JP2016138330A - Metal material having surface shape allowing low friction coefficient - Google Patents

Metal material having surface shape allowing low friction coefficient Download PDF

Info

Publication number
JP2016138330A
JP2016138330A JP2015024677A JP2015024677A JP2016138330A JP 2016138330 A JP2016138330 A JP 2016138330A JP 2015024677 A JP2015024677 A JP 2015024677A JP 2015024677 A JP2015024677 A JP 2015024677A JP 2016138330 A JP2016138330 A JP 2016138330A
Authority
JP
Japan
Prior art keywords
metal material
area
friction coefficient
low friction
true contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015024677A
Other languages
Japanese (ja)
Inventor
明 小豆島
Akira Shodoshima
明 小豆島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015024677A priority Critical patent/JP2016138330A/en
Publication of JP2016138330A publication Critical patent/JP2016138330A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a metal material used for a machine element component and a press molding and having a surface shape allowing a low friction coefficient.SOLUTION: The metal material allowing a low friction coefficient has flat projections having an area larger than that of a true contact portion generated by plastic deformation of the projections of surface projections and depressions of the metal material having a relative slide under a load without plastically deforming a bulk. The metal material having a surface shape allowing a low friction coefficient is manufactured by plastically or mechanically processing, etc., such as rolling and drawing the metal material having the flat projections having an area larger than that of the true contact portion. The area of the flat projections of the metal material is 1.2A or more to an area A of the true contact portion generated by plastic deformation at the initial stage.SELECTED DRAWING: Figure 2

Description

本発明は、機械要素部品及びプレス成形に用いられる低摩擦係数を可能にする表面形状を有する金属材料に関するものである。  The present invention relates to a metal material having a surface shape that enables a low coefficient of friction used in machine element parts and press molding.

機械要素部品及びプレス成形において2物体の金属材料が塑性変形を起こさない荷重下で相対すべりを行う接触界面の真実接触面には摩擦力が働いている。機械要素部品においては過酷条件で使用されることが多くなり、プレス成形においては高強度金属材料が使用されることが多くなり、2物体間に作用する荷重が非常に高くなり、焼付きが発生することになった。  In the mechanical element part and the press molding, a frictional force is acting on the true contact surface of the contact interface in which the two metal materials slide relative to each other under a load that does not cause plastic deformation. Machine element parts are often used under harsh conditions, and press molding often uses a high-strength metal material, resulting in a very high load acting between two objects and seizure. Decided to do.

機械要素部品及びプレス成形において2物体間に負荷される荷重を減少させるために、真実接触面に作用する摩擦力を低減させる工夫がなされてきた。具体的には金属材料表面に複合硬質膜処理を行う方法、使用する潤滑油に高潤滑性を付与する方法、金属表面の幾何学形状を制御する方法などが提案されている  In order to reduce the load applied between two objects in machine element parts and press molding, a contrivance has been made to reduce the frictional force acting on the true contact surface. Specifically, a method of performing a composite hard film treatment on the surface of a metal material, a method of imparting high lubricity to the lubricating oil used, a method of controlling the geometric shape of the metal surface, etc. have been proposed.

特開2000−144378JP 2000-144378 A 特開2003−253290JP 2003-253290 A

しかし、これらの方法の中で金属表面の幾何学形状を制御する方法は接触部の真実接触面積の摩擦力を抑制することに対してトライボロジー的に定量的な根拠を与えることは困難である。トロイボロジー的には潤滑油と表面のミクロ変形との相互作用を定量的に理解することが摩擦力を抑制するためには大切である。本発明は潤滑油と表面のミクロ変形との相互作用を定量的に理解し、低摩擦係数を可能にする表面形状を有する金属材料を提供することである。  However, among these methods, the method of controlling the geometric shape of the metal surface is difficult to provide a tribologically quantitative basis for suppressing the frictional force of the real contact area of the contact portion. In terms of trobbology, it is important to understand the interaction between lubricating oil and surface microdeformation in order to suppress frictional force. The present invention is to quantitatively understand the interaction between lubricating oil and surface microdeformation and to provide a metal material having a surface shape that enables a low coefficient of friction.

発明を解決するための手段Means for Solving the Invention

上記課題を解決するための手段は以下のとおりである。
2物体のバルクが塑性変形しない荷重下では、相対すべり下にある2物体の接触界面において金属表面の凹凸の凸部が塑性変形し、生じた真実接触部において負荷荷重を支えることになる。この条件下では真実接触部に作用する接触面圧は金属材料の降伏応力Yの3倍近い高い面圧が負荷されており、真実接触面積の増加と伴い、焼付きが発生しやすくなる。
Means for solving the above problems are as follows.
Under a load where the bulk of the two objects is not plastically deformed, the convex and concave portions of the metal surface are plastically deformed at the contact interface of the two objects under relative slip, and the load load is supported at the generated true contact portion. Under this condition, the contact surface pressure acting on the true contact portion is loaded with a surface pressure nearly three times higher than the yield stress Y of the metal material, and seizure is likely to occur as the true contact area increases.

