JP2016136125A - Thermal analysis data processing method and thermal analysis device - Google Patents

Thermal analysis data processing method and thermal analysis device Download PDF

Info

Publication number
JP2016136125A
JP2016136125A JP2015023633A JP2015023633A JP2016136125A JP 2016136125 A JP2016136125 A JP 2016136125A JP 2015023633 A JP2015023633 A JP 2015023633A JP 2015023633 A JP2015023633 A JP 2015023633A JP 2016136125 A JP2016136125 A JP 2016136125A
Authority
JP
Japan
Prior art keywords
waveform
waveforms
measurement
thermal analysis
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023633A
Other languages
Japanese (ja)
Other versions
JP6530611B2 (en
Inventor
永澤 潤
Jun Nagasawa
潤 永澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2015023633A priority Critical patent/JP6530611B2/en
Publication of JP2016136125A publication Critical patent/JP2016136125A/en
Application granted granted Critical
Publication of JP6530611B2 publication Critical patent/JP6530611B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate a superimposed waveform for each single response and enable analysis for each response for thermal analysis data.SOLUTION: There are provided a thermal analysis data processing method and a thermal analysis device for executing the method. The method includes a measurement waveform acquisition step for acquiring a measurement waveform, a differential step for generating a differential waveform by differentiating the measurement waveform, a peak separation step for separating a superimposed peak waveform included in the differential waveform into a plurality of single peak waveforms, an integration step for individually integrating the plurality of single peak waveforms and generating a plurality of single response waveforms respectively, and a waveform shift step for moving any single waveform to any position to each of the plurality of single response waveforms by individually adding a predetermined movement amount to an XY direction.SELECTED DRAWING: Figure 3

Description

本発明は、材料物性の温度依存性を調べる熱分析に関し、具体的には熱重量測定データまたは熱機械的測定データにおいて重畳波形を分離する方法に関する。  The present invention relates to thermal analysis for investigating the temperature dependence of material properties, and more specifically to a method for separating superimposed waveforms in thermogravimetric measurement data or thermomechanical measurement data.

熱分析は、試料の物性が温度変化につれどう変化するかを調べる際の有力な手段であり、試料を一定の速度で加熱しながら前記物性の変化を温度の関数として記録する。代表的な分析方法としては、示差走査熱量測定(DSC)、示差熱測定(DTA)、熱重量測定(TG)、熱機械的測定(TMA)などがある。それぞれ、試料のエンタルピー収支、示差温度、重量、長さ、といった物性の温度依存性を測定するものである(例えば、特許文献1)。  Thermal analysis is an effective means for investigating how the physical properties of a sample change as the temperature changes, and records the change in physical properties as a function of temperature while heating the sample at a constant rate. Typical analysis methods include differential scanning calorimetry (DSC), differential calorimetry (DTA), thermogravimetry (TG), and thermomechanical measurement (TMA). Each of them measures temperature dependence of physical properties such as enthalpy balance, differential temperature, weight, and length of a sample (for example, Patent Document 1).

熱分析では、試料によって測定する温度範囲において複数の反応を生じるものがあり、さらにはそれら複数の反応が近接した温度域で生じるものがある。複数の反応が非常に近接した温度域で生じると、それら反応によって取得される波形データは、重畳波形となってしまい反応毎の解析が困難となる。その傾向は、特に測定時間を短縮するために昇温速度を大きくすると顕著となる。これは、熱分析における測定信号の検出器が固有の時定数を有することと試料の反応速度が影響することより、取得する信号が時間依存性を示すためである。  In thermal analysis, there are those that generate a plurality of reactions in a temperature range measured by a sample, and there are those that generate a plurality of reactions in close temperature ranges. When a plurality of reactions occur in a very close temperature range, the waveform data acquired by these reactions becomes a superimposed waveform, making analysis for each reaction difficult. This tendency becomes prominent particularly when the temperature increase rate is increased in order to shorten the measurement time. This is because the signal to be obtained shows time dependency because the detector of the measurement signal in the thermal analysis has a unique time constant and the reaction rate of the sample affects.

そのような状況ではあっても、通常のDSCデータは一定の比熱容量を示す参照物質との熱量の差を熱変化に対して計測するものであり、その温度と熱量の関係で示すチャートは熱量差に応じたピークを示す形状となる。この様にピーク形状を示す波形は、非線形フィットにより比較的容易に反応毎の単独波形に分離可能である。  Even in such a situation, the normal DSC data measures the difference in heat quantity with respect to a reference material showing a certain specific heat capacity with respect to the heat change, and the chart showing the relationship between the temperature and the heat quantity shows the heat quantity. It becomes the shape which shows the peak according to a difference. In this way, the waveform showing the peak shape can be separated into a single waveform for each reaction relatively easily by nonlinear fitting.

これに対して、TGデータは試料の重量を昇温度に対してプロットしたものであり、任意の温度間における加熱時の重量減少量を示すものであって、ピーク形状とは異なる。この場合は、通常、複数成分それぞれの熱分解等の温度の近さによっては成分毎の重量減少量を定量することが難しくなる。このような状況は、温度変化に対する静的荷重による試料の変形量を測定するTMAデータにおいても同様である。  On the other hand, the TG data is obtained by plotting the weight of the sample with respect to the temperature rise, and indicates the amount of weight reduction during heating between arbitrary temperatures, and is different from the peak shape. In this case, it is usually difficult to quantify the amount of weight loss for each component depending on the closeness of the temperature such as thermal decomposition of each of the plurality of components. Such a situation is the same in the TMA data for measuring the deformation amount of the sample due to the static load with respect to the temperature change.

