JP2016141074A - Method for producing molded product - Google Patents

Method for producing molded product Download PDF

Info

Publication number
JP2016141074A
JP2016141074A JP2015019443A JP2015019443A JP2016141074A JP 2016141074 A JP2016141074 A JP 2016141074A JP 2015019443 A JP2015019443 A JP 2015019443A JP 2015019443 A JP2015019443 A JP 2015019443A JP 2016141074 A JP2016141074 A JP 2016141074A
Authority
JP
Japan
Prior art keywords
molded body
discontinuous carbon
prepreg
carbon fibers
number average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015019443A
Other languages
Japanese (ja)
Other versions
JP6558623B2 (en
JP2016141074A5 (en
Inventor
太介 島本
Tasuke Shimamoto
太介 島本
雄一 冨永
Yuichi Tominaga
雄一 冨永
祐介 今井
Yusuke Imai
祐介 今井
裕司 堀田
Yuji Hotta
裕司 堀田
修平 廣田
Shuhei Hirota
修平 廣田
絵津子 秋本
Etsuko Akimoto
絵津子 秋本
準 福井
Jun Fukui
準 福井
福井 武久
Takehisa Fukui
武久 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kurimoto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kurimoto Ltd
Priority to JP2015019443A priority Critical patent/JP6558623B2/en
Publication of JP2016141074A publication Critical patent/JP2016141074A/en
Publication of JP2016141074A5 publication Critical patent/JP2016141074A5/ja
Application granted granted Critical
Publication of JP6558623B2 publication Critical patent/JP6558623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a molded product excellent in bending characteristics.SOLUTION: A method for producing a molded product includes: a step of extrusion molding a composition containing a discontinuous carbon fiber and a thermoplastic resin to produce a prepreg; and a step of hot press molding the prepreg to produce a molded product. The discontinuous carbon fiber has a number average fiber diameter of 5 μm or more and 15 μm or less, the composition has a content of the discontinuous carbon fiber of 1 vol.% or more and 50 vol.% or less, and the prepreg has a ratio, in which an angle to the extrusion direction of the discontinuous carbon fiber is oriented in a range of 0° or more and 20°or less, of 70% or more.SELECTED DRAWING: None

Description

本発明は、成形体の製造方法、成形体及び成形体を有する物品に関する。   The present invention relates to a method for producing a molded body, a molded body, and an article having the molded body.

不連続炭素繊維及び熱可塑性樹脂を含むプリプレグは、連続炭素繊維及び熱可塑性樹脂を含むプリプレグと比較して、柔軟性に優れるため、皺及び歪みの発生を抑制すると共に、凹部又は複雑な形状を有する成形体を容易に製造することができる。   A prepreg containing discontinuous carbon fibers and a thermoplastic resin is more flexible than a prepreg containing continuous carbon fibers and a thermoplastic resin. It is possible to easily produce a molded body having the same.

しかしながら、不連続炭素繊維を十分に配向させないと、機械的特性が不十分になるという問題があった。   However, if the discontinuous carbon fibers are not sufficiently oriented, there is a problem that the mechanical properties become insufficient.

特許文献1には、平均繊維長10mm以上の不連続な炭素繊維をシート状基材に形成した後、シート状基材にマトリックス樹脂を含浸する炭素繊維強化プラスチックの製造方法が開示されている。このとき、シート状基材の形成を、カーディングにより、基材に含まれる炭素繊維の配向度の平均値が2〜10の範囲内になるように行う。   Patent Document 1 discloses a method for producing a carbon fiber reinforced plastic in which discontinuous carbon fibers having an average fiber length of 10 mm or more are formed on a sheet-like substrate, and then the sheet-like substrate is impregnated with a matrix resin. At this time, the sheet-like base material is formed by carding so that the average value of the degree of orientation of the carbon fibers contained in the base material is in the range of 2 to 10.

WO2012/165076号WO2012 / 165076

しかしながら、曲げ特性が不十分であるという問題がある。   However, there is a problem that bending characteristics are insufficient.

本発明の一態様は、上記の従来技術が有する問題に鑑み、曲げ特性に優れる成形体を提供することを目的とする。   An object of one embodiment of the present invention is to provide a molded body having excellent bending characteristics in view of the problems of the above-described conventional technology.

本発明の一態様は、成形体の製造方法において、不連続炭素繊維及び熱可塑性樹脂を含む組成物を押出成形してプリプレグを作製する工程と、該プリプレグを加熱プレス成形して成形体を作製する工程を有し、前記不連続炭素繊維は、数平均繊維径が5μm以上15μm以下であり、前記組成物は、前記不連続炭素繊維の含有量が1体積%以上50体積%以下であり、前記プリプレグは、前記不連続炭素繊維の押し出し方向に対する角度が0°以上20°以下の範囲に配向している割合が70%以上である。   One embodiment of the present invention is a method for producing a molded body, in which a step of producing a prepreg by extruding a composition containing discontinuous carbon fibers and a thermoplastic resin, and hot press molding the prepreg to produce a molded body The discontinuous carbon fiber has a number average fiber diameter of 5 μm or more and 15 μm or less, and the composition has a content of the discontinuous carbon fiber of 1 vol% or more and 50 vol% or less, The prepreg has a ratio of 70% or more in which the angle with respect to the extrusion direction of the discontinuous carbon fibers is in the range of 0 ° to 20 °.

本発明の一態様によれば、曲げ特性に優れる成形体を提供することができる。   According to one embodiment of the present invention, a molded article having excellent bending characteristics can be provided.

次に、本発明を実施するための形態を説明する。   Next, the form for implementing this invention is demonstrated.

成形体の製造方法は、不連続炭素繊維及び熱可塑性樹脂を含む組成物を押出成形してプリプレグを作製する工程と、プリプレグを加熱プレス成形して成形体を作製する工程を有する。   The method for producing a molded body includes a step of producing a prepreg by extruding a composition containing discontinuous carbon fibers and a thermoplastic resin, and a step of producing a molded body by subjecting the prepreg to hot press molding.

