JP2016133438A - Spectral instrument and spectral detection method - Google Patents

Spectral instrument and spectral detection method Download PDF

Info

Publication number
JP2016133438A
JP2016133438A JP2015009075A JP2015009075A JP2016133438A JP 2016133438 A JP2016133438 A JP 2016133438A JP 2015009075 A JP2015009075 A JP 2015009075A JP 2015009075 A JP2015009075 A JP 2015009075A JP 2016133438 A JP2016133438 A JP 2016133438A
Authority
JP
Japan
Prior art keywords
light
wavelength
conversion element
waveguide type
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015009075A
Other languages
Japanese (ja)
Other versions
JP6199327B2 (en
Inventor
明雄 登倉
Akio Tokura
明雄 登倉
修 忠永
Osamu Tadanaga
修 忠永
毅伺 梅木
Takeshi Umeki
毅伺 梅木
弘和 竹ノ内
Hirokazu Takenouchi
弘和 竹ノ内
晃次 圓佛
Kouji Enbutsu
晃次 圓佛
拓志 風間
Takushi Kazama
拓志 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2015009075A priority Critical patent/JP6199327B2/en
Publication of JP2016133438A publication Critical patent/JP2016133438A/en
Application granted granted Critical
Publication of JP6199327B2 publication Critical patent/JP6199327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a spectral instrument and a spectral detection method that cancel effect of a fringe by reflection on an end face of a waveguide type wavelength conversion element without branching an optical path into two.SOLUTION: A spectral instrument comprises: a waveguide type wavelength conversion element 10 which generates new conversion light through secondary nonlinear optical effect as signal light and excitation light are made incident; and an optical receiver 24 which receives the conversion light transmitted through a multi-path cell 31, and spectrally diffracts the light received by the optical receiver 24 by sweeping a wavelength of the signal light and thereby sweeping a wavelength of the conversion light. The spectral instrument is provided with a temperature control part 32 which periodically modulates a temperature of the waveguide type wavelength conversion element 10 to periodically modulate a refractive index of the waveguide type wavelength conversion element 10, and obtains a spectrum by averaging the output of the optical receiver 24 with time over one period of modulation or longer, or statistically averaging the output a plurality of times.SELECTED DRAWING: Figure 4

Description

本発明は、波長変換光源を用いた分光装置及び分光検出方法に関し、より具体的には、ガスのセンシングや物質の光学分光に好適な波長変換光源を用いた分光装置及び分光検出方法に関する。   The present invention relates to a spectroscopic device and a spectroscopic detection method using a wavelength conversion light source, and more specifically to a spectroscopic device and a spectroscopic detection method using a wavelength conversion light source suitable for gas sensing and substance optical spectroscopy.

近年、地球温暖化の問題などがクローズアップされており、高感度にメタンや二酸化炭素などを検出するために、2〜5μmの波長を出力する中赤外域の光源が必要とされている。このような波長域では、従来から半導体レーザの研究開発がなされている。しかしながら、室温で簡易に使用できるような光源が実現されていないのが現状である。そこで、このような光源から直接発生させることが困難な波長領域の光を、非線形光学効果を用いた波長変換を利用して発生させる技術が知られている。   In recent years, the problem of global warming has been highlighted, and in order to detect methane, carbon dioxide and the like with high sensitivity, a mid-infrared light source that outputs a wavelength of 2 to 5 μm is required. In such a wavelength range, research and development of semiconductor lasers have been conventionally performed. However, the present situation is that a light source that can be easily used at room temperature has not been realized. Therefore, a technique for generating light in a wavelength region that is difficult to directly generate from such a light source by using wavelength conversion using a nonlinear optical effect is known.

又、焼却炉のCO2、CO、O2等の濃度観測による燃焼制御により、ダイオキシンの発生が抑制できることから、0.76μmに存在するO2の吸収線観測が注目を浴びている。ガス吸収線に適した0.76μm帯の光を発生させるレーザとして面発光レーザが用いられているが、出力が大きくとれないことから、非線形光学効果を用いた波長変換を利用して、0.76μm帯の光を発生する技術が注目されている。 Further, since the generation of dioxins can be suppressed by controlling the combustion of the incinerator by observing the concentrations of CO 2 , CO, O 2, etc., the observation of the absorption line of O 2 existing at 0.76 μm is attracting attention. A surface emitting laser is used as a laser that generates light in the 0.76 μm band suitable for a gas absorption line. However, since the output cannot be increased, a wavelength conversion using a non-linear optical effect is used. A technique for generating light in the 76 μm band has attracted attention.

波長変換素子としては様々な形態のものが利用可能であるが、実用的な観点から、非線形光学定数を周期的に変調した擬似位相整合を用いた導波路型の波長変換素子が最も有望である。非線形光学定数の周期変調構造を形成するためには、非線形光学定数の符号を交互に反転するか、あるいは、非線形光学定数が大きい部分と小さい部分をほぼ交互に配置する方法が考えられる。   Various types of wavelength conversion elements can be used, but from a practical point of view, a waveguide type wavelength conversion element using quasi-phase matching obtained by periodically modulating a nonlinear optical constant is most promising. . In order to form a periodic modulation structure having a nonlinear optical constant, a method of alternately inverting the sign of the nonlinear optical constant or arranging substantially large and small portions of the nonlinear optical constant is conceivable.

LiNbO3(ニオブ酸リチウム)のような強誘電体結晶においては、非線形光学定数の正負が自発分極の極性に対応するため、自発分極を反転することにより非線形光学定数の符号を反転することができる。中赤外波長域を発生させるための方法として、非特許文献1に示されるように、2つの半導体レーザ及び擬似位相整合を利用した導波路型波長変換素子による差周波発生による方法が知られている。又、0.76μm帯の光を出す方法としては、非特許文献2に示されるような導波路型波長変換素子による第2高調波発生による方法が知られている。 In a ferroelectric crystal such as LiNbO 3 (lithium niobate), since the sign of the nonlinear optical constant corresponds to the polarity of the spontaneous polarization, the sign of the nonlinear optical constant can be reversed by inverting the spontaneous polarization. . As a method for generating the mid-infrared wavelength region, as shown in Non-Patent Document 1, there is known a method using difference frequency generation by a waveguide type wavelength conversion element using two semiconductor lasers and pseudo phase matching. Yes. Further, as a method for emitting light in the 0.76 μm band, a method based on second harmonic generation by a waveguide type wavelength conversion element as shown in Non-Patent Document 2 is known.