そこで、昇温速度を通常の数分の一から数十分の一程度に遅くする方法以外の一対策としては、試料中の物質の変化に応じて制御するように温度を変化させながら測定を行う速度制御型熱分析(CRTA:Controlled Rate Thermal Analysis又は試料制御熱分析[SCTA:Sample Controlled Thermal Analysis]ともいう)を用いるといった方法が周知である。どちらの方法も測定データにおける波形の分離をよくすることができ、それにより重畳していた波形を複数の単独波形に分離できる場合がある。ただし、これらの方法は、基本的に測定時間が長くなる傾向がある。  Therefore, as a measure other than the method of slowing the rate of temperature rise from a normal fraction to a few tenths, measurement is performed while changing the temperature so that it is controlled according to the change in the substance in the sample. A method of using a rate-controlled thermal analysis (CRTA: Controlled Rate Thermal Analysis) or a sample-controlled thermal analysis (also referred to as SCTA: Sample Controlled Thermal Analysis) is well known. Both methods can improve the separation of the waveform in the measurement data, and in some cases, the superimposed waveform can be separated into a plurality of single waveforms. However, these methods basically tend to increase the measurement time.

そこで測定時間を短くすることを前提とした対策は、例えば、取得した熱分析信号から活性化エネルギーを算出し、それに基づいて十分に小さい昇温速度の際に取得されるであろう熱分析信号を推定して取得することが提案されている(特許文献2)。  Therefore, a measure based on the premise of shortening the measurement time is, for example, calculating the activation energy from the acquired thermal analysis signal, and based on this, the thermal analysis signal that will be acquired at a sufficiently small heating rate. It has been proposed to acquire and estimate (Patent Document 2).

特開平9−26402JP-A-9-26402 特開平11−160262JP-A-11-160262

しかしながら、特許文献2の対策によれば、測定信号の2次微分信号と3次微分信号に基づいてピーク位置の特定とピークの重なりの有無を判定するため、複数成分の反応を加算した重畳波形の推定を行っていることとなり、単独反応波形に対する重量減少量の定量等の解析や単独反応波形同士の違いを視覚的に行う事が困難という問題があった。  However, according to the countermeasure of Patent Document 2, in order to determine the peak position and determine the presence or absence of peak overlap based on the second and third differential signals of the measurement signal, a superimposed waveform obtained by adding a plurality of component reactions is added. Therefore, there is a problem that it is difficult to perform analysis such as quantification of the amount of weight loss with respect to a single reaction waveform or to visually perform a difference between single reaction waveforms.

係る課題を解決するために、本発明の熱分析データの処理方法は、測定波形を取得する測定波形取得工程(S1)と、測定波形を微分して微分波形を生成する微分工程(S2)と、微分波形に含まれる重畳ピーク波形を複数の単独ピーク波形へ分離するピーク分離工程(S3)と、複数の単独ピーク波形をそれぞれ個別に積分してそれぞれの複数の単独反応波形を生成する積分工程(S4)と、複数の単独反応波形のそれぞれに対して、XY方向への所定の移動量を個別に加算することにより任意の単独波形を任意の位置まで移動させる波形シフト工程(S5)と、を含むことを特徴とする。このように、複数の反応の重畳波形を反応毎の単独波形に分離すると共に、各波形を任意の位置にシフト(移動)させるため、反応間の比較が視覚的に検討しやすくなる。  In order to solve the problem, the thermal analysis data processing method of the present invention includes a measurement waveform acquisition step (S1) for acquiring a measurement waveform, and a differentiation step (S2) for differentiating the measurement waveform to generate a differential waveform. A peak separation step (S3) for separating the superimposed peak waveform included in the differential waveform into a plurality of single peak waveforms, and an integration step for individually integrating the plurality of single peak waveforms to generate a plurality of single reaction waveforms. (S4), and a waveform shift step (S5) for moving any single waveform to an arbitrary position by individually adding a predetermined amount of movement in the XY direction to each of the plurality of single reaction waveforms, It is characterized by including. In this manner, the superimposed waveforms of a plurality of reactions are separated into individual waveforms for each reaction, and each waveform is shifted (moved) to an arbitrary position, so that comparison between reactions can be easily visually examined.

また別途の発明は、前記任意の位置へのシフトが、複数の単独反応波形のそれぞれの最大傾斜点において測定波形と交わるように又は複数の単独反応波形の開始点が測定波形と交わるように、任意の単独反応波形をY方向にシフトさせのる。あるいは複数のうち任意の単独反応波形のそれぞれが、それぞれの最大傾斜点において交わるようにXY方向への所定の移動量をシフトさせる。このようにすることで、目視による測定波形と任意の単独反応波形との対比が容易になる。
そして、上記の方法を実施すべく熱分析装置に実装する。
In another invention, the shift to the arbitrary position crosses the measurement waveform at the maximum slope point of each of the plurality of single reaction waveforms, or the start point of the plurality of single reaction waveforms crosses the measurement waveform. Shift any single reaction waveform in the Y direction. Alternatively, a predetermined amount of movement in the XY direction is shifted so that each of arbitrary single reaction waveforms among the plurality intersects at each maximum inclination point. By doing in this way, comparison with the measurement waveform by visual observation and arbitrary single reaction waveforms becomes easy.
And it mounts in a thermal analyzer so that said method may be implemented.