不連続炭素繊維は、ギロチンカッター等を用いて、連続炭素繊維を切断することにより製造することができる。   The discontinuous carbon fiber can be produced by cutting the continuous carbon fiber using a guillotine cutter or the like.

炭素繊維は、バージン繊維及びリユース・リサイクル繊維のいずれであってもよく、両者を併用してもよい。   The carbon fiber may be a virgin fiber or a reuse / recycle fiber, or both may be used in combination.

炭素繊維は、表面がサイジング剤でコーティングされている及び表面がサイジング剤でコーティングされていない繊維のいずれであってもよく、両者を併用してもよい。   The carbon fiber may be any of fibers whose surface is coated with a sizing agent and whose surface is not coated with a sizing agent, or both may be used in combination.

サイジング剤としては、熱可塑性樹脂と炭素繊維の密着性を向上させることが可能であれば、特に限定されない。   The sizing agent is not particularly limited as long as it can improve the adhesion between the thermoplastic resin and the carbon fiber.

不連続炭素繊維の数平均繊維径は、5〜15μmであり、5〜10μmであることが好ましい。不連続炭素繊維の数平均繊維径が5μm未満であると、不連続炭素繊維が折れやすくなる。一方、不連続炭素繊維の数平均繊維径が10μmを超えると、不連続炭素繊維の柔軟性が低下し、組成物及びプリプレグの成形性が低下する。   The number average fiber diameter of the discontinuous carbon fibers is 5 to 15 μm, and preferably 5 to 10 μm. When the number average fiber diameter of the discontinuous carbon fibers is less than 5 μm, the discontinuous carbon fibers are easily broken. On the other hand, when the number average fiber diameter of the discontinuous carbon fibers exceeds 10 μm, the flexibility of the discontinuous carbon fibers is lowered and the moldability of the composition and the prepreg is lowered.

組成物中の不連続炭素繊維の含有量は、1〜50体積%であり、16〜40体積%であることが好ましい。組成物中の不連続炭素繊維の含有量が1体積%以下であると、成形体の曲げ特性が低下する。一方、組成物中の不連続炭素繊維の含有量が50体積%を超えると、組成物及びプリプレグの成形性が低下する。   Content of the discontinuous carbon fiber in a composition is 1-50 volume%, and it is preferable that it is 16-40 volume%. When the content of the discontinuous carbon fibers in the composition is 1% by volume or less, the bending characteristics of the molded body are deteriorated. On the other hand, when the content of the discontinuous carbon fibers in the composition exceeds 50% by volume, the moldability of the composition and the prepreg deteriorates.

プリプレグに含まれる不連続炭素繊維の押し出し方向に対する角度が0〜20°の範囲に配向している割合は、70%以上であり、80%以上であることが好ましい。プリプレグに含まれる不連続炭素繊維の押し出し方向に対する角度が0〜20°の範囲に配向している割合が70%未満であると、成形体の曲げ特性が低下する。   The proportion of the discontinuous carbon fibers included in the prepreg that are oriented in the range of 0 to 20 ° with respect to the extrusion direction is 70% or more, and preferably 80% or more. If the proportion of the discontinuous carbon fibers contained in the prepreg is less than 70% of the angle with respect to the extrusion direction of the discontinuous carbon fibers is less than 70%, the bending properties of the molded article are deteriorated.

熱可塑性樹脂としては、特に限定されないが、ポリアミド、ポリプロピレン、ポリエチレン、ポリスチレン、アクリル樹脂、ポリエチレンテレフタレート、ポリアセタール、ポリエステル、ポリカーボネート、ポリオレフィン、ポリフェニレンサルファイド、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリアミドイミド、ポリスルホン、ABS樹脂、フッ素樹脂等が挙げられ、二種以上併用してもよい。   The thermoplastic resin is not particularly limited, but polyamide, polypropylene, polyethylene, polystyrene, acrylic resin, polyethylene terephthalate, polyacetal, polyester, polycarbonate, polyolefin, polyphenylene sulfide, polybutylene terephthalate, polyphenylene ether, polyether ether ketone, polyamideimide , Polysulfone, ABS resin, fluororesin, and the like, and two or more of them may be used in combination.

組成物は、炭素繊維及び熱可塑性樹脂を含む組成物を溶融混練することにより、作製されていてもよい。   The composition may be produced by melt-kneading a composition containing carbon fibers and a thermoplastic resin.

組成物を作製する際に用いる炭素繊維は、不連続炭素繊維及び連続炭素繊維のいずれであってもよい。   The carbon fiber used when producing the composition may be either a discontinuous carbon fiber or a continuous carbon fiber.

組成物を押出成形する際に用いる押出成形機としては、特に限定されないが、熱可塑性樹脂を軟化させるための加熱機構を備えた加圧押出機、混練機等が挙げられる。   Although it does not specifically limit as an extruder used when extruding a composition, A pressure extruder provided with the heating mechanism for softening a thermoplastic resin, a kneader, etc. are mentioned.

プリプレグを加熱プレス成形する方法としては、特に限定されないが、プリプレグを所定の方向で金型に積層した後、加熱プレス機を用いて成形する方法等が挙げられる。   The method for hot press molding the prepreg is not particularly limited, and examples thereof include a method in which the prepreg is laminated on a mold in a predetermined direction and then molded using a hot press machine.

プリプレグを金型に積層する際は、手動であってもよいし、機械を用いてもよい。   When the prepreg is laminated on the mold, it may be manual or a machine may be used.

なお、プリプレグを金型に積層する前に、延伸してもよい。これにより、成形体中の空隙の残存量を低減することができる。   Note that the prepreg may be stretched before being laminated on the mold. Thereby, the residual amount of the space | gap in a molded object can be reduced.