図7に、差周波発生を基にした波長変換光源の構成を示す。図7に示される光源50は、光導波路52が形成されたLiNbO3基板51と、合波器55と、信号光53及び励起光54をそれぞれ出力する2個の半導体レーザ(図示せず)とから構成される。信号光53及び励起光54は、合波器55で合波され、周期的に分極反転されたLiNbO3基板51に形成された光導波路52に入射される。光導波路52では、信号光53と励起光54との差周波光である変換光56が発生する。信号光53の信号光波長をλa、変換光56の変換光波長をλb、励起光54の励起光波長をλcとすると、これら3つの波長は以下の(式A)を満たす。
1/λc=1/λb+1/λa (式A)
FIG. 7 shows the configuration of a wavelength conversion light source based on the difference frequency generation. The light source 50 shown in FIG. 7 includes a LiNbO 3 substrate 51 on which an optical waveguide 52 is formed, a multiplexer 55, two semiconductor lasers (not shown) that output signal light 53 and excitation light 54, respectively. Consists of The signal light 53 and the excitation light 54 are combined by a multiplexer 55 and are incident on an optical waveguide 52 formed on a LiNbO 3 substrate 51 that is periodically poled. In the optical waveguide 52, converted light 56 that is a difference frequency light between the signal light 53 and the excitation light 54 is generated. Assuming that the signal light wavelength of the signal light 53 is λ a , the converted light wavelength of the converted light 56 is λ b , and the excitation light wavelength of the excitation light 54 is λ c , these three wavelengths satisfy the following (formula A).
1 / λ c = 1 / λ b + 1 / λ a (Formula A)

例えば、信号光波長λaを1.56μm、励起光波長λcを1.06μmとすれば、変換光波長λb=3.31μmの変換光56を発生させることができる。信号光波長λaにおける屈折率をna、変換光波長λbにおける屈折率をnb、励起光波長λcにおける屈折率をncとするとき、下記の(式B)で与えられる非線形光学定数の変調周期Λ0を設定すると、効率よく変換光56が発生する。
c/λc−nb/λb−na/λa−1/Λ0=0 (式B)
For example, if the signal light wavelength λ a is 1.56 μm and the excitation light wavelength λ c is 1.06 μm, the converted light 56 with the converted light wavelength λ b = 3.31 μm can be generated. When the refractive index at the signal light wavelength λ a is n a , the refractive index at the converted light wavelength λ b is n b , and the refractive index at the pumping light wavelength λ c is n c , nonlinear optics given by the following (formula B) When a constant modulation period Λ 0 is set, the converted light 56 is efficiently generated.
n c / λ c −n b / λ b −n a / λ a −1 / Λ 0 = 0 (formula B)

ちなみに、同様にして、2次非線形光学効果である和周波発生と第二高調波発生を利用した場合を説明する。(式A)に即して説明すると、波長λaとλcの光を入力し、新たな光λbが発生する現象を和周波発生と言い、更に、波長λaと波長λcが同じ波長の場合を第二高調波発生と言う。効率よく変換光を発生させるために設定すべき非線形光学定数の変調周期Λ0は(式B)と同じである。 Incidentally, a case where sum frequency generation and second harmonic generation, which are second-order nonlinear optical effects, are used in the same manner will be described. Explaining in accordance with (Formula A), a phenomenon in which light of wavelengths λ a and λ c is input and new light λ b is generated is called sum frequency generation. Furthermore, wavelength λ a and wavelength λ c are the same. The case of wavelength is called second harmonic generation. The modulation period Λ 0 of the nonlinear optical constant that should be set in order to efficiently generate converted light is the same as in (Formula B).

さて、図8に差周波発生を利用した光源を用いた従来の分光装置を示す。導波路型波長変換素子61と合波器62と信号光光源63と励起光光源64とからなる中赤外光源60を有しており、導波路型波長変換素子61から出た変換光は空気中を空間伝搬し、受光器65でその強度が測定される。このとき、励起光波長λcを固定し、信号光波長λaを変化させると、(式A)に従い変換光波長λbが変化する。もしくは、信号光波長λaを固定し、励起光波長λcを変化させると、(式A)に従い変換光波長λbが変化する。 FIG. 8 shows a conventional spectroscopic device using a light source utilizing difference frequency generation. It has a mid-infrared light source 60 composed of a waveguide-type wavelength conversion element 61, a multiplexer 62, a signal light source 63, and an excitation light source 64. The converted light emitted from the waveguide-type wavelength conversion element 61 is air. It propagates in the space and its intensity is measured by the light receiver 65. At this time, if the pumping light wavelength λ c is fixed and the signal light wavelength λ a is changed, the converted light wavelength λ b changes according to (Equation A). Alternatively, when the signal light wavelength λ a is fixed and the excitation light wavelength λ c is changed, the converted light wavelength λ b is changed according to (Equation A).

このことを利用して、変換光波長λbを変化させ、中赤外域のガスの吸収線の形状を観測する。ここでは励起光波長λcを0.98μmに固定し、信号光波長λaを1.5626μmから1.5638μmに変化させ、変換光波長λbを2.625μmから2.6285μmまで変化させた。中赤外光源60と受光器65の距離は1mである。図9に横軸が変換光波長で縦軸が受光強度のグラフを示す。中央に出力のへこみが見える。これは1mの空間の空気中に含まれる水分(水蒸気)の影響で強度が低下したもので、湿度が高いと低下が大きくなり、湿度が低いと低下が小さくなった。即ち、低下具合は水分濃度に従って大きさが変わり、その大きさから水分濃度が分かる。 Utilizing this fact, the shape of the absorption line of the gas in the mid-infrared region is observed by changing the converted light wavelength λ b . Here, the excitation light wavelength λ c was fixed at 0.98 μm, the signal light wavelength λ a was changed from 1.5626 μm to 1.5638 μm, and the converted light wavelength λ b was changed from 2.625 μm to 2.6285 μm. The distance between the mid-infrared light source 60 and the light receiver 65 is 1 m. FIG. 9 shows a graph of the converted light wavelength on the horizontal axis and the received light intensity on the vertical axis. A dent in the output is visible in the center. This was due to a decrease in strength due to the influence of moisture (water vapor) contained in the air in a 1 m space. The decrease was large when the humidity was high, and the decrease was small when the humidity was low. That is, the degree of decrease varies according to the moisture concentration, and the moisture concentration can be determined from the magnitude.

このように、2.6μm帯での水の吸収は非常に強いので、吸収線の形状が容易に観測できる。しかしながら、ガス濃度が低い場合では、吸収強度が中赤外域といえども大きくなく、その吸収強度が1%以下ということが通常である。吸収強度が1%を切ると、吸収の無い場合のベースラインのノイズによる揺らぎによって吸収線強度を正確に把握することは困難になってくる。   Thus, the absorption of water in the 2.6 μm band is very strong, so that the shape of the absorption line can be easily observed. However, when the gas concentration is low, the absorption intensity is not large even in the mid-infrared region, and the absorption intensity is usually 1% or less. When the absorption intensity falls below 1%, it becomes difficult to accurately grasp the absorption line intensity due to fluctuations caused by baseline noise when there is no absorption.

そこで、非特許文献3や非特許文献4に記載の吸収線の2次微分成分を観測する波長変調分光法が用いられている。観測のために用いるレーザ光の波長を微小量だけ周波数fの正弦波(サイン波)で変調をし、ロックインアンプでその2倍波の周波数2fで強度が変化する成分を検波する方法である。多くの場合は、分布帰還型レーザダイオード(DFB−LD)の注入電流を変化させることにより実行される。吸収線形状を観測するためには吸収線の波長依存性も観測する必要があるので、周波数fの微小なサイン波に加えて変化量の大きい鋸歯状波もしくは三角波を重畳してDFB−LDの電流注入量を変調させる。図10に実際の吸収量と観測される2f成分の形状の模式図を示す。丁度、吸収量が一番大きいところで、2f成分は最大値を取る。   Therefore, wavelength modulation spectroscopy for observing the second derivative component of the absorption line described in Non-Patent Document 3 and Non-Patent Document 4 is used. In this method, the wavelength of the laser light used for observation is modulated by a sine wave (sine wave) having a frequency f by a minute amount, and a component whose intensity changes at the frequency 2f of the second harmonic is detected by a lock-in amplifier. . In many cases, this is performed by changing the injection current of the distributed feedback laser diode (DFB-LD). In order to observe the absorption line shape, it is also necessary to observe the wavelength dependence of the absorption line. Therefore, in addition to the minute sine wave of frequency f, a sawtooth wave or triangular wave having a large amount of change is superimposed to superimpose the DFB-LD. Modulate the current injection amount. FIG. 10 shows a schematic diagram of the actual absorption amount and the shape of the observed 2f component. The 2f component takes the maximum value when the absorption amount is the largest.