本発明における波形分離方法を用いることにより、熱分析データの複数反応の重畳波形を単独の反応波形に分離することができ、それぞれの反応毎に定量することが可能になる。これにより、従来行われてきた通常より遅い昇温速度で測定する方法やCRTA測定といった方法に伴う長時間の測定並びに適切な条件の判断や設定といった手間が不要となる。さらに、複数反応が非常に近接した温度域で生じる場合であって、前記従来方法を用いても波形の分離が困難な場合であっても、本発明に係る波形分離方法を用いることにより、効率よく適切に単独波形への分離が可能になる。  By using the waveform separation method according to the present invention, a superimposed waveform of a plurality of reactions in the thermal analysis data can be separated into a single reaction waveform and can be quantified for each reaction. This eliminates the need for time-consuming measurement and determination and setting of appropriate conditions associated with the conventional method of measuring at a slower rate of temperature increase than usual and CRTA measurement. Furthermore, even when multiple reactions occur in a very close temperature range, and even when it is difficult to separate waveforms using the above-described conventional method, the efficiency can be improved by using the waveform separation method according to the present invention. The separation into a single waveform can be performed appropriately and appropriately.

また、本発明の波形シフト工程の作用によれば、分離した単独反応波形を様々な方法でシフトして表示することが可能になり、測定波形と単独反応波形の比較や単独反応波形同士の比較を視覚的に分かりやすく行うことが可能になる。  In addition, according to the operation of the waveform shift process of the present invention, it is possible to display the separated single reaction waveform by shifting by various methods, and to compare the measured waveform with the single reaction waveform or between the single reaction waveforms. Can be made visually easy to understand.

本発明に係わる熱分析データの波形分離方法のフロー図である。It is a flowchart of the waveform separation method of the thermal analysis data concerning this invention. 本発明に係わる熱重量測定装置の例である。It is an example of the thermogravimetry apparatus concerning this invention. 本発明の第一の実施例のフロー図である。It is a flowchart of the 1st Example of this invention. (A)TGの測定波形の例と(B)DTG波形及びピーク分離波形の例と(C)DTGピーク分離波形を積分して算出した単独反応波形の例である。(A) Example of measurement waveform of TG, (B) Example of DTG waveform and peak separation waveform, and (C) Example of single reaction waveform calculated by integrating DTG peak separation waveform. (A)測定波形と(B)DTG波形と(C)積分波形の関係を示す図である。(A) It is a figure which shows the relationship between a measurement waveform, (B) DTG waveform, and (C) integral waveform. 第一の実施例における積分波形の(A)シフト位置の基準と(B)測定波形と積分波形とシフトした積分波形の関係と(C)出力結果の例を示す図である。It is a figure which shows the example of the (A) shift position reference | standard of an integrated waveform in a 1st Example, (B) the relationship between a measured waveform, an integrated waveform, and the shifted integrated waveform, and (C) the output result. 本発明の第二の実施例のフロー図である。It is a flowchart of the 2nd Example of this invention. 第二の実施例における(A)測定波形と積分波形とシフトした積分波形の関係と(B)出力結果の例を示す図である。It is a figure which shows the example of the relationship between the (A) measurement waveform in the 2nd Example, an integrated waveform, and the shifted integrated waveform, and (B) output result. 本発明の第三の実施例のフロー図である。It is a flowchart of the 3rd Example of this invention. 第三の実施例における(A)積分波形とシフトした積分波形の関係と(B)出力結果の例を示す図である。It is a figure which shows the example of the relationship between the (A) integrated waveform and the shifted integrated waveform in a 3rd Example, and the (B) output result. 第一および第三の実施例における位置合わせ点のバリエーションを示す図である。It is a figure which shows the variation of the alignment point in a 1st and 3rd Example.

以下に、本発明に係わる熱分析装置の例として熱重量測定装置(TG装置)を挙げ、その動作について詳述する。  Hereinafter, a thermogravimetric measurement device (TG device) will be given as an example of the thermal analysis device according to the present invention, and its operation will be described in detail.

本発明に係わる熱重量測定装置の構成を図2に示す。試料Sと、試料Sを加熱する加熱炉21と、加熱炉21の温度をオペレータの設定した温度プロファイルに従って制御する加熱炉制御器11と、試料の温度および重量(TG値)を計測する物理量センサー12と、物理量センサー12から入力した温度およびTG値をサンプリングして測定波形として取り込む測定データ取得器13と、測定波形に含まれる重畳波形から単独重量減少波形を分離する波形分離器14と、単独重量減少波形にオフセットを加算するオフセット加算器16と、ディスプレイやプリンター等の表示媒体へオフセット加算された単独重量減少波形と測定波形を表示する波形表示器17とを備える。  The configuration of the thermogravimetric measurement apparatus according to the present invention is shown in FIG. A sample S, a heating furnace 21 for heating the sample S, a heating furnace controller 11 for controlling the temperature of the heating furnace 21 according to a temperature profile set by an operator, and a physical quantity sensor for measuring the temperature and weight (TG value) of the sample 12, a measurement data acquisition unit 13 that samples the temperature and TG value input from the physical quantity sensor 12 and captures them as a measurement waveform, a waveform separator 14 that separates a single weight reduction waveform from the superimposed waveform included in the measurement waveform, and a single unit An offset adder 16 that adds an offset to the weight decrease waveform, and a waveform display 17 that displays a single weight decrease waveform that has been offset added to a display medium such as a display or a printer, and a measurement waveform are provided.