次に、プリプレグを所定の方向で積層する方法について説明する。   Next, a method for laminating the prepreg in a predetermined direction will be described.

例えば、n+1層目のプリプレグの押し出し方向が、n層目のプリプレグの押し出し方向に対して、平行になるように、プリプレグを積層すると、プリプレグの押し出し方向に対して、垂直な力に対する曲げ特性を向上させることができる。   For example, if the prepregs are stacked so that the extrusion direction of the (n + 1) th layer prepreg is parallel to the extrusion direction of the nth layer prepreg, the bending characteristics against the force perpendicular to the extrusion direction of the prepreg can be obtained. Can be improved.

また、n+1層目のプリプレグの押し出し方向と、n層目のプリプレグの押し出し方向の間の角度が45°となるように、プリプレグを積層すると、n層目のプリプレグの押し出し方向に対して、垂直な力に対する曲げ特性を向上させることができる。   Further, when the prepregs are laminated so that the angle between the extrusion direction of the (n + 1) -th layer prepreg and the extrusion direction of the n-th layer prepreg is 45 °, it is perpendicular to the extrusion direction of the n-th layer prepreg. The bending characteristic with respect to a special force can be improved.

さらに、n+1層目のプリプレグの押し出し方向が、n層目のプリプレグの押し出し方向に対して、垂直になるように、プリプレグを積層すると、n層目のプリプレグの押し出し方向に対して、垂直な力に対する曲げ特性を向上させることができる。   Further, when the prepregs are stacked so that the extrusion direction of the (n + 1) th layer prepreg is perpendicular to the extrusion direction of the nth prepreg, a force perpendicular to the extrusion direction of the nth prepreg is obtained. The bending characteristic with respect to can be improved.

なお、プリプレグの積層数及びn+1層目のプリプレグの押し出し方向と、n層目のプリプレグの押し出し方向の間の角度は、特に限定されない。   The angle between the number of prepregs stacked and the extrusion direction of the (n + 1) th prepreg and the extrusion direction of the nth prepreg are not particularly limited.

プリプレグを加熱プレス成形する温度は、通常、180〜350℃である。   The temperature at which the prepreg is subjected to hot press molding is usually 180 to 350 ° C.

プリプレグを加熱プレス成形する圧力は、通常、0.5〜4MPaである。   The pressure for hot press molding the prepreg is usually 0.5 to 4 MPa.

成形体に含まれる不連続炭素繊維の数平均繊維長は、0.1〜5mmであり、0.1〜4mmであることが好ましい。成形体に含まれる不連続炭素繊維の数平均繊維長が0.1mm未満であると、プリプレグに含まれる不連続炭素繊維の自由度が大きくなり、プリプレグを加熱プレス成形する際に、不連続炭素繊維の配向が乱れ、成形体の曲げ特性が低下する。一方、成形体に含まれる不連続炭素繊維の数平均繊維長が5mmを超えると、不連続炭素繊維が絡まりやすくなり、組成物の成形性が低下する。   The number average fiber length of the discontinuous carbon fibers contained in the molded body is 0.1 to 5 mm, and preferably 0.1 to 4 mm. When the number average fiber length of the discontinuous carbon fibers contained in the molded body is less than 0.1 mm, the degree of freedom of the discontinuous carbon fibers contained in the prepreg is increased, and the discontinuous carbon is formed when the prepreg is subjected to hot press molding. The fiber orientation is disturbed, and the bending properties of the molded body are deteriorated. On the other hand, when the number average fiber length of the discontinuous carbon fibers contained in the molded body exceeds 5 mm, the discontinuous carbon fibers are easily entangled and the moldability of the composition is lowered.

成形体の曲げ弾性率は、通常、15〜30GPaであり、18〜30GPaであることが好ましい。   The bending elastic modulus of the molded body is usually 15 to 30 GPa, preferably 18 to 30 GPa.

成形体の曲げ強度は、通常、250〜340MPaであり、280〜340MPaであることが好ましい。   The bending strength of the molded body is usually 250 to 340 MPa, preferably 280 to 340 MPa.

成形体の比剛性は、通常、1.0〜2.3Mmであり、1.2〜2.3Mmであることが好ましい。   The specific rigidity of the molded body is usually 1.0 to 2.3 Mm, and preferably 1.2 to 2.3 Mm.

成形体に含まれる不連続炭素繊維のプリプレグの押し出し方向に対する角度が0〜20°の範囲に配向している割合は、通常、70%以上であり、80%以上であることが好ましい。成形体に含まれる不連続炭素繊維のプリプレグの押し出し方向に対する角度が0〜20°の範囲に配向している割合が70%以上であることにより、成形体の曲げ特性をさらに向上させることができる。   The ratio in which the angle of the discontinuous carbon fibers contained in the molded body with respect to the extrusion direction of the prepreg is oriented in the range of 0 to 20 ° is usually 70% or more, and preferably 80% or more. When the proportion of the discontinuous carbon fibers contained in the molded body is 70% or more of the ratio of the angle with respect to the extrusion direction of the prepreg in the range of 0 to 20 °, the bending characteristics of the molded body can be further improved. .

成形体の厚さは、通常、1〜10mmである。   The thickness of the molded body is usually 1 to 10 mm.

なお、成形体の形状は、平面であってもよいし、曲面であってもよい。   The shape of the molded body may be a flat surface or a curved surface.

また、成形体に対して、高次の成形を繰り返してもよい。   Moreover, you may repeat high-order shaping | molding with respect to a molded object.

さらに、補強材と共に、プリプレグを加熱プレス成形してもよい。   Furthermore, you may heat-press-mold a prepreg with a reinforcing material.

成形体は、自動車等の輸送機器、電子モバイル機器、医療機器、介助用品等に適用することができる。   The molded body can be applied to transportation devices such as automobiles, electronic mobile devices, medical devices, assistance products, and the like.

