JP2016140840A - 多重効用造水装置 - Google Patents

多重効用造水装置 Download PDF

Info

Publication number
JP2016140840A
JP2016140840A JP2015019814A JP2015019814A JP2016140840A JP 2016140840 A JP2016140840 A JP 2016140840A JP 2015019814 A JP2015019814 A JP 2015019814A JP 2015019814 A JP2015019814 A JP 2015019814A JP 2016140840 A JP2016140840 A JP 2016140840A
Authority
JP
Japan
Prior art keywords
steam
raw water
evaporator
raw
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015019814A
Other languages
English (en)
Inventor
翼 大島
Tsubasa Oshima
翼 大島
大塚 裕之
Hiroyuki Otsuka
裕之 大塚
清水 康介
Kosuke Shimizu
康介 清水
和久 伊藤
Kazuhisa Ito
和久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2015019814A priority Critical patent/JP2016140840A/ja
Publication of JP2016140840A publication Critical patent/JP2016140840A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

【課題】熱効率のさらなる向上を図り得る多重効用造水装置を提供する。【解決手段】加熱蒸気供給管22を介して加熱用蒸気が導かれる伝熱管5a上に原水を散布して原水蒸気を得る蒸発缶2が複数段でもって配置されると共に、前段の蒸発缶2にて発生した原水蒸気を後段の伝熱管5aに導き凝縮させて真水を得るようになし且つ上記蒸気供給管22の途中に配置されたサーモコンプレッサ23により中間段の蒸発缶2にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、加熱蒸気の温度よりも低い排温水により駆動されて原水を蒸発させるフラッシュ式蒸発装置51を具備すると共に、このフラッシュ式蒸発装置51にて発生した原水蒸気を最前段の蒸発缶2Aの伝熱管5aに導くようにしたものである。【選択図】図1

