JP2016136107A - 圧力センサ - Google Patents

圧力センサ Download PDF

Info

Publication number
JP2016136107A
JP2016136107A JP2015011283A JP2015011283A JP2016136107A JP 2016136107 A JP2016136107 A JP 2016136107A JP 2015011283 A JP2015011283 A JP 2015011283A JP 2015011283 A JP2015011283 A JP 2015011283A JP 2016136107 A JP2016136107 A JP 2016136107A
Authority
JP
Japan
Prior art keywords
resistor
pressure
pressure sensor
resistors
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015011283A
Other languages
English (en)
Inventor
俊幸 松岡
Toshiyuki Matsuoka
俊幸 松岡
高 森
Takashi Mori
高 森
裕一郎 塙
Yuichiro Hanawa
裕一郎 塙
水野 卓也
Takuya Mizuno
卓也 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2015011283A priority Critical patent/JP2016136107A/ja
Publication of JP2016136107A publication Critical patent/JP2016136107A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】出力電圧の非線形性の程度(非線形率)を小さくすることができる圧力センサを提供する。【解決手段】第1〜第4抵抗体11〜14は、第1抵抗体11及び第4抵抗体14を直列接続した回路と、第2抵抗体12及び第3抵抗体13を直列接続した回路とを、並列接続したホイートストンブリッジ回路を構成している。第1〜第4抵抗体11〜14は、シリコンダイヤフラム10bの(110)面上に形成され、<110>方向に延びる線状をなすp型ピエゾ抵抗体であり、圧力が印加されていない状態において、互いに等しい抵抗値及びゲージ率を有する。圧力センサ1に圧力測定範囲における最大圧力を印加したときに、第1抵抗体11及び第3抵抗体13における抵抗変化率が第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値よりも小さくなる位置に、第1〜第4抵抗体11〜14が形成されている。【選択図】図2

