JP2016144251A - Control device for induction motor - Google Patents

Control device for induction motor Download PDF

Info

Publication number
JP2016144251A
JP2016144251A JP2015016600A JP2015016600A JP2016144251A JP 2016144251 A JP2016144251 A JP 2016144251A JP 2015016600 A JP2015016600 A JP 2015016600A JP 2015016600 A JP2015016600 A JP 2015016600A JP 2016144251 A JP2016144251 A JP 2016144251A
Authority
JP
Japan
Prior art keywords
current
motor
value
voltage
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015016600A
Other languages
Japanese (ja)
Other versions
JP6447183B2 (en
Inventor
菊地 寿江
Hisae Kikuchi
寿江 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015016600A priority Critical patent/JP6447183B2/en
Publication of JP2016144251A publication Critical patent/JP2016144251A/en
Application granted granted Critical
Publication of JP6447183B2 publication Critical patent/JP6447183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device capable of estimating a rotational speed in reactivation without generating brake torque during low-speed rotations of an induction motor.SOLUTION: The control device comprises: an inverter 20; current detection means 30 which detects a phase current of an induction motor 10; current regulation means 50 which calculates a voltage command value in such a manner that the current detection value is matched with a current command value; magnetic flux estimation means 90 for estimating a secondary magnetic flux by integrating a value that is obtained by subtracting a voltage drop component caused by primary resistance of the motor 10 from an output voltage corresponding value of the inverter 20; differentiation arithmetic means 100 which differentiates output of the magnetic flux estimation means twice; and rotational speed estimation means 150 which estimates a rotational speed on the basis of output of the differentiation arithmetic means. When a DC current is applied to the motor 10 in a free-run state for a short time, the estimation means 150 divides a twice differentiation result of a q-axis component of the secondary magnetic flux outputted from the differentiation arithmetic means 100 with a product of excitation inductance, an inverse of a secondary time constant and the DC current and estimates the rotational speed of the motor 10.SELECTED DRAWING: Figure 1

Description

本発明は、速度検出器を用いずに誘導電動機を電力変換器により可変速制御する、いわゆるセンサレスベクトル制御装置に関し、詳しくは、フリーラン状態にある誘導電動機を再起動する場合に誘導電動機の回転速度を推定する技術に関するものである。   The present invention relates to a so-called sensorless vector control apparatus that controls an induction motor by a power converter without using a speed detector, and more particularly, to rotate an induction motor when restarting an induction motor in a free-run state. The present invention relates to a technique for estimating speed.

誘導電動機のセンサレスベクトル制御は、電動機の小型化の要求や、ロータリーエンコーダのメンテナンス性を考慮する必要がある用途に広く用いられている。フリーラン状態の誘導電動機を再起動する場合には、再起動時のトルクショックを少なくするために、最初に回転速度を推定することが望ましい。
このように誘導電動機の再起動時に回転速度を推定する制御装置としては、例えば特許文献1に記載されたものが知られている。
Sensorless vector control of induction motors is widely used for applications that require consideration of miniaturization of motors and maintenance of rotary encoders. When restarting an induction motor in a free-run state, it is desirable to estimate the rotational speed first in order to reduce torque shock at the time of restart.
As such a control device for estimating the rotation speed when the induction motor is restarted, for example, a control device described in Patent Document 1 is known.

図4は、特許文献1に記載された制御装置の構成を示すブロック図である。
図4において、始動関連信号発生器1は、電力変換器始動信号S0,速度推定信号S1及び制御器始動信号S2を出力する。インバータ等の電力変換器2は、電力変換器始動信号S0とスイッチSWが選択した電圧指令とに基づいて制御され、直流電圧を可変電圧可変周波数の交流電圧に変換して誘導電動機10に供給する。
FIG. 4 is a block diagram showing the configuration of the control device described in Patent Document 1. As shown in FIG.
In FIG. 4, the start related signal generator 1 outputs a power converter start signal S0, a speed estimation signal S1, and a controller start signal S2. The power converter 2 such as an inverter is controlled based on the power converter start signal S0 and the voltage command selected by the switch SW, converts the DC voltage into an AC voltage having a variable voltage and a variable frequency, and supplies the AC voltage to the induction motor 10. .

予備励磁電流制御手段4は、誘導電動機10の入力電流iが所定の直流電流となるような電圧指令Vc3を出力し、二次電圧演算手段5は、誘導電動機10の入力電圧v及び入力電流iに基づいて誘導電動機10の二次電圧Vを演算する。なお、3aは電流検出器、3bは電圧検出器である。 The pre-excitation current control means 4 outputs a voltage command V c3 so that the input current i of the induction motor 10 becomes a predetermined DC current, and the secondary voltage calculation means 5 outputs the input voltage v and input current of the induction motor 10. computing the secondary voltage V 2 of the induction motor 10 on the basis to i. 3a is a current detector, and 3b is a voltage detector.

第1の速度推定手段6は、誘導電動機10の残留磁束を利用して回転角周波数ω及び二次磁束φを推定すると共に、電圧指令Vc2を生成して出力する。
また、第2の速度推定手段7は、二次電圧Vを時間積分して得た二次磁束ベクトルに基づき、誘導電動機10の回転速度に相当する回転角周波数ωを演算する。
The first speed estimation means 6 estimates the rotational angular frequency ω and the secondary magnetic flux φ 2 using the residual magnetic flux of the induction motor 10 and generates and outputs a voltage command V c2 .
The second speed estimating unit 7, based on the secondary flux vector obtained by integrating the secondary voltage V 2 times, and calculates the rotational angular frequency ω corresponding to the rotational speed of the induction motor 10.