Description

本発明は、海水などの原水から真水を得るための多重効用造水装置に関するものである。
従来、海水から真水を得る装置としては多重効用造水装置がある。この造水装置は、複数の蒸発缶が順次減圧された状態で連続して、つまり、多段でもって配置され、前段の蒸発缶でフラッシュ蒸発により発生した蒸気を後段(次段)の蒸発缶に熱源として導き海水を蒸発させるものである(例えば、特許文献1参照)。
特開2013−128889号公報
上記従来の多重効用造水装置の構成によると、フラッシュ蒸発が行われる蒸発缶が多段に配置されて装置全体の熱効率の向上が図られているが、さらなる熱効率の向上が望まれている。
そこで、本発明は、熱効率のさらなる向上を図り得る多重効用造水装置を提供することを目的とする。
上記課題を解決するため、第1の発明に係る多重効用造水装置は、加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようになし且つ上記加熱蒸気供給管の途中に配置されたサーモコンプレッサにより中間段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、
加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を最前段の蒸発缶の伝熱管に導くようにしたものであり、
また上記多重効用造水装置におけるフラッシュ式蒸発装置を、内部に原水を散布する散布器が設けられた蒸発用容器と、上記散布器に原水を供給する原水供給管と、この原水供給管の途中に設けられた原水の加熱器と、この加熱器に熱源として排熱流体を供給する排熱流体供給管と、上記蒸発用容器にて発生した原水蒸気を最前段の蒸発缶に導く原水蒸気供給管とから構成したものであり、
さらに上記多重効用造水装置における原水蒸気供給管の途中に加熱用蒸気により駆動されるサーモコンプレッサを配置したものである。
また、第2の発明に係る多重効用造水装置は、加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようになし且つ上記加熱蒸気供給管の途中に配置されたサーモコンプレッサにより中間段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、
加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を上記サーモコンプレッサに設けられた吸引口に導いて上記中間段の蒸発缶からの原水蒸気と併せて最前段の蒸発缶の伝熱管に導くようにしたものであり、
さらに上記フラッシュ式蒸発装置を、内部に原水を散布する散布器が設けられた蒸発用容器と、上記散布器に原水を供給する原水供給管と、この原水供給管の途中に設けられた原水の加熱器と、この加熱器に熱源として排熱流体を供給する排熱流体供給管と、上記蒸発用容器にて発生した原水蒸気をサーモコンプレッサの吸引口に導く原水蒸気供給管とから構成したものである。
また、第3の発明に係る多重効用造水装置は、加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようにした多重効用造水装置において、
上記加熱蒸気供給管の途中にサーモコンプレッサを配置して最後段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようになし、
且つ加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を上記サーモコンプレッサに設けられた吸引口に導いて上記最後段の蒸発缶からの原水蒸気と併せて最前段の蒸発缶の伝熱管に導くようにしたものであり、
さらに上記フラッシュ式蒸発装置を、内部に原水を散布する散布器が設けられた蒸発用容器と、上記散布器に原水を供給する原水供給管と、この原水供給管の途中に設けられた原水の加熱器と、この加熱器に熱源として排熱流体を供給する排熱流体供給管と、上記蒸発用容器にて発生した原水蒸気をサーモコンプレッサの吸引口に導く原水蒸気供給管とから構成したものである。
また、上記各発明に係る多重効用造水装置における排熱流体として、ごみ焼却設備、発電所またはプラント設備から出る温水を用いたものである。
上記各発明によると、蒸発缶が多段に配置されるとともに所定の蒸発缶にて発生した原水蒸気を、加熱用蒸気により駆動されるサーモコンプレッサにて吸引し加熱用蒸気に混入させるようにした多重効用造水装置において、加熱用蒸気より低い温度で駆動されるフラッシュ式蒸発装置を具備させるとともに、このフラッシュ式蒸発装置の蒸発用容器にて発生した原水蒸気を、最前段の蒸発缶に導くようになし、または上記サーモコンプレッサに導いて加熱用蒸気に混入させるようにしたので、加熱用蒸気よりも低温で造水用熱源として使用できない排熱流体の持つ熱の有効利用を図り得るとともに、造水効率の向上を図ることができる。すなわち、熱効率の向上が図られた多重効用造水装置を提供することができる。
本発明の実施例1に係る多重効用造水装置の概略構成を示す模式断面図である。 同実施例1の多重効用造水装置のサーモコンプレッサの概略構成を示す断面図である。 本発明の実施例2に係る多重効用造水装置の概略構成を示す模式断面図である。 従来の多重効用造水装置における生産水量を説明する模式図である。 同実施例2の多重効用造水装置における生産水量を説明する模式図である。 本発明の実施例3に係る多重効用造水装置の概略構成を示す模式断面図である。 本発明の実施例4に係る多重効用造水装置の概略構成を示す模式断面図である。
以下、本発明の実施例1に係る多重効用造水装置を、図1および図2に基づき説明する。なお、本実施例1は、請求項1乃至請求項3に対応するものである。
この多重効用造水装置は、概略的には、加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようになし且つ上記加熱蒸気供給管の途中に配置されたサーモコンプレッサにより中間段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、
加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を最前段(第1段目)の蒸発缶の伝熱管に導くようにしたものである。
なお、以下の説明においては(後述する実施例2も同様である)、原水として海水である場合について説明する。勿論、海水以外の液体から真水を得る場合にでも適用することができる。また、排熱流体としては、例えばごみ焼却設備、発電所(ディーゼルエンジンの冷却水も含まれる)またはプラント設備から排出される温水(以下、排温水と称す)、蒸気などが用いられるが、ここでは、排温水を用いた場合について説明する。さらに、加熱用蒸気としては、150℃〜160℃の蒸気が用いられるとともに、排温水として、80℃〜100℃のものが用いられる場合について説明する。
まず、多重効用造水装置(以下、造水装置と称す)の基本的な構成である造水装置本体を、図1に基づき説明する。
この造水装置本体1は、原水蒸気(海水蒸気)が導かれる伝熱管5aを有する熱交換器5およびこの伝熱管5a上に原水(海水)を散布する散布器(例えば、散布管が用いられる)6が配置された蒸発室3および当該蒸発室3にて発生した原水蒸気を次段(後段)の蒸発缶2に導く蒸気通路4を有する蒸発缶2が複数段、例えばn段でもって前後に直列で配置されている。
上記蒸発室3は前方の管板7(7A)と後方の管板7(7B)とにより形成されるとともに、後方の管板7Bは蒸発室3と蒸気通路4とを区画するための区画壁としての機能を有している。この後方の管板7Bの下部に開口部(連通部とも言える)8が設けられて蒸発室3と蒸気通路4とが互いに連通されて、伝熱管5aにより加熱されて発生した原水蒸気は蒸気通路4側に移動することになる。なお、第1段目の蒸発缶2(2A)の前方に、原水蒸気を導入するための蒸気導入室9が設けられている。
また、上記各蒸発室3の後方の管板7Bには、伝熱管5a内で凝縮した凝縮水(真水であり、生産水とも言う)を集めるための集水部11が設けられるとともに、蒸気通路4内に鉛直方向(鉛直方向に限定されるものではない)で水分分離壁12が設けられている。この水分分離壁12の下部は仕切部12bにされるとともに、その上部はデミスター機能を有する水分の分離部12aにされている。なお、上記集水部11にて集められた凝縮水は配管13などを介して水分分離壁12の仕切部12bと次段の蒸発缶2における前方の管板7Aとの間に形成される水貯溜部14に導かれるようにされている。
勿論、この造水装置本体1には、真空装置(図示せず)が設けられて、各蒸発缶2の蒸発室3の圧力が、前段から後段に向かって、順次、低くなるようにされている。
ここで、造水装置本体1における各蒸発缶2での圧力および温度について説明する。すなわち、蒸気導入室9の温度および第1段目(最前段)の蒸発缶2A内の温度は65℃程度にされるとともに、第n段目(最後段)の蒸発缶2N内の温度は43℃〜45℃程度にされており、またこれら隣接する蒸発缶2,2同士における温度は、順次、3℃〜4℃程度ずつ低くされている。つまり、各蒸発缶2内の圧力は、このような温度での飽和蒸気圧となるようにされている。例えば、上述した65℃〜43℃の範囲で3℃〜4℃ずつ温度を低下させた場合、蒸発缶2の設置段数は6段となる。したがって、蒸発缶2の設置段数nの値は、第1段目と第n段目の蒸発缶2での温度差に依存することになり、通常は、6段〜10段程度の範囲とされる。この記載内容についても、実施例2に適用し得るものである。