O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides", APPLIED PHYSICS LETTERS, Vol.88, No.6, 2006年, pp.061101-1 - 061101-3.O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, H. Suzuki, "Efficient 3-μm difference frequency generation using direct-bonded quasi-phase-matched LiNbO3 ridge waveguides", APPLIED PHYSICS LETTERS, Vol.88, No.6, 2006, pp.061101-1-061101-3. O. Tadanaga, M. Asobe, Y. Nishida, H. Miyazawa, K. Yoshino, H. Suzuki, "763-nm Laser Light Source for Oxygen Monitoring Using Second Harmonic Generation in Direct-Bonded Quasi-Phase-Matched LiNbO3 Ridge Waveguide," IEICE Trans. Electron. Vol. E89-C, No.7, 2006年, pp.1115-1117.O. Tadanaga, M. Asobe, Y. Nishida, H. Miyazawa, K. Yoshino, H. Suzuki, "763-nm Laser Light Source for Oxygen Monitoring Using Second Harmonic Generation in Direct-Bonded Quasi-Phase-Matched LiNbO3 Ridge Waveguide , "IEICE Trans. Electron. Vol. E89-C, No.7, 2006, pp.1115-1117. I. Linnerud, P. Kaspersen, T. Jager, "Gas monitoring in the process industry using diode laser spectroscopy", Appl. Phys. B, Vol. 67, 1998年, pp.297-305.I. Linnerud, P. Kaspersen, T. Jager, "Gas monitoring in the process industry using diode laser spectroscopy", Appl. Phys. B, Vol. 67, 1998, pp.297-305. A. Tokura, M. Asobe, K. Enbutsu, T. Yoshihara, S. Hashida, and H. Takenouchi, "Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-μm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide", Sensors, Vol. 13, 2013年, pp.9999-10013A. Tokura, M. Asobe, K. Enbutsu, T. Yoshihara, S. Hashida, and H. Takenouchi, "Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-μm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide ", Sensors, Vol. 13, 2013, pp.9999-10013 竹本菊郎、他3名、「生体・環境計測へ向けた近赤外光センシング技術」、株式会社サイエンスフォーラム、1999年、pp.257-261, pp.269-276Kikuo Takemoto and 3 others, “Near-infrared sensing technology for biological and environmental measurement”, Science Forum, Inc., 1999, pp.257-261, pp.269-276

光路中に光学部品を挿入すると、一般に光の多重反射により透過率の波長依存性に周期的な変調が加わる。この多重反射による透過強度の周期的変調のことをフリンジ(干渉縞)という。導波路型波長変換素子も一種の光学部品で、導波路端面による反射の影響が出る。導波路端面の反射の影響を最小にするため、導波路端面を斜めにカットして、反射モードへの結合を強くする、又は、導波路端面に無反射コート(ARコート)を施すが、強度比0.1%程度のフリンジが取りきれない場合がある。このようなフリンジが存在すると、出力の波長依存性に揺らぎが出て、その揺らぎ以下の吸収強度を観測しようとする場合は、フリンジが支配的になるため、2f成分が埋もれてしまい、その判別が難しくなる。   When an optical component is inserted in the optical path, in general, periodic modulation is added to the wavelength dependence of transmittance due to multiple reflection of light. This periodic modulation of transmission intensity by multiple reflection is called fringe (interference fringes). The waveguide type wavelength conversion element is also a kind of optical component, and is affected by reflection from the end face of the waveguide. In order to minimize the influence of reflection on the end face of the waveguide, the end face of the waveguide is cut obliquely to increase the coupling to the reflection mode, or a non-reflective coating (AR coating) is applied to the end face of the waveguide. The fringe of about 0.1% may not be able to be removed. If such a fringe is present, the wavelength dependence of the output fluctuates, and when attempting to observe the absorption intensity below the fluctuation, the fringe dominates, so the 2f component is buried and the discrimination is made. Becomes difficult.

例えば、本来であれば、図11(b)に示すように、吸収線を示す2f成分がほぼ中央の一点鎖線の位置に存在しているが、周囲のフリンジが大きい場合には、図11(a)に示すように、2f成分がフリンジに埋もれてしまい、吸収線の位置を特定することは困難となる。   For example, originally, as shown in FIG. 11 (b), the 2f component indicating the absorption line is present at the position of the one-dot chain line at the center, but when the surrounding fringe is large, FIG. As shown in a), the 2f component is buried in the fringe, and it is difficult to specify the position of the absorption line.

そこで、非特許文献5にあるように、一般に出力光を2光路に分岐し、一方はガスの吸収を受けずに受光し、他方はガスの吸収を受けてから受光することにより、その2つの受光強度を引き算あるいは割り算するなどして、フリンジの影響を相殺し、微小な吸収を観測する方法が知られている。しかしながら、このような光路を2分岐すると光源の出力が半減する、もしくは、受光器が2台必要となり光学系が複雑になるという問題があった。   Therefore, as described in Non-Patent Document 5, in general, the output light is branched into two optical paths, one is received without receiving gas absorption, and the other is received after receiving gas absorption. A method of observing minute absorption by subtracting or dividing the received light intensity to offset the influence of fringe is known. However, when such an optical path is branched into two, there is a problem that the output of the light source is reduced by half, or two optical receivers are required and the optical system becomes complicated.

本発明は上記課題に鑑みなされたもので、光路を2分岐することなく、導波路型波長変換素子での端面の反射によるフリンジの効果を低減する分光装置及び分光検出方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a spectroscopic device and a spectroscopic detection method that reduce the effect of fringes due to reflection of the end face of a waveguide type wavelength conversion element without branching the optical path into two. And

上記課題を解決する第1の発明に係る分光装置は、
周期分極反転構造を有する2次非線形光学媒質からなり、第1の波長の光と第2の波長の光とを入射することにより、2次非線形光学効果によって新たな第3の波長の光を発生させる導波路型波長変換素子と、測定対象を透過した前記第3の波長の光を受光する受光器とを少なくとも備え、前記第1の波長の光及び前記第2の波長の光の少なくとも一方の光の波長を掃引することで、前記第3の光の波長を掃引することにより分光を行う分光装置において、
前記導波路型波長変換素子の温度を周期的に変調させて、前記導波路型波長変換素子の屈折率を周期的に変調させる温度変調手段を設け、
前記受光器の出力を前記変調の1周期以上に渡って時間平均する、あるいは、前記出力を複数回統計平均することにより分光スペクトルを得る
ことを特徴とする。
A spectroscopic device according to a first invention for solving the above-mentioned problems is as follows.
It consists of a second-order nonlinear optical medium having a periodically poled structure, and generates light of a new third wavelength by the second-order nonlinear optical effect by entering light of the first wavelength and light of the second wavelength. And at least one of the light of the first wavelength and the light of the second wavelength, and a waveguide type wavelength conversion element to be received and a light receiver that receives the light of the third wavelength transmitted through the measurement object In the spectroscopic device that performs spectroscopy by sweeping the wavelength of the third light by sweeping the wavelength of the light,
Providing temperature modulation means for periodically modulating the temperature of the waveguide type wavelength conversion element, and periodically modulating the refractive index of the waveguide type wavelength conversion element;
Spectral spectra are obtained by averaging the output of the photoreceiver over time over one period of the modulation or by statistically averaging the output multiple times.