次に、本発明の第一の実施例である熱重量測定装置の動作を図3のフローチャートに従って説明する。  Next, the operation of the thermogravimetric measuring apparatus according to the first embodiment of the present invention will be described with reference to the flowchart of FIG.

ステップ1)オペレータからの指示により加熱炉制御器11の動作が開始され、オペレータが指定した温度プロファイルに従って加熱炉21の温度が制御される。物理量センサー12は試料の温度および重量(TG)信号を出力する。  Step 1) The operation of the heating furnace controller 11 is started by an instruction from the operator, and the temperature of the heating furnace 21 is controlled according to the temperature profile designated by the operator. The physical quantity sensor 12 outputs a sample temperature and weight (TG) signal.

ステップ2)測定波形取得器13は物理量センサー12から入力した温度およびTG信号をサンプリングし、測定波形F(x)として出力する。図4(A)にF(x)の例を示す。X軸は温度または時間であり、増加する方向を右向きにとる。本実施例ではX軸に温度をとった場合について説明するが、時間をとった場合も同様に実施可能である。Y軸はTGであり減少方向を下向きにとる。TGの測定波形は測定開始時のTG値から開始され、反応が起きるごとに重量が階段的に減少する波形となる。測定開始時のTG値を以降TGiniという。図4(A)はふたつの反応が近接した温度域で起こり、それぞれの波形が重畳している。ふたつの反応の間のベースライン部分(水平部分)が明確ではないため、ふたつの反応の重量減少量をそれぞれ単独で定量することが難しい状況である。  Step 2) The measurement waveform acquisition unit 13 samples the temperature and TG signal input from the physical quantity sensor 12 and outputs them as a measurement waveform F (x). FIG. 4A shows an example of F (x). The X axis is temperature or time, and the increasing direction is to the right. In this embodiment, the case where the temperature is taken on the X-axis will be described. However, the case where time is taken is similarly applicable. The Y axis is TG, and the decreasing direction is downward. The measurement waveform of TG starts from the TG value at the start of measurement, and becomes a waveform in which the weight decreases stepwise each time a reaction occurs. The TG value at the start of measurement is hereinafter referred to as TGini. In FIG. 4A, two reactions occur in a close temperature range, and respective waveforms are superimposed. Since the baseline portion (horizontal portion) between the two reactions is not clear, it is difficult to quantify the weight loss of the two reactions alone.

ステップ3)波形分離器14はF(x)を微分し、微分TG(DTG)波形dF(x)を算出する。図4(A)の測定波形を微分した例を図4(B)dF(x)に示す。このようにDTG波形はピーク形状となる。そのベースライン区間のY座標はほぼ0である。図4(A)のF(x)がふたつの重量減少が重畳した波形を持つため、図4(B)のdF(x)もふたつのピークが重畳したピーク波形を持つ。  Step 3) The waveform separator 14 differentiates F (x) to calculate a differential TG (DTG) waveform dF (x). An example obtained by differentiating the measurement waveform of FIG. 4A is shown in FIG. 4B dF (x). Thus, the DTG waveform has a peak shape. The Y coordinate of the baseline section is almost zero. Since F (x) in FIG. 4A has a waveform in which two weight reductions are superimposed, dF (x) in FIG. 4B also has a peak waveform in which two peaks are superimposed.

ステップ4)波形分離器14はdF(x)に対しピーク分離を行い、重畳ピーク波形から複数の単独ピーク波形を分離する。ピーク分離は公知の方法であり、非線形フィットを用いて複数のピークが重畳した波形から単独ピーク波形を分離する方法である。  Step 4) The waveform separator 14 performs peak separation on dF (x) to separate a plurality of single peak waveforms from the superimposed peak waveform. Peak separation is a known method, and is a method of separating a single peak waveform from a waveform in which a plurality of peaks are superimposed using a non-linear fit.

図4(B)には、dF(x)をピーク分離した例を示す。以下、ピーク分離によって得られたn番目の単独ピーク波形をdFn(x)という。dFn(x)のピークトップの座標もピーク分離によって得られる。n番目のピークトップのX座標を以降Tnという。  FIG. 4B shows an example in which dF (x) is peak-separated. Hereinafter, the nth single peak waveform obtained by the peak separation is referred to as dFn (x). The coordinates of the peak top of dFn (x) are also obtained by peak separation. The X coordinate of the nth peak top is hereinafter referred to as Tn.

ステップ5)波形分離器14は単独ピーク波形を積分した波形を算出する。dFn(x)の積分波形を以降Fn(x)という。Fn(x)の例を図4(C)に示す。  Step 5) The waveform separator 14 calculates a waveform obtained by integrating the single peak waveform. The integrated waveform of dFn (x) is hereinafter referred to as Fn (x). An example of Fn (x) is shown in FIG.