この造水装置本体1には、上記各蒸発缶2の散布器6に原水を供給する第1原水供給管(主原水供給管とも言える)21と、所定の蒸発缶2[ここでは、第1段目(最前段)の蒸発缶2A]に加熱用蒸気として高圧蒸気(例えば、発電所などから排出される蒸気が用いられる。勿論、ボイラからの蒸気であってもよい。)を供給するとともに所定の蒸発缶2(ここでは、第2段目の蒸発缶2B)で発生した低圧の原水蒸気を蒸気吸引管24を介して吸引し(抜き出し)加熱用蒸気として吐出するためのサーモコンプレッサ23を有する加熱蒸気供給管22と、前段の蒸発缶2の水貯溜部14に溜まった凝縮水を次段の蒸発缶2の水貯溜部14にそれぞれ移送させる水移送管26と、第n段目(最後段)の蒸発缶2N内の水貯溜部14に溜まった凝縮水を外部に取り出す第1水取出管27と、第1段目の蒸発缶2A内の水貯溜部14に溜まった凝縮水を復水として取り出すための第2水取出管28と、前段の蒸発缶2の蒸発室3の底部に溜まった原水である海水(ブラインともいう)を次段の蒸発缶2の蒸発室3にそれぞれに移送させる原水移送管29と、第n段目の蒸発缶2Nの蒸発室3の底部に溜まった原水を外部に取り出すための原水取出管30とが具備されている。また、第n段目の蒸発缶2Nの蒸気通路4の水分分離壁12の後側の空間部には、第1原水供給管21の一部が伝熱部として配置され、この空間部が最後段の蒸発缶2Nで発生した原水蒸気を凝縮させる凝縮室10とされる。ところで、サーモコンプレッサ23とは、高圧蒸気(駆動蒸気であり、例えば150℃〜160℃程度の蒸気で、圧力としては4.76×10Pa〜6.18×10Paの範囲である)により低圧蒸気(中間段の蒸発缶から吸引される蒸気であり、例えば50℃〜62℃程度の蒸気で、圧力としては0.12×10Pa〜0.22×10Paの範囲である)を吸引して中圧蒸気(吐出蒸気であり、例えば65℃〜70℃程度の蒸気で、圧力としては0.25×10Pa〜0.34×10Paの範囲である)を吐出するものである。ところで、中間段の蒸発缶から吸引される低圧蒸気については、第2段目の蒸発缶から吸引する場合には62℃程度の蒸気で、圧力としては0.22×10Pa程度である。なお、高圧蒸気、中圧蒸気および低圧蒸気の温度範囲および圧力範囲は上述した値に限定されるものではなく、装置の仕様により変化するものである。これら各蒸気の想定し得る(取り得る)温度範囲および圧力範囲としては、以下のようになる。高圧蒸気については、温度が100℃〜180℃程度で、圧力は1.013×10Pa〜10.0×10Paの範囲である。中圧蒸気については、温度が65℃〜100℃程度で、圧力は0.25×10Pa〜1.0×10Paの範囲である。低圧蒸気については、温度が40℃〜80℃程度で、圧力は0.074×10Pa〜0.48×10Paの範囲である。
また、上記第1原水供給管21の一部は第n段目の蒸発缶2Nに設けられた凝縮室10に配置されて原水蒸気と原水との間で熱交換を行い、熱の有効利用が図られている。なお、この第1原水供給管21の凝縮室10を出た部分には、原水を排出するための原水排出管31が接続されている。
勿論、第1原水供給管21、第1水取出管27、第2水取出管28および原水取出管30の途中には、原水供給用ポンプ35、第1水ポンプ36、第2水ポンプ37および原水排出用ポンプ38が設けられている。
なお、第1原水供給管21は、原水供給用ポンプ35が設けられた本体管部21aと、各蒸発缶2の散布器6と本体管部21aとをそれぞれ接続する複数の枝管部21bとから構成されている。
ここで、上記サーモコンプレッサ23を図2に基づき簡単に説明しておく。
このサーモコンプレッサ23は、一端部から駆動蒸気として高圧蒸気が供給されて低圧蒸気を吸引するようにされた筒状の蒸気駆動部41と、この蒸気駆動部41の他端に設けられた絞り部から延設されて蒸気を所定方向に案内する筒状の蒸気案内部42と、この蒸気案内部42の先端部に接続されたラッパ形状のディフューザ部(散気部)43とから構成されている。上記蒸気駆動部41は、一端側に駆動蒸気の供給口41aが設けられるとともに中心軸位置には駆動蒸気を絞るための絞り部44aを有するノズル44が配置され且つ側部には低圧蒸気を吸引するための吸引口41bが形成されたものであり、またディフューザ部43の先端は中圧蒸気の吐出口43aにされている。なお、ノズル44の駆動蒸気の供給側の一端部は供給口41aに位置されて駆動蒸気が直接導かれるようにしている。
したがって、駆動蒸気としての高圧蒸気が蒸気駆動部41の供給口41aに供給されると、ノズル44で絞られて速度が音速以上に加速されて圧力が低下するとともに、吸引口41bから低圧蒸気を吸引し、そしてこの低圧蒸気と高圧蒸気とがディフューザ部43で混合されて吐出口43aから中圧蒸気として吐出される。
次に、基本的な構成に係る造水装置本体1における凝縮水すなわち真水(生産水)を得る動作について説明する。
上記構成において、第1原水供給管21を介して海水が各蒸発缶2に配置された熱交換器5の伝熱管5a上に散布(噴霧)されている状態において、高圧蒸気がサーモコンプレッサ23を介して第1段目の蒸発缶2の伝熱管5a内に供給されると、その蒸気の持つ熱により伝熱管5aの上方から散布される海水が蒸発されるとともに、当該伝熱管5a内の蒸気は自ら冷却されて凝縮し真水となる。この真水は、集水部11および配管13を経て水貯溜部14に溜まる。
ところで、第1段目の蒸発缶2Aの伝熱管5aにより海水が加熱されることにより発生した蒸気は、管板7Bに設けられた開口部8から蒸気通路4内に移動する。この蒸気通路4内に入った蒸気は、水分分離壁12の分離部12aを通過する際に、水分が除去されて第2段目の蒸発缶2Bに移動する。すなわち、この蒸気は第2段目の蒸発缶2Bに配置された伝熱管5a内に入り、その上方に設けられた散布器6から散布された海水を蒸発させる。勿論、第2段目の蒸発缶2Bでは、第1段目の蒸発缶2Aよりも減圧されて海水が蒸発し易くされているため、第1段目の蒸発缶2Aにて発生した蒸気により、海水の蒸発が行われる。なお、第2段目の蒸発缶2Bにて発生した蒸気の一部は、サーモコンプレッサ23に吸引されて、圧力が上昇されて、加熱用蒸気として利用される。したがって、高圧蒸気の使用量を減らすことができる。
そして、第3段目以降の蒸発缶2についても、前段の蒸発缶2にて発生した蒸気が次段の蒸発缶2の伝熱管5aに導かれて、当該次段の蒸発缶2での加熱用蒸気として利用され、したがって効率良く海水から真水が得られる。
また、第n段目の蒸発缶2Nの蒸気通路4に第1原水供給管21の一部が配置されて凝縮室10にされているため、ここを通過する海水により蒸気が冷却されて真水が得られるとともに、造水装置本体1に供給される海水を加熱することにより熱回収が行われている。
上記各蒸発缶2にて発生した真水は、それぞれ水移送管26を介して、次段の蒸発缶2の水貯溜部14に移送され、第n段目の蒸発缶2Nの水貯溜部14から第1水取出管27を介して外部に取り出される。また、第1段目の蒸発缶2の水貯溜部14に溜まった真水についても、第2水取出管28から取り出される。
また、各蒸発缶2の蒸発室3の底部に溜まった海水(ブライン)は、原水移送管29を介して、順次、次段の蒸発缶2の蒸発室3に移送されるとともに、第n段目の蒸発缶2Nから原水取出管30を介して外部に取り出される。
なお、図示しないが、第3段目以降の任意の蒸発缶2にて発生した蒸気を第1原水供給管21の途中に設けられた熱交換部(図示せず)に導き、海水を加熱することにより、熱回収が行われている。
次に、フラッシュ式蒸発装置について説明する。
図1に示すように、このフラッシュ式蒸発装置51は、内部に原水(海水)を散布する散布器(例えば、散布管が用いられる)52が設けられた蒸発用容器(フラッシュチャンバとも言う)53と、上記散布器52に原水を供給する第2原水供給管54と、この第2原水供給管54の途中に設けられた加熱器55と、この加熱器55に熱源として比較的温度が低い例えば80℃〜100℃程度の排温水を供給する排熱流体供給管56と、上記蒸発用容器53にて発生した原水蒸気を蒸気導入室9を介して第1段目の蒸発缶2Aに供給する原水蒸気供給管57と、原水ポンプ58を有するとともに蒸発用容器53内の原水を取り出し上記第2原水供給管54に戻すための原水戻し管59とから構成されている。なお、このフラッシュ式蒸発装置51には、蒸気導入室9に導く原水蒸気の量を調整するために原水蒸気供給管57内の蒸気の一部を蒸気取出管60を介して取り出し凝縮させる凝縮器61と、この凝縮器61に冷却水を供給する冷却水配管62と、上記凝縮器61にて得られた凝縮水を上記原水戻し管59に戻すための水戻し管63とが設けられている。