初期磁束演算手段8は、回転角周波数ω、誘導電動機10の二次時定数T、励磁インダクタンスM、及び、速度推定信号S1が「2」となる微小時間等を用いて、二次磁束φを演算し、出力する。
制御装置9は、回転角周波数ω、二次磁束φ及び制御器始動信号S2に基づいて、電圧指令Vc1を生成する。
なお、スイッチSWは、速度推定信号S1が「0」のときに電圧指令Vc1を、同S1が「1」のときにVc2を、同S1が「2」のときにVc3を、それぞれ選択して電力変換器2に与えるように動作する。
The initial magnetic flux calculation means 8 uses the rotational angular frequency ω, the secondary time constant T 2 of the induction motor 10, the excitation inductance M, the minute time when the speed estimation signal S 1 is “2”, etc., and the secondary magnetic flux φ. 2 is calculated and output.
The control device 9 generates a voltage command V c1 based on the rotational angular frequency ω, the secondary magnetic flux φ 2 and the controller start signal S2.
It should be noted that the switch SW provides a voltage command V c1 when the speed estimation signal S1 is “0”, V c2 when the S1 is “1”, and V c3 when the S1 is “2”. It operates to select and give to the power converter 2.

この従来技術では、前記微小時間に予備励磁電流制御手段4からの電圧指令Vc3に従って誘導電動機10に直流電流を流し、電力変換器2の出力電圧vから一次抵抗電圧降下分を減算した値を積分して二次磁束Φを求め、そのベクトル軌跡を回転座標系のd−q軸平面上に描画する。ここで、d軸上に直流電流idxを流したときの二次磁束の時間変化Φdq(t)は、誘導電動機10の二次時定数T、回転角周波数ωre、直流電流idxを印加し始めてからの経過時間t、励磁インダクタンスM、虚数演算子jを用いて、数式1によって表すことができる。

Figure 2016144251
In this prior art, a direct current is passed through the induction motor 10 in accordance with the voltage command V c3 from the pre-excitation current control means 4 in the minute time, and a value obtained by subtracting the primary resistance voltage drop from the output voltage v of the power converter 2 is obtained. The secondary magnetic flux Φ is obtained by integration, and the vector locus is drawn on the dq axis plane of the rotating coordinate system. Here, the time change Φ dq (t) of the secondary magnetic flux when the direct current i dx is made to flow on the d axis is expressed by the secondary time constant T 2 , the rotational angular frequency ω re , the direct current i dx of the induction motor 10. Can be expressed by Equation 1 using the elapsed time t from the start of application of the voltage, the exciting inductance M, and the imaginary operator j.
Figure 2016144251

特許文献1によると、Φdq(t)は、tがTより十分短い場合には円軌跡を描き、その軌跡を描く回転角周波数ωreは回転速度に一致する。そこで、速度推定手段7の作用により、速度推定信号S1が「2」である微小時間内において、円の中心を始点として円軌跡上の点を終点とする2つのベクトルを求め、これら2つのベクトル間の位相差がωretに一致することに基づいて誘導電動機10の回転角周波数ωreすなわち回転速度を推定している。 According to Patent Document 1, Φ dq (t) draws a circular locus when t is sufficiently shorter than T 2 , and the rotation angular frequency ω re that draws the locus coincides with the rotation speed. Therefore, by the action of the speed estimation means 7, within a very short time when the speed estimation signal S1 is “2”, two vectors starting from the center of the circle and ending at the point on the circular locus are obtained. The rotational angular frequency ω re of the induction motor 10, that is, the rotational speed is estimated based on the fact that the phase difference between the two coincides with ω re t.

特許第3535735号公報(段落[0019]、図1等)Japanese Patent No. 3535735 (paragraph [0019], FIG. 1 etc.)

しかしながら、誘導電動機10が極めて低速で回転している場合には、二次磁束のベクトル軌跡が得られるまでの時間が長くなる。この間、従来技術では、誘導電動機10に直流電流を流したまま時間が経過してしまうため、回転速度に比例したブレーキトルクが発生するという問題があった。   However, when the induction motor 10 is rotating at an extremely low speed, the time until the vector locus of the secondary magnetic flux is obtained becomes long. In the meantime, the conventional technique has a problem that a brake torque proportional to the rotation speed is generated because the time elapses while a direct current is passed through the induction motor 10.

そこで、本発明の解決課題は、誘導電動機が特に低速でフリーラン状態となっている場合に、ブレーキトルクを発生させることなく再起動時の回転速度を推定可能とした誘導電動機の制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a control device for an induction motor that can estimate the rotational speed at the time of restart without generating brake torque when the induction motor is in a free-run state at a low speed. There is to do.