上記課題を解決する第2の発明に係る分光装置は、
上記第1の発明に記載の分光装置において、
前記温度変調手段は、前記導波路型波長変換素子の温度変調強度として、温度変調の際の温度変化による前記導波路型波長変換素子の位相差が2π以上となる温度変調強度を用いる
ことを特徴とする。
A spectroscopic device according to a second invention for solving the above-mentioned problems is as follows.
In the spectroscopic device according to the first invention,
The temperature modulation means uses, as the temperature modulation intensity of the waveguide type wavelength conversion element, a temperature modulation intensity at which a phase difference of the waveguide type wavelength conversion element due to a temperature change during temperature modulation is 2π or more. And

上記課題を解決する第3の発明に係る分光装置は、
上記第1又は第2の発明に記載の分光装置において、
前記導波路型波長変換素子が、LiNbO3又はLiNbO3にMg、Zn、Sc及びInからなる群から選ばれた少なくとも一種が添加物として含有された材料からなる
ことを特徴とする。
A spectroscopic device according to a third invention for solving the above-described problems is as follows.
In the spectroscopic device according to the first or second invention,
The waveguide type wavelength conversion element is made of a material in which at least one selected from the group consisting of Mg, Zn, Sc, and In is added to LiNbO 3 or LiNbO 3 as an additive.

上記課題を解決する第4の発明に係る分光検出方法は、
第1の波長の光と第2の波長の光とを周期分極反転構造を有する2次非線形光学媒質からなる導波路型波長変換素子に入射して、前記導波路型波長変換素子の2次非線形光学効果により新たな第3の波長の光を発生させると共に、前記第1の波長の光及び前記第2の波長の光の少なくとも一方の光の波長を掃引することにより、前記第3の光の波長を掃引し、
前記導波路型波長変換素子で発生させた前記第3の波長の光を測定対象に入射し、前記測定対象を透過した前記第3の波長の光を受光器で受光して分光測定を行う分光検出方法において、
前記導波路型波長変換素子の温度を周期的に変調させて、前記導波路型波長変換素子の屈折率を周期的に変調させると共に、
前記受光器の出力を前記変調の1周期以上に渡って時間平均する、あるいは、前記出力を複数回統計平均することにより分光スペクトルを得る
ことを特徴とする。
A spectroscopic detection method according to a fourth invention for solving the above-mentioned problem is as follows.
The light of the first wavelength and the light of the second wavelength are incident on a waveguide type wavelength conversion element made of a second order nonlinear optical medium having a periodically poled structure, and the second order nonlinearity of the waveguide type wavelength conversion element. By generating a light of a new third wavelength by the optical effect, and sweeping the wavelength of at least one of the light of the first wavelength and the light of the second wavelength, Sweep wavelength,
Spectroscopy in which light of the third wavelength generated by the waveguide type wavelength conversion element is incident on a measurement object, and the light of the third wavelength transmitted through the measurement object is received by a light receiver to perform spectroscopic measurement In the detection method,
While periodically modulating the temperature of the waveguide type wavelength conversion element, and periodically modulating the refractive index of the waveguide type wavelength conversion element,
Spectral spectra are obtained by averaging the output of the photoreceiver over time over one period of the modulation or by statistically averaging the output multiple times.

上記課題を解決する第5の発明に係る分光検出方法は、
上記第4の発明に記載の分光検出方法において、
前記導波路型波長変換素子の温度変調強度として、温度変調の際の温度変化による前記導波路型波長変換素子の位相差が2π以上となる温度変調強度を用いる
ことを特徴とする。
A spectroscopic detection method according to a fifth invention for solving the above-mentioned problem is as follows.
In the spectroscopic detection method according to the fourth invention,
As the temperature modulation intensity of the waveguide type wavelength conversion element, a temperature modulation intensity at which a phase difference of the waveguide type wavelength conversion element due to a temperature change during temperature modulation is 2π or more is used.

本発明によれば、導波路型波長変換素子の温度変調による屈折率変調により、導波路型波長変換素子のフリンジに起因する受光器出力の周期的な波長依存性が時間的に変化することになる。そして、受光器出力を変調の1周期以上に渡って時間平均する、あるいは、複数回の出力を統計平均することにより、受光器出力の周期的な波長依存性を平均化(相殺)し、導波路型波長変換素子の端面の反射に起因する波長依存の強度振動成分(一定周期のフリンジ)を相殺して、分光スペクトルの信号対雑音比を改善することになり、微小な吸収線を観測することができる。   According to the present invention, due to the refractive index modulation by the temperature modulation of the waveguide type wavelength conversion element, the periodic wavelength dependence of the optical receiver output caused by the fringe of the waveguide type wavelength conversion element changes with time. Become. Then, the average wavelength dependence of the receiver output is averaged (cancelled) by averaging the receiver output over time over one modulation period or statistically averaging multiple outputs. Wavelength dependent intensity oscillation component (constant fringe) caused by reflection at the end face of the waveguide type wavelength conversion element is canceled to improve the signal-to-noise ratio of the spectrum and observe minute absorption lines be able to.

フリンジ強度成分の温度変調振幅依存性のシミュレーション結果を示す図であり、(a)は、位相差1/4π分の温度変調振幅のときのフリンジ強度成分の変化を示し、(b)は、位相差1/2π分の温度変調振幅のときのフリンジ強度成分の変化を示し、(c)は、位相差π分の温度変調振幅のときのフリンジ強度成分の変化を示し、(d)は、位相差3/2π分の温度変調振幅のときのフリンジ強度成分の変化を示し、(e)は、位相差2π分の温度変調振幅のときのフリンジ強度成分の変化を示し、(f)は、位相差3π分の温度変調振幅のときのフリンジ強度成分の変化を示す。It is a figure which shows the simulation result of the temperature modulation amplitude dependence of a fringe intensity | strength component, (a) shows the change of fringe intensity | strength components in the case of the temperature modulation amplitude for phase difference 1 / 4pi, (b) is a figure. The change of the fringe intensity component when the temperature modulation amplitude is equal to the phase difference ½π is shown, (c) is the change of the fringe intensity component when the temperature modulation amplitude is the phase difference π, and (d) is the phase difference. The change of the fringe intensity component when the temperature modulation amplitude is a phase difference of 3 / 2π is shown, (e) shows the change of the fringe intensity component when the temperature modulation amplitude is a phase difference of 2π, and (f) is The change of the fringe intensity component when the temperature modulation amplitude is 3π of the phase difference is shown. 本発明に係る分光装置に用いる波長変換光源の導波路型波長変換素子において、その温度制御用の素子の構成の一例を示す構成図であり、(a)は、その側面図、(b)は、上面図である。In the waveguide type wavelength conversion element of the wavelength conversion light source used for the spectroscopic device concerning the present invention, it is a lineblock diagram showing an example of the composition of the element for temperature control, (a) is the side view, (b) is FIG. 本発明に係る分光装置に用いる波長変換光源の導波路型波長変換素子において、その温度制御用の素子の構成の別の一例を示す構成図であり、(a)は、その側面図、(b)は、上面図であり、(c)及び(d)は、導波路型波長変換素子の断面図である。FIG. 7 is a configuration diagram showing another example of the configuration of the temperature control element in the waveguide type wavelength conversion element of the wavelength conversion light source used in the spectroscopic device according to the present invention, (a) is a side view thereof, (b) ) Is a top view, and (c) and (d) are cross-sectional views of the waveguide type wavelength conversion element. 本発明に係る分光装置の一例を示す構成図である。It is a block diagram which shows an example of the spectroscopic device which concerns on this invention. 実施例1の分光装置で観測された吸収線の観測結果を示す波形図であり、(a)は、温度変調が無い場合、(b)は、温度変調がある場合である。It is a wave form diagram which shows the observation result of the absorption line observed with the spectrometer of Example 1, (a) is a case where there is no temperature modulation, (b) is a case where there is temperature modulation. 実施例3の分光装置で観測された吸収線の観測結果を示す波形図であり、(a)は、温度変調が無い場合、(b)は、温度変調がある場合である。It is a wave form diagram which shows the observation result of the absorption line observed with the spectrometer of Example 3, (a) is a case where there is no temperature modulation, (b) is a case where there is temperature modulation. 従来の波長変換光源を示す構成図である。It is a block diagram which shows the conventional wavelength conversion light source. 従来の波長変換光源を用いた分光装置を示す構成図である。It is a block diagram which shows the spectrometer which used the conventional wavelength conversion light source. 吸収率の大きいガスの吸収線を観測した場合の例を示すグラフである。It is a graph which shows the example at the time of observing the absorption line of gas with a large absorption factor. 吸収率の小さいガスの吸収線を観測した場合の例を示す模式図である。It is a schematic diagram which shows the example at the time of observing the absorption line of gas with a small absorption factor. (a)は、フリンジがある場合の2f成分の観測結果を示す波形図であり、(b)は、フリンジがない場合の2f成分の観測結果を示す波形図である。(A) is a waveform diagram showing the observation result of the 2f component when there is a fringe, and (b) is a waveform diagram showing the observation result of the 2f component when there is no fringe.