このフラッシュ式蒸発装置51において、加熱器55には、80℃〜100℃程度の排温水が導かれて、原水である海水が例えば60℃〜70℃程度に加熱される。そして、この海水は第2原水供給管54を介して蒸発用容器53内の散布器52に供給され、所定圧力に減圧された蒸発用容器53内で散布されてフラッシュ蒸発が行われる。この得られた蒸気は原水蒸気供給管57を介して、造水装置本体1の蒸気導入室9に供給されて、サーモコンプレッサ23から供給される加熱用蒸気とともに第1段目の蒸発缶2Aに供給されて、原水蒸気を得る熱源として利用されるとともに、自らは凝縮して真水となり外部に取り出される。
本実施例1の造水装置によると、蒸発缶が多段に配置されるとともに所定の蒸発缶にて発生した原水蒸気を、加熱用蒸気により駆動されるサーモコンプレッサにて吸引し加熱用蒸気に混入させるようにした多重効用造水装置において、加熱用蒸気より低い温度で駆動されるフラッシュ式蒸発装置を具備させるとともに、このフラッシュ式蒸発装置の蒸発用容器にて発生した原水蒸気を、最前段(第1段目)の蒸発缶に導くようにしたので、本来、造水用熱源として使用できない低温の排熱流体の持つ熱の有効利用を図り得るとともに造水効率を向上させ得る造水装置を提供することができる。すなわち、熱効率の向上が図られた多重効用造水装置を提供することができる。
次に、本発明の実施例2に係る多重効用造水装置を、図3〜図5に基づき説明する。なお、本実施例2は請求項1乃至請求項4に対応するものである。
上記実施例1においては、造水装置本体に対してフラッシュ式蒸発装置を具備したものについて説明したが、本実施例2の多重効用造水装置は、フラッシュ式蒸発装置にサーモコンプレッサを具備させたものである。
以下においては、フラッシュ式蒸発装置に着目して説明するとともに、造水装置本体については、上述の実施例1と同一の構成であるため、実施例1と同一の構成部材には、同一の部材番号を付してその説明を省略する。また、新たに具備したサーモコンプレッサについては、実施例1で説明したものと同一の構成であるため、それぞれの部材番号の後に「A」を付加して説明するとともに、このサーモコンプレッサを具備したフラッシュ式蒸発装置の部材番号については、この蒸発装置を示す部材番号だけに「A」を付加して説明する。
すなわち、図3に示すように、本実施例2に係るフラッシュ式蒸発装置51Aは、蒸発用容器53にて発生した原水蒸気を蒸気導入室9に導くための第2原水蒸気供給管57の途中に、新たに、高圧蒸気(駆動蒸気)により駆動されるサーモコンプレッサ23Aを配置したものである。なお、ここでは、造水装置本体1に設けられたサーモコンプレッサ23を第1サーモコンプレッサと称するとともに、本実施例2のフラッシュ式蒸発装置51Aに設けられるサーモコンプレッサ23Aを第2サーモコンプレッサと称する。また、この第2サーモコンプレッサ23Aについても、第1サーモコンプレッサ23と同様に、一端部から駆動蒸気として高圧蒸気が供給されて低圧蒸気を吸引するようにされた筒状の蒸気駆動部41Aと、この蒸気駆動部41Aの他端に設けられた絞り部から延設されて蒸気を所定方向に案内する筒状の蒸気案内部42Aと、この蒸気案内部42Aの先端部に接続されたラッパ形状のディフューザ部(散気部)43Aとから構成されている。上記蒸気駆動部41Aは、一端側に駆動蒸気の供給口41Aaが設けられるとともに中心軸位置には駆動蒸気を絞るための絞り部44Aaを有するノズル44Aが配置され且つ側部には低圧蒸気を吸引するための吸引口41Abが形成されたものであり、またディフューザ部43Aの先端は中圧蒸気の吐出口43Aaにされている。なお、ノズル44Aの駆動蒸気の供給側の一端部は供給口41Aaに位置されて駆動蒸気が直接導かれるようにしている。そして、第2サーモコンプレッサ23Aの吸引口41Abと吐出口43Aaとが原水蒸気供給管57の途中に接続されるとともに、第2サーモコンプレッサ23Aの供給口41Aaには、駆動用の高圧蒸気を供給するための上記加熱蒸気供給管22とは別の加熱蒸気供給管71が接続されている。
したがって、駆動蒸気として高圧蒸気が蒸気駆動部41Aの供給口41Aaに供給されると、ノズル44Aで絞られて速度が音速以上に加速されて圧力が低下するとともに、吸引口41Abから低圧蒸気を吸引し、そしてこの低圧蒸気と高圧蒸気とがディフューザ部43Aで混合されて吐出口43Aaから中圧蒸気が吐出される。
このように、フラッシュ式蒸発装置51Aの蒸発用容器53にて発生する原水蒸気を、高圧蒸気により駆動される第2サーモコンプレッサ23Aにより加圧して、造水装置本体1の蒸気導入室9に導くようにしたので、フラッシュ式蒸発装置51Aにおける熱源として、60℃〜65℃程度のより低い排温水を用いることができる。これに対して、実施例1の場合では、蒸発用容器53で発生した原水蒸気をそのまま蒸気導入室9に供給するようにしているので、それよりも高い温度、例えば80℃〜100℃程度の排温水を必要とする。
ここで、本実施例2に係る造水装置とフラッシュ式蒸発装置を具備しない従来の造水装置とについて、生産水量を比較すると以下のようになる。
なお、比較に際して、各段の蒸発缶において蒸発に使用される熱量は全て相変化に使われるものと、また供給される海水が蒸発温度まで昇温されるときの熱的ロスを無視するものと仮定する。
まず、図4に基づき、従来の造水装置における生産水量について説明する。
すなわち、高圧蒸気の蒸気量(高圧蒸気量と言う)を1とし、蒸発缶2の全段数をn段に、またサーモコンプレッサ23により低圧蒸気が吸引される蒸発缶2を第m段とし且つこの第m段目の蒸発缶2Mから吸引される蒸気量をDとすると、サーモコンプレッサ23の吐出口から(1+D)の蒸気が第1段目の蒸発缶2Aに供給される。第1段目の蒸発缶2Aでは、この(1+D)の蒸気が凝縮すると同時に海水が蒸発して(1+D)の蒸気が発生する。以下、第m段までの各蒸発缶2にて(1+D)の蒸気が凝縮して生産水となり、海水より(1+D)の蒸気が発生する。第1段目の蒸発缶2Aにて凝縮した水のうち1(加熱用蒸気量に等しい)を復水として高圧蒸気源に戻すものとすれば、n段の蒸発缶(凝縮室10も含む)2では、合計(n+mD)の生産水量が得られる。
これに対して、本実施例2に係る造水装置、すなわちフラッシュ式蒸発装置51Aに第2サーモコンプレッサ23Aを設けた場合の生産水量は以下の通りとなる。
この場合、図5に示すように、加熱用の高圧蒸気量を1に対して、蒸発用容器53から吸引される蒸気量をdとすると、第2サーモコンプレッサ23Aからの吐出量は(1+d)となり、この吐出量(1+d)の蒸気がさらに第1段目の蒸発缶2Aに供給されることとなり、その結果、n段の蒸発缶(凝縮室10も含む)2から得られる生産水量は、[(n+mD)+(1+d)×(1+n)]となる。
すなわち、フラッシュ式蒸発装置にサーモコンプレッサを具備させた方が、(1+d)×(1+n)分だけ、生産水量が増加する。
また、造水効率について説明すると、以下のようになる。
なお、説明を分かり易くするために、D=1,d=1,m=4,n=6として、従来の造水装置と、本実施例2に係る造水装置との造水効率を比較した結果を、下記の表に示す。
Figure 2016140840
本実施例2の造水装置は、従来の造水装置に比べて、高圧蒸気量は2倍になるが、生産水量は大きく増加しているのが分かる。また、造水効率を示す造水比も向上していることが分かる。
すなわち、本実施例2の造水装置は、上述した実施例1の造水装置以上の効果が得られる。
次に、本発明の実施例3に係る多重効用造水装置を図6に基づき説明する。なお、本実施例3は請求項5、請求項7および請求項8に対応するものである。
この多重効用造水装置(以下、造水装置と称す)は、加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようになし且つ上記加熱蒸気供給管の途中に配置されたサーモコンプレッサにより中間段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を上記サーモコンプレッサに設けられた吸引口に導いて上記中間段の蒸発缶からの原水蒸気と併せて最前段の蒸発缶の伝熱管に導くようにしたものであり、さらに上記フラッシュ式蒸発装置を、内部に原水を散布する散布器が設けられた蒸発用容器と、上記散布器に原水を供給する原水供給管と、この原水供給管の途中に設けられた原水の加熱器と、この加熱器に熱源として排熱流体を供給する排熱流体供給管と、上記蒸発用容器にて発生した原水蒸気をサーモコンプレッサに設けられた吸引口に導く原水蒸気供給管とから構成したものである。
なお、以下の説明においては(後述する実施例4も同様である)、原水として海水を用いた場合について説明する。勿論、海水以外の液体から真水を得る場合にでも適用することができる。また、排熱流体としては、例えばごみ焼却設備、発電所(ディーゼルエンジンの冷却水も含まれる)またはプラント設備から排出される温水(以下、排温水と称す)、蒸気などが用いられるが、ここでは、排温水を用いた場合について説明する。さらに、加熱用蒸気としては、150℃〜160℃の蒸気が用いられるとともに、排温水として、80℃〜100℃のものが用いられる場合について説明する。
ところで、上記実施例1の造水装置においては、フラッシュ式蒸発装置にて得られた原水蒸気を、蒸気導入室に導くように説明したが、本実施例3の造水装置においては、サーモコンプレッサに導いて駆動蒸気のアシスト用とするものである。