Description

本発明は、圧力センサに関する。
従来、圧力センサとして、様々なものが提案されている。例えば、特許文献1には、受圧用ダイヤフラムの上に歪ゲージ板を設けてなる圧力センサが開示されている。このうち、歪ゲージ板は、(100)面を有するシリコン基板を備えている。このシリコン基板は、前記受圧用ダイヤフラムが圧力を受けた時に変位して応力を発生する薄肉部を有している。この薄肉部には、前記応力に対して正の方向に抵抗値が変化する(すなわち、圧力が増加すると抵抗値が増加する)2つの抵抗体4a,4d(拡散ゲージ)と、前記応力に対して負の方向に抵抗値が変化する(すなわち、圧力が増加すると抵抗値が減少する)2つの抵抗体4b,4c(拡散ゲージ)が形成されている。特許文献1の圧力センサでは、これら4つの抵抗体4a〜4d(拡散ゲージ)の抵抗値に基づき、前記圧力を検出する。
特開平9−232595号公報
具体的には、特許文献1の圧力センサでは、特許文献1の図6に示されているように、抵抗体4a〜4dによりホイートストンブリッジ回路を構成している。このホイートストンブリッジ回路における出力電圧VBCは、次のような関係式で表されると記載されている。
BC=[(ΔRa’+ΔRd’+ΔRb’+ΔRc’)/{(2R+ΔRb’−ΔRa’)×(2R+ΔRc’−ΔRd’)}]×R×VAD
なお、Ra’〜Rd’において圧力を印加しない時の値をRとし、Ra’〜Rd’の圧力変化に対する変化量を、−ΔRa’、−ΔRd’、ΔRb’、ΔRd’(ΔRa’〜ΔRd’は全て正の値)としている。VADは、ブリッジ回路の印加電圧である。
ところで、特許文献1には、次のようなことが提案されている。ΔRa’〜ΔRd’が圧力変化に対して直線的に変化するとき、前記数式の分子は直線性を示すことになる。従って、分母が一定、すなわち、ΔRb’=ΔRa’、ΔRc’=ΔRd’が成り立てば、出力電圧VBCは、圧力変化に対し直線性を示すことになる。従って、抵抗体4aと4bの抵抗値変化量、抵抗体4cと4dの抵抗値変化量がそれぞれ等しくなるように設定すれば、出力電圧VBCの直線性を得ることができる。
しかしながら、シリコン基板に形成した抵抗体は、ピエゾ抵抗効果を表す物性に非線形性を有している。具体的には、圧力が増加すると抵抗値が増加する位置に形成された抵抗体(特許文献1において抵抗体4aと4d)と、圧力が増加すると抵抗値が減少する位置に形成された抵抗体(特許文献1において抵抗体4bと4c)とでは、圧力の変化(歪みの変化)に対するゲージ率Kの変化量が異なるので、ピエゾ抵抗効果を表す物性の非線形性の程度(非線形率)が異なる。
このため、特許文献1の圧力センサにおいて、抵抗体4aと4bの抵抗値変化量の絶対値、及び、抵抗体4cと4dの抵抗値変化量の絶対値を、常に(圧力の大きさに拘わらず)等しくすることはできない。従って、ΔRb’=ΔRa’、ΔRc’=ΔRd’を満たすことができず、出力電圧の直線性(線形性)を得ることができない。例えば、特許文献1の提案に基づいて、圧力センサに圧力測定可能範囲における最大圧力を印加したときに、抵抗体4aと4bの抵抗値変化量の絶対値、抵抗体4cと4dの抵抗値変化量の絶対値がそれぞれ等しくなるように設定しても、圧力変化に対する出力電圧の変化は、非線形性を示すことになる。このため、出力電圧の非線形性の程度(非線形率)を小さくすることが求められていた。
本発明は、かかる現状に鑑みてなされたものであって、出力電圧の非線形性の程度(非線形率)を小さくすることができる圧力センサを提供することを目的とする。
本発明の一態様は、検出対象である圧力によって自身に歪みが生じるシリコン基板、を備え、上記シリコン基板は、上記圧力が増加すると抵抗値が増加する第1抵抗体及び第3抵抗体と、上記圧力が増加すると抵抗値が減少する第2抵抗体及び第4抵抗体と、を有し、上記第1〜第4抵抗体は、上記第1抵抗体及び上記第4抵抗体を直列接続した回路と、上記第2抵抗体及び上記第3抵抗体を直列接続した回路とを、並列接続したホイートストンブリッジ回路を構成している圧力センサであって、上記シリコン基板は、上記圧力を受けるシリコンダイヤフラムを含み、上記第1〜第4抵抗体は、上記シリコンダイヤフラムの(110)面上に形成され、<110>方向に延びる線状をなすp型ピエゾ抵抗体であり、上記圧力が印加されていない状態において、互いに等しい抵抗値及びゲージ率を有し、上記圧力センサに対し当該圧力センサの圧力測定可能範囲における最大圧力を印加したときに、上記第1抵抗体及び上記第3抵抗体における抵抗変化率が上記第2抵抗体及び第4抵抗体における抵抗変化率の絶対値よりも小さくなる位置に、上記第1〜第4抵抗体が形成されている圧力センサである。
上述の圧力センサでは、シリコン基板にダイヤフラム(シリコンダイヤフラム)を設けている。さらに、第1〜第4抵抗体を、このシリコンダイヤフラムの(110)面上に形成している。このように、第1〜第4抵抗体を有するシリコンダイヤフラムが、直接、圧力を受けて歪む構造とすることで、第1〜第4抵抗体の歪み(従って、抵抗変化量)を大きくすることが可能となり、圧力検出の感度を高めることができる。また、シリコン基板とは別にダイヤフラムを設ける場合に比べて、部品点数を低減できる。
さらに、上述の圧力センサでは、第1〜第4抵抗体が、第1抵抗体及び第4抵抗体を直列接続した回路と、第2抵抗体及び第3抵抗体を直列接続した回路とを、並列接続したホイートストンブリッジ回路を構成している。なお、第1抵抗体及び第3抵抗体は、圧力が増加すると抵抗値が増加する位置(引っ張り応力が生じる位置)に配置された抵抗体であり、第2抵抗体及び第4抵抗体は、圧力が増加すると抵抗値が減少する位置(圧縮応力が生じる位置)に配置された抵抗体である。
このような圧力センサにおける出力電圧Vは、例えば、次のような関係式(1)で表される。
=[R/(R+R)−R/(R+R)]×V ・・・(1)
なお、R〜Rは、第1〜第4抵抗体の無歪時の抵抗値である。Vは、ブリッジ回路の印加電圧(一定値)である。
ここで、第1〜第4抵抗体の歪み時の抵抗値をそれぞれ、R’、R’、R’、R’とすると、以下のように表される。
’=R+Δr、R’=R−Δr、R’=R+Δr、R’=R−Δr
なお、Δr、−Δr、Δr、−Δrは、第1〜第4抵抗体の抵抗変化量である(Δr〜Δrはいずれも正の値である)。
また、上述の圧力センサでは、R=R=R=Rであるので、これらをRとおくことができる。
そうすると、上述の圧力センサに圧力がかかった状態おける出力電圧Vは、上記式(1)から以下の関係式(2)となる。
=[(Δr+Δr+Δr+Δr)/{(2R+Δr−Δr)×(2R+Δr−Δr)}]×R×V ・・・(2)
ところで、上記式(2)からわかるように、圧力が変化しても、常に、Δr=Δr、Δr=Δrを満たすことができれば、圧力センサの出力電圧の直線性を得ることができる。しかしながら、シリコン基板(シリコンダイヤフラム)に形成した抵抗体は、ピエゾ抵抗効果を表す物性に非線形性を有している。具体的には、圧力が増加すると抵抗値が増加する位置(引っ張り応力が生じる位置)に配置された抵抗体(第1抵抗体及び第3抵抗体)と、圧力が増加すると抵抗値が減少する位置(圧縮応力が生じる位置)に配置された抵抗体(第2抵抗体及び第4抵抗体)とでは、圧力の変化(歪みの変化)に対するゲージ率Kの変化量が異なるので、ピエゾ抵抗効果を表す物性の非線形率が異なる。このため、圧力変化に対する第1抵抗体及び第3抵抗体の抵抗変化量(Δr、Δr)と、第2抵抗体及び第4抵抗体の抵抗変化量の絶対値(|−Δr|、|−Δr|)とを常に等しくすることはできない。従って、Δr=Δr及びΔr=Δrを満たすことができず、圧力センサの出力電圧Vの直線性は得られない。すなわち、出力電圧Vは、非線形性を示す。
