hand, it is easy for cold air to escape from the cold insulation container 10 and warm air can easily enter from the outside. From such a point of view, the constant temperature bath cooling rate ratio X ≦ 0.96 is set.

Yは、対恒温槽加熱速度比である。対恒温槽加熱速度比Yは、Vhi/Vhoを演算することで得られる値である。ここで、上述した連通状態の保冷容器10を恒温槽内に配置し、前記恒温槽を20℃から50℃まで加熱速度Vho(3.61)℃/分で加熱する加熱条件で、保冷容器10内の収容空間D内の内部温度が25℃に達した時点から45℃に達した時点までの加熱速度をVhi℃/分とする。すなわち、対恒温槽加熱速度比Yは、Vhi/3.61を演算した値である。   Y is the ratio of the heating rate to the constant temperature bath. The temperature chamber heating speed ratio Y is a value obtained by calculating Vhi / Vho. Here, the cold storage container 10 in the above-described communication state is placed in a constant temperature bath, and the constant temperature storage vessel 10 is heated under the heating conditions in which the constant temperature bath is heated from 20 ° C. to 50 ° C. at a heating rate Vho (3.61) ° C./min. The heating rate from the time when the internal temperature in the inner storage space D reaches 25 ° C. to the time when it reaches 45 ° C. is Vhi ° C./min. In other words, the constant-temperature bath heating rate ratio Y is a value obtained by calculating Vhi / 3.61.

ここで、対恒温槽加熱速度比Yの最大値も1であり、対恒温槽加熱速度比Y=1の場合には、保冷容器10の内部の加熱速度は、外部からの加熱速度と同じであり、保冷容器10内の被梱包物は、外部からの熱で即時に加熱され昇温することになる。すなわち、保冷特性を確保するためには、対恒温槽加熱速度比Yは、小さいことが好ましい。ただし、対恒温槽加熱速度比Yを小さくするように貫通孔12を形成すると、保冷容器10内の被梱包物を冷却する際に、貫通孔12を介して収容空間Sに冷気をとり込み難くなる。このような観点から、対恒温槽冷却速度比X≧0.58に設定している。   Here, the maximum value of the constant temperature chamber heating rate ratio Y is 1, and when the constant temperature chamber heating rate ratio Y = 1, the internal heating rate of the cold container 10 is the same as the external heating rate. Yes, the object to be packed in the cold insulation container 10 is immediately heated by the heat from the outside, and the temperature rises. That is, in order to ensure the cold insulation characteristics, it is preferable that the ratio of heating rate Y to the constant temperature bath is small. However, if the through-hole 12 is formed so as to reduce the heating rate ratio Y for the temperature-controlled bath, it is difficult to take cold air into the accommodation space S through the through-hole 12 when the packaged object in the cold container 10 is cooled. Become. From such a viewpoint, the constant-temperature bath cooling rate ratio X ≧ 0.58 is set.

さらに、図10の鎖線で示す、Y=2.875X−1.875の直線は、貫通孔を有しない保冷容器(後述する比較例3(図11(e))参照)に対して、貫通孔を形成したときの特性を示した直線である。貫通孔の個数または開口面積を増やすに従って、対恒温槽冷却速度比X=1、対恒温槽加熱速度比Y=1に近づく。この直線の勾配に相当する2.875は、貫通孔の個数、開口面積等に依存することが分かっており、切片に相当する1.875は、主に、貫通孔の形状に依存することが分かっている。   Furthermore, the straight line of Y = 2.875X-1.875 shown with the chain line of FIG. 10 is a through-hole with respect to the cold storage container which does not have a through-hole (refer the comparative example 3 (FIG.11 (e)) mentioned later). It is the straight line which showed the characteristic when forming. As the number of through-holes or the opening area is increased, the temperature-controlled bath cooling rate ratio X = 1 and the temperature-controlled bath heating rate ratio Y = 1 are approached. It is known that 2.875 corresponding to the slope of this straight line depends on the number of through holes, the opening area, etc., and 1.875 corresponding to the intercept mainly depends on the shape of the through hole. I know.

本実施形態では、このような観点から、被梱包物を迅速に冷却し、冷却された被梱包物の保冷性を高めることができる貫通孔の形状の要件として、Y≦2.875X−1.975を満たすように、設定した。   In this embodiment, from such a point of view, Y ≦ 2.875X−1 .. as a requirement of the shape of the through-hole that can cool the packaged item quickly and enhance the cold insulation of the cooled packaged item. It was set to satisfy 975.

以上のことから、X≦0.96、X≧0.58、かつY≦2.875X−1.975の条件を満たす、すなわち、X=0.96、Y=0.58、Y=2.875X−1.975で囲まれた範囲を満たすように、保冷容器10に貫通孔12を形成することにより、保冷容器10内の被梱包物を迅速に冷却することができ、かつ、保冷容器10の収容空間Sに収容された被梱包物の保冷性を高めることができる。   From the above, the conditions of X ≦ 0.96, X ≧ 0.58, and Y ≦ 2.875X-1.975 are satisfied, that is, X = 0.96, Y = 0.58, Y = 2. By forming the through-hole 12 in the cold insulation container 10 so as to satisfy the range surrounded by 875X-1.975, the packaged item in the cold insulation container 10 can be quickly cooled, and the cold insulation container 10 It is possible to improve the cold insulation property of the packaged items accommodated in the storage space S.

以下に、第2発明に係る実施例を以下に説明する。
〔実施例1〕
実施例1に係る保冷容器として、以下に示す発泡倍率60倍のEPS製の保冷容器を準備した。保冷容器10の外寸は、縦674mm、横375mm、高さ155mmであり、保冷容器に、図11(a)に示す貫通孔12を上述した如く4つ設けた。貫通孔12は、上述した如く、容器本体20に蓋体30を被着することにより形成される。
Examples according to the second invention will be described below.
[Example 1]
As the cold storage container according to Example 1, an EPS cold storage container having an expansion ratio of 60 times shown below was prepared. The cold storage container 10 has outer dimensions of 674 mm in length, 375 mm in width, and 155 mm in height, and four through holes 12 shown in FIG. The through-hole 12 is formed by attaching the lid 30 to the container body 20 as described above.