以下に、実施例を示して、本発明を具体的に説明するが、本発明は、実施例により限定されない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples.

(実施例1)
二軸混練機を用いて、20体積%のチョップド炭素繊維T010−003(東レ社製)及び80体積%のポリアミド6としてのCM1017(東レ社製)からなる組成物を溶融混練し、混練物を得た。このとき、混練温度を240℃、スクリューの回転数15rpmとした。
Example 1
Using a biaxial kneader, a composition comprising 20% by volume of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.) and 80% by volume of CM1017 (manufactured by Toray Industries, Inc.) as polyamide 6 is melt-kneaded to obtain a kneaded product. Obtained. At this time, the kneading temperature was 240 ° C., and the screw rotation speed was 15 rpm.

加圧押出機を用いて、混練物を250〜280℃に加熱し、押出し比を28として、押出成形し、プリプレグを得た。プリプレグは、不連続炭素繊維の配向度が94%であった。   Using a pressure extruder, the kneaded product was heated to 250 to 280 ° C., and the extrusion ratio was 28, and extrusion molding was performed to obtain a prepreg. In the prepreg, the degree of orientation of discontinuous carbon fibers was 94%.

縦70mm、横90mmの金型に、プリプレグの押し出し方向が金型の横方向になるように、プリプレグを2層積層した後、加熱プレス機を用いて、0.6MPa、235℃で20分間成形し、厚さが4mmの成形体を得た。成形体は、不連続炭素繊維の配向度が87%、曲げ弾性率が21GPa、曲げ強度が286MPa、比剛性が1.5Mmであった。   Two layers of prepreg are laminated on a 70 mm long and 90 mm wide mold so that the extrusion direction of the prepreg is in the horizontal direction of the mold, and then molded at 0.6 MPa and 235 ° C. for 20 minutes using a hot press machine. Thus, a molded body having a thickness of 4 mm was obtained. The molded body had an orientation degree of discontinuous carbon fibers of 87%, a flexural modulus of 21 GPa, a flexural strength of 286 MPa, and a specific rigidity of 1.5 Mm.

(比較例1)
二軸混練機を用いて、20体積%のチョップド炭素繊維T010−003(東レ社製)及び80体積%のポリアミド6としてのCM1017(東レ社製)からなる組成物を溶融混練し、混練物を得た。このとき、混練温度を240℃、スクリューの回転数15rpmとした。
(Comparative Example 1)
Using a biaxial kneader, a composition comprising 20% by volume of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.) and 80% by volume of CM1017 (manufactured by Toray Industries, Inc.) as polyamide 6 is melt-kneaded to obtain a kneaded product. Obtained. At this time, the kneading temperature was 240 ° C., and the screw rotation speed was 15 rpm.

縦70mm、横90mmの金型に混練物を充填した後、加熱プレス機を用いて、0.6MPa、235℃で20分間成形し、厚さが3mmの成形体を得た。成形体は、不連続炭素繊維の数平均繊維長が0.8mm、不連続炭素繊維の配向度が38%、曲げ弾性率が11GPa、曲げ強度が154MPa、比剛性が0.9Mmであった。   After the kneaded material was filled in a metal mold having a length of 70 mm and a width of 90 mm, it was molded at 0.6 MPa and 235 ° C. for 20 minutes using a hot press machine to obtain a molded body having a thickness of 3 mm. The number average fiber length of the discontinuous carbon fibers was 0.8 mm, the degree of orientation of the discontinuous carbon fibers was 38%, the flexural modulus was 11 GPa, the flexural strength was 154 MPa, and the specific rigidity was 0.9 Mm.

(比較例2)
一軸混練機を用いて、ポリアミド6としてのCM1017(東レ社製)を2回溶融混練し、混練物を得た。このとき、混練温度を240℃、スクリューの回転数25rpmとした。
(Comparative Example 2)
Using a uniaxial kneader, CM1017 (manufactured by Toray Industries, Inc.) as polyamide 6 was melt-kneaded twice to obtain a kneaded product. At this time, the kneading temperature was 240 ° C., and the screw rotation speed was 25 rpm.

縦70mm、横90mmの金型に混練物を充填した後、加熱プレス機を用いて、1.2MPa、235℃で20分間成形し、成形体を得た。成形体は、曲げ弾性率が4GPa、曲げ強度が123MPa、比剛性が0.3Mmであった。   After the kneaded material was filled in a 70 mm long and 90 mm wide mold, it was molded at 1.2 MPa and 235 ° C. for 20 minutes using a hot press machine to obtain a molded body. The molded body had a flexural modulus of 4 GPa, a flexural strength of 123 MPa, and a specific rigidity of 0.3 Mm.

(実施例2)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が3mm、数平均繊維径が7μmの表面がサイジング剤でコーティングされているチョップド炭素繊維T008−003(東レ社製)を用いた以外は、実施例1と同様にして、厚さが4mmの成形体を得た。プリプレグは、不連続炭素繊維の配向度が85%であった。成形体は、不連続炭素繊維の配向度が80%、曲げ弾性率が18GPa、曲げ強度が291MPa、比剛性が1.4Mmであった。
(Example 2)
Instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.), chopped carbon fiber T008-003 (manufactured by Toray Industries, Inc.) having a surface with a number average fiber length of 3 mm and a number average fiber diameter of 7 μm coated with a sizing agent is used. A molded body having a thickness of 4 mm was obtained in the same manner as in Example 1 except that it was used. In the prepreg, the degree of orientation of discontinuous carbon fibers was 85%. The molded body had an orientation degree of discontinuous carbon fibers of 80%, a flexural modulus of 18 GPa, a flexural strength of 291 MPa, and a specific rigidity of 1.4 Mm.