これに対し、上述の圧力センサでは、第1〜第4抵抗体は、シリコン基板のシリコンダイヤフラムの(110)面上に形成され、<110>方向に延びる線状をなしている。さらに、第1〜第4抵抗体は、圧力が印加されていない状態(すなわち応力が生じていない状態)において、互いに等しい抵抗値とゲージ率を有する。
しかも、第1〜第4抵抗体は、「圧力センサに対し、当該圧力センサの圧力測定可能範囲における最大圧力(以下、単に最大圧力ともいう)を印加したときに、第1抵抗体及び第3抵抗体における抵抗変化率の値が、第2抵抗体及び第4抵抗体における抵抗変化率の絶対値よりも小さくなる」位置に形成されている。このような位置に第1〜第4抵抗体を形成することで、圧力センサの出力電圧の非線形性の程度(非線形率)を小さくすることができる。
なお、第1抵抗体及び第3抵抗体は、圧力が増加すると抵抗値が増加する抵抗体であるため、最大圧力を印加したときの抵抗変化率の値は、いずれも正の値となる。一方、第2抵抗体及び第4抵抗体は、圧力が増加すると抵抗値が減少する抵抗体であるため、最大圧力を印加したときの抵抗変化率の値は、いずれも負の値となる。
また、抵抗体の抵抗変化率(%)とは、(±Δr/R)×100(%)で表される値である。ここで、Rは、抵抗体に歪みが生じていない状態の抵抗値(初期抵抗値という)である。±Δrは、抵抗体に生じた歪みによって抵抗体の抵抗値が初期抵抗値Rから変化したときの抵抗変化量である。
また、抵抗変化率±Δr/R(%)は、±Δr/R=K×ε×100(%) の関係式で表される。ここで、Kはゲージ率であり、εは歪みである。
また、第1〜第4抵抗体としては、例えば、シリコン基板(シリコンダイヤフラム)上に不純物を拡散して、ピエゾ抵抗効果を発生させた抵抗体を挙げられる。
また、圧力センサに最大圧力を印加したときの、第1抵抗体の抵抗変化率は、圧力センサに圧力を印加していないとき(無歪時)の第1抵抗体の両端にかかる電圧と、最大圧力を印加したときに第1抵抗体の両端にかかる電圧とを測定し、両電圧に基づいて算出することができる。第2抵抗体〜第4抵抗体についても同様である。
また、「圧力測定可能範囲」とは、上述の圧力センサにおいて測定可能な圧力の範囲であり、当該圧力センサにおいて予め定められている測定可能範囲である。
さらに、上記の圧力センサであって、前記最大圧力を印加したときの前記第1〜第4抵抗体それぞれの前記抵抗変化率の絶対値が、いずれも5%以上となる圧力センサとすると良い。
最大圧力を印加したときの第1〜第4抵抗体それぞれの抵抗変化率の絶対値が、いずれも5%以上と大きくなるようにすることで、出力電圧Vが大きく変動する(変動率が大きくなる)ので、圧力検出の感度を高めることができる。
一方、最大圧力を印加したときの第1〜第4抵抗体それぞれの抵抗変化率の絶対値が、いずれも5%以上と大きくなる圧力センサでは、上述のように出力電圧Vが大きく変動する(変動率が大きい)ので、出力電圧Vの非線形性の程度が圧力検出精度を大きく左右すると考えられる(出力電圧Vの非線形性が大きいと、圧力検出精度が大きく低下する虞がある)。このため、このような圧力センサでは、特に、出力電圧Vの非線形性の程度を小さくすることが求められる。
これに対し、上述の圧力センサでは、前述のように、圧力センサに最大圧力を印加したときの第1抵抗体及び第3抵抗体における抵抗変化率の値が、圧力センサに最大圧力を印加したときの第2抵抗体及び第4抵抗体における抵抗変化率の絶対値よりも小さくなる位置に、第1〜第4抵抗体を形成しているので、出力電圧Vの非線形性の程度(非線形率)を小さくすることができる。
さらに、上記いずれかの圧力センサであって、前記第1抵抗体と前記第3抵抗体とは、前記圧力センサに前記最大圧力を印加したときの上記第1抵抗体及び上記第3抵抗体における抵抗変化率が互いに等しくなる位置に形成されており、前記第2抵抗体と前記第4抵抗体とは、前記圧力センサに前記最大圧力を印加したときの上記第2抵抗体及び第4抵抗体における抵抗変化率が互いに等しくなる位置に形成されている圧力センサとすると良い。
最大圧力を印加したときの第1抵抗体及び第3抵抗体における抵抗変化率が互いに等しくなる位置に、第1抵抗体と第3抵抗体とを形成することで、任意の圧力による(圧力が変動しても)第1抵抗体と第3抵抗体との抵抗変化率を同等にすることができる。第1抵抗体と第3抵抗体とは、圧力の変化(歪みの変化)に対するゲージ率の変化量が同等になるからである。
さらに、最大圧力を印加したときの第2抵抗体及び第4抵抗体における抵抗変化率が互いに等しくなる位置に、第2抵抗体と第4抵抗体とを形成することで、任意の圧力による(圧力が変動しても)第2抵抗体と第4抵抗体との抵抗変化率を同等にすることができる。第2抵抗体と第4抵抗体とは、圧力の変化(歪みの変化)に対するゲージ率の変化量が同等になるからである。
このような圧力センサでは、出力電圧の非線形性の程度(非線形率)を適切に小さくすることができる。
さらに、上記いずれかの圧力センサであって、前記シリコンダイヤフラムは、前記圧力によって歪みが生じる円盤形状のシリコンダイヤフラムであり、前記第1抵抗体と前記第3抵抗体とが、上記シリコンダイヤフラムの前記(110)面上において、上記シリコンダイヤフラムの中心について前記<110>方向に点対称に形成され、前記第2抵抗体と前記第4抵抗体とが、上記シリコンダイヤフラムの上記(110)面上において、上記シリコンダイヤフラムの中心について上記<110>方向に直交する方向に点対称に形成されている圧力センサとすると良い。
第1抵抗体と第3抵抗体とを、シリコンダイヤフラムの(110)面上において、シリコンダイヤフラムの中心について<110>方向に点対称に形成することで、圧力による第1抵抗体と第3抵抗体との歪みを同等にすることができる。また、第1抵抗体と第3抵抗体とは、初期抵抗値が同等であり、且つ、圧力の変化(歪みの変化)に対するゲージ率の変化量も同等になる。従って、第1抵抗体と第3抵抗体とを上述のような位置に形成することで、任意の圧力による(圧力が変動しても)第1抵抗体と第3抵抗体との抵抗変化率を同等にすることができる。
また、第2抵抗体と第4抵抗体とを、シリコンダイヤフラムの(110)面上において、シリコンダイヤフラムの中心について<110>方向に直交する方向に点対称に形成することで、圧力による第2抵抗体と第4抵抗体との歪みを同等にすることができる。また、第2抵抗体と第4抵抗体とは、初期抵抗値が同等であり、且つ、圧力の変化(歪みの変化)に対するゲージ率の変化量も同等になる。従って、第2抵抗体と第4抵抗体とを上述のような位置に形成することで、任意の圧力による(圧力が変動しても)第2抵抗体と第4抵抗体との抵抗変化率を同等にすることができる。
このような圧力センサでは、出力電圧の非線形性の程度(非線形率)を適切に小さくすることができる。
実施形態にかかる圧力センサの縦断面図である。 同圧力センサのシリコン基板の平面図である。 同圧力センサにかかるホイートストンブリッジ回路である。 抵抗体のピエゾ抵抗効果を表す物性の非線形率の算出方法を説明するための図である。 第2及び第4抵抗体に印加される圧力と抵抗変化率との相関図の一例である。 第1及び第3抵抗体に印加される圧力と抵抗変化率との相関図の一例である。 圧力と出力電圧との相関図の一例である。