上記課題を解決するため、請求項1に係る発明は、速度検出器を用いずに誘導電動機を可変速制御する制御装置において、
直流電圧を可変電圧可変周波数の三相交流電圧に変換して前記電動機に供給する電力変換器と、
前記電動機の相電流を検出する電流検出手段と、
前記電流検出手段による電流検出値が電流指令値と一致するように電圧指令値を演算する電流調節手段と、
前記電力変換器の出力電圧相当値から前記電動機の一次抵抗による電圧降下分を減算した値を積分して前記電動機の二次磁束を推定する磁束推定手段と、
前記磁束推定手段の出力を2回微分する微分演算手段と、
前記微分演算手段の出力に基づいて前記電動機の回転速度を推定する回転速度推定手段と、を備え、
前記回転速度推定手段は、
フリーラン状態の前記電動機に前記電流指令値としての直流電流指令値に従って直流電流を短時間通流した時に、前記微分演算手段から出力される二次磁束のq軸成分の2回微分結果を前記電動機の励磁インダクタンスと二次時定数の逆数と前記直流電流との積により除算して前記電動機の回転速度を推定する手段を備えたものである。
In order to solve the above problem, an invention according to claim 1 is a control device that performs variable speed control of an induction motor without using a speed detector.
A power converter for converting a DC voltage into a three-phase AC voltage of variable voltage and variable frequency and supplying the same to the motor;
Current detecting means for detecting the phase current of the motor;
Current adjusting means for calculating a voltage command value so that a current detection value by the current detection means matches a current command value;
Magnetic flux estimating means for estimating a secondary magnetic flux of the motor by integrating a value obtained by subtracting a voltage drop due to a primary resistance of the motor from an output voltage equivalent value of the power converter;
Differential operation means for differentiating the output of the magnetic flux estimation means twice;
Rotation speed estimation means for estimating the rotation speed of the electric motor based on the output of the differential calculation means,
The rotational speed estimation means includes
When a DC current is passed through the motor in a free-run state in accordance with a DC current command value as the current command value for a short time, the second-derivative result of the q-axis component of the secondary magnetic flux output from the differential calculation means is Means for estimating the rotational speed of the motor by dividing by the product of the exciting inductance of the motor, the reciprocal of the secondary time constant, and the direct current.

請求項2に係る発明は、請求項1に記載した誘導電動機の制御装置において、前記回転速度推定手段が、前記二次磁束のd軸成分の2回微分結果を前記励磁インダクタンスと前記直流電流との積により除算した値に基づいて前記二次時定数の逆数を演算する手段を備えたものである。   According to a second aspect of the present invention, in the induction motor control device according to the first aspect, the rotational speed estimating means determines the second derivative result of the d-axis component of the secondary magnetic flux as the excitation inductance, the direct current, and the like. Means for calculating the reciprocal of the second-order time constant based on the value divided by the product of.

請求項3に係る発明は、速度検出器を用いずに誘導電動機を可変速制御する制御装置において、
直流電圧を可変電圧可変周波数の三相交流電圧に変換して前記電動機に供給する電力変換器と、前記電動機の相電流を検出する電流検出手段と、
前記電流検出手段による電流検出値が電流指令値と一致するように電圧指令値を演算する電流調節手段と、
前記電力変換器の出力電圧相当値を1回微分する微分演算手段と、
前記微分演算手段の出力に基づいて前記電動機の回転速度を推定する回転速度推定手段と、を備え、
前記回転速度推定手段は、
フリーラン状態の前記電動機に前記電流指令値としての直流電流指令値に従って直流電流を短時間通流した時に、前記微分演算手段から出力される前記出力電圧相当値のq軸成分の1回微分結果を前記電動機の励磁インダクタンスと二次時定数の逆数と前記直流電流との積により除算して前記電動機の回転速度を推定するものである。
The invention according to claim 3 is a control device that performs variable speed control of an induction motor without using a speed detector.
A power converter that converts a DC voltage into a three-phase AC voltage having a variable voltage and a variable frequency and supplies the three-phase AC voltage to the electric motor;
Current adjusting means for calculating a voltage command value so that a current detection value by the current detection means matches a current command value;
Differential operation means for differentiating the output voltage equivalent value of the power converter once;
Rotation speed estimation means for estimating the rotation speed of the electric motor based on the output of the differential calculation means,
The rotational speed estimation means includes
The result of one-time differentiation of the q-axis component of the output voltage equivalent value output from the differentiation calculation means when a direct current is passed through the motor in the free-run state for a short time according to the direct current command value as the current command value Is divided by the product of the exciting inductance of the motor, the reciprocal of the second-order time constant, and the DC current to estimate the rotational speed of the motor.

請求項4に係る発明は、請求項3に記載した誘導電動機の制御装置において、前記回転速度推定手段が、前記出力電圧相当値のd軸成分の1回微分結果を前記電動機の励磁インダクタンスと前記直流電流との積により除算した値に基づいて前記二次時定数の逆数を演算する手段を備えたものである。   According to a fourth aspect of the present invention, in the control apparatus for an induction motor according to the third aspect, the rotational speed estimating means determines the first derivative result of the d-axis component of the output voltage equivalent value and the excitation inductance of the motor. Means for calculating the reciprocal of the second-order time constant based on a value divided by the product of the direct current is provided.

請求項5に係る発明は、請求項4に記載した誘導電動機の制御装置において、前記電流調節手段を比例積分調節演算手段により構成し、前記比例積分調節演算手段による積分結果のq軸成分を前記微分演算手段により微分して前記出力電圧相当値のq軸成分の1回微分結果を求めると共に、前記比例積分調節演算手段による積分結果のd軸成分を前記微分演算手段により微分して前記出力電圧相当値のd軸成分の1回微分結果を求めるものである。   According to a fifth aspect of the present invention, in the induction motor control device according to the fourth aspect, the current adjusting means is constituted by a proportional integral adjustment calculating means, and the q-axis component of the integration result by the proportional integral adjustment calculating means is the Differentiating by the differential calculation means to obtain a single differential result of the q-axis component of the output voltage equivalent value, and differentiating the d-axis component of the integration result by the proportional integral adjustment calculation means by the differential calculation means to output the output voltage The result of one-time differentiation of the equivalent d-axis component is obtained.