すなわち、本実施例3の造水装置においても、上述した実施例1の造水装置と略同一の構成であるため、実施例1と同一の構成部材には、同一の部材番号を付して説明する。また、サーモコンプレッサおよびフラッシュ式蒸発装置については構成が少し異なるため、異なる構成部材については、実施例1と同一の部材番号を用いるとともに、その後に、「B」を付加して説明する。
まず、造水装置本体を図6に基づき説明する。
この造水装置本体1は、原水蒸気(海水蒸気)が導かれる伝熱管5aを有する熱交換器5およびこの伝熱管5a上に原水(海水)を散布する散布器(例えば、散布管が用いられる)6が配置された蒸発室3および当該蒸発室3にて発生した原水蒸気を次段(後段)の蒸発缶2に導く蒸気通路4を有する蒸発缶2が複数段、例えばn段でもって前後に直列で配置されている。
上記蒸発室3は前方の管板7(7A)と後方の管板7(7B)とにより形成されるとともに、後方の管板7Bは蒸発室3と蒸気通路4とを区画するための区画壁としての機能を有している。この後方の管板7Bの下部に開口部(連通部ともいえる)8が設けられて蒸発室3と蒸気通路4とが互いに連通されて、伝熱管5aにより加熱されて発生した原水蒸気は蒸気通路4側に移動することになる。なお、第1段目の蒸発缶2(2A)の前方に、原水蒸気を導入するための蒸気導入室9が設けられている。
また、上記各蒸発室3の後方の管板7Bには、伝熱管5a内で凝縮した凝縮水(真水であり、生産水とも言う)を集めるための集水部11が設けられるとともに、蒸気通路4内に鉛直方向(鉛直方向に限定されるものではない)で水分分離壁12が設けられている。この水分分離壁12の下部は仕切部12bにされるとともに、その上部はデミスター機能を有する水分の分離部12aにされている。なお、上記集水部11にて集められた凝縮水は配管13などを介して水分分離壁12の仕切部12bと次段の前方の管板7Aとの間に形成される水貯溜部14に導かれるようにされている。
勿論、この造水装置本体1には、真空装置(図示せず)が設けられて、各蒸発缶2の蒸発室3の圧力が、前段から後段に向かって、順次、低くなるようにされている。
ここで、造水装置本体1における各蒸発缶2での圧力および温度について説明する。すなわち、蒸気導入室9の温度および第1段目(最前段)の蒸発缶2A内の温度は65℃程度にされるとともに、第n段目(最後段)の蒸発缶2N内の温度は43℃〜45℃程度にされており、またこれら隣接する蒸発缶2,2同士における温度は、順次、3℃〜4℃程度ずつ低くされている。つまり、各蒸発缶2内の圧力は、このような温度での飽和蒸気圧となるようにされている。例えば、上述した65℃〜43℃の範囲で3℃〜4℃ずつ温度を低下させた場合、蒸発缶2の設置段数は6段となる。したがって、蒸発缶2の設置段数nの値は、第1段目と第n段目の蒸発缶2での温度差に依存することになり、通常は、6段〜10段程度の範囲とされる。この記載内容についても、後述する実施例4に適用し得るものである。
この造水装置本体1には、上記各蒸発缶2の散布器6に原水を供給する第1原水供給管(主原水供給管とも言える)21と、所定の蒸発缶2[ここでは、第1段目(最前段)の蒸発缶2A]に加熱用蒸気として高圧蒸気(例えば、発電所などから排出される蒸気が用いられる。勿論、ボイラからの蒸気であってもよい。)を供給するとともに所定の蒸発缶2(ここでは、第2段目の蒸発缶2B)で発生した低圧の原水蒸気を蒸気吸引管24を介して吸引し(抜き出し)加熱用蒸気として吐出するためのサーモコンプレッサ23Bを有する加熱蒸気供給管22と、前段の蒸発缶2の水貯溜部14に溜まった凝縮水を次段の蒸発缶2の水貯溜部14にそれぞれ移送させる水移送管26と、第n段目(最後段)の蒸発缶2N内の水貯溜部14に溜まった凝縮水を外部に取り出す第1水取出管27と、第1段目の蒸発缶2A内の水貯溜部14に溜まった凝縮水を復水として取り出すための第2水取出管28と、前段の蒸発缶2の蒸発室3の底部に溜まった原水である海水(ブラインとも言う)を次段の蒸発缶2の蒸発室3にそれぞれに移送させる原水移送管29と、第n段目の蒸発缶2Nの蒸発室3の底部に溜まった原水を外部に取り出すための原水取出管30とが具備されている。また、第n段目の蒸発缶2Nの蒸気通路4の水分分離壁12の後側の空間部には、第1原水供給管21の一部が伝熱部として配置され、この空間部が第n段目の蒸発缶2Nで発生した原水蒸気を凝縮させる凝縮室10とされる。ところで、サーモコンプレッサ23とは、高圧蒸気(駆動蒸気であり、例えば150℃〜160℃程度の蒸気で、圧力としては4.76×10Pa〜6.18×10Paの範囲である)により低圧蒸気(中間段の蒸発缶から吸引される蒸気であり、例えば50℃〜62℃程度の蒸気で、圧力としては0.12×10Pa〜0.22×10Paの範囲である)を吸引して中圧蒸気(吐出蒸気であり、例えば65℃〜70℃程度の蒸気で、圧力としては0.25×10Pa〜0.34×10Paの範囲である)を吐出するものである。なお、中間段の蒸発缶から吸引される低圧蒸気については、第2段目の蒸発缶から吸引する場合には62℃程度の蒸気で、圧力としては0.22×10Pa程度である。なお、高圧蒸気、中圧蒸気および低圧蒸気の温度範囲および圧力範囲は上述した値に限定されるものではなく、装置の仕様により変化するものである。これら各蒸気の想定し得る(取り得る)温度範囲および圧力範囲としては、以下のようになる。高圧蒸気については、温度が100℃〜180℃程度で、圧力は1.013×10Pa〜10.0×10Paの範囲である。中圧蒸気については、温度が65℃〜100℃程度で、圧力は0.25×10Pa〜1.0×10Paの範囲である。低圧蒸気については、温度が40℃〜80℃程度で、圧力は0.074×10Pa〜0.48×10Paの範囲である。
また、上記第1原水供給管21の一部は第n段目の蒸発缶2Nに設けられた凝縮室10に配置されて原水蒸気と原水との間で熱交換を行い、熱の有効利用が図られている。なお、この第1原水供給管21の凝縮室10を出た部分には、原水を排出するための原水排出管31が接続されている。
勿論、第1原水供給管21、第1水取出管27、第2水取出管28および原水取出管30の途中には、原水供給用ポンプ35、第1水ポンプ36、第2水ポンプ37および原水排出用ポンプ38が設けられている。
なお、第1原水供給管21は、原水供給用ポンプ35が設けられた本体管部21aと、各蒸発缶2の散布器6と本体管部21aとをそれぞれ接続する複数の枝管部21bとから構成されている。
ここで、上記サーモコンプレッサ23Bについて簡単に説明しておく。
このサーモコンプレッサ23Bは、一端部から駆動蒸気として高圧蒸気が供給されて低圧蒸気を吸引するようにされた筒状の蒸気駆動部41Bと、この蒸気駆動部41Bの他端に設けられて絞り部から延設されて蒸気を所定方向に案内する筒状の蒸気案内部42Bと、この蒸気案内部42Bの先端部に接続されたラッパ形状のディフューザ部(散気部)43Bとから構成されている。上記蒸気駆動部41Bは、一端側に駆動蒸気の供給口41Baが設けられるとともに中心軸位置には駆動蒸気を絞るための絞り部44Baを有するノズル44Bが配置され且つ側部には低圧蒸気を吸引するための第1吸引口41Bbおよび第2吸引口41Bcが形成されたものであり、またディフューザ部43Bの先端は中圧蒸気の吐出口43Baにされている。なお、ノズル44Bの駆動蒸気の供給側の一端部は供給口41aに位置されて駆動蒸気が直接導かれるようにしている。
そして、蒸気駆動部41Bの供給口41Baとディフューザ部43Bの吐出口43Baは加熱蒸気供給管22の途中に接続され、また第1吸引口41Bbは蒸気吸引管24に接続されるとともに、第2吸引口41Bcは原水蒸気供給管57Bに接続されている。
したがって、駆動蒸気として高圧蒸気が蒸気駆動部41Bの供給口41Baに供給されると、ノズル44Bで絞られて速度が音速以上に加速されて圧力が低下するとともに、第1吸引口41Bbから第2段目の蒸発缶2B内の低圧蒸気を、また第2吸引口41Bcから蒸発用容器53内の低圧蒸気を吸引し、そしてこれらの低圧蒸気と高圧蒸気とがディフューザ部43Bで混合されて吐出口43Baから中圧蒸気として出される。
次に、基本的な構成に係る造水装置本体1における凝縮水すなわち真水(生産水)を得る動作について説明する。
上記構成において、第1原水供給管21を介して海水が各蒸発缶2に配置された熱交換器5の伝熱管5a上に散布(噴霧)されている状態において、高圧蒸気がサーモコンプレッサ23Bを介して第1段目の蒸発缶2Aの伝熱管5a内に供給されると、その蒸気の持つ熱により伝熱管5aの上方から散布される海水が蒸発されるとともに、当該伝熱管5a内の蒸気は自ら冷却されて凝縮し真水となる。この真水は、集水部11および配管13を経て水貯溜部14に溜まる。