以下、本発明の実施の形態を、図面を参照しつつ説明する。
図1は、本実施形態にかかる圧力センサ1の縦断面図である。圧力センサ1は、略円筒形状の主体金具2と、この主体金具の上端部にカシメ固定されたコネクタ9とを備えている。コネクタ9内には、コネクタピン7,8が設けられている。コネクタピン7,8は、後述する第1〜第4抵抗体11〜14により構成されているホイーストンブリッジ回路(図3参照)に、電気的に接続されている。
主体金具2は、下端側の位置に、ねじ部2bが形成された円筒形状の固定部2cを有している。圧力センサ1は、ねじ部2bを利用して、所定の圧力検出箇所にねじ固定される。また、主体金具2の内部(固定部2cの上方)には、シリコン基板10が固定されている。
このシリコン基板10は、図2に示すように、平面視正方形状をなし、その中央部に、円形状で薄肉のシリコンダイヤフラム10bを有している(図1、図2参照)。このシリコンダイヤフラム10bには、主体金具2の固定部2cの筒孔2dを通じて、直接に、検出対象である圧力Pが印加される。これにより、シリコンダイヤフラム10bには、圧力Pに応じた歪みが生じる。
シリコンダイヤフラム10bの表面には、第1抵抗体11、第2抵抗体12、第3抵抗体13、第4抵抗体14が形成されている(図2参照)。第1〜第4抵抗体11〜14は、いずれも、p型ピエゾ抵抗体であり、シリコン基板10(シリコンダイヤフラム10b)の(110)面上に形成され、<110>方向に延びる線状をなしている。このうち、第1抵抗体及11び第3抵抗体13は、圧力Pが増加すると抵抗値が増加する位置(引っ張り応力が生じる位置)に形成されている。一方、第2抵抗体12及び第4抵抗体14は、圧力が増加すると抵抗値が減少する位置(圧縮応力が生じる位置)に形成されている。
このように、本実施形態の圧力センサ1では、第1〜第4抵抗体11〜14を有するシリコンダイヤフラム10bが、直接、圧力Pを受けて歪む構造としている。これにより、第1〜第4抵抗体11〜14の歪み(従って、抵抗変化量)を大きくすることが可能となり、圧力検出の感度を高めることができる。また、シリコン基板とは別にダイヤフラムを設ける場合に比べて、部品点数を低減できる。
また、図3に示すように、第1〜第4抵抗体11〜14は、第1抵抗体11及び第4抵抗体14を直列接続した回路と、第2抵抗体12及び第3抵抗体13を直列接続した回路とを、並列接続したホイートストンブリッジ回路を構成している。
なお、第1〜第4抵抗体11〜14は、圧力Pが印加されていない状態において、互いに等しい抵抗値及びゲージ率を有している。この第1〜第4抵抗体11〜14は、シリコン基板上に不純物を拡散して、ピエゾ抵抗効果を発生させた抵抗体である。なお、本実施形態では、第1〜第4抵抗体11〜14にかかる不純物の濃度を、いずれも、2×1018cm-3としている。
このような圧力センサ1における出力電圧Vは、次のような関係式(3)で表される。
=[R/(R+R)−R/(R+R)]×V ・・・(3)
なお、R〜Rは、第1〜第4抵抗体11〜14の無歪時(圧力Pが印加されていない状態)における抵抗値である。Vは、上記ホイートストンブリッジ回路への印加電圧(一定値)である。
ここで、第1〜第4抵抗体11〜14の歪み時(圧力Pが印加されている状態)の抵抗値をそれぞれ、R’、R’、R’、R’とすると、以下のように表される。
’=R+Δr、R’=R−Δr、R’=R+Δr、R’=R−Δr
なお、Δr、−Δr、Δr、−Δrは、第1〜第4抵抗体11〜14の抵抗変化量である(Δr〜Δrはいずれも正の値である)。
また、本実施形態の圧力センサ1では、上述のように、R=R=R=Rとしているので、これらをRとおくことができる。
そうすると、圧力センサ1に圧力Pが印加されている状態における出力電圧Vは、上記式(3)から以下の関係式(4)となる。
=[(Δr+Δr+Δr+Δr)/{(2R+Δr−Δr)×(2R+Δr−Δr)}]×R×V ・・・(4)
ところで、上記式(4)からわかるように、圧力が変化しても、常に、Δr=Δr、Δr=Δrを満たすことができれば、圧力センサの出力電圧の直線性を得ることができる。しかしながら、シリコン基板に形成した抵抗体は、ピエゾ抵抗効果を表す物性に非線形性を有している。具体的には、圧力が増加すると抵抗値が増加する位置(引っ張り応力が生じる位置)に配置された抵抗体(第1抵抗体11及び第3抵抗体13)と、圧力が増加すると抵抗値が減少する位置(圧縮応力が生じる位置)に配置された抵抗体(第2抵抗体12及び第4抵抗体14)とでは、圧力の変化(歪みの変化)に対するゲージ率Kの変化量が異なるので、ピエゾ抵抗効果を表す物性の非線形率が異なる。このため、圧力変化に対する第1抵抗体11及び第3抵抗体13の抵抗変化量(Δr、Δr)と、第2抵抗体12及び第4抵抗体14の抵抗変化量の絶対値(|−Δr|、|−Δr|)とを常に等しくすることはできない。従って、Δr=Δr及びΔr=Δrを満たすことができず、圧力センサ1の出力電圧Vの直線性を得ることはできない。すなわち、圧力Pの変化に対する出力電圧Vの変化は、非線形性を示す。
これに対し、本実施形態の圧力センサ1では、第1〜第4抵抗体11〜14は、前述のように、シリコン基板10の(110)面上に形成され、<110>方向に延びる線状をなしている。さらに、第1〜第4抵抗体11〜14は、圧力Pが印加されていない状態(すなわち応力が生じていない状態)において、互いに等しい抵抗値とゲージ率を有している。
しかも、本実施形態では、圧力センサ1に最大圧力(圧力センサ1の圧力測定可能範囲における最大圧力をいう、以下同じ)を印加したときの第1抵抗体11及び第3抵抗体13における抵抗変化率の値が、圧力センサ1に最大圧力を印加したときの第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値よりも小さくなる位置に、第1〜第4抵抗体11〜14が形成されている。このような位置に第1〜第4抵抗体11〜14を形成することで、圧力センサ1の出力電圧Vの非線形性を小さくすることができる。このことは、後述するデータ(表1参照)より明らかである。
なお、抵抗体の抵抗変化率(%)とは、(±Δr/R)×100(%)で表される値である。ここで、Rは、抵抗体に歪みが生じていない状態の抵抗値(初期抵抗値)である。±Δrは、抵抗体に生じた歪みによって抵抗体の抵抗値が初期抵抗値Rから変化したときの抵抗変化量である。
また、抵抗変化率±Δr/R(%)は、±Δr/R=K×ε×100(%) の関係式で表される。ここで、Kはゲージ率であり、εは歪みである。
また、「圧力測定可能範囲」とは、圧力センサ1において測定可能な圧力の範囲であり、圧力センサ1において予め設定されている測定可能範囲である。
また、圧力センサ1に最大圧力を印加したときの第1抵抗体11の抵抗変化率は、圧力センサ1に圧力Pを印加していないときの第1抵抗体11の両端にかかる電圧と、最大圧力を印加したときに第1抵抗体11の両端にかかる電圧とを測定し、両電圧に基づいて算出することができる。第2抵抗体12〜第4抵抗体14についても同様である。