(比較例3)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が3mm、数平均繊維径が7μmの表面がサイジング剤でコーティングされているチョップド炭素繊維T008−003(東レ社製)を用いた以外は、比較例1と同様にして、厚さが3mmの成形体を得た。成形体は、不連続炭素繊維の数平均繊維長が1.1mm、不連続炭素繊維の配向度が33%、曲げ弾性率が11GPa、曲げ強度が113MPa、比剛性が0.9Mmであった。
(Comparative Example 3)
Instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.), chopped carbon fiber T008-003 (manufactured by Toray Industries, Inc.) having a surface with a number average fiber length of 3 mm and a number average fiber diameter of 7 μm coated with a sizing agent is used. A molded body having a thickness of 3 mm was obtained in the same manner as in Comparative Example 1 except that it was used. The number average fiber length of the discontinuous carbon fiber was 1.1 mm, the degree of orientation of the discontinuous carbon fiber was 33%, the flexural modulus was 11 GPa, the bending strength was 113 MPa, and the specific rigidity was 0.9 Mm.

(実施例3)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が6mm、数平均繊維径が7μmのチョップド炭素繊維T010−006(東レ社製)を用いた以外は、実施例1と同様にして、厚さが4mmの成形体を得た。プリプレグは、不連続炭素繊維の配向度が91%であった。成形体は、不連続炭素繊維の数平均繊維長が1.9mm、不連続炭素繊維の配向度が86%、曲げ弾性率が23GPa、曲げ強度が351MPa、比剛性が1.8Mmであった。
(Example 3)
Example 1 except that chopped carbon fiber T010-006 (manufactured by Toray Industries, Inc.) having a number average fiber length of 6 mm and a number average fiber diameter of 7 μm was used instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.) Similarly, a molded body having a thickness of 4 mm was obtained. In the prepreg, the degree of orientation of the discontinuous carbon fibers was 91%. The number average fiber length of the discontinuous carbon fibers was 1.9 mm, the degree of orientation of the discontinuous carbon fibers was 86%, the flexural modulus was 23 GPa, the flexural strength was 351 MPa, and the specific rigidity was 1.8 Mm.

(比較例4)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が6mm、数平均繊維径が7μmのチョップド炭素繊維T010−006(東レ社製)を用いた以外は、比較例1と同様にして、厚さが3mmの成形体を得た。成形体は、不連続炭素繊維の数平均繊維長が2.1mm、不連続炭素繊維の配向度が35%、曲げ弾性率が12GPa、曲げ強度が120MPa、比剛性が0.8Mmであった。
(Comparative Example 4)
Comparative Example 1 except that chopped carbon fiber T010-006 (manufactured by Toray Industries, Inc.) having a number average fiber length of 6 mm and a number average fiber diameter of 7 μm was used instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.) Similarly, a molded body having a thickness of 3 mm was obtained. The number average fiber length of the discontinuous carbon fibers was 2.1 mm, the degree of orientation of the discontinuous carbon fibers was 35%, the bending elastic modulus was 12 GPa, the bending strength was 120 MPa, and the specific rigidity was 0.8 Mm.

(実施例4)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が6mm、数平均繊維径が7μmの表面がサイジング剤でコーティングされているチョップド炭素繊維T008−006(東レ社製)を用いた以外は、実施例1と同様にして、厚さが4mmの成形体を得た。プリプレグは、不連続炭素繊維の配向度が91%であった。成形体は、不連続炭素繊維の配向度が83%、曲げ弾性率が26GPa、曲げ強度が336MPa、比剛性が2.0Mmであった。
Example 4
Instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.), chopped carbon fiber T008-006 (manufactured by Toray Industries, Inc.) having a surface with a number average fiber length of 6 mm and a number average fiber diameter of 7 μm coated with a sizing agent is used. A molded body having a thickness of 4 mm was obtained in the same manner as in Example 1 except that it was used. In the prepreg, the degree of orientation of the discontinuous carbon fibers was 91%. The molded body had an orientation degree of discontinuous carbon fibers of 83%, a flexural modulus of 26 GPa, a flexural strength of 336 MPa, and a specific rigidity of 2.0 Mm.

(比較例5)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が6mm、数平均繊維径が7μmの表面がサイジング剤でコーティングされているチョップド炭素繊維T008−006(東レ社製)を用いた以外は、比較例1と同様にして、厚さが3mmの成形体を得た。成形体は、不連続炭素繊維の数平均繊維長が2.3mm、不連続炭素繊維の配向度が27%、曲げ弾性率が10GPa、曲げ強度が112MPa、比剛性が0.9Mmであった。
(Comparative Example 5)
Instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.), chopped carbon fiber T008-006 (manufactured by Toray Industries, Inc.) having a surface with a number average fiber length of 6 mm and a number average fiber diameter of 7 μm coated with a sizing agent is used. A molded body having a thickness of 3 mm was obtained in the same manner as in Comparative Example 1 except that it was used. The number average fiber length of the discontinuous carbon fiber was 2.3 mm, the degree of orientation of the discontinuous carbon fiber was 27%, the flexural modulus was 10 GPa, the flexural strength was 112 MPa, and the specific rigidity was 0.9 Mm.

(実施例5)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が12mm、数平均繊維径が7μmのチョップド炭素繊維T010−012(東レ社製)を用いた以外は、実施例1と同様にして、厚さが4mmの成形体を得た。プリプレグは、不連続炭素繊維の配向度が93%であった。成形体は、不連続炭素繊維の数平均繊維長が3.4mm、不連続炭素繊維の配向度が89%、曲げ弾性率が23GPa、曲げ強度が314MPa、比剛性が1.8Mmであった。
(Example 5)
Example 1 except that chopped carbon fiber T010-012 (manufactured by Toray Industries, Inc.) having a number average fiber length of 12 mm and a number average fiber diameter of 7 μm was used instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.) Similarly, a molded body having a thickness of 4 mm was obtained. In the prepreg, the degree of orientation of discontinuous carbon fibers was 93%. The molded body had a discontinuous carbon fiber number average fiber length of 3.4 mm, discontinuous carbon fiber orientation of 89%, flexural modulus of 23 GPa, flexural strength of 314 MPa, and specific rigidity of 1.8 Mm.