請求項1に係る発明によれば、特に低速でフリーラン状態にある誘導電動機に短時間、直流電流を流した時の二次磁束の2回微分値を用いて初期速度を推定しているため、回転速度の推定演算に要する時間が短くて済む。これにより、誘導電動機を再起動する際に発生するブレーキトルクを小さくすることができる。
また、請求項2に係る発明によれば、二次時定数が温度などによって変化した場合にも、二次時定数の演算後に初期速度を推定しているため、温度変化の影響を受けずに回転速度を推定することができる。
According to the first aspect of the invention, the initial speed is estimated using the second derivative value of the secondary magnetic flux when a direct current is passed through the induction motor in a free-run state at a low speed for a short time. The time required for the rotational speed estimation calculation can be shortened. Thereby, the brake torque generated when the induction motor is restarted can be reduced.
Further, according to the invention of claim 2, even when the secondary time constant changes due to temperature or the like, the initial speed is estimated after the calculation of the secondary time constant, so that it is not affected by the temperature change. The rotational speed can be estimated.

請求項3〜5に係る発明によれば、前記磁束推定手段の代わりに、例えば電流調節手段を構成する積分器の出力を用いることができ、回転速度を推定するための制御装置の構成や演算内容を簡略化することができる。   According to the inventions according to claims 3 to 5, instead of the magnetic flux estimating means, for example, the output of the integrator constituting the current adjusting means can be used, and the configuration and calculation of the control device for estimating the rotational speed The contents can be simplified.

本発明の第1実施形態に係る制御装置の構成を示すブロック図である。1 is a block diagram showing a configuration of a control device according to a first embodiment of the present invention. 第1実施形態における二次磁束の1回微分値及び2回微分値の説明図である。It is explanatory drawing of the 1st differential value and secondary differential value of the secondary magnetic flux in 1st Embodiment. 本発明の第2実施形態に係る制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus which concerns on 2nd Embodiment of this invention. 特許文献1に記載された制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus described in patent document 1. FIG.

以下、図に沿って本発明の実施形態を説明する。
図1は、本発明の第1実施形態に係る制御装置の構成を示すブロック図である。図1において、加減算手段150d,150qは、外部から与えられた回転座標系のd軸電流指令値i ,q軸電流指令値i と、後述する三相/二相変換手段70から出力されるd軸電流検出値i,q軸電流検出値iとの偏差をそれぞれ演算する。電流調節手段50は、これらの偏差が0になるように比例積分(PI)調節演算を行い、d軸電圧指令値v ,q軸電圧指令値v を出力する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a control device according to the first embodiment of the present invention. In FIG. 1, addition / subtraction means 150d and 150q are provided from an externally applied d-axis current command value i d * and q-axis current command value i q * of a rotating coordinate system, and a three-phase / two-phase conversion means 70 described later. Deviations between the output d-axis current detection value i d and the q-axis current detection value i q are calculated. The current adjusting means 50 performs a proportional-integral (PI) adjustment calculation so that these deviations become zero, and outputs a d-axis voltage command value v d * and a q-axis voltage command value v q * .

この実施形態では、誘導電動機10がフリーラン状態であることを前提としているため、d軸電流指令値i は所定の正の直流電流指令値idx とし、q軸電流指令値i には「0」を与える。また、電流調節手段50は、誘導電動機10の二次磁束に比べて十分に速い時定数で電流指令値に電流検出値が追従するようなゲインを設定する。 In this embodiment, since it is assumed that the induction motor 10 is in a free-run state, the d-axis current command value i d * is a predetermined positive DC current command value i dx * , and the q-axis current command value i q * Is given “0”. Further, the current adjusting means 50 sets a gain such that the current detection value follows the current command value with a time constant sufficiently faster than the secondary magnetic flux of the induction motor 10.

二相/三相変換手段60は、通常の運転では、インバータ20の出力周波数に同期した回転座標系のd軸電圧指令値v ,q軸電圧指令値v を固定座標系の各相電圧指令値v ,v ,v に変換して出力するが、この実施形態では、誘導電動機10に直流電流を流すため、インバータ20の出力周波数は0[Hz]であるものとする。
インバータ20は、上記電圧指令値v ,v ,v に応じて、PWM(パルス幅変調)制御により直流電圧を三相交流電圧に変換し、誘導電動機10に供給する。
In normal operation, the two-phase / three-phase conversion means 60 converts the d-axis voltage command value v d * and the q-axis voltage command value v q * of the rotating coordinate system synchronized with the output frequency of the inverter 20 to each of the fixed coordinate systems. The phase voltage command values v u * , v v * , and v w * are converted and output. In this embodiment, since a direct current flows through the induction motor 10, the output frequency of the inverter 20 is 0 [Hz]. Shall.
The inverter 20 converts the DC voltage into a three-phase AC voltage by PWM (pulse width modulation) control according to the voltage command values v u * , v v * , and v w * , and supplies the three-phase AC voltage to the induction motor 10.

電流検出手段30は、誘導電動機10に流れる電流を検出し、三相の電流検出値i,i,iを第1の三相/二相変換手段70に出力する。また、電圧検出手段40は、インバータ20の出力電圧検出値v,v,vを第2の三相/二相変換手段80に出力する。ここで、電流、電圧の検出値は、二相分の値から三相分を換算しても良い。
なお、インバータ20の出力電圧は、交流電圧検出器を用いて実際の電圧を検出しても良いし、電圧指令値に基づいて推定しても良い。
The current detection means 30 detects the current flowing through the induction motor 10 and outputs the three-phase current detection values i u , i v , i w to the first three-phase / two-phase conversion means 70. In addition, the voltage detection means 40 outputs the output voltage detection values v u , v v , v w of the inverter 20 to the second three-phase / two-phase conversion means 80. Here, the detected values of the current and voltage may be converted from three-phase values from two-phase values.
In addition, the output voltage of the inverter 20 may detect an actual voltage using an AC voltage detector, or may be estimated based on a voltage command value.