Fn(x)の開始点のY座標はほぼ0となる。Fn(x)はF(x)に含まれる複数の重量減少波形をそれぞれ単独で取り出した波形である。図5には、(A)測定波形、(B)DTG波形及び(C)積分波形の関係を示す。  The Y coordinate of the start point of Fn (x) is almost zero. Fn (x) is a waveform obtained by independently extracting a plurality of weight decrease waveforms included in F (x). FIG. 5 shows the relationship between (A) the measured waveform, (B) the DTG waveform, and (C) the integrated waveform.

ステップ6)波形シフト器15は積分波形Fn(x)をシフトするループを開始する。以下、ループのインデックス変数をi(=1〜Nの正の整数)とおき、i番目の積分波形をFi(x)、i番目のピークトップのX座標をTiとおく。
ステップ7)波形シフト器15はFi(x)のY方向のシフト量ΔYiを下式のように算出する。
ΔYi=F(Ti)−Fi(Ti)
図6(A)に示すように、Tiは積分波形Fi(x)の最大傾斜点のX座標、Fi(Ti)は最大傾斜点のY座標である。
ステップ8)波形シフト器15は下式によってFi(x)をシフトした新しい波形Gi(x)を算出する。
Gi(x)=Fi(x)+ΔYi
Step 6) The waveform shifter 15 starts a loop for shifting the integrated waveform Fn (x). Hereinafter, the index variable of the loop is set to i (a positive integer of 1 to N), the i-th integrated waveform is set to Fi (x), and the X coordinate of the i-th peak top is set to Ti.
Step 7) The waveform shifter 15 calculates the shift amount ΔYi of Fi (x) in the Y direction as shown in the following equation.
ΔYi = F (Ti) −Fi (Ti)
As shown in FIG. 6A, Ti is the X coordinate of the maximum inclination point of the integrated waveform Fi (x), and Fi (Ti) is the Y coordinate of the maximum inclination point.
Step 8) The waveform shifter 15 calculates a new waveform Gi (x) obtained by shifting Fi (x) according to the following equation.
Gi (x) = Fi (x) + ΔYi

シフト波形Gi(x)は積分波形Fi(x)がY方向にΔYiだけシフトされた波形である。下式に示すように、Gi(x)はX座標Tiの点で測定波形F(x)とY座標が一致する。
Gi(Ti)=Fi(Ti)+ΔYi
=Fi(Ti)+F(Ti)−Fi(Ti)
=F(Ti)
図6(B)には、F(x)、Gi(x)及びFi(x)の関係を示す。
ステップ9)ループのインデックス変数iをインクリメントし、iがNと等しくなるまでステップ7およびステップ8の処理を行う。
The shift waveform Gi (x) is a waveform obtained by shifting the integrated waveform Fi (x) by ΔYi in the Y direction. As shown in the following equation, Gi (x) has a measured waveform F (x) coincident with the Y coordinate at the point of the X coordinate Ti.
Gi (Ti) = Fi (Ti) + ΔYi
= Fi (Ti) + F (Ti) -Fi (Ti)
= F (Ti)
FIG. 6B shows the relationship between F (x), Gi (x), and Fi (x).
Step 9) The loop index variable i is incremented, and Steps 7 and 8 are performed until i becomes equal to N.

ステップ10)波形表示器17はF(x)とGn(x)をディスプレイやプリンターなどの表示媒体に出力する。図6(C)に出力例を示す。このように表示されることにより、F(x)とGn(x)との関係が可視化され、それぞれを単体で見るよりもより分かりやすくなる。具体的には、Gn(x)か最大傾斜点でF(x)と交わる場合、単独反応が全体の中で占める重量比や反応開始‐終了温度を一見視して理解し得る効果がある。  Step 10) The waveform display unit 17 outputs F (x) and Gn (x) to a display medium such as a display or a printer. An output example is shown in FIG. By displaying in this way, the relationship between F (x) and Gn (x) is visualized, and it becomes easier to understand than seeing each of them alone. Specifically, when Gn (x) or F (x) intersects at the maximum inclination point, there is an effect that can be understood at a glance by looking at the weight ratio or reaction start-end temperature that the single reaction occupies in the whole.

次に、本発明の熱重量測定装置の第二の実施例の動作を図7のフローチャートを基に説明する。
ステップ1からステップ6までは実施例1と同様である。ステップ7以降について説明する。
Next, the operation of the second embodiment of the thermogravimetric measuring apparatus of the present invention will be described based on the flowchart of FIG.
Steps 1 to 6 are the same as those in the first embodiment. Step 7 and subsequent steps will be described.

ステップ7)波形シフト器15は積分波形Fi(x)のY方向のシフト量ΔYiを下式のように算出する。ここでTsは測定を開始した温度であり、測定波形F(x)および積分波形Fn(x)の開始点のX座標である。
ΔYi=F(Ts)−Fi(Ts)
ステップ8)波形シフト器15は下式によってFi(x)をシフトした新しい波形Gi(x)を算出する。
Gi(x)=Fi(x)+ΔYi
Step 7) The waveform shifter 15 calculates the shift amount ΔYi in the Y direction of the integrated waveform Fi (x) as follows: Here, Ts is the temperature at which the measurement is started, and is the X coordinate of the starting point of the measured waveform F (x) and the integrated waveform Fn (x).
ΔYi = F (Ts) −Fi (Ts)
Step 8) The waveform shifter 15 calculates a new waveform Gi (x) obtained by shifting Fi (x) according to the following equation.
Gi (x) = Fi (x) + ΔYi