そのため、機械要素部品及びプレス成形において焼付きを抑制するために、真実接触部に作用する摩擦力を減少させ低摩擦係数を可能にするため、真実接触面間に介在する潤滑油の油膜厚さを増加させることが必要である。そのためにはある荷重下で相対すべりしている接触界面において凸部の塑性変形により生じた真実接触部の面積よりも大きな平坦な凸部の面積を有する金属材料を用意すると良い。その平坦な面積に同じ荷重が作用すると、その接触面圧は材料の降伏応力の3倍よりもかなり低い値になり、その真実接触面間に介在する潤滑油の油膜厚さは厚くなることにより低摩擦係数を可能にすることができる。  Therefore, in order to suppress seizure in machine element parts and press molding, in order to reduce the frictional force acting on the true contact portion and to enable a low friction coefficient, the oil film thickness of the lubricating oil interposed between the true contact surfaces is reduced. It is necessary to increase For this purpose, it is preferable to prepare a metal material having a flat convex area larger than the area of the true contact portion caused by plastic deformation of the convex portion at the contact interface that is relatively sliding under a certain load. If the same load is applied to the flat area, the contact surface pressure will be much lower than three times the yield stress of the material, and the oil film thickness of the lubricating oil interposed between the true contact surfaces will increase. A low coefficient of friction can be possible.

発明の効果Effect of the invention

本発明の金属材料は、表面凹凸の凸部の塑性変形により生じた真実接触部の面積よりも大きな平坦な凸部の面積を有する金属材料を用意し、接触面積に作用する面圧を減少させることにより、真実接触面間に介在する潤滑油の油膜厚さは厚くし、接触面に作用する摩擦力を減少させることにより低摩擦係数を可能にする。  The metal material of the present invention prepares a metal material having an area of a flat convex portion larger than the area of the true contact portion caused by plastic deformation of the convex portion of the surface unevenness, and reduces the surface pressure acting on the contact area. Thus, the oil film thickness of the lubricating oil interposed between the true contact surfaces is increased, and a low friction coefficient is made possible by reducing the frictional force acting on the contact surfaces.

以下に本発明を詳しく説明する。機械要素部品及びプレス成形において焼付きを抑制するために、真実接触部に作用する摩擦力を減少させ低摩擦係数を可能にするため、ある荷重下で相対すべりしている接触界面において凸部の塑性変形により生じた真実接触部の面積よりも大きな平坦な凸部の面積を有する金属材料の平坦な面積に同じ荷重が作用すると、その接触面圧は材料の降伏応力の3倍よりもかなり低い値になり、その真実接触面間に介在する潤滑油の油膜厚さは厚くなることにより低摩擦係数を可能にすることができる。    The present invention is described in detail below. In order to suppress seizure in machine element parts and press molding, to reduce the frictional force acting on the true contact part and to enable a low coefficient of friction, in order to enable a low coefficient of friction, the convex part at the contact interface that is relatively sliding under a certain load. When the same load is applied to the flat area of a metal material having a flat convex area larger than the area of the true contact caused by plastic deformation, the contact pressure is considerably lower than three times the yield stress of the material. And a low friction coefficient can be achieved by increasing the oil film thickness of the lubricating oil interposed between the true contact surfaces.