屈折率n、長さLの光学部品に波長λの光を通した場合に、透過光と両端面を反射して透過した光の光路差δは、以下の式(1)で表すことができる。
δ=4πnLcosθ/λ (1)
When light having a wavelength λ is passed through an optical component having a refractive index n and a length L, the optical path difference δ between the transmitted light and the light reflected and transmitted from both end faces can be expressed by the following equation (1). .
δ = 4πnL cos θ / λ (1)

ここで、θは光学部品の屈折角である。導波路型波長変換素子の場合には、光は特定の方向に伝搬するため、θ=0とすることができる。
δ=4πnL/λ=2mπ(m:整数) (2)
Here, θ is the refraction angle of the optical component. In the case of the waveguide type wavelength conversion element, since light propagates in a specific direction, θ = 0 can be set.
δ = 4πnL / λ = 2mπ (m: integer) (2)

上記式(2)の条件のとき、位相差が1波長分生じることにより、同じ位相で重ね合わせが生じるため、透過光が最大となる。従って、フリンジの山の位置になる関係は、mを整数として、以下の式(3)と書ける。
λ=2nL/m (3)
Under the condition of the above formula (2), when the phase difference is generated for one wavelength, superposition occurs at the same phase, so that the transmitted light is maximized. Therefore, the relationship that becomes the position of the fringe peak can be expressed as the following equation (3), where m is an integer.
λ = 2nL / m (3)

さて、光学素子の温度が変化すると、それに伴って屈折率が変化することが知られており、熱光学効果と呼ばれている。温度を変化させて1次の項までとると、上記式(2)は、以下の式(4)と書ける。
δ=4πnL/λ×(1+Δn/n) (4)
Now, it is known that when the temperature of the optical element changes, the refractive index changes accordingly, which is called the thermo-optic effect. If the temperature is changed to the first order term, the above equation (2) can be written as the following equation (4).
δ = 4πnL / λ × (1 + Δn / n) (4)

Δtを温度差、dn/dtを屈折率の温度微分とすると、Δnは、以下の式(5)となる。
Δn=dn/dt×Δt (5)
When Δt is a temperature difference and dn / dt is a temperature derivative of the refractive index, Δn is expressed by the following equation (5).
Δn = dn / dt × Δt (5)

そのため、温度変化による位相差Δδは、以下の式(6)で表される。
Δδ=4πL/λ×dn/dt×Δt (6)
Therefore, the phase difference Δδ due to temperature change is expressed by the following equation (6).
Δδ = 4πL / λ × dn / dt × Δt (6)

Δδが2πだけ変化すれば、即ち、以下の式(7)で表される値だけ温度変化が生じれば、フリンジが1周期分移動するため、Δt2πの温度変調幅で温度を変化させることができれば、干渉強度を制御可能となる。なお、Δt2πは、Δδが2π変化したときの温度変調幅である。
Δt2π=λ/(2Ldn/dt) (7)
If Δδ changes by 2π, that is, if a temperature change occurs by a value represented by the following expression (7), the fringe moves by one period, and therefore the temperature is changed with a temperature modulation width of Δt 2 π. If it can, the interference intensity can be controlled. Δt 2 π is a temperature modulation width when Δδ changes by 2π.
Δt 2 π = λ / (2Ldn / dt) (7)

例えば、λ=1.39μmで、素子温度40℃、素子長48mmの場合、Δt2π=0.36℃である。ここで、屈折率の温度微分dn/dtは、波長及び温度に依存する数値であり、ニオブ酸リチウム(バルク)のdn/dtは既に知られている。ここでは、波長1.39μm及び温度40℃でのニオブ酸リチウムのdn/dtを用いて、Δt2πを計算した。導波路におけるdn/dtはバルクの値とは異なるが、導波路構造が決まればバルクの値を用いて計算することができる。 For example, when λ = 1.39 μm, the element temperature is 40 ° C., and the element length is 48 mm, Δt 2 π = 0.36 ° C. Here, the temperature differential dn / dt of the refractive index is a numerical value depending on the wavelength and temperature, and dn / dt of lithium niobate (bulk) is already known. Here, Δt 2 π was calculated using dn / dt of lithium niobate at a wavelength of 1.39 μm and a temperature of 40 ° C. Although dn / dt in the waveguide is different from the bulk value, it can be calculated using the bulk value if the waveguide structure is determined.

図1(a)〜(f)に、様々な温度変調振幅Δtで温度変調周波数F[Hz]の周期的な変調を行った場合に、波長を掃引してフリンジの強度を測定したシミュレーション結果を示す。横軸は波長掃引時間を表しており、波長に対応する。縦軸の値が1の値となるようにフリンジの強度振幅を規格化してある。振幅がΔtの場合、±Δtの変調を与えているので変調強度は2Δtである。これらの結果からもわかるように、位相差が2π未満となる変調強度(変調幅)で温度変調を行うと、周期性が残っているように見えるが、位相差が2π以上となる変調強度で、即ち、式(7)で求められる温度変調振幅以上で温度変調を行うと、ほぼランダムな信号と見なせるような結果を得た。このような場合、変調の1周期以上の時間平均、あるいは、複数のスペクトルの統計平均によって、フリンジの成分を取り除くことができる。   FIGS. 1A to 1F show simulation results of measuring the fringe intensity by sweeping the wavelength when periodic modulation of the temperature modulation frequency F [Hz] is performed with various temperature modulation amplitudes Δt. Show. The horizontal axis represents the wavelength sweep time and corresponds to the wavelength. The intensity amplitude of the fringe is normalized so that the value on the vertical axis is 1. When the amplitude is Δt, the modulation intensity is 2Δt because ± Δt modulation is applied. As can be seen from these results, when temperature modulation is performed with a modulation intensity (modulation width) at which the phase difference is less than 2π, it appears that periodicity remains, but with a modulation intensity at which the phase difference is 2π or more. That is, when temperature modulation is performed with a temperature modulation amplitude equal to or greater than that obtained by Equation (7), a result that can be regarded as a nearly random signal is obtained. In such a case, the fringe component can be removed by a time average of one or more periods of modulation or a statistical average of a plurality of spectra.