保冷容器10の側壁部11の肉厚は、22.5mmであり、その他の肉厚も、側壁部と略同じである。貫通孔12の外側の開口部は、高さ15mm、幅115mmであり、本実施形態では、貫通孔12を形成する上側壁面12cの一部(外側の一部)および下側壁面12aを、水平方向に対して45°で傾斜させた。   The wall thickness of the side wall part 11 of the cold insulating container 10 is 22.5 mm, and the other wall thickness is substantially the same as the side wall part. The opening on the outside of the through hole 12 has a height of 15 mm and a width of 115 mm. In this embodiment, a part of the upper wall surface 12 c (a part of the outer side) and the lower wall surface 12 a that form the through hole 12 are placed horizontally. Tilt at 45 ° to the direction.

また、上側壁面12cには、保冷容器を水平方向Hから見たときに高さ2mmの隙間が見えるように、側壁部11の中心線から収容空間S側に、水平面12gを形成した。すなわち、実施例1では、保冷容器10の側壁部11を水平方向Hから見た側面視において、保冷容器10の外部から貫通孔12を介して収容空間Sが、高さ2mm、幅115mmの範囲で見えるようになっている。すなわち、実施例1は、第1発明に係る保冷容器の実施例ではない。   Further, on the upper wall surface 12c, a horizontal surface 12g was formed on the accommodation space S side from the center line of the side wall portion 11 so that a gap of 2 mm in height can be seen when the cold storage container is viewed from the horizontal direction H. That is, in Example 1, when the side wall part 11 of the cold insulation container 10 is viewed from the side in the horizontal direction H, the accommodation space S has a height of 2 mm and a width of 115 mm from the outside of the cold insulation container 10 through the through hole 12. It can be seen at. That is, Example 1 is not an example of the cold insulation container according to the first invention.

なお、実施例1では、貫通孔12の特性を特定すべく、図6および図7に示す保冷容器10如き縁部貫通孔25および底部貫通孔26は形成されておらず、4つの貫通孔12のみで保冷容器10の外部と収容空間Sとを連通している。   In Example 1, in order to specify the characteristics of the through hole 12, the edge through hole 25 and the bottom through hole 26 as in the cold insulation container 10 shown in FIGS. 6 and 7 are not formed, and the four through holes 12 are not formed. Only the outside of the cold storage container 10 and the accommodation space S are communicated.

〔実施例2〕
実施例1と同様の保冷容器10を準備した。実施例1と相違する点は、図11(b)に示す如き形状の貫通孔12を形成した点である。具体的には、保冷容器10の側壁部11の肉厚、貫通孔12の外側の開口部は同じであり、貫通孔12を形成する上側壁面12cおよび下側壁面12aを、水平方向に対して45°で傾斜させた。
[Example 2]
A cold storage container 10 similar to that in Example 1 was prepared. The difference from the first embodiment is that a through hole 12 having a shape as shown in FIG. 11B is formed. Specifically, the thickness of the side wall portion 11 of the cold storage container 10 is the same as the opening on the outside of the through hole 12, and the upper wall surface 12c and the lower wall surface 12a forming the through hole 12 are Tilt at 45 °.

実施例2では、保冷容器10の側壁部11を水平方向Hから見た側面視において、保冷容器10の外部から貫通孔12を介して収容空間Sが、見えない。すなわち、実施例2は、第1発明に係る保冷容器の実施例にも対応する。   In the second embodiment, the storage space S cannot be seen from the outside of the cold storage container 10 through the through hole 12 in a side view when the side wall 11 of the cold storage container 10 is viewed from the horizontal direction H. That is, Example 2 corresponds to the example of the cold insulation container according to the first invention.

〔比較例1〕
実施例1と同様の保冷容器10’を準備した。実施例1と相違する点は、図11(c)に示す如き形状の貫通孔12’を形成した点である。具体的には、保冷容器10’の側壁部11’の肉厚、貫通孔12’の外側の開口部は同じであり、貫通孔12’を形成する下側壁面12aを、保冷容器10’の外側から側壁部11’の肉厚の半分の位置まで水平方向に対して45°で傾斜させ、それより収容空間S’側で、水平面12h’を形成した。
[Comparative Example 1]
A cold storage container 10 ′ similar to that in Example 1 was prepared. The difference from the first embodiment is that a through hole 12 ′ having a shape as shown in FIG. 11C is formed. Specifically, the wall thickness of the side wall portion 11 ′ of the cold insulation container 10 ′ is the same as the opening outside the through hole 12 ′, and the lower wall surface 12a that forms the through hole 12 ′ is attached to the cold insulation container 10 ′. From the outside to the half of the wall thickness of the side wall portion 11 ′, it was inclined at 45 ° with respect to the horizontal direction.

また、比較例1では、実施例1と同様に、保冷容器10’の側壁部11’を水平方向Hから見た側面視において、保冷容器10’の外部から貫通孔12’を介して収容空間S’が、高さ2mm、幅115mmの範囲で見えるようになっている。   Further, in Comparative Example 1, as in Example 1, in the side view of the side wall portion 11 ′ of the cold insulation container 10 ′ viewed from the horizontal direction H, the accommodation space is formed from the outside of the cold insulation container 10 ′ through the through hole 12 ′. S ′ is visible within a range of 2 mm in height and 115 mm in width.

なお、図11(c)〜(e)は、比較例1〜3に係る保冷容器の貫通孔を示しており、本発明に含まれないため、図11(a),(b)の部位に対応する符号の末尾には、「’」を付した。   In addition, since FIG.11 (c)-(e) has shown the through-hole of the cold storage container which concerns on Comparative Examples 1-3, and since it is not included in this invention, in the site | part of Fig.11 (a), (b) “′” Is added to the end of the corresponding code.