さらに、本実施形態の圧力センサ1では、第1抵抗体11と第3抵抗体13とを、圧力センサ1に最大圧力を印加したときの第1抵抗体11及び第3抵抗体13における抵抗変化率が互いに等しくなる位置に形成している。より具体的には、第1抵抗体11と第3抵抗体13とを、シリコンダイヤフラム10bの(110)面上において、シリコンダイヤフラム10bの中心について<110>方向に点対称に形成している。これにより、圧力Pによる第1抵抗体11と第3抵抗体13との歪みを同等にすることができる。
第1抵抗体11と第3抵抗体13とは、初期抵抗値が同等であり、且つ、圧力の変化(歪みの変化)に対するゲージ率の変化量も同等になるので、上記のような位置に第1抵抗体11と第3抵抗体13とを形成することで、任意の圧力Pによる(圧力Pが変動しても)第1抵抗体11と第3抵抗体13との抵抗変化率を同等にすることができる。
さらに、第2抵抗体12と第4抵抗体14とを、圧力センサ1に最大圧力を印加したときの第2抵抗体12及び第4抵抗体14における抵抗変化率が互いに等しくなる位置に形成している。より具体的には、第2抵抗体12と第4抵抗体14とを、シリコンダイヤフラム10bの(110)面上において、シリコンダイヤフラム10bの中心について<110>方向に直交する方向に点対称に形成している。これにより、圧力Pによる第2抵抗体12と第4抵抗体14との歪みを同等にすることができる。
第2抵抗体12と第4抵抗体14とは、初期抵抗値が同等であり、且つ、圧力の変化(歪みの変化)に対するゲージ率の変化量も同等になるので、上記のような位置に第2抵抗体12と第4抵抗体14とを形成することで、任意の圧力Pによる(圧力Pが変動しても)第2抵抗体12と第4抵抗体14との抵抗変化率を同等にすることができる。
しかも、本実施形態の圧力センサ1では、第1〜第4抵抗体11〜14を、最大圧力を印加したときのそれぞれの抵抗変化率の絶対値が、いずれも5%以上となる位置に形成している。このようにすることで、出力電圧Vが大きく変動する(変動率が大きくなる)ので、圧力検出の感度を高めることができる。
一方、最大圧力を印加したときの第1〜第4抵抗体11〜14それぞれの抵抗変化率の絶対値が、いずれも5%以上と大きくなる圧力センサでは、上述のように出力電圧Vが大きく変動する(変動率が大きい)ので、出力電圧Vの非線形性の程度が圧力検出精度を大きく左右すると考えられる(出力電圧Vの非線形性が大きいと、圧力検出精度が大きく低下する虞がある)。このため、このような圧力センサでは、特に、出力電圧Vの非線形性の程度を小さくすることが求められる。
これに対し、本実施形態の圧力センサ1では、前述のように、圧力センサ1に最大圧力を印加したときの、第1抵抗体11及び第3抵抗体13における抵抗変化率の値が、第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値よりも小さくなる位置に、第1〜第4抵抗体11〜14を形成しているので、出力電圧Vの非線形性の程度(非線形率)を小さくすることができる。
(出力電圧Vの非線形性の調査)
次に、シリコンダイヤフラム10bにおける第2抵抗体12及び第4抵抗体14の形成位置は変更することなく、第1抵抗体11及び第3抵抗体13の形成位置のみを変更して、抵抗体の位置が異なる様々な圧力センサを設定し、出力電圧Vの非線形性の程度がどのように変化するのかを調査した。具体的には、第2抵抗体12及び第4抵抗体14については、最大圧力を印加したときのそれぞれの抵抗変化率が−10.0%となる位置に固定する一方、第1抵抗体11及び第3抵抗体13については、最大圧力を印加したときのそれぞれの抵抗変化率が5.0%〜11.0%の範囲内となる位置で変更していった場合に、出力電圧Vの非線形性の程度がどのように変化するのかを調査した。その結果を表1に示す。
Figure 2016136107
なお、出力電圧Vの非線形性の程度(非線形率NLとする)は、以下のようにして算出している。
具体的には、図4に実線の曲線MLで示すように、圧力変化に対応する抵抗体の抵抗変化率(測定値)は、非線形性を示す。なお、図4では、わかりやすく説明するため、実際よりも非線形性の程度を誇張している。図4において、圧力センサ1に対し圧力センサ1の圧力測定可能範囲における最小圧力時(最小圧力を印加したとき、以下同じ)の抵抗変化率の値と上記圧力測定可能範囲における最大圧力(FSとする)を印加したときの抵抗変化率の値PCmaxとを結ぶ直線KLを、2点鎖線で示している。また、抵抗変化率の測定値を表す曲線MLと直線KLとの最大抵抗変化率差を、ΔPCとする(図4参照)。そして、非線形率NLは、NL=ΔPC/PCmaxとして算出している。
例えば、第2抵抗体12を、最大圧力を印加したときの抵抗変化率が−10.0%(PCmax=−10.0)となる位置に形成した場合において、第2抵抗体12に印加される圧力Pと抵抗変化率との相関は、図5に実線の曲線MLで示すような非線形性を示す。この相関図は、公知文献である「Sensors and Actuators」の vol A21-A23(1990年)の45ページに記載されている「Nonlinearity of Piezoresistive Effect in p- and n-Type Silicon」(K.Matsuda 他著)の記載に基づいて作成している。なお、図5では、圧力は、最大圧力に対する比の値(最大圧力を1.0とする)で表示している。また、圧力センサ1の圧力測定可能範囲における最小圧力時の抵抗変化率の値と上記圧力測定可能範囲における最大圧力を印加したときの抵抗変化率の値とを結ぶ直線KLを、2点鎖線で示している。このとき、第2抵抗体12の非線形率NLは、1.7%となる。さらに、第4抵抗体14の非線形率NLも、第2抵抗体12と同等の1.7%となる。
また、第1抵抗体11を、最大圧力を印加したときの抵抗変化率が9.0%(PCmax=9.0)となる位置に形成した場合において、第1抵抗体11に印加される圧力Pと抵抗変化率との相関は、図6に実線の曲線MLで示すような非線形性を示す。この相関図も、前述の「Nonlinearity of Piezoresistive Effect in p- and n-Type Silicon」(K.Matsuda 他著)の記載に基づいて作成している。なお、図6でも、圧力は、最大圧力に対する比の値(最大圧力を1.0とする)で表示している。また、圧力センサ1の圧力測定可能範囲における最小圧力時の抵抗変化率の値と上記圧力測定可能範囲における最大圧力を印加したときの抵抗変化率の値とを結ぶ直線KLを、2点鎖線で示している。このとき、第1抵抗体11の非線形率NLは、1.3%となる。さらに、第3抵抗体13の非線形率NLも、第1抵抗体11と同等の1.3%となる。
そして、図5及び図6の相関図に基づいて、圧力センサ1における圧力Pと出力電圧Vとの相関図(図7参照)を作成し、この相関図に基づいて、圧力センサ1における出力電圧Vの非線形率NLを算出した。なお、出力電圧Vの非線形率NL(%)は、NL=(ΔV/Vmax)×100(%)として算出している。ここで、ΔVは、圧力と出力電圧Vとの相関を表す曲線MLと、圧力センサ1の圧力測定可能範囲における最小圧力時の出力電圧の値と上記圧力測定可能範囲における最大圧力を印加したときの出力電圧の値とを結ぶ直線KLと、の最大出力電圧差である(図7参照)。また、Vmaxは、圧力センサ1に最大圧力を印加したときの出力電圧Vの値である。