(比較例6)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が12mm、数平均繊維径が7μmのチョップド炭素繊維T010−012(東レ社製)を用いた以外は、比較例1と同様にして、厚さが4mmの成形体を得た。成形体は、不連続炭素繊維の数平均繊維長が5.5mm、不連続炭素繊維の配向度が49%、曲げ弾性率が10GPa、曲げ強度が101MPa、比剛性が0.8Mmであった。
(Comparative Example 6)
Comparative Example 1 except that chopped carbon fiber T010-012 (manufactured by Toray Industries, Inc.) having a number average fiber length of 12 mm and a number average fiber diameter of 7 μm was used instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.) Similarly, a molded body having a thickness of 4 mm was obtained. The number average fiber length of the discontinuous carbon fibers was 5.5 mm, the degree of orientation of the discontinuous carbon fibers was 49%, the flexural modulus was 10 GPa, the flexural strength was 101 MPa, and the specific rigidity was 0.8 Mm.

(実施例6)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が48mm、数平均繊維径が9μmの表面がサイジング剤でコーティングされているチョップド炭素繊維CS−2516(Formosa Plastic社製)を用いた以外は、実施例1と同様にして、厚さが2mmの成形体を得た。プリプレグは、不連続炭素繊維の配向度が91%であった。成形体は、不連続炭素繊維の数平均繊維長が1.2mm、不連続炭素繊維の配向度が80%、曲げ弾性率が24GPa、曲げ強度が297MPa、比剛性が1.8Mmであった。
(Example 6)
Instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.), chopped carbon fiber CS-2516 (manufactured by Formosa Plastic) having a number average fiber length of 48 mm and a number average fiber diameter of 9 μm coated with a sizing agent A molded body having a thickness of 2 mm was obtained in the same manner as in Example 1 except that was used. In the prepreg, the degree of orientation of the discontinuous carbon fibers was 91%. The number average fiber length of the discontinuous carbon fibers was 1.2 mm, the degree of orientation of the discontinuous carbon fibers was 80%, the flexural modulus was 24 GPa, the flexural strength was 297 MPa, and the specific rigidity was 1.8 Mm.

(比較例7)
チョップド炭素繊維T010−003(東レ社製)の代わりに、数平均繊維長が48mm、数平均繊維径が9μmの表面がサイジング剤でコーティングされているチョップド炭素繊維CS−2516(Formosa Plastic社製)を用いた以外は、比較例1と同様にして、厚さが3mmの成形体を得た。成形体は、不連続炭素繊維の数平均繊維長が1.9mm、不連続炭素繊維の配向度が31%、曲げ弾性率が13GPa、曲げ強度が156MPa、比剛性が1.0Mmであった。
(Comparative Example 7)
Instead of chopped carbon fiber T010-003 (manufactured by Toray Industries, Inc.), chopped carbon fiber CS-2516 (manufactured by Formosa Plastic) having a number average fiber length of 48 mm and a number average fiber diameter of 9 μm coated with a sizing agent A molded body having a thickness of 3 mm was obtained in the same manner as in Comparative Example 1 except that was used. The number average fiber length of the discontinuous carbon fiber was 1.9 mm, the degree of orientation of the discontinuous carbon fiber was 31%, the flexural modulus was 13 GPa, the flexural strength was 156 MPa, and the specific rigidity was 1.0 Mm.

表1に、成形体の製造条件を示す。   Table 1 shows the manufacturing conditions of the molded body.

Figure 2016141074
Figure 2016141074

次に、成形体中の不連続炭素繊維の数平均繊維長及び配向度、成形体の曲げ特性を評価した。   Next, the number average fiber length and orientation degree of the discontinuous carbon fibers in the molded body, and the bending characteristics of the molded body were evaluated.

<チョップド炭素繊維の数平均繊維長>
チョップド炭素繊維をスライドガラスの上に載せた。次に、チョップド炭素繊維が切れないようピンセットで解した後、チョップド炭素繊維をスケールと共に写真撮影し、チョップド炭素繊維の長さを手動で計測し、数平均繊維長を求めた。
<Number average fiber length of chopped carbon fiber>
Chopped carbon fiber was placed on a glass slide. Next, after the chopped carbon fiber was unwound with tweezers, the chopped carbon fiber was photographed with a scale, the length of the chopped carbon fiber was manually measured, and the number average fiber length was obtained.

<チョップド炭素繊維の数平均繊維径>
チョップド炭素繊維の断面を走査型電子顕微鏡を用いて撮影し、手動で繊維径を計測し、数平均繊維径を求めた。
<Number average fiber diameter of chopped carbon fiber>
The cross section of the chopped carbon fiber was photographed using a scanning electron microscope, the fiber diameter was manually measured, and the number average fiber diameter was obtained.

<成形体に含まれる不連続炭素繊維の数平均繊維長>
成形体をギ酸に浸漬し、ポリアミド6を溶解させた後、濾過しながら残存したポリアミド6をギ酸で洗い流した。次に、蒸留水でギ酸を洗い流すことで不連続炭素繊維を抽出した。抽出した不連続炭素繊維をスライドガラスの上に載せた以外は、チョップド炭素繊維と同様にして、不連続炭素繊維の数平均繊維長を求めた。
<Number average fiber length of discontinuous carbon fibers contained in the molded body>
The molded body was immersed in formic acid to dissolve polyamide 6, and the remaining polyamide 6 was washed away with formic acid while filtering. Next, discontinuous carbon fibers were extracted by washing out formic acid with distilled water. The number average fiber length of the discontinuous carbon fibers was determined in the same manner as the chopped carbon fibers except that the extracted discontinuous carbon fibers were placed on a slide glass.