2次非線形光学効果による波長変換の場合、最も効率的に波長変換が起こる波長を位相整合波長λPMと言う。素子の温度が変わり、屈折率が変化すると、この値も変化し、波長変換効率が変化する。即ち、出力が揺らぐことになる。このため、位相整合波長λPMを大きく変化させない範囲で、温度を変調させることが望ましい。λPMの温度依存性は、中赤外領域で素子長が50mm前後の場合、励起光波長あるいは信号光波長を変化させた場合においても、概ね以下の式(8)であることが知られている。なお、λPM0は、Δt=0のとき、つまり、温度変調の際の基準温度のときの位相整合波長である。
λPM[nm]≒λPM0+0.1×Δt (8)
In the case of wavelength conversion using the second-order nonlinear optical effect, the wavelength at which wavelength conversion occurs most efficiently is called the phase matching wavelength λ PM . When the temperature of the element changes and the refractive index changes, this value also changes and the wavelength conversion efficiency changes. That is, the output fluctuates. For this reason, it is desirable to modulate the temperature within a range in which the phase matching wavelength λ PM is not significantly changed. It is known that the temperature dependence of λ PM is generally expressed by the following formula (8) even when the pumping light wavelength or the signal light wavelength is changed when the element length is around 50 mm in the mid-infrared region. Yes. Note that λ PM0 is a phase matching wavelength when Δt = 0, that is, at the reference temperature in the temperature modulation.
λ PM [nm] ≈λ PM0 + 0.1 × Δt (8)

λPMの変化幅として、0.1nm前後に収まっていれば、出力に悪影響が出ることが少ないため、Δt=0を中心として正負に変調する場合は、Δtとして±0.5℃程度を上限とすることが望ましい。 If the variation width of λ PM is within about 0.1 nm, the output is less likely to be adversely affected. Therefore, when Δt = 0 is the center of modulation, the upper limit is about ± 0.5 ° C. for Δt. Is desirable.

次に、本発明に係る分光装置で用いる波長変換光源の構成について、図2(a)、(b)を用いて説明する。波長変換光源には、導波路型波長変換素子10を用いており、導波路型波長変換素子10には、コア層がニオブ酸リチウムからなり、クラッド層がタンタル酸リチウムからなる直接接合法を用いたリッジ型導波路を作製し、このリッジ型導波路には、周期的に分極反転された周期分極反転構造を作製している。   Next, the configuration of the wavelength conversion light source used in the spectroscopic device according to the present invention will be described with reference to FIGS. As the wavelength conversion light source, a waveguide type wavelength conversion element 10 is used. The waveguide type wavelength conversion element 10 uses a direct bonding method in which the core layer is made of lithium niobate and the cladding layer is made of lithium tantalate. A ridge-type waveguide having a periodically poled structure is produced in the ridge-type waveguide.

そして、金属板のキャリア11に、電流により温度制御ができる温度制御素子であるペルチェ素子12を接着剤等により貼りつける。そのペルチェ素子12上に金属板のベース13を接着し、ベース13の上に導波路型波長変換素子10を接着する。ベース13の上には、抵抗値から温度を参照できるサーミスタ14を設置しており、この素子を利用して、温度をモニタリングし、温度制御及び温度変調を行う。なお、図中の符号12a、12bは、ペルチェ素子配線を示し、符号14a、14bは、サーミスタ配線を示している。   Then, a Peltier element 12, which is a temperature control element that can be temperature-controlled by an electric current, is attached to a metal plate carrier 11 with an adhesive or the like. A metal plate base 13 is bonded onto the Peltier element 12, and the waveguide type wavelength conversion element 10 is bonded onto the base 13. A thermistor 14 that can refer to the temperature from the resistance value is installed on the base 13, and the temperature is monitored, temperature control and temperature modulation are performed using this element. In the figure, reference numerals 12a and 12b denote Peltier element wirings, and reference numerals 14a and 14b denote thermistor wirings.

図3(a)〜(d)は、導波路型波長変換素子10の上に、更に、金属板のベース15を介して、ペルチェ素子16、サーミスタ17を備えた構成である。この場合、導波路型波長変換素子10の上面にある導波路に近い上部のペルチェ素子16で微小な温度変調を行い、下部のペルチェ素子12で全体の平均的な温度制御を行う。モニタリング用の素子が独立しているため、フィードバックのための周波数を最適な値に割り当てることができ、より精密な制御に適している。なお、図中の符号16a、16bは、ペルチェ素子配線を示し、符号17a、17bは、サーミスタ配線を示している。   3A to 3D show a configuration in which a Peltier element 16 and a thermistor 17 are further provided on the waveguide type wavelength conversion element 10 via a base 15 made of a metal plate. In this case, minute temperature modulation is performed by the upper Peltier element 16 near the waveguide on the upper surface of the waveguide type wavelength conversion element 10, and overall average temperature control is performed by the lower Peltier element 12. Since the monitoring elements are independent, the frequency for feedback can be assigned to an optimum value, which is suitable for more precise control. In the figure, reference numerals 16a and 16b indicate Peltier element wirings, and reference numerals 17a and 17b indicate thermistor wirings.

導波路型波長変換素子10の作製に当って、図3(c)に示すように、ダイシングで基板10aに溝10bを形成して導波路を作製した場合には、導波路の上部にペルチェ素子16等を貼りつけるのは、強度的に困難であるが、図3(d)に示すように、溝10bに樹脂10c等を充填して、強度を補強することにより、導波路の上部にペルチェ素子16等を貼りつけることが可能になる。   When the waveguide type wavelength conversion element 10 is manufactured, as shown in FIG. 3C, when a waveguide is manufactured by forming a groove 10b in the substrate 10a by dicing, a Peltier element is formed above the waveguide. However, as shown in FIG. 3D, the groove 10b is filled with a resin 10c or the like to reinforce the strength, so that the Peltier is formed on the upper portion of the waveguide. The element 16 or the like can be attached.

[実施例1]
本実施例を、図2、図4及び図5を参照して説明する。
[Example 1]
This embodiment will be described with reference to FIG. 2, FIG. 4 and FIG.

本実施例において、導波路型波長変換素子10には、コア層がニオブ酸リチウムからなり、クラッド層がタンタル酸リチウムからなる直接接合法を用いたリッジ型導波路を作製している。このリッジ型導波路において、反転周期Λ0=26.1μmの周期分極反転構造を48mm作製した。リッジ型導波路のコア層の厚みと幅はそれぞれ13μmと20μmである。導波路型波長変換素子10の端面は斜めに6度カットされ、ARコートが施されている。 In this embodiment, a ridge-type waveguide using a direct bonding method in which the core layer is made of lithium niobate and the clad layer is made of lithium tantalate is manufactured for the waveguide type wavelength conversion element 10. In this ridge-type waveguide, a periodic polarization reversal structure with a reversal period Λ 0 = 26.1 μm was fabricated to 48 mm. The thickness and width of the core layer of the ridge-type waveguide are 13 μm and 20 μm, respectively. The end face of the waveguide type wavelength conversion element 10 is cut at an angle of 6 degrees and AR coated.