具体的には、まず、前述した出力電圧Vの関係式(4)の分子と分母をR2で除して、下記の関係式(5)とする。
=[(Δr/R+Δr/R+Δr/R+Δr/R)/{(2+Δr/R−Δr/R)×(2+Δr/R−Δr/R)}]×V ・・・(5)
ここで、印加電圧Vを1.0Vとした場合を考えると、上記式(5)は、
=(Δr/R+Δr/R+Δr/R+Δr/R)/{(2+Δr/R−Δr/R)×(2+Δr/R−Δr/R)}・・・(6)となる。
そして、図5及び図6の相関図から、任意の圧力におけるΔr/R、−Δr/R、Δr/R、及び、−Δr/Rの値を求める。なお、図5の曲線MLが、任意の圧力における第2抵抗体12の抵抗変化率=(−Δr/R)×100(%)、及び、任意の圧力における第4抵抗体14の抵抗変化率=(−Δr/R)×100(%)を表している。また、図6の曲線MLが、任意の圧力における第1抵抗体11の抵抗変化率=(Δr/R)×100(%)、及び、任意の圧力における第3抵抗体13の抵抗変化率=(Δr/R)×100(%)を表している。
次いで、図5及び図6の相関図から求めた、任意の圧力におけるΔr/R、−Δr/R、Δr/R、及び、−Δr/Rの値を、上記の(6)式に代入して、任意の圧力における出力電圧Vの値を算出する。
例えば、最大圧力を印加したときの出力電圧Vは、以下のようにして算出する。
図5より、最大圧力を印加したとき(図5において、圧力=1.0のとき)の−Δr/Rの値は、−10.0/100=−0.1となる。−Δr/Rの値も同等である。従って、上記の式(6)に、Δr/R=Δr/R=−(−0.1)=0.1を代入する。
また、図6より、最大圧力を印加したとき(図6において、圧力=1.0のとき)のΔr/Rの値は、9.0/100=0.09となる。Δr/Rの値も同等である。従って、上記の式(6)に、Δr/R=Δr/R=0.09を代入する。
そうすると、上記式(6)より、最大圧力を印加したとき(図7において、圧力=1.0のとき)の出力電圧V(=Vmax)=0.0955となる。
このようにして、各々の圧力における出力電圧Vを算出し、これらの値に基づいて、図7の相関図(曲線ML)を作成した。圧力Pと出力電圧Vとの相関は、図7に実線の曲線MLで示すような非線形性を示した。この相関図に基づいて、圧力センサ1における出力電圧Vの非線形率NLを算出した。なお、図7の相関図より得られる非線形率NLは、第2抵抗体12及び第4抵抗体14を、最大圧力を印加したときの抵抗変化率が−10.0%となる位置に形成し、且つ、第1抵抗体11及び第3抵抗体13を、最大圧力を印加したときの抵抗変化率が9.0%となる位置に形成した場合における、出力電圧Vの非線形率NLの値である。
また、出力電圧Vの非線形率NL(%)は、NL=(ΔV/Vmax)×100(%)として算出している。ここで、ΔVは、圧力Pと出力電圧Vとの相関を表す曲線MLと、圧力センサ1の圧力測定可能範囲における最小圧力時の出力電圧の値と上記圧力測定可能範囲における最大圧力を印加したときの出力電圧の値とを結ぶ直線KLと、の最大出力電圧差である(図7参照)。また、Vmaxは、圧力センサ1に最大圧力を印加したときの出力電圧Vの値である。
図7より、Vmax=0.0955、ΔV=0.00133となるので、NL=(ΔV/Vmax)×100=1.4(%)となる。
従って、第2抵抗体12及び第4抵抗体14を、最大圧力を印加したときの抵抗変化率が−10.0%となる位置に形成し、且つ、第1抵抗体11及び第3抵抗体13を、最大圧力を印加したときの抵抗変化率が9.0%となる位置に形成した場合における、出力電圧Vの非線形率NLは、1.40%となる(表1参照)。
さらに、第1抵抗体11及び第3抵抗体13について、最大圧力を印加したときの抵抗変化率が、5.0%、6.0%、7.0%、8.0%、9.5%、10.0%、10.5%、または11.0%となる位置にした場合についても、上記と同様な方法で、出力電圧Vの非線形率NLを算出した。その結果を表1に示す。なお、第1抵抗体11に印加される圧力と抵抗変化率との相関は、いずれの場合についても、前述の「Nonlinearity of Piezoresistive Effect in p- and n-Type Silicon」(K.Matsuda 他著)の記載に基づいている。
ところで、前述のように、特許文献1には、ΔRb’=ΔRa’、ΔRc’=ΔRd’を満たすようにすることで、出力電圧VBCは、圧力変化に対し直線性を示すことになることが記載されている。従って、特許文献1の記載によれば、圧力センサ1の出力電圧Vの非線形性の程度(非線形率)を小さくするためには、圧力センサ1の最大圧力を印加したときの、第1抵抗体11及び第3抵抗体13における抵抗変化率の値と、第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値とが等しくなる位置に、第1〜第4抵抗体11〜14を形成するのが良いことになる。
しかしながら、表1に示す結果より、「圧力センサ1の最大圧力を印加したときに、第1抵抗体11及び第3抵抗体13における抵抗変化率の値が、第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値よりも小さくなる位置に、第1〜第4抵抗体11〜14を形成する」ことで、「圧力センサ1の最大圧力を印加したときに、第1抵抗体11及び第3抵抗体13における抵抗変化率の値と、第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値とが等しくなる位置に、第1〜第4抵抗体11〜14を形成した場合」に比べて、出力電圧Vの非線形性の程度(非線形率)が小さくなることが判明した。
具体的には、「圧力センサ1の最大圧力を印加したときの第1抵抗体11及び第3抵抗体13における抵抗変化率の値を、上記最大圧力を印加したときの第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値(10.0%)と等しくした場合」には、出力電圧Vの非線形率の値が1.51%となった。
これに対し、最大圧力を印加したときの第1抵抗体11及び第3抵抗体13の抵抗変化率を、5.0%、6.0%、7.0%、8.0%、9.0%、または9.5%に設定して、第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値(10.0%)よりも小さくした場合には、出力電圧Vの非線形率の値が、順に、0.94、1.05、1.17、1.28、1.40、1.45となり、いずれも、等しくした場合の非線形率の値(1.51)よりも小さくなった。
以上の結果より、「圧力センサ1に最大圧力を印加したときに、第1抵抗体11及び第3抵抗体13における抵抗変化率の値が、第2抵抗体12及び第4抵抗体14における抵抗変化率の絶対値よりも小さくなる」位置に、第1〜第4抵抗体11〜14を形成することで、出力電圧Vの非線形性の程度(非線形率)を小さくすることができるといえる。
以上において、本発明を実施形態に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
1 圧力センサ
2 主体金具
7,8 コネクタピン
9 コネクタ
10 シリコン基板
10b シリコンダイヤフラム
11 第1抵抗体
12 第2抵抗体
13 第3抵抗体
14 第4抵抗体
NL 非線形率
出力電圧
印加電圧