具体的には、表面粗さ0.86Raμm、降伏応力125MPaの普通鋼板を垂直荷重500kgf(面圧25MPa)、すべり速度170mm/sの条件で粘度80cStの潤滑油を用いて繰り返し摺動を行ったときの摩擦係数と摺動回数の関係を図1に示す。摺動回数が増加するとともに摩擦係数は減少している。この現象は、摺動回数の増加とともに真実接触面積が増加し、真実接触面積に負荷される面圧が減少し、接触界面に介在する潤滑油の油膜厚みが増加することにより摩擦係数が減少している。金属材料の表面凹凸の凸部の塑性変形により生じた真実接触部の面積よりも大きな平坦な凸部の面積を有する金属材料を用いることにより、接触面積に作用する面圧を減少させ、真実接触面間に介在する潤滑油の油膜厚さは厚くし、接触面に作用する摩擦力を減少させることにより低摩擦係数を可能にすることが本発明の形態である。  Specifically, a plain steel plate having a surface roughness of 0.86 Raμm and a yield stress of 125 MPa was repeatedly slid using a lubricating oil having a viscosity of 80 cSt under a vertical load of 500 kgf (surface pressure of 25 MPa) and a sliding speed of 170 mm / s. The relationship between the friction coefficient and the number of sliding times is shown in FIG. As the number of sliding increases, the friction coefficient decreases. In this phenomenon, the true contact area increases as the number of sliding operations increases, the surface pressure applied to the true contact area decreases, and the friction coefficient decreases as the oil film thickness of the lubricating oil intervening at the contact interface increases. ing. By using a metal material having a flat convex area larger than the real contact area caused by plastic deformation of the convex and concave parts of the surface of the metal material, the surface pressure acting on the contact area is reduced, and the real contact It is an aspect of the present invention to enable a low coefficient of friction by increasing the oil film thickness of the lubricating oil interposed between the surfaces and reducing the frictional force acting on the contact surface.

本発明は、バルクが塑性変形しない荷重下で相対すべりをしている金属材料の表面凹凸の凸部の初期の塑性変形により生じた真実接触部の面積をAとすると、真実接触部の面積よりも大きな平坦な凸部の面積とは1.2Aよりも大きい範囲を意味している。  In the present invention, when the area of the true contact portion caused by the initial plastic deformation of the convex portion of the surface unevenness of the metal material that is sliding relative to the bulk under a load that does not undergo plastic deformation is A, the area of the true contact portion is The area of the large flat convex portion means a range larger than 1.2A.

本発明において、真実接触部の面積よりも大きな平坦な凸部の面積をもつ金属材料を製作することは、圧延加工、引抜き加工などの塑性加工や機械加工などにより製作することを意味している。  In the present invention, manufacturing a metal material having a flat convex area larger than the area of the true contact portion means that the metal material is manufactured by plastic processing or machining such as rolling or drawing. .

以下、本発明の実施例を具体的に説明する。引張強さ590MPaで表面粗さ0.74Raμmのダル表面凹凸を持つ高張力鋼板とスキンパス圧延により平坦下率18.6%、27.1%、35.8%の平坦な凸部もつ同じ高張力鋼板を垂直荷重450kgf(面圧88MPa)、すべり速度0.42mm/sの条件で粘度16cStの潤滑油を用いて1回の摺動を行った。  Examples of the present invention will be specifically described below. High tensile strength steel plate with a dull surface irregularity with a tensile strength of 590 MPa and a surface roughness of 0.74 Raμm, and the same high tension with flat convexities of flat bottom ratios of 18.6%, 27.1% and 35.8% by skin pass rolling The steel sheet was slid once using a lubricating oil having a viscosity of 16 cSt under conditions of a vertical load of 450 kgf (surface pressure of 88 MPa) and a sliding speed of 0.42 mm / s.

図2に4種類の高張力鋼板の摩擦係数と平坦化率を示す。摩擦係数は、ランダムな表面凹凸を持つ高張力鋼板の0.22の値から、平坦下率が増加するとともに減少し、平坦下率35.8%の高張力鋼板の0.17まで低下している。高張力鋼板の凸部の平坦下率が増加するとともに摩擦係数が減少していることを示している。  FIG. 2 shows the friction coefficient and flattening rate of four types of high-tensile steel plates. The coefficient of friction decreases from 0.22 for high-strength steel sheets with random surface irregularities, and decreases as the flatness ratio increases and decreases to 0.17 for high-tensile steel sheets with a flatness ratio of 35.8%. Yes. It shows that the flat bottom ratio of the convex part of the high-tensile steel plate increases and the friction coefficient decreases.

ランダムな表面凹凸をもつ普通鋼板を垂直荷重500kgf(面圧25MPa)、すべり速度170mm/sの条件で粘度80cStの潤滑油を用いて繰り返し摺動を行ったとき、真実接触面積が摺動回数とともに増加し、面圧が減少することにより接触界面に介在する潤滑油の油膜厚みが増加し、摩擦係数が摺動回数とともに減少することを説明する図面When a normal steel plate with random surface irregularities is repeatedly slid using a lubricating oil with a viscosity of 80 cSt under a vertical load of 500 kgf (surface pressure of 25 MPa) and a sliding speed of 170 mm / s, the true contact area increases with the number of sliding times. Drawing explaining that the oil film thickness of the lubricating oil intervening at the contact interface increases as the surface pressure increases and the friction coefficient decreases with the number of sliding 平坦下率の異なる4種類の高張力鋼板を1回摺動するときに高張力鋼板の凸部の平坦下率が増加するとともに摩擦係数が減少していることを説明する図面Drawing explaining that the flat bottom ratio of the convex portion of the high-tensile steel sheet increases and the friction coefficient decreases when four types of high-tensile steel sheets with different flat bottom ratios slide once.