〔比較例2〕
実施例1と同様の保冷容器10’を準備した。実施例1と相違する点は、図11(d)に示す如き形状の貫通孔12’を形成した点である。具体的には、比較例2では、保冷容器10’の側壁部11’の肉厚、貫通孔12’の外側の開口部は同じであり、貫通孔12’を、水平方向Hに沿って形成した。したがって、比較例2では、保冷容器10’の側壁部11’を水平方向Hから見た側面視において、保冷容器10’の外部から貫通孔12’を介して収容空間Sが、高さ15mm、幅115mmの範囲で見えるようになっている。
[Comparative Example 2]
A cold storage container 10 ′ similar to that in Example 1 was prepared. The difference from the first embodiment is that a through hole 12 ′ having a shape as shown in FIG. 11D is formed. Specifically, in Comparative Example 2, the thickness of the side wall 11 ′ of the cold storage container 10 ′ is the same as the opening outside the through hole 12 ′, and the through hole 12 ′ is formed along the horizontal direction H. did. Therefore, in Comparative Example 2, in the side view of the side wall portion 11 ′ of the cold insulation container 10 ′ viewed from the horizontal direction H, the accommodation space S has a height of 15 mm through the through hole 12 ′ from the outside of the cold insulation container 10 ′. It can be seen in the range of width 115mm.

〔比較例3〕
実施例1と同様の保冷容器10’を準備した。実施例1と相違する点は、図11(e)に示すように、貫通孔を形成していない点である。
[Comparative Example 3]
A cold storage container 10 ′ similar to that in Example 1 was prepared. The difference from the first embodiment is that no through-hole is formed as shown in FIG.

<対恒温槽冷却速度比X,対恒温槽加熱速度比Yの測定>
実施例1,2、および比較例1〜3に係る保冷容器に対して、以下の手順で、対恒温槽冷却速度比X,対恒温槽加熱速度比Yを測定した。なお、この測定では、保冷容器には被梱包物は収納せず、上述した連通状態にある。
<Measurement of temperature chamber cooling rate ratio X and temperature chamber heating rate ratio Y>
With respect to the cold insulation containers according to Examples 1 and 2 and Comparative Examples 1 to 3, the constant temperature bath cooling rate ratio X and the constant temperature bath heating rate ratio Y were measured by the following procedure. In this measurement, an object to be packed is not stored in the cold container, and is in the communication state described above.

まず、保冷容器の以下の4点に温度計(ESPECMIC社製RSW−30S)を取り付け、温度推移を記録した。
(1)蓋体内面の対角線の交点(ちょうど中心)
(2)容器本体の長手側の側壁部の内壁面のうち、水平方向に2等分した位置で内天面から50mm鉛直下側の位置
(3)容器本体の長手側の側壁部の内壁面のうち、水平方向に2等分した位置で内底面から10mm鉛直上側の位置。
(4)容器本体の対角線の交点(ちょうど中心)
温度は実験中5秒毎に測定し、この4点の平均温度を保冷容器の収容空間内の内部温度とした。
First, a thermometer (RSW-30S manufactured by ESPECMIC) was attached to the following four points of the cold storage container, and the temperature transition was recorded.
(1) Intersection of the diagonal line inside the lid (just the center)
(2) Of the inner wall surface of the side wall portion on the long side of the container body, a position 50 mm vertically below the inner top surface at a position equally divided in the horizontal direction. (3) The inner wall surface of the side wall portion on the long side of the container body Among them, a position 10 mm vertically above the inner bottom surface at a position equally divided into two in the horizontal direction.
(4) Intersection of the container body diagonal (just the center)
The temperature was measured every 5 seconds during the experiment, and the average temperature of these four points was taken as the internal temperature in the storage space of the cold container.

ESPEC社製の恒温槽PR−4K(恒温槽内寸高さ1,000mm、幅1,000mm、奥行き800mm)の恒温槽の底面から約50mmの高さに網棚を設置し、保冷容器天面の対角線の交点と恒温槽底面の対角線の交点が水平位置で重なるように網棚の上に保冷容器を設置した。   A net shelf is installed at a height of about 50 mm from the bottom of the thermostatic chamber PR-4K (height of the thermostatic chamber 1,000 mm, width 1,000 mm, depth 800 mm) manufactured by ESPEC, The cold insulation container was installed on the net shelf so that the intersection of the diagonal line and the intersection of the diagonal line of the bottom of the thermostatic chamber overlap at a horizontal position.

恒温槽底面の対角線の交点から鉛直上に500mmの位置に温湿度計(ESPECMIC社製RSW−21S)を設置し、5秒毎に恒温槽内気温を測定した。   A thermohygrometer (RSW-21S manufactured by ESPECMIC) was installed vertically at a position 500 mm above the intersection of the diagonal lines on the bottom of the thermostat, and the temperature inside the thermostat was measured every 5 seconds.

温度計・温湿度計および保冷容器を設置した恒温槽PR−4Kを密閉し、恒温槽温度を20℃に設定し、1時間放置した。この間に容器内気温および恒温槽内気温は約20℃に達し平衡状態となる。   The thermostat PR-4K provided with a thermometer / temperature / humidity meter and a cold storage container was sealed, the thermostat temperature was set to 20 ° C., and left for 1 hour. During this time, the temperature inside the container and the temperature inside the thermostatic chamber reach about 20 ° C. and reach an equilibrium state.

その後、設定温度を−10℃へ変更し、1.5時間の温度推移を測定した。恒温槽内の気温は約19分で−10℃に達し、その冷却速度Vcoは−1.60℃/分であった。また、1.5時間でどの形状においても保冷容器内の気温は−10℃で平衡に達した。   Thereafter, the set temperature was changed to −10 ° C., and the temperature transition for 1.5 hours was measured. The temperature in the thermostatic chamber reached −10 ° C. in about 19 minutes, and the cooling rate Vco was −1.60 ° C./min. Moreover, the temperature in the cold storage container reached an equilibrium at −10 ° C. in any shape in 1.5 hours.

再び恒温槽の設定を20℃に戻し、1時間放置した。この間に容器内気温および恒温槽内気温は約20℃に達し平衡状態となる。   The setting of the thermostat was again returned to 20 ° C. and left for 1 hour. During this time, the temperature inside the container and the temperature inside the thermostatic chamber reach about 20 ° C. and reach an equilibrium state.

その後、恒温槽の設定温度を50℃へ変更し、1.5時間の間温度推移を測定した。恒温槽内気温は約8分で50℃に達し、その加熱速度Vhoは3.61℃/分であった。また、1.5時間でどの形状においても保冷容器内の気温は50℃で平衡に達した。なお、恒温槽PR−4Kは屋内に設置し、屋内の気温は12〜15℃であった。   Thereafter, the set temperature of the thermostatic chamber was changed to 50 ° C., and the temperature transition was measured for 1.5 hours. The temperature in the thermostatic chamber reached 50 ° C. in about 8 minutes, and the heating rate Vho was 3.61 ° C./min. Moreover, the temperature in the cold storage container reached an equilibrium at 50 ° C. in any shape in 1.5 hours. The thermostatic chamber PR-4K was installed indoors, and the indoor air temperature was 12 to 15 ° C.