第1,第2の三相/二相変換手段70,80は、通常の運転では、固定座標系の各検出値をインバータ20の出力周波数に同期した回転座標系の各検出値に変換するものであるが、前記同様に、ここでは周波数を0[Hz]に固定して動作させる。   The first and second three-phase / two-phase conversion means 70, 80 convert each detected value of the fixed coordinate system into each detected value of the rotating coordinate system synchronized with the output frequency of the inverter 20 in normal operation. However, in the same manner as described above, the frequency is fixed to 0 [Hz].

次に、磁束推定手段90は、数式2の演算を行って二次磁束を推定する。なお、数式2において、Φはd軸磁束、Φはq軸磁束、Rは誘導電動機10の一次抵抗であり、その他の諸量は前述した通りである。

Figure 2016144251
Next, the magnetic flux estimation means 90 estimates the secondary magnetic flux by performing the calculation of Equation 2. In Equation 2, Φ d is a d-axis magnetic flux, Φ q is a q-axis magnetic flux, R s is a primary resistance of the induction motor 10, and other various amounts are as described above.
Figure 2016144251

微分演算手段100は、d軸磁束Φ及びq軸磁束Φを用いて、以下の方法により二次磁束の2回微分値を演算する。
すなわち、微分演算手段100は、磁束推定手段90からΦ,Φが入力されると、これらのΦ,Φについて、演算周期Tの1回前における値と今回入力された値との差分をTにより除算して1回目の微分を行い、dΦ/dt,dΦ/dtを得る。一般的に、微分演算は、不要な高周波帯のノイズも含んでしまうため、1回目の微分演算後の値は適宜なローパスフィルタを通過させることが望ましい。
Differential operation means 100, using the d-axis magnetic flux [Phi d and q-axis magnetic flux [Phi q, calculates the second derivative value of the secondary flux in the following manner.
In other words, when Φ d and Φ q are input from the magnetic flux estimating means 90, the differential calculation means 100, with respect to these Φ d and Φ q , the value immediately before the calculation cycle T s and the value input this time Is divided by T s to perform first differentiation to obtain dΦ d / dt and dΦ q / dt. In general, the differential calculation also includes unnecessary high frequency band noise, so that the value after the first differential calculation is preferably passed through an appropriate low-pass filter.

図2の上段に、このようにして得られた二次磁束の1回微分値(dΦ/dt,dΦ/dt)の波形と、これらの傾きである後述の2回微分値(dΦ/dt,dΦ/dt)を示す。 In the upper part of FIG. 2, the waveform of the first derivative value (dΦ d / dt, dΦ q / dt) of the secondary magnetic flux obtained in this way and the second derivative value (d 2 ) described later, which is the inclination of these waveforms. Φ d / dt 2 , d 2 Φ q / dt 2 ).

図1のタイミング生成手段110は、図2の時刻tで電流調節手段50にd軸電流指令値i (直流電流指令値idx )が与えられてから、電流検出値が上記指令値idx にほぼ一致する時刻tから時刻tまでの僅かな期間Δtonに、微分演算手段100に向けてON信号を出力する。 The timing generation unit 110 in FIG. 1 receives the d-axis current command value i d * (DC current command value i dx * ) from the current adjustment unit 50 at time t 0 in FIG. slight period Delta] t on from time t 1 that is substantially coincident with the value i dx * until time t 2, the outputs oN signal to the differential operation means 100.

微分演算手段100は、期間Δtonにおける平均的な二次磁束の1回微分値の傾きを求め、これを二次磁束の2回微分値として出力する。すなわち、d軸磁束の2回微分値(dΦ/dt)を二次時定数逆数演算手段120に出力し、q軸磁束の2回微分値(dΦ/dt)を初期速度演算手段130に出力する。 Differential operation means 100 calculates the slope of the first derivative value of the average secondary flux in the period Delta] t on, and outputs this as the second derivative value of the secondary flux. That is, the second-order differential value (d 2 Φ d / dt 2 ) of the d- axis magnetic flux is output to the second-order time constant reciprocal computing means 120, and the second-order differential value (d 2 Φ q / dt 2 ) of the q-axis magnetic flux is output. Output to the initial speed calculation means 130.

二次時定数逆数演算手段120は、次の数式3により、二次時定数Tの逆数(=R/L)を演算し、初期速度演算手段130に入力する。なお、Rは誘導電動機10の二次抵抗、Lは二次インダクタンスである。

Figure 2016144251
The secondary time constant reciprocal computing means 120 computes the reciprocal (= R r / L r ) of the secondary time constant T 2 according to the following Equation 3 and inputs it to the initial speed computing means 130. Note that Rr is a secondary resistance of the induction motor 10, and Lr is a secondary inductance.
Figure 2016144251

また、初期速度演算手段130は、次の数式4により、フリーラン状態から起動する誘導電動機10の回転速度として、初期速度ωre0を推定する。
なお、二次時定数逆数演算手段120及び初期速度演算手段130は、請求項における回転速度推定手段160を構成している。

Figure 2016144251
Further, the initial speed calculation means 130 estimates the initial speed ω re0 as the rotational speed of the induction motor 10 that starts from the free-run state by the following mathematical formula 4.
The secondary time constant reciprocal computing means 120 and the initial speed computing means 130 constitute a rotational speed estimating means 160 in the claims.
Figure 2016144251

ここで、特許文献1に記載された従来技術によると、二次磁束は円に近い軌跡を描く。つまり、二次磁束は、軌跡を表す指数関数から成り立っているため、複数回微分可能な関数である。
このため、前述した数式1を2回微分することで次の数式5が得られる。ただし、この実施形態では、数式1における二次時定数Tに代えて、二次時定数Tの逆数=1/T=R/Lを用いている。