<プリプレグ中の不連続炭素繊維の配向度>
光学顕微鏡を用いて、倍率を15倍として、プリプレグの表面を二次元撮影した後、250個の不連続炭素繊維の方向を、押し出し方向を0°として、−90°〜+90°の角度で測定した。次に、−90°〜0°の角度を0°〜90°に畳み込み、10°間隔とした0〜90°の範囲のヒストグラムを作成した後、0〜20°の範囲に配向している不連続炭素繊維の割合を算出し、不連続炭素繊維の配向度とした。
<Orientation degree of discontinuous carbon fiber in prepreg>
Using an optical microscope, the surface of the prepreg was two-dimensionally photographed at a magnification of 15 times, and then the direction of 250 discontinuous carbon fibers was measured at an angle of −90 ° to + 90 ° with an extrusion direction of 0 °. did. Next, after convolving the angle of −90 ° to 0 ° to 0 ° to 90 ° and creating a histogram in the range of 0 to 90 ° with an interval of 10 °, the orientation that is oriented in the range of 0 to 20 ° is obtained. The ratio of continuous carbon fibers was calculated and used as the degree of orientation of discontinuous carbon fibers.

<成形体中の不連続炭素繊維の配向度>
光学顕微鏡を用いて、倍率を15倍として、成形体の表面を二次元撮影した後、片面当たり125個、合計250個の不連続炭素繊維の方向を、プリプレグの押し出し方向を0°として、−90°〜+90°の角度で測定した。次に、−90°〜0°の角度を0°〜90°に畳み込み、10°間隔とした0°〜90°範囲のヒストグラムを作成した後、0〜20°の範囲に配向している不連続炭素繊維の割合を算出し、不連続炭素繊維の配向度とした。
<Orientation degree of discontinuous carbon fiber in molded body>
Using an optical microscope, the magnification was set to 15 times, and the surface of the molded body was photographed two-dimensionally. Then, the direction of 125 discontinuous carbon fibers per side, a total of 250 discontinuous carbon fibers, the prepreg extrusion direction as 0 °, − Measurements were made at an angle of 90 ° to + 90 °. Next, the angle of −90 ° to 0 ° is convolved with 0 ° to 90 °, a histogram in the range of 0 ° to 90 ° with 10 ° intervals is created, and then the orientation that is oriented in the range of 0 to 20 ° is obtained. The ratio of continuous carbon fibers was calculated and used as the degree of orientation of discontinuous carbon fibers.

<成形体の曲げ特性>
JIS K 7171に準拠し、圧子に対して、成形体の押し出し方向が垂直になるように、成形体を設置した後、三点曲げ試験を実施し、曲げ弾性率、曲げ強度及び比剛性を測定した。
<Bending characteristics of molded body>
In accordance with JIS K 7171, after placing the molded body so that the extrusion direction of the molded body is perpendicular to the indenter, a three-point bending test is performed to measure the flexural modulus, bending strength and specific rigidity. did.

表2に、成形体中の不連続炭素繊維の数平均繊維長及び配向度、成形体の曲げ特性の評価結果を示す。   Table 2 shows the evaluation results of the number average fiber length and orientation degree of the discontinuous carbon fibers in the molded body and the bending characteristics of the molded body.

Figure 2016141074
Figure 2016141074

表2から、実施例1〜6の成形体は、曲げ特性に優れることがわかる。   From Table 2, it turns out that the molded object of Examples 1-6 is excellent in a bending characteristic.

これに対して、比較例1、3〜7の成形体は、プリプレグを作製する代わりに、混練物を作製したため、不連続炭素繊維の配向度が低下し、曲げ特性が低下する。   On the other hand, since the molded objects of Comparative Examples 1 and 3 to 7 produced kneaded materials instead of producing prepregs, the degree of orientation of the discontinuous carbon fibers was lowered, and the bending characteristics were lowered.

比較例2の成形体は、不連続炭素繊維を含まないため、曲げ特性が低下する。
Since the molded body of Comparative Example 2 does not include discontinuous carbon fibers, the bending characteristics are deteriorated.

Claims (5)

不連続炭素繊維及び熱可塑性樹脂を含む組成物を押出成形してプリプレグを作製する工程と、
該プリプレグを加熱プレス成形して成形体を作製する工程を有し、
前記不連続炭素繊維は、数平均繊維径が5μm以上15μm以下であり、
前記組成物は、前記不連続炭素繊維の含有量が1体積%以上50体積%以下であり、
前記プリプレグは、前記不連続炭素繊維の押し出し方向に対する角度が0°以上20°以下の範囲に配向している割合が70%以上であることを特徴とする成形体の製造方法。
A step of extruding a composition containing discontinuous carbon fibers and a thermoplastic resin to produce a prepreg;
Having a step of heat-pressing the prepreg to produce a molded body,
The discontinuous carbon fiber has a number average fiber diameter of 5 μm or more and 15 μm or less,
In the composition, the content of the discontinuous carbon fibers is 1% by volume or more and 50% by volume or less,
The prepreg has a ratio in which the angle with respect to the extrusion direction of the discontinuous carbon fibers is in the range of 0 ° to 20 ° is 70% or more.
請求項1に記載の成形体の製造方法により製造されている成形体であって、
当該成形体に含まれる前記不連続炭素繊維は、数平均繊維長が0.1mm以上5mm以下であることを特徴とする成形体。
A molded body manufactured by the method for manufacturing a molded body according to claim 1,
The discontinuous carbon fiber contained in the molded body has a number average fiber length of 0.1 mm to 5 mm.
曲げ弾性率が15GPa以上30GPa以下であり、
曲げ強度が250MPa以上340MPa以下であり、
比剛性が1.0Mm以上2.3Mm以下であることを特徴とする請求項2に記載の成形体。
The flexural modulus is 15 GPa or more and 30 GPa or less,
The bending strength is 250 MPa or more and 340 MPa or less,
The molded product according to claim 2, wherein the specific rigidity is 1.0 Mm or more and 2.3 Mm or less.
当該成形体に含まれる前記不連続炭素繊維は、前記押し出し方向に対する角度が0°以上20°以下の範囲に配向している割合が70%以上であることを特徴とする請求項2又は3に記載の成形体。   The discontinuous carbon fiber contained in the molded body has a ratio of 70% or more in which the angle with respect to the extrusion direction is oriented in a range of 0 ° or more and 20 ° or less. The molded body described. 請求項2乃至4のいずれか一項に記載の成形体を有することを特徴とする物品。
An article comprising the molded body according to any one of claims 2 to 4.
JP2015019443A 2015-02-03 2015-02-03 Manufacturing method of molded body Active JP6558623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019443A JP6558623B2 (en) 2015-02-03 2015-02-03 Manufacturing method of molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019443A JP6558623B2 (en) 2015-02-03 2015-02-03 Manufacturing method of molded body