得られた恒温槽・保冷容器それぞれの内気温推移から、各保冷容器に対して、次の値を算出した。冷却速度Vci(℃/分)は、15℃に達した時点から−5℃に達した時点までの経過時間(分)で温度変化(20℃)を除すことで算出した。加熱速度Vhi(℃/分)は、25℃に達した時点から45℃に達した時点までの経過時間(分)で温度変化(20℃)を除すことで算出した。   The following values were calculated for each cold storage container from the changes in the internal temperature of the obtained thermostatic chamber and cold storage container. The cooling rate Vci (° C./min) was calculated by dividing the temperature change (20 ° C.) by the elapsed time (min) from the time of reaching 15 ° C. to the time of reaching −5 ° C. The heating rate Vhi (° C./min) was calculated by dividing the temperature change (20 ° C.) by the elapsed time (min) from the time of reaching 25 ° C. to the time of reaching 45 ° C.

なお、それぞれにおいて20℃〜15℃、−5℃〜−10℃、20℃〜25℃、45℃〜50℃の区間については、恒温槽温度と容器内気温の差が小さくなり温度変化が一定ではない。今回算出に用いた区間については概ね温度変化が一定であり、速度算出が容易であるためこのような計算とした。   In each of the sections of 20 ° C. to 15 ° C., −5 ° C. to −10 ° C., 20 ° C. to 25 ° C., 45 ° C. to 50 ° C., the difference between the constant temperature bath temperature and the temperature in the container becomes small and the temperature change is constant. is not. The section used for the calculation this time is generally such that the temperature change is constant and the speed calculation is easy, so this calculation is used.

各保冷容器に対して、算出した冷却速度Vci・加熱速度Vhiより、対恒温槽冷却速度比Xおよび対恒温槽加熱速度比を算出した。対恒温槽冷却速度比Xは、保冷容器内の冷却速度Vciを恒温槽の冷却速度Vcoで除すことで算出した。対恒温槽加熱速度比Yは、保冷容器内の加熱速度Vhiを恒温槽の加熱速度Vhoで除すことで算出した。これらの値は、それぞれ保冷容器内の温度が外気からどれだけ影響を受けやすいかを表す指標となる。   For each cold storage container, the temperature-cooled bath cooling rate ratio X and the temperature-controlled bath heating rate ratio were calculated from the calculated cooling rate Vci and heating rate Vhi. The temperature chamber cooling rate ratio X was calculated by dividing the cooling rate Vci in the cold container by the cooling rate Vco of the thermostatic chamber. The constant-temperature bath heating rate ratio Y was calculated by dividing the heating rate Vhi in the cold container by the heating rate Vho of the thermostat. Each of these values is an index that represents how easily the temperature in the cold container is affected by the outside air.

実施例1,2および比較例1〜3に係る保冷容器の対恒温槽冷却速度比X,対恒温槽加熱速度比Yの測定結果を図10および表1に示す。なお、表1には、実施例1,2および比較例1〜3の貫通孔の形状を形状A〜Eとして示している。なお、形状Eは、貫通孔がなしである。   FIG. 10 and Table 1 show the measurement results of the constant temperature chamber cooling rate ratio X and the constant temperature chamber heating rate ratio Y of the cold insulation containers according to Examples 1 and 2 and Comparative Examples 1 to 3. In Table 1, the shapes of the through holes of Examples 1 and 2 and Comparative Examples 1 to 3 are shown as shapes A to E. The shape E has no through hole.

Figure 2016145081
Figure 2016145081

実施例1および2では、貫通孔12の形状AおよびBとすることにより、図10に示すように、X=0.96、Y=0.58、Y=2.875X−1.975で囲まれた範囲となり、比較例1,2では、貫通孔12’の形状CおよびDとし、比較例3では、貫通孔を設けない形状Eとすることでこれらの範囲から外れている。   In the first and second embodiments, the shapes A and B of the through-hole 12 are set so that X = 0.96, Y = 0.58, and Y = 2.875X-1.975 as shown in FIG. In Comparative Examples 1 and 2, the shapes C and D of the through-holes 12 ′ are used, and in Comparative Example 3, the shape E is not provided with the through-holes.

実施例1および2に示す貫通孔12の効果を確認するために、以下の評価試験を行った。この試験では、実施例1,実施例2の形状A,Bの貫通孔12を有した、実施例1−1〜1−3,実施例2−1〜2−3に係る保冷容器を準備した。比較例1,2の形状C,Dの貫通孔C,Dを有した比較例1−1,2−1に係る保冷容器を準備した。また、比較例3の形状Eの貫通孔を形成していない比較例3−1,比較例3−2の保冷容器を準備した。なお、保冷容器は、外寸674mm×375mm、高さ155mmであり、側壁部の肉厚は22.5mmである。なお、実施例1−1,2−1,3−1の保冷容器は、上述した実施例1,2,3の保冷容器と同じであり、比較例1−1,2−1,3−1の保冷容器は、上述した比較例1,2,3の保冷容器と同じである。   In order to confirm the effect of the through hole 12 shown in Examples 1 and 2, the following evaluation test was performed. In this test, cold storage containers according to Examples 1-1 to 1-3 and Examples 2-1 to 2-3 having the through holes 12 of the shapes A and B of Example 1 and Example 2 were prepared. . Cold storage containers according to comparative examples 1-1 and 2-1 having through holes C and D having shapes C and D of comparative examples 1 and 2 were prepared. Moreover, the cold storage container of the comparative example 3-1 and the comparative example 3-2 which did not form the through-hole of the shape E of the comparative example 3 was prepared. The cold storage container has an outer dimension of 674 mm × 375 mm and a height of 155 mm, and the thickness of the side wall portion is 22.5 mm. The cold storage containers of Examples 1-1, 2-1, and 3-1 are the same as the cold storage containers of Examples 1, 2, and 3, and Comparative Examples 1-1, 2-1, and 3-1. This cold storage container is the same as the cold storage container of Comparative Examples 1, 2, and 3 described above.