シフト波形Gi(x)は積分波形Fi(x)がY方向にΔYiだけシフトされた波形である。下式に示すように、Gi(x)はX座標Tsの点で測定波形F(x)とY座標が一致する。
Gi(Ti)=Fi(Ti)+ΔYi
=Fi(Ti)+F(Ts)−Fi(Ts)
Ti=Tsのとき、
Gi(Ts)=Fi(Ts)+F(Ts)−Fi(Ti)
=F(Ts)
図8Aには、F(x)、Gi(x)、Fi(x)の関係を示す。
ステップ9)ループのインデックス変数iをインクリメントし、iがNと等しくなるまでステップ7およびステップ8の処理を行う。
The shift waveform Gi (x) is a waveform obtained by shifting the integrated waveform Fi (x) by ΔYi in the Y direction. As shown in the following equation, Gi (x) has the same measurement waveform F (x) and Y coordinate at the point of the X coordinate Ts.
Gi (Ti) = Fi (Ti) + ΔYi
= Fi (Ti) + F (Ts) -Fi (Ts)
When Ti = Ts,
Gi (Ts) = Fi (Ts) + F (Ts) -Fi (Ti)
= F (Ts)
FIG. 8A shows the relationship between F (x), Gi (x), and Fi (x).
Step 9) The loop index variable i is incremented, and Steps 7 and 8 are performed until i becomes equal to N.

ステップ10)波形表示器17はF(x)とGn(x)をディスプレイやプリンターなどの表示媒体に出力する。図8(B)に出力例を示す。このように表示されることにより、各反応ごとの重量減少量の比率、各反応ごとの重量減少量と総計の重量減少量の比率が可視化され、それぞれを単体で見るよりもより分かりやすくなる。  Step 10) The waveform display unit 17 outputs F (x) and Gn (x) to a display medium such as a display or a printer. FIG. 8B shows an output example. By displaying in this way, the ratio of the weight reduction amount for each reaction and the ratio of the weight reduction amount for each reaction to the total weight reduction amount are visualized, which makes it easier to understand than viewing each of them individually.

次に、本発明の熱重量測定装置の第三の実施例の動作を図9のフローチャートを基に説明する。
ステップ1からステップ6までは実施例1と同様である。ステップ7以降について以下に説明する。
Next, the operation of the third embodiment of the thermogravimetric measurement apparatus of the present invention will be described based on the flowchart of FIG.
Steps 1 to 6 are the same as those in the first embodiment. Step 7 and subsequent steps will be described below.

ステップ7)波形シフト器15はFi(x)のX方向のシフト量ΔXiとY方向のシフト量ΔYiを下式のように算出する。ここでTiはi番目のピークトップのX座標である。ConstX、ConstYは任意の定数で値は何であってもよい。
ΔXi=ConstX−Ti
ΔYi=ConstX−Fi(Ti)
ステップ8)波形シフト器15は下式によってFi(x)をシフトした新しい波形Gi(x)を算出する。
Gi(x)=Fi(x+ΔXi)+ΔYi
Step 7) The waveform shifter 15 calculates the shift amount ΔXi in the X direction and the shift amount ΔYi in the Y direction of Fi (x) as follows. Here, Ti is the X coordinate of the i-th peak top. ConstX and ConstY are arbitrary constants and may have any value.
ΔXi = ConstX-Ti
ΔYi = ConstX-Fi (Ti)
Step 8) The waveform shifter 15 calculates a new waveform Gi (x) obtained by shifting Fi (x) according to the following equation.
Gi (x) = Fi (x + ΔXi) + ΔYi

Gi(x)は図10(A)に示すようにFi(x)がX方向にΔXi、Y方向にΔYiだけシフトされた波形であり、最大傾斜点の座標が(ConstX、ConstY)になる。
ステップ9)ループのインデックス変数iをインクリメントし、iがNと等しくなるまでステップ7およびステップ8の処理を繰り返し行う。
As shown in FIG. 10A, Gi (x) is a waveform obtained by shifting Fi (x) by ΔXi in the X direction and ΔYi in the Y direction, and the coordinates of the maximum tilt point are (ConstX, ConstY).
Step 9) The loop index variable i is incremented, and the processing of Step 7 and Step 8 is repeated until i becomes equal to N.

ステップ10)波形表示器17はF(x)とGn(x)をディスプレイやプリンターなどの表示媒体に出力する。図10(B)に出力例を示す。このように表示されることにより、それぞれの反応ごとの波形の違いが可視化され、それぞれを単体で見るよりもより分かりやすくなる。
なお、本発明の技術範囲は上記各実施形態に限定されず、本発明の趣旨を逸脱しない範囲において均等物を含めた種々の変形に及ぶものである。
Step 10) The waveform display unit 17 outputs F (x) and Gn (x) to a display medium such as a display or a printer. FIG. 10B shows an output example. By displaying in this way, the difference in waveform for each reaction is visualized, and it becomes easier to understand than looking at each individually.
It should be noted that the technical scope of the present invention is not limited to the above-described embodiments and extends to various modifications including equivalents without departing from the spirit of the present invention.