Publications (3)

Publication Number Publication Date
JP2016141074A true JP2016141074A (en) 2016-08-08
JP2016141074A5 JP2016141074A5 (en) 2017-12-28
JP6558623B2 JP6558623B2 (en) 2019-08-14

Family

ID=56569309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019443A Active JP6558623B2 (en) 2015-02-03 2015-02-03 Manufacturing method of molded body

Country Status (1)

Country Link
JP (1) JP6558623B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207737A (en) * 1998-01-06 1999-08-03 Natl Sci Council Oriented discontinuous long fiber-reinforced thermoplastic resin composite sheet product
JP2007530326A (en) * 2004-03-31 2007-11-01 エルアールエム インダストリーズ リミテッド ライアビリティ カンパニー Thermoplastic molding process and equipment
JP2009197178A (en) * 2008-02-25 2009-09-03 Toray Ind Inc Thermoplastic resin film and its manufacturing method
JP2013221114A (en) * 2012-04-18 2013-10-28 Toyo Plastic Seiko Co Ltd Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP2014004797A (en) * 2012-06-27 2014-01-16 Fukui Prefecture Composite material for molding and method for producing the same
WO2014103658A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Fiber-reinforced resin sheet, integrated molded product and process for producing same
JP2015027772A (en) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 Thermosetting sheet
JP2015027773A (en) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 Production method of thermosetting rod-like body
JP2016098271A (en) * 2014-11-19 2016-05-30 国立研究開発法人産業技術総合研究所 Manufacturing method of prepreg

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11207737A (en) * 1998-01-06 1999-08-03 Natl Sci Council Oriented discontinuous long fiber-reinforced thermoplastic resin composite sheet product
JP2007530326A (en) * 2004-03-31 2007-11-01 エルアールエム インダストリーズ リミテッド ライアビリティ カンパニー Thermoplastic molding process and equipment
JP2009197178A (en) * 2008-02-25 2009-09-03 Toray Ind Inc Thermoplastic resin film and its manufacturing method
JP2013221114A (en) * 2012-04-18 2013-10-28 Toyo Plastic Seiko Co Ltd Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP2014004797A (en) * 2012-06-27 2014-01-16 Fukui Prefecture Composite material for molding and method for producing the same
WO2014103658A1 (en) * 2012-12-26 2014-07-03 東レ株式会社 Fiber-reinforced resin sheet, integrated molded product and process for producing same
JP2015027772A (en) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 Thermosetting sheet
JP2015027773A (en) * 2013-07-30 2015-02-12 独立行政法人産業技術総合研究所 Production method of thermosetting rod-like body
JP2016098271A (en) * 2014-11-19 2016-05-30 国立研究開発法人産業技術総合研究所 Manufacturing method of prepreg

Also Published As

Publication number Publication date
JP6558623B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
TWI547371B (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
Peng et al. Enhanced impact resistance of three-dimensional-printed parts with structured filaments
Jin et al. Filament materials screening for FDM 3D printing by means of injection‐molded short rods
TWI781914B (en) Manufacturing method of prepreg with cut marks
CN106459438B (en) Long fiber reinforced plastic composite material and preparation method thereof
TWI586540B (en) Functional film for well-impregnated composites and method of manufacturing composites using the same
WO2012117975A1 (en) Injection formed body and fabrication method for same
Butt et al. Hybrid manufacturing and mechanical characterization of Cu/PLA composites
US20150266245A1 (en) Method for manufacturing fiber-reinforced resin materials
JPWO2020040287A1 (en) Carbon fiber sheet material, prepreg, molded body, carbon fiber sheet material manufacturing method, prepreg manufacturing method and molded body manufacturing method
Silva et al. 3D printing of polypropylene using the fused filament fabrication technique
JP6462330B2 (en) Manufacturing method of prepreg
JP6558623B2 (en) Manufacturing method of molded body
Goument et al. In-Mold Electronics on Poly (Lactic Acid): towards a more sustainable mass production of plastronic devices
WO2019078242A1 (en) Fiber-reinforced-plastic molded article
Ráthy et al. Preparation and characterization of poly (vinyl chloride)–continuous carbon fiber composites
JP6164583B2 (en) Method for producing thermosetting rod
JP6179983B2 (en) Thermosetting sheet
Jayaramudu et al. Studies on the chemical resistance and mechanical properties of natural polyalthia cerasoides woven fabric/glass hybridized epoxy composites
JP6649016B2 (en) Thermoformed article manufacturing method and thermoforming material
JP2006231768A (en) Decorative laminate
JPWO2018142963A1 (en) Manufacturing method of fiber reinforced plastic
JPWO2018142962A1 (en) Manufacturing method of fiber reinforced plastic
Badogu et al. 3D Printing of glass fiber-reinforced polymeric composites: a review
WO2022050213A1 (en) Thermoplastic prepreg, fiber-reinforced plastic, and manufacturing method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190704

R150 Certificate of patent or registration of utility model

Ref document number: 6558623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250