また、実施例1−2、実施例2−2、比較例3−2では、保冷容器に、図7等に示す縁部貫通孔をさらに形成した。実施例1−3、実施例2−3では、保冷容器に、図7等に示す縁部貫通孔および底部貫通孔を形成した。   Moreover, in Example 1-2, Example 2-2, and Comparative Example 3-2, the edge through-hole shown in FIG. In Example 1-3 and Example 2-3, the edge through hole and the bottom through hole shown in FIG.

<凍結評価:凍結時間の測定>
評価方法としては、各保冷容器に対して、被梱包物(内容物)の凍結時間を測定することにより、凍結評価を行った。まず、各保冷容器内に、被梱包物として15℃に温調したイカ6kgを入れ、容器本体に蓋体を被着させ、−25℃の恒温槽内に、蓋体を閉じた状態の保冷容器を設置し、経時の容器内中心部のイカの温度(箱内内容物温度)を測定した。
<Freezing evaluation: Measurement of freezing time>
As an evaluation method, freezing evaluation was performed by measuring the freezing time of the packaged items (contents) for each cold storage container. First, in each cold storage container, 6 kg of squid temperature-controlled at 15 ° C. is put as an object to be packed, a lid is attached to the container body, and the cold storage in a state where the lid is closed in a −25 ° C. constant temperature bath. The container was installed, and the temperature of the squid in the center of the container over time (the temperature of the contents in the box) was measured.

保冷容器内の測定温度が−20℃に到達した時間(イカが完全に凍結する時間)を凍結時間とした。この結果を、表2および図12(a)に示した。図12(a)は、恒温槽内の温度プロフィール、実施例2−1、比較例3−1、比較例4に係る保冷容器の箱内内容物の温度プロフィールを示している。   The time when the measured temperature in the cold container reached −20 ° C. (the time when the squid completely freezes) was defined as the freezing time. The results are shown in Table 2 and FIG. FIG. 12A shows the temperature profile of the temperature profile in the thermostatic chamber, the contents in the box of the cold insulation container according to Example 2-1, Comparative Example 3-1, and Comparative Example 4. FIG.

<解凍評価:解凍時間の測定>
評価方法としては、各保冷容器に対して、被梱包物(内容物)の解凍時間を測定することにより、解凍評価を行った。まず、各保冷容器内に、被梱包物として−25℃に温調したイカ6kgを入れ、容器本体に蓋体を被着させ、35℃の恒温槽内に、蓋体を閉じた状態の保冷容器を設置し、経時の容器内中心部のイカの温度(箱内内容物温度)を測定した。保冷容器内の測定温度が2℃に到達した時間(イカの内部が解凍する時間)を解凍時間とした。この結果を、表2および図12(b)に示した。図12(b)は、恒温槽内の温度プロフィール、実施例2−1、比較例3−1、比較例4に係る保冷容器の箱内内容物の温度プロフィールを示している。
<Thawing evaluation: measurement of thawing time>
As an evaluation method, thawing evaluation was performed by measuring the thawing time of the packaged items (contents) for each cold storage container. First, in each cold storage container, 6 kg of squid adjusted to −25 ° C. is put as an object to be packed, a lid is attached to the container body, and the cold storage in a state where the lid is closed in a constant temperature bath at 35 ° C. The container was installed, and the temperature of the squid in the center of the container over time (the temperature of the contents in the box) was measured. The time when the measured temperature in the cold container reached 2 ° C. (the time for the squid to thaw) was defined as the thawing time. The results are shown in Table 2 and FIG. FIG.12 (b) has shown the temperature profile of the temperature profile in a thermostat, the contents in the box of the cold storage container which concerns on Example 2-1, Comparative example 3-1, and Comparative example 4. FIG.

なお、図13は、実施例1−1〜1−3、実施例2−1〜2−3、比較例1−1,比較例2−1,比較例3−1,比較例3−2,比較例4に係る保冷容器の凍結時間および解凍時間の関係を示したグラフである。   FIG. 13 shows Examples 1-1 to 1-3, Examples 2-1 to 2-3, Comparative Example 1-1, Comparative Example 2-1, Comparative Example 3-1, Comparative Example 3-2. 10 is a graph showing the relationship between the freezing time and the thawing time of the cold container according to Comparative Example 4.

Figure 2016145081
Figure 2016145081

表2、図12(a)、および図13の結果からも明らかなように、実施例1−1〜1−3の如く、形状Aの貫通孔を有した保冷容器、および、実施例2−1〜2−3の如く、形状Bの貫通孔を有した保冷容器は、比較例1−1,比較例2−1,比較例3−1,比較例3−2の保冷容器に比べて、凍結時間が短い。   As is clear from the results of Table 2, FIG. 12 (a), and FIG. 13, as in Examples 1-1 to 1-3, a cold storage container having a through-hole of shape A, and Example 2- As shown in 1-2-3, the cold storage container having the through-hole of the shape B is compared with the cold storage containers of Comparative Example 1-1, Comparative Example 2-1, Comparative Example 3-1, and Comparative Example 3-2. Freezing time is short.

一方、表2、図12(b)、および図13の結果からも明らかなように、実施例1−1〜1−3の如く、形状Aの貫通孔を有した保冷容器、および、実施例2−1〜2−3の如く、形状Bの貫通孔を有した保冷容器は、比較例1−1,比較例2−1,比較例4の保冷容器に比べて、解凍時間が長い。   On the other hand, as is clear from the results of Table 2, FIG. 12 (b), and FIG. 13, as shown in Examples 1-1 to 1-3, a cold storage container having a through-hole of shape A, and Examples As shown in 2-1 to 2-3, the cold insulation container having the shape B through-hole has a longer thawing time than the cold insulation containers of Comparative Example 1-1, Comparative Example 2-1, and Comparative Example 4.

このような結果から、実施例1−1〜1−3および実施例2−1〜2−3の如く、上述した対恒温槽冷却速度比X,対恒温槽加熱速度比Yの関係を有した保冷容器は、冷却性能・保冷性能が良く、貫通孔の一部ないし全部が水平である比較例2および3は保冷性能が劣ることが確認された。   From these results, as in Examples 1-1 to 1-3 and Examples 2-1 to 2-3, there was a relationship between the above-described constant-temperature bath cooling rate ratio X and the constant-temperature bath heating rate ratio Y. It was confirmed that the cold insulation container had good cooling performance and cold insulation performance, and Comparative Examples 2 and 3 in which some or all of the through holes were horizontal had inferior cold insulation performance.