例えば、本実施例1あるいは3では、各積分波形の最大傾斜点を用いて積分波形と測定波形あるいは積分波形同士の位置合わせを行ったが、最大傾斜点だけでなく図11に示すような点(上側外挿点、高さ二等分点、下側外挿点)を用いて位置合わせを行う方法でも同様に実施可能である。  For example, in the first or third embodiment, the integrated waveform and the measurement waveform or the integrated waveforms are aligned using the maximum inclination point of each integrated waveform, but not only the maximum inclination point but also the points shown in FIG. A method of performing alignment using (upper extrapolation point, height bisection point, lower extrapolation point) can be similarly implemented.

S ・・・試料
10・・・加熱炉
11・・・加熱炉制御器
12・・・物理量センサー
13・・・測定波形取得器
14・・・波形分離器
15・・・波形シフト器
16・・・オフセット加算器
17・・・波形表示器
S: Sample 10 ... Heating furnace 11 ... Heating furnace controller 12 ... Physical quantity sensor 13 ... Measurement waveform acquirer 14 ... Waveform separator 15 ... Waveform shifter 16 ...・ Offset adder 17 ・ ・ ・ Waveform display

Claims (5)

熱分析装置により取得される波形データのうち複数の反応波形による重畳波形データを反応毎の単独波形に分離する熱分析データの処理方法において、
測定波形を取得する測定波形取得工程(S1)と、
前記測定波形を微分して微分波形を生成する微分工程(S2)と、
前記微分波形に含まれる重畳ピーク波形を複数の単独ピーク波形へ分離するピーク分離工程(S3)と、
複数の前記単独ピーク波形をそれぞれ個別に積分してそれぞれの複数の単独反応波形を生成する積分工程(S4)と、
複数の前記単独反応波形のそれぞれに対して、XY方向への所定の移動量を個別に加算することにより任意の前記単独波形を任意の位置まで移動させる波形シフト工程(S5)と、
を含むことを特徴とする熱分析データの処理方法。
In the method of processing thermal analysis data that separates the superimposed waveform data by a plurality of reaction waveforms out of the waveform data acquired by the thermal analysis device into individual waveforms for each reaction,
A measurement waveform acquisition step (S1) for acquiring a measurement waveform;
A differentiation step (S2) for differentiating the measurement waveform to generate a differential waveform;
A peak separation step (S3) for separating the superimposed peak waveform included in the differential waveform into a plurality of single peak waveforms;
An integration step (S4) of individually integrating a plurality of the single peak waveforms to generate a plurality of single reaction waveforms;
A waveform shift step (S5) for moving any single waveform to an arbitrary position by individually adding a predetermined movement amount in the XY direction to each of the plurality of single reaction waveforms;
A method for processing thermal analysis data, comprising:
前記波形シフト工程は、複数の前記単独反応波形のそれぞれの最大傾斜点において前記測定波形と交わるように任意の前記単独反応波形をY方向にシフトさせることを特徴とする請求項1記載の熱分析データの処理方法。  2. The thermal analysis according to claim 1, wherein the waveform shifting step shifts any single reaction waveform in the Y direction so as to intersect the measurement waveform at each maximum inclination point of the plurality of single reaction waveforms. How to process the data. 前記波形シフト工程は、複数の前記単独反応波形のそれぞれの開始点において前記測定波形と交わるように任意の前記単独反応波形をY方向にシフトさせることを特徴とする請求項1記載の熱分析データの処理方法。  2. The thermal analysis data according to claim 1, wherein the waveform shift step shifts any single reaction waveform in the Y direction so as to intersect with the measurement waveform at each start point of the plurality of single reaction waveforms. Processing method. 前記波形シフト工程は、複数のうち任意の前記単独反応波形のそれぞれが、それぞれの最大傾斜点において交わるようにXY方向への所定の移動量をシフトさせることを特徴とする請求項1記載の熱分析データの処理方法。  2. The heat according to claim 1, wherein the waveform shifting step shifts a predetermined amount of movement in the XY directions so that each of the single individual reaction waveforms among a plurality intersects at each maximum inclination point. How to process analytical data. 試料を加熱する加熱炉と、
当該加熱炉の温度を制御する加熱炉制御器と、
前記試料の温度および物理量を計測する物理量センサーと、
当該物理量センサーから入力した前記試料の温度および物理量をサンプリングして測定波形として取り込む測定データ取得器と、
当該測定波形に含まれる重畳波形から複数の単独反応波形を分離する波形分離器と、
当該複数の前記単独反応波形にXY方向への所定の移動量を個別に加算するオフセット加算器と、
前記測定データおよび複数の前記単独反応波形を表示させる波形表示器と、
を備え、請求項1乃至4のいずれかに記載の熱分析データの処理方法を実行する熱分析装置。
A heating furnace for heating the sample;
A furnace controller for controlling the temperature of the furnace;
A physical quantity sensor for measuring the temperature and physical quantity of the sample;
A measurement data acquisition device that samples the temperature and physical quantity of the sample input from the physical quantity sensor and captures it as a measurement waveform;
A waveform separator for separating a plurality of single reaction waveforms from a superimposed waveform included in the measurement waveform;
An offset adder that individually adds a predetermined amount of movement in the XY direction to the plurality of single reaction waveforms;
A waveform display for displaying the measurement data and a plurality of the single reaction waveforms;
A thermal analysis apparatus that executes the thermal analysis data processing method according to any one of claims 1 to 4.
JP2015023633A 2015-01-23 2015-01-23 Method of processing thermal analysis data and thermal analyzer Active JP6530611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023633A JP6530611B2 (en) 2015-01-23 2015-01-23 Method of processing thermal analysis data and thermal analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023633A JP6530611B2 (en) 2015-01-23 2015-01-23 Method of processing thermal analysis data and thermal analyzer