本実施例の分光装置の実験系を図4に示す。この実験系は、導波路型波長変換素子10と合波器21と信号光(第1の波長の光)を出力する信号光光源22と励起光(第2の波長の光)を出力する励起光光源23とからなる中赤外光源20を有している。信号光光源22として、1.39μmのDFB−LDを用い、励起光光源23として、1.064μmのDFB−LDを用い、各々の出力光は、ファイバ型のカプラである合波器21で合波され、導波路型波長変換素子10に入力される。導波路型波長変換素子10では、差周波発生により、変換光(第3の波長の光)である4.54μmの中赤外光が発生する。導波路型波長変換素子10からの出力光はGeフィルタにより中赤外光のみ取り出され、外気である空気で満たされ、かつ、10mTorrまで減圧された10mのマルチパスセル31(測定対象)に通して受光器24で受光する。   FIG. 4 shows an experimental system of the spectroscopic device of this example. This experimental system includes a waveguide type wavelength conversion element 10, a multiplexer 21, a signal light source 22 that outputs signal light (first wavelength light), and an excitation that outputs excitation light (second wavelength light). A mid-infrared light source 20 including a light source 23 is included. A 1.39 μm DFB-LD is used as the signal light source 22 and a 1.064 μm DFB-LD is used as the pumping light source 23, and each output light is combined by a multiplexer 21 which is a fiber-type coupler. And is input to the waveguide type wavelength conversion element 10. In the waveguide type wavelength conversion element 10, 4.54 μm mid-infrared light, which is converted light (light of the third wavelength), is generated by the difference frequency generation. The output light from the waveguide type wavelength converting element 10 is extracted only by mid-infrared light by a Ge filter, filled with air as outside air, and passed through a 10 m multi-pass cell 31 (measurement object) that is decompressed to 10 mTorr. The light receiver 24 receives the light.

そして、上述した図2で説明したように、導波路型波長変換素子10を接着したベース13には、ペルチェ素子12と共にサーミスタ14が設けられており、サーミスタ14を利用して、温度をモニタリングし、温度制御部32及び電源33を用い、ペルチェ素子12により、導波路型波長変換素子10の温度制御及び温度変調を行っている(温度変調手段)。   As described above with reference to FIG. 2, the thermistor 14 is provided together with the Peltier element 12 on the base 13 to which the waveguide type wavelength conversion element 10 is bonded, and the thermistor 14 is used to monitor the temperature. The temperature control unit 32 and the power source 33 are used to perform temperature control and temperature modulation of the waveguide type wavelength conversion element 10 by the Peltier element 12 (temperature modulation means).

信号光光源22にはシグナルジェネレータ25からの電圧入力で光源内部のLDの注入電流が制御されており、2f強度を測定するため、シグナルジェネレータ25では、信号光光源22への注入電流を1Hzの鋸歯状波で変調しつつ、周波数fが15kHzのサイン波を重畳しており、信号光光源22で入力光である信号光を変調及び掃引できるようにしている。一方、励起光光源23では、入力光である励起光の波長を固定している。このような信号光及び励起光により、導波路型波長変換素子10から出た変換光の波長を変調及び掃引できるようにしている。   The signal light source 22 controls the injection current of the LD inside the light source by voltage input from the signal generator 25. In order to measure the 2f intensity, the signal generator 25 uses 1 Hz as the injection current to the signal light source 22. While modulating with a sawtooth wave, a sine wave with a frequency f of 15 kHz is superimposed so that the signal light source 22 can modulate and sweep the signal light as the input light. On the other hand, in the excitation light source 23, the wavelength of the excitation light that is input light is fixed. With such signal light and excitation light, the wavelength of the converted light emitted from the waveguide type wavelength conversion element 10 can be modulated and swept.

受光器24で受光した光信号はロックインアンプ26に入力されており、ロックインアンプ26では、2f強度を検波しており、検波した2f強度の時間依存性をオシロスコープ27で観測できるようにしている。なお、シグナルジェネレータ25からロックインアンプ26へは、周波数fの同期信号が入力されており、又、シグナルジェネレータ25からオシロスコープ27へは、鋸歯状波の同期信号が入力されている。   The optical signal received by the light receiver 24 is input to the lock-in amplifier 26. The lock-in amplifier 26 detects the 2f intensity, and the time dependency of the detected 2f intensity can be observed with the oscilloscope 27. Yes. Note that a synchronization signal having a frequency f is input from the signal generator 25 to the lock-in amplifier 26, and a sawtooth wave synchronization signal is input from the signal generator 25 to the oscilloscope 27.

上述した実験系において、信号光と励起光を合波器21で合波し、導波路型波長変換素子10に入力する。そして、受光器24で受光した光信号をロックインアンプ26に入力し、2f強度をロックインアンプ26で検波する。2f強度の時間依存性をオシロスコープ27で観測すると、温度変調によるフリンジ強度変化の揺らぎをロックインアンプ26の時定数でなまらせることができ(時定数が長いため、変調の1周期以上の時間平均の出力を得ることができ)、フリンジによる強度変化が減少する。あるいは、複数回のスペクトルの統計平均をとることにより、フリンジによる強度変化を低減させる。このようにして、吸収線信号が明確に観測できる。   In the experimental system described above, the signal light and the excitation light are combined by the multiplexer 21 and input to the waveguide type wavelength conversion element 10. Then, the optical signal received by the light receiver 24 is input to the lock-in amplifier 26, and the 2f intensity is detected by the lock-in amplifier 26. When the time dependence of 2f intensity is observed with the oscilloscope 27, the fluctuation of the fringe intensity change due to temperature modulation can be smoothed by the time constant of the lock-in amplifier 26 (because the time constant is long, the time average over one period of the modulation) Output), the intensity change due to fringing is reduced. Alternatively, the intensity change due to fringe is reduced by taking a statistical average of a plurality of spectra. In this way, the absorption line signal can be clearly observed.

この例では、主に、信号光のフリンジに起因する強度変化の波長依存性が、差周波光である中赤外光の出力に影響を与えており、信号光のフリンジ成分を除去する必要がある。導波路型波長変換素子10を温度変調しなかった場合のオシロスコープ波形を図5(a)に示す。中央に乱れはあるが、出力光のフリンジが原因となるほぼサイン波型の出力波形が得られた。なお、図5(a)及び後述の図5(b)において、横軸は波長に相当する時間を示し、縦軸は2f成分の信号強度を示している。   In this example, the wavelength dependence of the intensity change due to the fringe of the signal light mainly affects the output of the mid-infrared light that is the difference frequency light, and it is necessary to remove the fringe component of the signal light. is there. FIG. 5A shows an oscilloscope waveform when the waveguide-type wavelength conversion element 10 is not temperature-modulated. Although there was a disturbance in the center, an almost sine wave type output waveform caused by the fringe of the output light was obtained. In FIG. 5A and later-described FIG. 5B, the horizontal axis indicates the time corresponding to the wavelength, and the vertical axis indicates the signal intensity of the 2f component.