また、図13に示すように、縁部貫通孔を設けた実施例1−2の保冷容器、縁部貫通孔および底部貫通孔を設けた実施例1−3の保冷容器は、実施例1−1の保冷容器に比べて、凍結時間が短くなった。同様に、縁部貫通孔を設けた実施例2−2の保冷容器、縁部貫通孔および底部貫通孔を設けた実施例2−3の保冷容器は、実施例2−1の保冷容器に比べて、凍結時間が短くなった。これにより、保冷容器に、縁部貫通孔および底部貫通孔を設けることにより、保冷容器の冷却速度が向上と考えられる。   Further, as shown in FIG. 13, the cold insulation container of Example 1-2 provided with the edge through hole, the cold insulation container of Example 1-3 provided with the edge through hole and the bottom through hole are as shown in Example 1- The freezing time was shorter than that of No. 1 cold container. Similarly, the cold insulation container of Example 2-2 provided with the edge through hole and the cold insulation container of Example 2-3 provided with the edge through hole and the bottom through hole are compared with the cold insulation container of Example 2-1. The freezing time was shortened. Thereby, it is thought that the cooling rate of a cold storage container improves by providing an edge part through-hole and a bottom part through-hole in a cold storage container.

なお、一般に、空気は温度上昇によりその密度が減少する(−10℃:1.34kg/m,20℃:1.21kg/m,50℃:1.09kg/m)。そのため、温度の高い空気は上昇する傾向にある。また、その上昇流により自発的な空気の対流が生じ、対流による熱移動を生じることになる。実施例1−1〜1−3および実施例2−1〜2−3の保冷容器は、貫通孔の下側壁面を傾斜させ、保冷容器の外側に向けて貫通孔が上斜め45°に傾いているため、外側からの高温空気の上昇流が比較的流入しにくい傾向にある。一方で、内側の低温空気は容器内に下降流を生じるため貫通孔からの流出も生じにくい。結果、実施例1−1〜1−3および実施例2−1〜2−3の保冷容器は、冷却性能・保冷性能が良いと考えられる。 In general, the density of air decreases as the temperature rises (−10 ° C .: 1.34 kg / m 3 , 20 ° C .: 1.21 kg / m 3 , 50 ° C .: 1.09 kg / m 3 ). Therefore, high temperature air tends to rise. In addition, the upward flow causes spontaneous air convection and heat transfer by convection. In the cold insulation containers of Examples 1-1 to 1-3 and Examples 2-1 to 2-3, the lower wall surface of the through hole is inclined, and the through hole is inclined upward 45 ° toward the outside of the cold insulation container. Therefore, the upward flow of hot air from the outside tends to be relatively difficult to flow in. On the other hand, the low temperature air on the inside generates a downward flow in the container, so that the outflow from the through hole is hardly generated. As a result, the cold storage containers of Examples 1-1 to 1-3 and Examples 2-1 to 2-3 are considered to have good cooling performance and cold storage performance.

このように、貫通孔の上側壁面および下側壁面に水平面が形成されず傾斜面を有すること、すなわち、上方から下方に向かって傾斜した貫通孔が形成されていれば、このような効果を期待することができると考えられる。   In this way, if the horizontal surface is not formed on the upper wall surface and the lower wall surface of the through hole and the inclined surface is formed, that is, if the through hole inclined downward from above is formed, such an effect is expected. I think it can be done.

しかし、比較例1−1および2−1の如く、水平の貫通孔を形成した形状CやDを有した保冷容器は、上述した効果が小さく、保冷容器内外の空気の出入りが大きくなり、高温空気が流入することで保冷性能が低下すると考えられる。   However, as in Comparative Examples 1-1 and 2-1, the cold storage container having the shapes C and D in which the horizontal through holes are formed has a small effect as described above, and the air in and out of the cold storage container increases and decreases in temperature. It is considered that the cold insulation performance is lowered by the inflow of air.

以上、本発明のいくつか実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   As mentioned above, although several embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment, In the range which does not deviate from the mind of this invention described in the claim, it is various. The design can be changed.

10,10A:保冷容器、10a:保冷容器の上面、11:側壁部、12:貫通孔、12a:下側壁面、12b:傾斜面、12c:上側壁面、13:張り出し部、14:底部、20,20A:容器本体、20a:内側底面、20b:外側底面、20c:外側面、20d:開口縁、20e:開口部、21:側壁部、21a:内壁面、21b:溝部、21c:先端部、22:切欠き部、22a:上方縁面、22b:傾斜面、24:底部、25:縁部貫通孔、25a:境界部、26:底部貫通孔、27:支持突起、27a:周縁支持突起、27b:内側支持突起、28:嵌合突条、29a:指係凹部、29b:把持凹部、29c:係合凹部、30:蓋体、30a:蓋体の上面、30b:蓋体の裏面、31:突縁部、31c:下方縁面、34:補強リブ、35:補強縁部、37:突起収納凹部、39:係合凸部、C:二等分線、H:水平方向、L:対角線、S:収容空間、R:斜め上方向、U:鉛直方向 DESCRIPTION OF SYMBOLS 10,10A: Cold storage container, 10a: Upper surface of cold storage container, 11: Side wall part, 12: Through-hole, 12a: Lower side wall surface, 12b: Inclined surface, 12c: Upper wall surface, 13: Overhang part, 14: Bottom part, 20 , 20A: container body, 20a: inner bottom surface, 20b: outer bottom surface, 20c: outer surface, 20d: opening edge, 20e: opening portion, 21: side wall portion, 21a: inner wall surface, 21b: groove portion, 21c: tip portion, 22: Notch part, 22a: Upper edge surface, 22b: Inclined surface, 24: Bottom part, 25: Edge part through hole, 25a: Boundary part, 26: Bottom part through hole, 27: Support protrusion, 27a: Perimeter support protrusion, 27b: inner support protrusion, 28: fitting protrusion, 29a: finger engagement recess, 29b: gripping recess, 29c: engagement recess, 30: lid, 30a: upper surface of the lid, 30b: back surface of the lid, 31 : Protruding edge portion, 31c: lower edge surface, 34: reinforcement , 35: reinforcement edge, 37: protrusion housing recess, 39: engagement projection, C: bisecting line, H: horizontal direction, L: diagonal, S: housing space, R: diagonally upward, U: vertical direction