Figure 2016144251
Here, according to the prior art described in Patent Document 1, the secondary magnetic flux draws a locus close to a circle. That is, since the secondary magnetic flux is composed of an exponential function representing a locus, it is a function that can be differentiated multiple times.
For this reason, the following formula 5 is obtained by differentiating the above-described formula 1 twice. However, in this embodiment, instead of the secondary time constant T 2 in Equation 1, the reciprocal of the secondary time constant T 2 = 1 / T 2 = R r / L r is used.
Figure 2016144251

更に、前述したように誘導電動機10に指令値通りの直流電流を流してから僅かな期間(t≒0)では、近似的に数式6が成り立つ。

Figure 2016144251
つまり、数式3、数式4は、数式6に示される関係を二次時定数の逆数(R/L)及び回転速度ωre0について求めたものであることがわかる。 Further, as described above, Equation 6 is approximately established in a short period (t≈0) after the direct current according to the command value is supplied to the induction motor 10.
Figure 2016144251
That is, it can be seen that Equations 3 and 4 are obtained by obtaining the relationship shown in Equation 6 with respect to the reciprocal of the secondary time constant (R r / L r ) and the rotational speed ω re0 .

次に、図3を参照しつつ本発明の第2実施形態を説明する。図3は、第2実施形態に係る制御装置の構成を示すブロック図である。
この第2実施形態では、図1における電圧検出手段40、第2の三相/二相変換手段80、磁束推定手段90、微分演算手段100を除去し、代わりに、図3に示すように、PI調節演算機能を有する電流調節手段50から導出したd軸積分器の出力及びq軸積分器の出力を微分演算手段140に入力し、タイミング生成手段110が出力するON信号の期間Δtonに、d軸,q軸積分器の出力の平均的な傾きを1回微分値としてそれぞれ演算する。図3における他の構成は図1と同様であるため、重複を避けるために説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram illustrating a configuration of a control device according to the second embodiment.
In the second embodiment, the voltage detection means 40, the second three-phase / two-phase conversion means 80, the magnetic flux estimation means 90, and the differential calculation means 100 in FIG. 1 are removed, and instead, as shown in FIG. The output of the d-axis integrator and the output of the q-axis integrator derived from the current adjustment means 50 having the PI adjustment calculation function are input to the differentiation calculation means 140, and during the ON signal period Δt on output from the timing generation means 110, The average slopes of the outputs of the d-axis and q-axis integrators are calculated as differential values, respectively. Other configurations in FIG. 3 are the same as those in FIG. 1, and thus description thereof is omitted to avoid duplication.

図3の微分演算手段140から出力されるd軸積分器出力の平均的な傾きは、d軸磁束の2回微分値として二次時定数逆数演算手段120に入力され、q軸積分器出力の平均的な傾きは、q軸磁束の2回微分値として初期速度演算手段130に入力される。
ここで、誘導電動機10に直流電流を流している場合のもれ係数をσとおくと、電圧方程式は数式7となる。

Figure 2016144251
The average slope of the d-axis integrator output output from the differential calculation means 140 in FIG. 3 is input to the second-order time constant reciprocal calculation means 120 as a second-order differential value of the d-axis magnetic flux, and the q-axis integrator output The average gradient is input to the initial speed calculation means 130 as a twice differential value of the q-axis magnetic flux.
Here, when a leakage coefficient in the case where a direct current is passed through the induction motor 10 is σ, the voltage equation is expressed by Equation 7.
Figure 2016144251

また、直流電流が一定の場合、数式7を微分した結果は数式8となる。

Figure 2016144251
When the direct current is constant, the result obtained by differentiating Equation 7 is Equation 8.
Figure 2016144251

従って、数式8に示すように電圧の傾きdv/dt,dv/dtをそれぞれ二次磁束の2回微分値dΦ/dt,dΦ/dtとみなすことにより、回転速度推定手段160では、二次時定数逆数演算手段120による数式3の演算、及び、初期速度演算手段130による数式4の演算が可能になり、第1実施形態と同様に回転速度ωre0を推定することができる。
なお、この第2実施形態では、回転速度の推定に電流調節手段50のd,q軸積分器出力を用いることにより、不要なノイズ成分が演算結果に含まれないようにしている。
Therefore, by regarding the voltage gradients dv d / dt and dv q / dt as the differential values d 2 Φ d / dt 2 and d 2 Φ q / dt 2 of the secondary magnetic flux as shown in Equation 8, The rotation speed estimation means 160 can perform the calculation of Expression 3 by the secondary time constant reciprocal calculation means 120 and the calculation of Expression 4 by the initial speed calculation means 130, and can calculate the rotation speed ω re0 as in the first embodiment. Can be estimated.
In the second embodiment, unnecessary noise components are not included in the calculation result by using the d and q axis integrator outputs of the current adjusting means 50 for estimating the rotation speed.