ところで、第1段目の蒸発缶2Aの伝熱管5aにより海水が加熱されることにより発生した蒸気は、管板7Bに設けられた開口部8から蒸気通路4内に移動する。この蒸気通路4内に入った蒸気は、水分分離壁12の分離部12aを通過する際に、水分が除去されて第2段目の蒸発缶2Bに移動する。すなわち、この蒸気は第2段目の蒸発缶2Bに配置された伝熱管5a内に入り、その上方に設けられた散布器6から散布された海水を蒸発させる。勿論、第2段目の蒸発缶2Bでは、第1段目の蒸発缶2Aよりも減圧されて海水が蒸発し易くされているため、第1段目の蒸発缶2Aにて発生した蒸気により、海水の蒸発が行われる。なお、第2段目の蒸発缶2Bにて発生した蒸気の一部は、サーモコンプレッサ23Bに吸引されて、圧力が上昇されて、加熱用蒸気として利用される。したがって、高圧蒸気の使用量を減らすことができる。
そして、第3段目以降の蒸発缶2についても、前段の蒸発缶2にて発生した蒸気が次段の蒸発缶2の伝熱管5aに導かれて、当該次段の蒸発缶2での加熱用蒸気として利用され、したがって効率良く海水から真水が得られる。
また、第n段目の蒸発缶2Nの蒸気通路4に第1原水供給管21の一部が配置されて凝縮室10にされているため、ここを通過する海水により蒸気が冷却されて真水が得られるとともに、造水装置本体1に供給される海水を加熱することにより熱回収が行われている。
上記各蒸発缶2にて発生した真水は、それぞれ水移送管26を介して、次段の蒸発缶2の水貯溜部14に移送され、第n段目の蒸発缶2Nの水貯溜部14から第1水取出管27を介して外部に取り出される。また、第1段目の蒸発缶2の水貯溜部14に溜まった真水についても、第2水取出管28から取り出される。
また、各蒸発缶2の蒸発室3の底部に溜まった海水(ブライン)は、原水移送管29を介して、順次、次段の蒸発缶2の蒸発室3に移送されるとともに、第n段目の蒸発缶2Nから原水取出管30を介して外部に取り出される。
なお、図示しないが、第3段目以降の任意の蒸発缶2にて発生した蒸気を第1原水供給管21の途中に設けられた熱交換部(図示せず)に導き、海水を加熱することにより、熱回収が行われている。
次に、フラッシュ式蒸発装置51Bについて説明する。
このフラッシュ式蒸発装置51Bについても、基本的な構成は実施例1で説明したものと同一であるため、同一の構成部材については、同一の部材番号を用いるとともに、その説明を省略する。
すなわち、図6に示すように、このフラッシュ式蒸発装置51Bは、内部に原水(海水)を散布する散布器(例えば、散布管が用いられる)52が設けられた蒸発用容器(フラッシュチャンバとも言う)53と、上記散布器52に原水を供給する第2原水供給管54と、この第2原水供給管54の途中に設けられた加熱器55と、この加熱器55に熱源として比較的温度が低い80℃〜100℃程度の排温水を供給する排熱流体供給管56と、上記蒸発用容器53にて発生した原水蒸気を造水装置本体1に具備されたサーモコンプレッサ23Bの第2吸引口41Bcに導くための原水蒸気供給管57Bと、原水ポンプ58を有するとともに蒸発用容器53内の原水を取り出し上記第2原水供給管54に戻すための原水戻し管59とから構成されている。なお、このフラッシュ式蒸発装置51Bには、サーモコンプレッサ23Bに導く原水蒸気の量を調節するために、原水蒸気供給管57B内の蒸気の一部を蒸気取出管60を介して取り出し凝縮する凝縮器61と、この凝縮器61に冷却水を供給する冷却水配管62と、上記凝縮器61にて得られた凝縮水を上記原水戻し管59に戻すための水戻し管63とが設けられている。
このフラッシュ式蒸発装置51Bにおいて、加熱器55には、80℃〜100℃程度の排温水が導かれて、原水である海水が例えば60℃〜70℃程度に加熱される。そして、この海水は第2原水供給管54を介して蒸発用容器53内の散布器52に供給され、所定圧力に減圧された蒸発用容器53内で散布されてフラッシュ蒸発が行われる。この得られた蒸気は原水蒸気供給管57Bを介して、造水装置本体1に具備されたサーモコンプレッサ23Bの第2吸引口41Bcに導かれて加熱用蒸気および第2段目の蒸発缶2Bからの原水蒸気とともに第1段目の蒸発缶2Aに供給されて、原水蒸気を得る熱源として利用され、そして自らは凝縮して真水となり外部に取り出される。
本実施例3の造水装置によると、蒸発缶が多段に配置されるとともに中間段の蒸発缶にて発生した原水蒸気を、加熱用蒸気により駆動されるサーモコンプレッサにて吸引し加熱用蒸気に混入させるようにした多重効用造水装置において、加熱用蒸気より低い温度で駆動されるフラッシュ式蒸発装置を具備させるとともに、このフラッシュ式蒸発装置の蒸発用容器にて発生した原水蒸気を、上記サーモコンプレッサに導いて加熱用蒸気のアシスト用としたので、本来、造水用熱源として使用できない低温の排熱流体の持つ熱の有効利用を図り得るとともに造水効率を向上させ得る造水装置を提供することができる。すなわち、熱効率の向上が図られた多重効用造水装置を提供することができる。
次に、本発明の実施例4に係る多重効用造水装置を図7に基づき説明する。なお、本実施例4は請求項6乃至請求項8に対応するものである。
ところで、本実施例4と上述の実施例3との異なる個所は、造水装置本体の蒸発缶の蒸発室にて発生した原水蒸気をサーモコンプレッサにて吸引するための蒸発缶が異なっていることであり、そのため、本実施例4では、この異なる部分に着目して説明する。したがって、両実施例における造水装置の構成は殆ど同一であるため、同一の構成部材については同一の部材番号を付して説明する。
すなわち、図7に示すように、この造水装置は、加熱蒸気供給管22を介して加熱用蒸気が導かれる伝熱管5a上に原水供給管21を介して供給される原水である海水を散布して原水蒸気を得る蒸発缶2が複数段でもって配置されるとともに、前段の蒸発缶2にて発生した原水蒸気を後段の蒸発缶2における伝熱管5aに導くようにした造水装置において、上記加熱水蒸気供給管22の途中にサーモコンプレッサ23Bを配置して第n段目(最後段)の蒸発缶2Nにて発生した原水蒸気をその第1吸引口41Bbから吸引し圧縮して加熱用蒸気に混入させるようになし、且つ加熱用蒸気の温度よりも低い排温水(排熱流体)により駆動されて原水を蒸発させるフラッシュ式蒸発装置51Bを具備するとともに、このフラッシュ式蒸発装置51Bにて発生した原水蒸気を上記サーモコンプレッサ23Bの第2吸引口41Bcに導いて第n段目の蒸発缶2Nからの原水蒸気と併せて第1段目(最前段)の蒸発缶2Aの伝熱管5aに導くようにしたものである。
したがって、上記フラッシュ式蒸発装置51Bは、内部に原水を散布する散布器52が設けられた蒸発用容器53と、上記散布器52に原水を供給する第2原水供給管54と、この第2原水供給管54の途中に設けられた原水の加熱器55と、この加熱器55に熱源として排温水を供給する排熱流体供給管56と、上記蒸発用容器53にて発生した原水蒸気をサーモコンプレッサ23Bの第2吸引口41Bbに導く原水蒸気供給管57Bとから構成されている。
このフラッシュ式蒸発装置51Bにおいても、上述した実施例3と同様に、加熱器55には、80℃〜100℃程度の低温の排温水が導かれて、原水である海水が例えば60℃〜70℃程度に加熱される。そして、この海水は第2原水供給管54を介して蒸発用容器53内の散布器52に供給され、所定圧力に減圧された蒸発用容器53内で散布されてフラッシュ蒸発が行われる。この得られた蒸気は原水蒸気供給管57Bを介して、造水装置本体1に具備されたサーモコンプレッサ23Bの第2吸引口41Bcに導かれて加熱用蒸気および第n段目の蒸発缶2Nからの原水蒸気とともに第1段目の蒸発缶2Aに供給されて、原水蒸気を得る熱源として利用され、そして自らは凝縮して真水となり外部に取り出される。
本実施例4の造水装置によると、蒸発缶が多段に配置されるとともに最後段(第n段目)の蒸発缶にて発生した原水蒸気を、加熱用蒸気により駆動されるサーモコンプレッサにて吸引し加熱用蒸気に混入させるようになし、且つ加熱用蒸気より低い温度で駆動されるフラッシュ式蒸発装置を具備させるとともに、このフラッシュ式蒸発装置の蒸発用容器にて発生した原水蒸気を、上記サーモコンプレッサに導いて加熱用蒸気のアシスト用としたので、本来、造水用熱源として使用できない低温の排熱流体の持つ熱の有効利用を図り得るとともに造水効率を向上させ得る造水装置を提供することができる。また、最後段の蒸発缶内で発生した原水蒸気をサーモコンプレッサにて吸引するようにしているので、中間段の蒸発缶から低圧の原水蒸気を吸引する場合に比べて、造水効率の向上を図ることができる。すなわち、熱効率の向上が図られた多重効用造水装置を提供することができる。
ところで、上記実施例1〜実施例4では、高圧蒸気、中圧蒸気、低圧蒸気と言う語句を用いたが、温度にすれば、高温蒸気、中温蒸気、低温蒸気と言うことができる。
1 造水装置本体
2 蒸発缶
3 蒸発室
4 蒸気通路
5 熱交換器
5a 伝熱管
6 散布器
9 蒸気導入室
10 凝縮室
21 第1原水供給管
22 加熱蒸気供給管
23 サーモコンプレッサ
23A サーモコンプレッサ
23B サーモコンプレッサ
24 蒸気吸引管
41 蒸気駆動部
41A 蒸気駆動部
41B 蒸気駆動部
42 蒸気案内部
42A 蒸気案内部
42B 蒸気案内部
43 ディフューザ部
43A ディフューザ部
43B ディフューザ部
51 フラッシュ式蒸発装置
51A フラッシュ式蒸発装置
51B フラッシュ式蒸発装置
52 散布器
53 蒸発用容器
54 第2原水供給管
55 加熱器
56 排熱流体供給管
57 原水蒸気供給管
57B 原水蒸気供給管
71 加熱蒸気供給管