Claims (2)

バルクが塑性変形しない荷重下で相対すべりをしている金属材料の表面凹凸の凸部の塑性変形により生じた真実接触部の面積よりも大きな平坦な凸部の面積を有する金属材料を特徴とする低摩擦係数を可能にする金属材料。  Featuring a metal material having a flat convex area larger than the area of the true contact part caused by plastic deformation of the convex part of the surface irregularity of the metal material that is relatively sliding under a load where the bulk does not undergo plastic deformation Metal material that enables a low coefficient of friction. さらに、真実接触部の面積よりも大きな平坦な凸部の面積をもつ金属材料を圧延加工、引抜き加工などの塑性加工や機械加工などにより製作することを特徴とする請求項目1に記載の低摩擦係数を可能にする表面形状を有する金属材料。  2. The low friction according to claim 1, wherein a metal material having a flat convex area larger than the area of the true contact portion is produced by plastic processing such as rolling or drawing or mechanical processing. Metal material with a surface shape that allows modulus.
JP2015024677A 2015-01-26 2015-01-26 Metal material having surface shape allowing low friction coefficient Pending JP2016138330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015024677A JP2016138330A (en) 2015-01-26 2015-01-26 Metal material having surface shape allowing low friction coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015024677A JP2016138330A (en) 2015-01-26 2015-01-26 Metal material having surface shape allowing low friction coefficient

Publications (1)

Publication Number Publication Date
JP2016138330A true JP2016138330A (en) 2016-08-04

Family

ID=56558427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015024677A Pending JP2016138330A (en) 2015-01-26 2015-01-26 Metal material having surface shape allowing low friction coefficient

Country Status (1)

Country Link
JP (1) JP2016138330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543742A (en) * 2022-02-28 2022-05-27 北京理工大学 Method for measuring real contact area of metal surface in friction process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543742A (en) * 2022-02-28 2022-05-27 北京理工大学 Method for measuring real contact area of metal surface in friction process
CN114543742B (en) * 2022-02-28 2022-11-29 北京理工大学 Method for measuring real contact area of metal surface in friction process

Similar Documents

Publication Publication Date Title
Hu et al. Tribological behaviour of DLC-films and their application in micro deep drawing
Mori et al. Slight clearance punching of ultra-high strength steel sheets using punch having small round edge
US11213870B2 (en) Micro-textured surfaces via low pressure rolling
Franzen et al. Textured surfaces for deep drawing tools by rolling
Tenner et al. Numerical and experimental investigation of dry deep drawing of aluminum alloys with conventional and coated tool surfaces
Hassan et al. Deep drawing characteristics of square cups through conical dies
Kitamura et al. Tribological effects of punch with micro-dimples in blanking under high hydrostatic pressure
JP2016138330A (en) Metal material having surface shape allowing low friction coefficient
WO2021186952A1 (en) Mold for press-forming, and press-forming method using same
Karpuschewski et al. Alternative strategies in finishing cylinder running surfaces
Tan et al. Increase in ironing limit of aluminium alloy cups with lubricants containing nanoparticles
Mori et al. Two-stage cold stamping of magnesium alloy cups having small corner radius
Schubert et al. Modular tool concept and process design for micro impact extrusion
HRP20140861T1 (en) Method for producing an aluminium film with integrated safety characteristics
Majidi et al. Formability of AHSS under an attach–detach forming mode
Abe et al. Improvement of seizure resistance by roughening surface of stainless steel drawn cup in ironing using die having lubricant pockets
JP2011200912A (en) Method and die for pressing metallic member
JP2017202519A (en) Hot stamping processing of age hardening type aluminum alloy plate
Tamaoki et al. Continuous dry cylindrical and rectangular deep drawing by electroconductive ceramic dies
Kijima et al. Influence of tool roughness and lubrication on contact conditions in skin-pass rolling
Hayakawa et al. Effect of workpiece surface topography on friction in cold forging using environmentally-friendly lubricant
Hildenbrand et al. A new strategy for manufacturing tailored blanks by a flexible rolling process
Kadarno et al. Flanging using step die for improving fatigue strength of punched high strength steel sheet
Maeno et al. Prevention of seizure in inner spline backward extrusion by low-cycle oscillation using servo press
JP2016130353A (en) High strength steel plate with excellent galling resistance