10:誘導電動機
20:インバータ
30:電流検出手段
40:電圧検出手段
50:電流調節手段
60:二相/三相変換手段
70,80:三相/二相変換手段
90:磁束推定手段
100:微分演算手段(2回微分)
110:タイミング生成手段
120:二次時定数逆数演算手段
130:初期速度演算手段
140:微分演算手段(1回微分)
160:回転速度推定手段
10: induction motor 20: inverter 30: current detection means 40: voltage detection means 50: current adjustment means 60: two-phase / three-phase conversion means 70, 80: three-phase / two-phase conversion means 90: magnetic flux estimation means 100: differentiation Calculation means (2nd derivative)
110: Timing generation means 120: Secondary time constant reciprocal calculation means 130: Initial speed calculation means 140: Differential calculation means (one-time differentiation)
160: Rotational speed estimation means

Claims (5)

速度検出器を用いずに誘導電動機を可変速制御する制御装置において、
直流電圧を可変電圧可変周波数の三相交流電圧に変換して前記電動機に供給する電力変換器と、
前記電動機の相電流を検出する電流検出手段と、
前記電流検出手段による電流検出値が電流指令値と一致するように電圧指令値を演算する電流調節手段と、
前記電力変換器の出力電圧相当値から前記電動機の一次抵抗による電圧降下分を減算した値を積分して前記電動機の二次磁束を推定する磁束推定手段と、
前記磁束推定手段の出力を2回微分する微分演算手段と、
前記微分演算手段の出力に基づいて前記電動機の回転速度を推定する回転速度推定手段と、
を備え、
前記回転速度推定手段は、
フリーラン状態の前記電動機に前記電流指令値としての直流電流指令値に従って直流電流を短時間通流した時に、前記微分演算手段から出力される二次磁束のq軸成分の2回微分結果を前記電動機の励磁インダクタンスと二次時定数の逆数と前記直流電流との積により除算して前記電動機の回転速度を推定する手段を備えたことを特徴とする誘導電動機の制御装置。
In a control device for variable speed control of an induction motor without using a speed detector,
A power converter for converting a DC voltage into a three-phase AC voltage of variable voltage and variable frequency and supplying the same to the motor;
Current detecting means for detecting the phase current of the motor;
Current adjusting means for calculating a voltage command value so that a current detection value by the current detection means matches a current command value;
Magnetic flux estimating means for estimating a secondary magnetic flux of the motor by integrating a value obtained by subtracting a voltage drop due to a primary resistance of the motor from an output voltage equivalent value of the power converter;
Differential operation means for differentiating the output of the magnetic flux estimation means twice;
Rotation speed estimation means for estimating the rotation speed of the electric motor based on the output of the differential calculation means;
With
The rotational speed estimation means includes
When a DC current is passed through the motor in a free-run state in accordance with a DC current command value as the current command value for a short time, the second-derivative result of the q-axis component of the secondary magnetic flux output from the differential calculation means is An induction motor control apparatus comprising: means for estimating the rotational speed of the motor by dividing by the product of an exciting inductance of the motor, a reciprocal of a secondary time constant, and the direct current.
請求項1に記載した誘導電動機の制御装置において、
前記回転速度推定手段は、
前記二次磁束のd軸成分の2回微分結果を前記励磁インダクタンスと前記直流電流との積により除算した値に基づいて前記二次時定数の逆数を演算する手段を備えたことを特徴とする誘導電動機の制御装置。
In the induction motor control device according to claim 1,
The rotational speed estimation means includes
And a means for calculating a reciprocal of the secondary time constant based on a value obtained by dividing a second-order differential result of the d-axis component of the secondary magnetic flux by a product of the exciting inductance and the direct current. Induction motor controller.
速度検出器を用いずに誘導電動機を可変速制御する制御装置において、
直流電圧を可変電圧可変周波数の三相交流電圧に変換して前記電動機に供給する電力変換器と、
前記電動機の相電流を検出する電流検出手段と、
前記電流検出手段による電流検出値が電流指令値と一致するように電圧指令値を演算する電流調節手段と、
前記電力変換器の出力電圧相当値を1回微分する微分演算手段と、
前記微分演算手段の出力に基づいて前記電動機の回転速度を推定する回転速度推定手段と、
を備え、
前記回転速度推定手段は、
フリーラン状態の前記電動機に前記電流指令値としての直流電流指令値に従って直流電流を短時間通流した時に、前記微分演算手段から出力される前記出力電圧相当値のq軸成分の1回微分結果を前記電動機の励磁インダクタンスと二次時定数の逆数と前記直流電流との積により除算して前記電動機の回転速度を推定することを特徴とする誘導電動機の制御装置。
In a control device for variable speed control of an induction motor without using a speed detector,
A power converter for converting a DC voltage into a three-phase AC voltage of variable voltage and variable frequency and supplying the same to the motor;
Current detecting means for detecting the phase current of the motor;
Current adjusting means for calculating a voltage command value so that a current detection value by the current detection means matches a current command value;
Differential operation means for differentiating the output voltage equivalent value of the power converter once;
Rotation speed estimation means for estimating the rotation speed of the electric motor based on the output of the differential calculation means;
With
The rotational speed estimation means includes
The result of one-time differentiation of the q-axis component of the output voltage equivalent value output from the differentiation calculation means when a direct current is passed through the motor in the free-run state for a short time according to the direct current command value as the current command value Is divided by the product of the exciting inductance of the motor, the reciprocal of the secondary time constant, and the direct current, to estimate the rotational speed of the motor.
請求項3に記載した誘導電動機の制御装置において、
前記回転速度推定手段は、
前記出力電圧相当値のd軸成分の1回微分結果を前記電動機の励磁インダクタンスと前記直流電流との積により除算した値に基づいて前記二次時定数の逆数を演算する手段を備えたことを特徴とする誘導電動機の制御装置。
In the induction motor control device according to claim 3,
The rotational speed estimation means includes
Means for calculating a reciprocal of the second-order time constant based on a value obtained by dividing the result of one-time differentiation of the d-axis component of the output voltage equivalent value by the product of the exciting inductance of the motor and the direct current. A control device for an induction motor as a feature.
請求項4に記載した誘導電動機の制御装置において、
前記電流調節手段を比例積分調節演算手段により構成し、
前記比例積分調節演算手段による積分結果のq軸成分を前記微分演算手段により微分して前記出力電圧相当値のq軸成分の1回微分結果を求めると共に、前記比例積分調節演算手段による積分結果のd軸成分を前記微分演算手段により微分して前記出力電圧相当値のd軸成分の1回微分結果を求めることを特徴とする誘導電動機の制御装置。
In the induction motor control device according to claim 4,
The current adjusting means is constituted by proportional integral adjustment calculating means,
The q-axis component of the integration result obtained by the proportional-integral-adjustment calculating means is differentiated by the differential-calculating means to obtain a single-derivative result of the q-axis component of the output voltage equivalent value, and A control apparatus for an induction motor, wherein a d-axis component is differentiated by the differential operation means to obtain a once-differential result of the d-axis component of the output voltage equivalent value.
JP2015016600A 2015-01-30 2015-01-30 Induction motor control device Active JP6447183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016600A JP6447183B2 (en) 2015-01-30 2015-01-30 Induction motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016600A JP6447183B2 (en) 2015-01-30 2015-01-30 Induction motor control device