Claims (2)

  1. 検出対象である圧力によって自身に歪みが生じるシリコン基板、を備え、
    上記シリコン基板は、
    上記圧力が増加すると抵抗値が増加する第1抵抗体及び第3抵抗体と、
    上記圧力が増加すると抵抗値が減少する第2抵抗体及び第4抵抗体と、を有し、
    上記第1〜第4抵抗体は、上記第1抵抗体及び上記第4抵抗体を直列接続した回路と、上記第2抵抗体及び上記第3抵抗体を直列接続した回路とを、並列接続したホイートストンブリッジ回路を構成している
    圧力センサであって、
    上記シリコン基板は、上記圧力を受けるシリコンダイヤフラムを含み、
    上記第1〜第4抵抗体は、
    上記シリコンダイヤフラムの(110)面上に形成され、<110>方向に延びる線状をなすp型ピエゾ抵抗体であり、
    上記圧力が印加されていない状態において、互いに等しい抵抗値及びゲージ率を有し、
    上記圧力センサに対し当該圧力センサの圧力測定可能範囲における最大圧力を印加したときに、上記第1抵抗体及び上記第3抵抗体における抵抗変化率が上記第2抵抗体及び第4抵抗体における抵抗変化率の絶対値よりも小さくなる位置に、上記第1〜第4抵抗体が形成されている
    圧力センサ。
  2. 請求項1に記載の圧力センサであって、
    前記最大圧力を印加したときの前記第1〜第4抵抗体それぞれの前記抵抗変化率の絶対値が、いずれも5%以上となる
    圧力センサ。
JP2015011283A 2015-01-23 2015-01-23 圧力センサ Pending JP2016136107A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015011283A JP2016136107A (ja) 2015-01-23 2015-01-23 圧力センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011283A JP2016136107A (ja) 2015-01-23 2015-01-23 圧力センサ