Publications (2)

Publication Number Publication Date
JP2016136125A true JP2016136125A (en) 2016-07-28
JP6530611B2 JP6530611B2 (en) 2019-06-12

Family

ID=56512086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023633A Active JP6530611B2 (en) 2015-01-23 2015-01-23 Method of processing thermal analysis data and thermal analyzer

Country Status (1)

Country Link
JP (1) JP6530611B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037393A (en) * 2016-08-25 2018-03-08 Basf戸田バッテリーマテリアルズ合同会社 Method for evaluating thermal stability of nickel-containing positive electrode active material particle powder for nonaqueous electrolyte secondary battery
JP2018054294A (en) * 2016-09-26 2018-04-05 株式会社Kri Analyzing method of carbon composite material and evaluating method of carbonaceous material for secondary battery
WO2020070786A1 (en) * 2018-10-02 2020-04-09 株式会社島津製作所 Method for creating discriminator
JP7458272B2 (en) 2020-08-27 2024-03-29 旭化成株式会社 Analysis method for polyolefin stretched film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160262A (en) * 1997-11-28 1999-06-18 Seiko Instruments Inc High-speed thermoanalyzer
JP2000310603A (en) * 1999-04-27 2000-11-07 Seiko Instruments Inc Thermal analyzer
JP2002251623A (en) * 2000-12-21 2002-09-06 Seiko Instruments Inc System for adjusting graph display
JP2002257763A (en) * 2000-12-26 2002-09-11 Seiko Instruments Inc Display adjusting system for derived data
JP2008064698A (en) * 2006-09-11 2008-03-21 Meidensha Corp Method for diagnosing insulation degradation of electric equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160262A (en) * 1997-11-28 1999-06-18 Seiko Instruments Inc High-speed thermoanalyzer
JP2000310603A (en) * 1999-04-27 2000-11-07 Seiko Instruments Inc Thermal analyzer
JP2002251623A (en) * 2000-12-21 2002-09-06 Seiko Instruments Inc System for adjusting graph display
JP2002257763A (en) * 2000-12-26 2002-09-11 Seiko Instruments Inc Display adjusting system for derived data
JP2008064698A (en) * 2006-09-11 2008-03-21 Meidensha Corp Method for diagnosing insulation degradation of electric equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018037393A (en) * 2016-08-25 2018-03-08 Basf戸田バッテリーマテリアルズ合同会社 Method for evaluating thermal stability of nickel-containing positive electrode active material particle powder for nonaqueous electrolyte secondary battery
JP2018054294A (en) * 2016-09-26 2018-04-05 株式会社Kri Analyzing method of carbon composite material and evaluating method of carbonaceous material for secondary battery
WO2020070786A1 (en) * 2018-10-02 2020-04-09 株式会社島津製作所 Method for creating discriminator
JPWO2020070786A1 (en) * 2018-10-02 2021-09-02 株式会社島津製作所 How to generate a classifier
JP7056750B2 (en) 2018-10-02 2022-04-19 株式会社島津製作所 How to generate a classifier
JP7458272B2 (en) 2020-08-27 2024-03-29 旭化成株式会社 Analysis method for polyolefin stretched film

Also Published As

Publication number Publication date
JP6530611B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP2016136125A (en) Thermal analysis data processing method and thermal analysis device
EP3392727A1 (en) Control device, monitoring system, control program, and recording medium
TWI537558B (en) A hot spot detection method and a heating point detecting device
JP2012533067A (en) Differential compensation adiabatic calorimeter and its operation (implementation) method
EP2942612A1 (en) Temperature Modulated Thermogravimetric Analysis
WO2020149198A1 (en) Analysis system and analysis method
JP2017090071A (en) Hardness tester and hardness testing method
JPWO2020110268A1 (en) Sample measurement device, program and measurement parameter setting support device
US7954069B2 (en) Microscopic-measurement apparatus
JP2019052997A (en) Material testing machine
EP3546919A1 (en) Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
JP5620355B2 (en) measuring device
Du et al. Weakly nonlinear theory of secondary rippling instability in surfaces of stressed solids
Daw Measurement of specific heat capacity using differential scanning calorimeter
JP7095639B2 (en) Impact tester
JP7229731B2 (en) Fatigue limit estimation device, fatigue limit estimation method and fatigue limit estimation program
JP2013235052A5 (en) Display control apparatus, control method thereof, and program
JP3754554B2 (en) Measurement data display method in X-ray diffraction and thermal analysis simultaneous measurement device
US20150057977A1 (en) Optical measuring apparatus and optical measuring method
JP2010169573A (en) Simultaneous analysis apparatus of x-ray analysis and thermal analysis
JP6555429B2 (en) Temperature measuring device, temperature indicator and temperature controller
JP2015210110A (en) FFT analyzer
JP5620356B2 (en) measuring device
JP2020165702A (en) Material testing machine and control method for material testing machine
US20220107299A1 (en) Information processing apparatus for visualizing collected data by graph, control method thereof, and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181128

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20181128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190517

R150 Certificate of patent or registration of utility model

Ref document number: 6530611

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250