Claims (12)

上方に開口した開口部が形成された容器本体と、前記容器本体の前記開口部を覆うように被着自在な蓋体とを備え、前記容器本体に前記蓋体を被着した状態で、内部に被梱包物を収容する収容空間が形成される保冷容器であって、
前記容器本体に前記蓋体を被着した状態で、前記保冷容器の側壁部には、前記保冷容器の外部と前記収容空間とを連通する貫通孔が形成されており、
前記保冷容器の前記側壁部を水平方向から見た側面視において、前記保冷容器の外部から前記貫通孔を介して前記収容空間が見えず、前記保冷容器の前記側壁部を前記水平方向に対して斜め上方向から見たときに、前記保冷容器の外部から前記貫通孔を介して前記収容空間が見えるように、前記貫通孔が形成されていることを特徴とする保冷容器。
A container body formed with an opening that opens upward; and a lid that can be attached to cover the opening of the container body, with the lid attached to the container body. Is a cold storage container in which an accommodation space for accommodating an object to be packed is formed,
In the state where the lid is attached to the container main body, a through hole is formed in the side wall of the cold storage container to communicate the outside of the cold storage container and the storage space.
In the side view of the side wall portion of the cold storage container as viewed from the horizontal direction, the housing space cannot be seen from the outside of the cold storage container through the through hole, and the side wall portion of the cold storage container is positioned with respect to the horizontal direction. The cold storage container, wherein the through hole is formed so that the accommodation space can be seen through the through hole from the outside of the cold storage container when viewed obliquely from above.
上方に開口した開口部が形成された容器本体と、前記容器本体の前記開口部を覆うように被着自在な蓋体とを備え、前記容器本体に前記蓋体を被着した状態で、内部に被梱包物を収容する収容空間が形成される保冷容器であって、
前記容器本体に前記蓋体を被着した状態で、前記保冷容器の側壁部には、前記保冷容器の外部と前記収容空間とを連通する貫通孔が形成されており、前記容器本体に前記蓋体を被着し、前記貫通孔のみで前記保冷容器の外部と前記収容空間とを連通した連通状態で、X=0.96、Y=0.58、Y=2.875X−1.975で囲まれた範囲を満たすように、前記貫通孔が形成されていることを特徴とする保冷容器。
ただし、Xは、対恒温槽冷却速度比であり、前記連通状態の前記保冷容器を恒温槽内に配置し、前記恒温槽を20℃から−10℃まで冷却速度Vco(−1.60)℃/分で冷却する冷却条件で、前記収容空間内の内部温度が15℃に達した時点から−5℃に達した時点までの冷却速度をVci℃/分としたとき、X=Vci/Vcoであり、
Yは、対恒温槽加熱速度比であり、前記連通状態の前記保冷容器を恒温槽内に配置し、前記恒温槽を20℃から50℃まで加熱速度Vho(3.61)℃/分で加熱する加熱条件で、前記収容空間内の内部温度が25℃に達した時点から45℃に達した時点までの加熱速度をVhi℃/分としたとき、Y=Vhi/Vhoである。
A container body formed with an opening that opens upward; and a lid that can be attached to cover the opening of the container body, with the lid attached to the container body. Is a cold storage container in which an accommodation space for accommodating an object to be packed is formed,
In a state where the lid is attached to the container main body, a through-hole that communicates the outside of the cold storage container and the accommodation space is formed in the side wall portion of the cold storage container, and the lid is formed on the container main body. In a communication state in which the body is attached and the outside of the cold container and the accommodation space are communicated with each other only through the through hole, X = 0.96, Y = 0.58, Y = 2.875X-1.975 The cold storage container, wherein the through hole is formed so as to satisfy the enclosed range.
However, X is a cooling rate ratio with respect to a constant temperature bath, the cold storage container in the communication state is arranged in a constant temperature bath, and the constant temperature bath is cooled from 20 ° C. to −10 ° C. at a cooling rate Vco (−1.60) ° C. When the cooling rate from the time when the internal temperature in the accommodation space reaches 15 ° C. to the time when it reaches −5 ° C. is Vci ° / min under the cooling condition of cooling at / min, X = Vci / Vco Yes,
Y is the ratio of the heating rate to the constant temperature bath, the cold storage container in the communication state is arranged in the constant temperature bath, and the constant temperature bath is heated from 20 ° C. to 50 ° C. at a heating rate Vho (3.61) ° C./min. Y = Vhi / Vho where the heating rate from the time when the internal temperature in the housing space reaches 25 ° C. to the time when it reaches 45 ° C. is Vhi ° C./min.
前記貫通孔を形成する下側壁面は、前記収容空間側に進むに従って、前記水平方向に対して下方に傾斜した傾斜面を有することを特徴とする請求項1または2に記載の保冷容器。   The cold storage container according to claim 1 or 2, wherein a lower side wall surface forming the through hole has an inclined surface inclined downward with respect to the horizontal direction as it goes to the accommodation space side. 前記側壁部には、前記貫通孔を形成する下側壁面が前記貫通孔を形成する上側壁面よりも、前記保冷容器の外部に向かって張り出すように形成された張り出し部を有することを特徴とする請求項1〜3のいずれか一項に記載の保冷容器。   The side wall portion has a projecting portion formed so that a lower side wall surface forming the through hole projects outward from the upper wall surface forming the through hole. The cold storage container according to any one of claims 1 to 3. 前記収容空間を形成する前記側壁部の内壁面には、前記貫通孔から前記容器本体の底部に向かって、前記貫通孔に連続するように複数の溝部が形成されていることを特徴とする請求項1〜4のいずれか一項に記載の保冷容器。   A plurality of grooves are formed on an inner wall surface of the side wall portion forming the housing space so as to be continuous with the through hole from the through hole toward a bottom portion of the container body. Item 5. The cold storage container according to any one of Items 1 to 4. 前記溝部は、前記貫通孔と前記容器本体の底部との間に、先端部を有することを特徴とする請求項5に記載の保冷容器。   The cold storage container according to claim 5, wherein the groove portion has a tip portion between the through hole and a bottom portion of the container main body. 前記容器本体には、前記貫通孔よりも下側において、前記保冷容器を貫通する下側貫通孔が形成されていることを特徴とする請求項1〜6のいずれか一項に記載の保冷容器。   The cold storage container according to any one of claims 1 to 6, wherein a lower through hole penetrating the cold storage container is formed in the container main body below the through hole. . 前記下側貫通孔は、前記保冷容器の前記側壁部と前記保冷容器の底部との境界部分に形成された縁部貫通孔を有することを特徴とする請求項7に記載の保冷容器。   The cold storage container according to claim 7, wherein the lower through hole has an edge through hole formed at a boundary portion between the side wall portion of the cold storage container and the bottom portion of the cold storage container. 前記縁部貫通孔は、前記側面視において、前記保冷容器の外部から前記縁部貫通孔を介して前記収容空間が見えず、前記保冷容器の前記底部を鉛直方向から見た底面視において、前記保冷容器の外部から前記縁部貫通孔を介して前記収容空間が見えないように形成されていることを特徴とする請求項8に記載の保冷容器。   In the side view, the edge through hole cannot be seen through the edge through hole from the outside of the cold storage container, and the bottom view of the cold storage container viewed from the vertical direction in the bottom view, The cold storage container according to claim 8, wherein the storage space is formed so as not to be seen from the outside of the cold storage container through the edge through hole. 前記下側貫通孔は、前記容器本体の底部に複数形成された底部貫通孔を有することを特徴とする請求項7〜9のいずれか一項に記載の保冷容器。   The cold storage container according to any one of claims 7 to 9, wherein the lower through hole has a plurality of bottom through holes formed in the bottom of the container main body. 前記底部貫通孔が形成された前記容器本体の外側底面には、前記保冷容器を支持する複数の支持突起が形成されていることを特徴とする請求項10に記載の保冷容器。   The cold storage container according to claim 10, wherein a plurality of support protrusions for supporting the cold storage container are formed on an outer bottom surface of the container main body in which the bottom through hole is formed. 前記貫通孔は、前記容器本体に前記蓋体を被着した状態で、前記蓋体と前記容器本体との間に形成されていることを特徴とする請求項1〜11のいずれか一項に記載の保冷容器。   The said through-hole is formed between the said cover body and the said container main body in the state which adhered the said cover body to the said container main body, The Claim 1 characterized by the above-mentioned. The cold storage container as described.
JP2016015725A 2015-01-30 2016-01-29 Cold storage container Active JP6427124B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015017707 2015-01-30
JP2015017707 2015-01-30