Publications (1)

Publication Number Publication Date
JP2016136107A true JP2016136107A (ja) 2016-07-28

Family

ID=56512963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011283A Pending JP2016136107A (ja) 2015-01-23 2015-01-23 圧力センサ

Country Status (1)

Country Link
JP (1) JP2016136107A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066297A (ko) * 2016-12-07 2018-06-19 스마트전자 주식회사 압력센서

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180066297A (ko) * 2016-12-07 2018-06-19 스마트전자 주식회사 압력센서

Similar Documents

Publication Publication Date Title
US9513182B2 (en) Pressure sensor having multiple piezoresistive elements
CN108240843B (zh) 传感器元件
US10031039B2 (en) Compensated pressure sensors
EP2735855A1 (en) A measuring device for measuring a physical quantity
CN104020036B (zh) 一种确定横向集中载荷下环形预应力薄膜最大挠度的方法
CN104019931B (zh) 一种确定横向集中载荷下环形预应力薄膜最大应力的方法
KR20180083387A (ko) 압력 센서용 센서 요소
DE102013209674A1 (de) Druckmessvorrichtung mit stufenförmigem hohlraum zur minimierung thermischen rauschens
CN104350366A (zh) 力学量测量装置
US10317297B2 (en) Semiconductor pressure sensor
EP3368873B1 (en) A force measurement device
US5983729A (en) Slender column force transducer
Balavalad et al. Design simulation and analysis of piezoresistive micro pressure sensor for pressure range of 0 to 1MPa
US11092504B2 (en) Micromechanical redundant piezoresistive array pressure sensor
CN109506826B (zh) 具有改进的应变仪的压力传感器
CN107430039A (zh) 压力传感器
JP2016136107A (ja) 圧力センサ
EP3336503B1 (en) Pressure sensor having a multiple wheatstone bridge configuration of sense elements
Biswas et al. Design and simulation of piezoresistive MEMS accelerometer for the detection of pathological tremor
US11415405B2 (en) Strain gauge having unbalanced bias for single sided applications
JPH06347284A (ja) ひずみゲージ式変換器およびひずみゲージ式変換器の初期値変動量検出方法
KR101617094B1 (ko) 출력 특성을 보상할 수 있는 하중 측정 장치
CN114152369A (zh) 一种mems压阻式压力传感器及压阻排布方法
Kleckers Precise radial symmetric shear beam force transfer transducer for compression force
KR101503642B1 (ko) 출력 특성을 보상할 수 있는 하중 측정 장치