Claims (8)

  1. 加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようになし且つ上記加熱蒸気供給管の途中に配置されたサーモコンプレッサにより中間段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、
    加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を最前段の蒸発缶の伝熱管に導くようにしたことを特徴とする多重効用造水装置。
  2. フラッシュ式蒸発装置を、内部に原水を散布する散布器が設けられた蒸発用容器と、上記散布器に原水を供給する原水供給管と、この原水供給管の途中に設けられた原水の加熱器と、この加熱器に熱源として排熱流体を供給する排熱流体供給管と、上記蒸発用容器にて発生した原水蒸気を最前段の蒸発缶に導く原水蒸気供給管とから構成したことを特徴とする請求項1に記載の多重効用造水装置。
  3. 原水蒸気供給管の途中に加熱用蒸気により駆動されるサーモコンプレッサを配置したことを特徴とする請求項2に記載の多重効用造水装置。
  4. 排熱流体として、ごみ焼却設備、発電所またはプラント設備から排出される温水を用いたことを特徴とする請求項1乃至3のいずれか一項に記載の多重効用造水装置。
  5. 加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようになし且つ上記加熱蒸気供給管の途中に配置されたサーモコンプレッサにより中間段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようにした多重効用造水装置において、
    加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を上記サーモコンプレッサに設けられた吸引口に導いて上記中間段の蒸発缶からの原水蒸気と併せて最前段の蒸発缶の伝熱管に導くようにしたことを特徴とする多重効用造水装置。
  6. 加熱蒸気供給管を介して加熱用蒸気が導かれる伝熱管上に原水供給管を介して供給される原水を散布して原水蒸気を得る蒸発缶が複数段でもって配置されるとともに、前段の蒸発缶にて発生した原水蒸気を後段の伝熱管に導き凝縮させて真水を得るようにした多重効用造水装置において、
    上記加熱蒸気供給管の途中にサーモコンプレッサを配置して最後段の蒸発缶にて発生した原水蒸気を吸引し圧縮して加熱用蒸気に混入させるようになし、
    且つ加熱用蒸気の温度よりも低い排熱流体により原水を蒸発させるフラッシュ式蒸発装置を具備するとともに、このフラッシュ式蒸発装置にて発生した原水蒸気を上記サーモコンプレッサに設けられた吸引口に導いて上記最後段の蒸発缶からの原水蒸気と併せて最前段の蒸発缶の伝熱管に導くようにしたことを特徴とする多重効用造水装置。
  7. フラッシュ式蒸発装置を、内部に原水を散布する散布器が設けられた蒸発用容器と、上記散布器に原水を供給する原水供給管と、この原水供給管の途中に設けられた原水の加熱器と、この加熱器に熱源として排熱流体を供給する排熱流体供給管と、上記蒸発用容器にて発生した原水蒸気をサーモコンプレッサに設けられた吸引口に導く原水蒸気供給管とから構成したことを特徴とする請求項5または6に記載の多重効用造水装置。
  8. 排熱流体として、ごみ焼却設備、発電所またはプラント設備から出る温水を用いたことを特徴とする請求項5乃至7のいずれか一項に記載の多重効用造水装置。
JP2015019814A 2015-02-04 2015-02-04 多重効用造水装置 Pending JP2016140840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019814A JP2016140840A (ja) 2015-02-04 2015-02-04 多重効用造水装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019814A JP2016140840A (ja) 2015-02-04 2015-02-04 多重効用造水装置