Publications (2)

Publication Number Publication Date
JP2016145081A true JP2016145081A (en) 2016-08-12
JP6427124B2 JP6427124B2 (en) 2018-11-21

Family

ID=56685288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016015725A Active JP6427124B2 (en) 2015-01-30 2016-01-29 Cold storage container

Country Status (1)

Country Link
JP (1) JP6427124B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045110A (en) * 2018-09-14 2020-03-26 積水化成品工業株式会社 Heat insulating container
WO2022171246A1 (en) * 2021-02-11 2022-08-18 Viessmann Climate Solutions Se Heat-insulated storage container and method for designing a heat-insulated storage container

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148589U (en) * 1980-04-08 1981-11-09
JPS61183866U (en) * 1985-05-07 1986-11-17
JPS6432384U (en) * 1987-08-21 1989-02-28
JPH01164189U (en) * 1988-05-02 1989-11-16
US5697500A (en) * 1994-12-12 1997-12-16 Walker; David Miller Hugh Insulated storage/transport container for perishables
JP2005206213A (en) * 2004-01-23 2005-08-04 Sekisui Plastics Co Ltd Cold service insulating container made of synthetic resin foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148589U (en) * 1980-04-08 1981-11-09
JPS61183866U (en) * 1985-05-07 1986-11-17
JPS6432384U (en) * 1987-08-21 1989-02-28
JPH01164189U (en) * 1988-05-02 1989-11-16
US5697500A (en) * 1994-12-12 1997-12-16 Walker; David Miller Hugh Insulated storage/transport container for perishables
JP2005206213A (en) * 2004-01-23 2005-08-04 Sekisui Plastics Co Ltd Cold service insulating container made of synthetic resin foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045110A (en) * 2018-09-14 2020-03-26 積水化成品工業株式会社 Heat insulating container
JP7011560B2 (en) 2018-09-14 2022-01-26 積水化成品工業株式会社 Insulated container
WO2022171246A1 (en) * 2021-02-11 2022-08-18 Viessmann Climate Solutions Se Heat-insulated storage container and method for designing a heat-insulated storage container

Also Published As

Publication number Publication date
JP6427124B2 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US4781243A (en) Thermo container wall
US4936377A (en) Food storage cart with thermo wall
US4286440A (en) Compartment cooler
JP2007118972A (en) Constant temperature cold box and method for keeping cold at constant temperature
JP5337594B2 (en) Cold storage container
WO2010053781A2 (en) Reusable container
KR200471021Y1 (en) Box-type packaging which can control the internal temperature
WO2014141839A1 (en) Collapsible cold storage box
JP2016145081A (en) Cold insulating container
JP4878896B2 (en) Insulated container
KR100700361B1 (en) Method for maintaining freshing of a fruit and its fruit box
JP2018158743A (en) Heat insulation container
JP2005104567A (en) Cold-keeping container having multiple divisions
KR20130058334A (en) Multi-stack styrofoam packing and cooling containers
CN211643026U (en) Cold chain logistics transportation insulation can
JP6305301B2 (en) Multi-temperature zone container and method for forming multi-temperature zone container
US20190162461A1 (en) Isothermal container
JP3210348U (en) Cold storage container
JP4330458B2 (en) Cold container made of synthetic resin foam
JP4225157B2 (en) Cold storage box and cold storage packaging container using the same
JPS6236774Y2 (en)
KR101982638B1 (en) Superchilling packaging system for fresh delivery
JP2021046257A (en) Insert container for shipment carrier
JP2016141425A (en) Cold insulating container
KR101646059B1 (en) Hybrid container for refrigerated materials and frozen materials, and method for classificating them by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181026

R150 Certificate of patent or registration of utility model

Ref document number: 6427124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150