Publications (2)

Publication Number Publication Date
JP2016144251A true JP2016144251A (en) 2016-08-08
JP6447183B2 JP6447183B2 (en) 2019-01-09

Family

ID=56571024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016600A Active JP6447183B2 (en) 2015-01-30 2015-01-30 Induction motor control device

Country Status (1)

Country Link
JP (1) JP6447183B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107528516A (en) * 2017-10-24 2017-12-29 浙江日风电气股份有限公司 A kind of discrimination method of electric excitation synchronous motor parameter
WO2019008838A1 (en) * 2017-07-03 2019-01-10 株式会社日立製作所 Induction motor drive device and drive method
WO2020095390A1 (en) * 2018-11-07 2020-05-14 三菱電機株式会社 Motor drive device and air conditioner using same
CN114008912A (en) * 2019-12-05 2022-02-01 株式会社日立产机系统 Power conversion device
CN116648848A (en) * 2021-05-20 2023-08-25 三菱电机株式会社 Rotary machine control device, machine learning device, and estimation device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369491A (en) * 1986-09-11 1988-03-29 Fuji Electric Co Ltd Variable speed controller for induction motor
JP2007325427A (en) * 2006-06-01 2007-12-13 Fuji Electric Systems Co Ltd Speed sensorless vector control unit of induction motor
JP2010088232A (en) * 2008-10-01 2010-04-15 Fuji Electric Systems Co Ltd Controller of induction motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369491A (en) * 1986-09-11 1988-03-29 Fuji Electric Co Ltd Variable speed controller for induction motor
JP2007325427A (en) * 2006-06-01 2007-12-13 Fuji Electric Systems Co Ltd Speed sensorless vector control unit of induction motor
JP2010088232A (en) * 2008-10-01 2010-04-15 Fuji Electric Systems Co Ltd Controller of induction motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008838A1 (en) * 2017-07-03 2019-01-10 株式会社日立製作所 Induction motor drive device and drive method
CN107528516A (en) * 2017-10-24 2017-12-29 浙江日风电气股份有限公司 A kind of discrimination method of electric excitation synchronous motor parameter
WO2020095390A1 (en) * 2018-11-07 2020-05-14 三菱電機株式会社 Motor drive device and air conditioner using same
JPWO2020095390A1 (en) * 2018-11-07 2021-05-20 三菱電機株式会社 Motor drive device and air conditioner using it
CN113016131A (en) * 2018-11-07 2021-06-22 三菱电机株式会社 Motor drive device and air conditioner using the same
CN113016131B (en) * 2018-11-07 2024-01-16 三菱电机株式会社 Motor driving device and air conditioner using the same
CN114008912A (en) * 2019-12-05 2022-02-01 株式会社日立产机系统 Power conversion device
CN114008912B (en) * 2019-12-05 2023-10-24 株式会社日立产机系统 Power conversion device
CN116648848A (en) * 2021-05-20 2023-08-25 三菱电机株式会社 Rotary machine control device, machine learning device, and estimation device

Also Published As

Publication number Publication date
JP6447183B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP3611492B2 (en) Inverter control method and apparatus
JP6447183B2 (en) Induction motor control device
JP2019533409A (en) System and method for starting a synchronous motor
JP6401495B2 (en) Motor control device
WO2016121237A1 (en) Inverter control device and motor drive system
CN109923780B (en) Motor control method and motor control device
JPWO2010125637A1 (en) Power converter
JP4081135B1 (en) AC rotating machine control device
JP6241330B2 (en) Motor control device
KR100845110B1 (en) Estimating method of inertia moment for sensorless inverter
JP4583257B2 (en) AC rotating machine control device
JP2015133878A (en) Motor control device and motor control method
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
JP6248847B2 (en) Control device for permanent magnet type synchronous motor
JP2009292413A (en) Electric power steering control device
JP6556403B2 (en) Electric vehicle propulsion control device
JP6697678B2 (en) Induction motor controller
JP4032229B2 (en) AC motor control method and control apparatus
KR20020014948A (en) Vector control apparatus for induction motor
JP2007228662A (en) Controller for induction motors
JP2017085720A (en) Position sensorless control device for permanent magnet synchronous motor
JP2007274900A (en) Method and apparatus for controlling ac motor
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP7220074B2 (en) MOTOR CONTROL DEVICE AND MOTOR CONTROL METHOD
CN106877770B (en) Torque control device and torque control system for electric motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R150 Certificate of patent or registration of utility model

Ref document number: 6447183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250