Publications (1)

Publication Number Publication Date
JP2016140840A true JP2016140840A (ja) 2016-08-08

Family

ID=56569212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019814A Pending JP2016140840A (ja) 2015-02-04 2015-02-04 多重効用造水装置

Country Status (1)

Country Link
JP (1) JP2016140840A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147608A (zh) * 2018-03-07 2018-06-12 华北电力大学(保定) 一种利用压缩空气和热泵处理电厂含盐废水的多效蒸发结晶系统及方法
CN109867317A (zh) * 2019-04-18 2019-06-11 安徽理工大学 一种低温高效雾化引射海水淡化装置及其方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108147608A (zh) * 2018-03-07 2018-06-12 华北电力大学(保定) 一种利用压缩空气和热泵处理电厂含盐废水的多效蒸发结晶系统及方法
CN108147608B (zh) * 2018-03-07 2023-10-13 华北电力大学(保定) 一种利用压缩空气和热泵处理电厂含盐废水的多效蒸发结晶系统及方法
CN109867317A (zh) * 2019-04-18 2019-06-11 安徽理工大学 一种低温高效雾化引射海水淡化装置及其方法

Similar Documents

Publication Publication Date Title
CN203577339U (zh) 一种机械蒸汽再压缩型蒸发浓缩装置
US10099154B2 (en) Multi-effects desalination system
CN102557168A (zh) 热管式低温多效海水淡化系统及工艺流程
US9309129B1 (en) Multi-effects desalination system
JP5804931B2 (ja) 多重効用式蒸発方法および多重効用式蒸発装置
CN106395950A (zh) 高效利用热能生产淡水的低温多效蒸馏海水淡化方法
JP2016140840A (ja) 多重効用造水装置
CN101745240B (zh) 一种多效蒸馏系统效间不凝气体的抽出方法及其装置
CN102079552B (zh) 采用降膜式冷凝器的低温多效蒸馏海水淡化系统
CN201411401Y (zh) 一种海水多效蒸馏系统
CN104118960A (zh) 一种热空气多级加热的海水淡化装置
KR101323160B1 (ko) 선박용 수직형 다단 조수기
CN101525196A (zh) 带预热器的多效蒸馏海水淡化装置
JP2016128746A (ja) 過熱水蒸気発生器
JP2010046571A (ja) 水溶液の蒸発濃縮方法および蒸発濃縮装置
CN202542898U (zh) 热管式低温多效海水淡化系统
KR101587123B1 (ko) 이젝터를 이용한 med와 vmd의 하이브리드 해수 담수화장치
JP5604742B2 (ja) 蒸留水製造装置および方法
RU2007110287A (ru) Способ концентрирования раствора и многокорпусная выпарная установка для его осуществления
CN102092805B (zh) 一种低温多效海水淡化系统
RU2337742C1 (ru) Многоступенчатая установка выпаривания
JP2017018927A (ja) 多重効用式造水装置
KR101567655B1 (ko) Tvc-med의 비응축가스 벤팅구조
RU2115737C1 (ru) Многокорпусная выпарная установка
KR101642842B1 (ko) 해수 농축 및 석출 시스템