この実験系においては、導波路型波長変換素子10の温度変調を行っている。温度制御部32は、電源33を用い、ベース13上のサーミスタ14の温度表示をもとに、ペルチェ素子12に流す電流量をフィードバック制御して、全体の温度制御に加えて、Δtの微小な温度変調をΔtsin(2πFT)で示される正弦波形状で施した(Tは時間)。微小な温度変調は、上述した式(7)の計算により、温度変調振幅として0.2℃(変調強度は0.4℃)であればよく、この振幅で温度変調を加えた。温度変調周波数Fとしては103.7Hzで変調を行った。なお、本実施例では図2に示したような、各々1つのペルチェ素子12及びサーミスタ14によりフィードバック制御を行っているが、図3で示したような、各々2つのペルチェ素子12、16及びサーミスタ14、17により、より精密に制御を行うこともできる。   In this experimental system, temperature modulation of the waveguide type wavelength conversion element 10 is performed. The temperature control unit 32 uses a power source 33 to feedback-control the amount of current flowing through the Peltier element 12 based on the temperature display of the thermistor 14 on the base 13, and in addition to the overall temperature control, a small Δt Temperature modulation was performed in a sinusoidal shape indicated by Δtsin (2πFT) (T is time). The minute temperature modulation may be 0.2 ° C. (modulation intensity is 0.4 ° C.) as the temperature modulation amplitude by the calculation of the above-described equation (7), and the temperature modulation is applied with this amplitude. Modulation was performed at a temperature modulation frequency F of 103.7 Hz. In this embodiment, as shown in FIG. 2, feedback control is performed by using one Peltier element 12 and the thermistor 14, respectively. However, as shown in FIG. 3, two Peltier elements 12, 16 and the thermistor are used. 14 and 17 can be used for more precise control.

導波路型波長変換素子10の温度変調を行い、得られたスペクトルを統計平均した所、図5(b)に示すように、ほぼ中央付近にピークが観測され、理論予測されるN2Oの吸収線の位置と一致した。ロックインアンプ26の時定数によるなまりにより、フリンジの変動強度は減少していたが、更に、スペクトルの統計平均を行うことにより、効果的にフリンジを除去することができた。以上のように、温度変調によりに周期的な屈折率変調を施すことにより、フリンジの影響を抑えることに成功した。 When the temperature of the waveguide type wavelength conversion element 10 is modulated and the obtained spectrum is statistically averaged, as shown in FIG. 5B, a peak is observed in the vicinity of the center, and the theoretically predicted N 2 O concentration It coincided with the position of the absorption line. Although the fluctuation intensity of the fringe decreased due to the rounding due to the time constant of the lock-in amplifier 26, the fringe could be effectively removed by performing statistical averaging of the spectrum. As described above, the effect of fringe has been successfully suppressed by performing periodic refractive index modulation by temperature modulation.

なお、ここでは、4.54μm付近のN2Oの吸収線を観測したが、他の波長帯の異なるガスにおいても同様の効果が得られる。 Here, the N 2 O absorption line in the vicinity of 4.54 μm was observed, but the same effect can be obtained with other gases having different wavelength bands.

[実施例2]
本実施例では、導波路型波長変換素子として、実施例1で用いたものと同じものを用い、又、分光装置のシステムとしても、基本的に同様のものを用いているので、図2及び図4を参照して、異なる部分のみ説明する。
[Example 2]
In this example, the same wavelength type wavelength conversion element as that used in Example 1 is used, and the system of the spectroscopic apparatus is basically the same as that shown in FIG. Only different parts will be described with reference to FIG.

実施例1では、励起光光源23の波長は固定され、信号光光源22の波長はシグナルジェネレータ25から発せられた周波数1Hzの鋸歯状波と周波数15kHzのサイン波が重畳された信号により変調されたが、本実施例では、励起光光源23を周波数15kHzのサイン波で変調し、信号光光源22を周波数1Hzの鋸歯状波で変調した。このように、実施例1では信号光にサイン波と鋸歯状波を重畳した信号で変調を行ったが、本実施例では、励起光と信号光に役割を分担させて変調及び掃引を行っている。この場合でも、(式A)に示すように、変換光の波長自体は実施例1も本実施例も同じく重畳された変調が施されることになる。   In the first embodiment, the wavelength of the excitation light source 23 is fixed, and the wavelength of the signal light source 22 is modulated by a signal in which a sawtooth wave having a frequency of 1 Hz and a sine wave having a frequency of 15 kHz emitted from the signal generator 25 are superimposed. However, in this embodiment, the excitation light source 23 is modulated with a sine wave having a frequency of 15 kHz, and the signal light source 22 is modulated with a sawtooth wave having a frequency of 1 Hz. As described above, in the first embodiment, modulation is performed using a signal in which a sine wave and a sawtooth wave are superimposed on signal light. However, in this embodiment, modulation and sweep are performed by sharing roles between excitation light and signal light. Yes. Even in this case, as shown in (Formula A), the wavelength of the converted light itself is subjected to the modulation that is superimposed in both the first embodiment and the present embodiment.

本実施例の場合、波長掃引は励起光で行っているため、上述した式(7)の計算により、温度変調振幅は0.15℃(変調強度は0.3℃)で十分であった。温度変調周波数は205.3Hzであった。   In the case of the present example, since the wavelength sweep is performed by the excitation light, it is sufficient that the temperature modulation amplitude is 0.15 ° C. (modulation intensity is 0.3 ° C.) according to the calculation of Expression (7) described above. The temperature modulation frequency was 205.3 Hz.

実施例1と同様にして、オシロスコープ27で波形を観測したところ、導波路型波長変換素子10の温度変調を行わなかった場合は、中央に乱れはあるが、出力光のフリンジが原因であるほぼサイン波型の出力波形が得られ、温度変調を行った場合には、ほぼ中央付近に理論予測されるN2Oの吸収線の位置と一致するピークが観測された。 When the waveform was observed with the oscilloscope 27 in the same manner as in Example 1, when the temperature modulation of the waveguide type wavelength conversion element 10 was not performed, there was a disturbance in the center, but it was almost caused by the fringe of the output light. When a sine wave type output waveform was obtained and temperature modulation was performed, a peak almost identical to the theoretically predicted position of the N 2 O absorption line was observed near the center.

[実施例3]
本実施例も、図2及び図4を参照して説明する。
[Example 3]
This embodiment will also be described with reference to FIGS.

本実施例において、導波路型波長変換素子10には、コア層がニオブ酸リチウムからなり、クラッド層がタンタル酸リチウムからなる直接接合法を用いたリッジ型導波路を作製している。このリッジ型導波路において、反転周期Λ0=17.6μmの周期分極反転構造を48mm作製した。リッジ型導波路のコア層の厚みと幅はそれぞれ8μmと14μmである。導波路型波長変換素子10の端面は斜めに6度カットされ、ARコートが施されている。 In this embodiment, a ridge-type waveguide using a direct bonding method in which the core layer is made of lithium niobate and the clad layer is made of lithium tantalate is manufactured for the waveguide type wavelength conversion element 10. In this ridge-type waveguide, a periodic polarization reversal structure having a reversal period Λ 0 = 17.6 μm was fabricated to 48 mm. The thickness and width of the core layer of the ridge-type waveguide are 8 μm and 14 μm, respectively. The end face of the waveguide type wavelength conversion element 10 is cut at an angle of 6 degrees and AR coated.

ここでは、信号光光源22及び励起光光源23を同じ入力光源とし、1.526μmのDFB−LDを用いており、この出力光が導波路型波長変換素子10に入力される。導波路型波長変換素子10では、第二高調波発生により、変換光である0.763μmの赤色光が発生する。導波路型波長変換素子10からの出力光は外気である空気(測定対象)を1m伝搬し、Si受光器(受光器24)で受光する。   Here, the signal light source 22 and the excitation light source 23 are the same input light source, and a 1.526 μm DFB-LD is used, and this output light is input to the waveguide type wavelength conversion element 10. In the waveguide type wavelength conversion element 10, red light of 0.763 μm, which is converted light, is generated by the second harmonic generation. The output light from the waveguide type wavelength conversion element 10 propagates 1 m of air (measuring object), which is outside air, and is received by the Si light receiver (light receiver 24).

入力光源の波長は、シグナルジェネレータ25から発せられた周波数1Hzの鋸歯状波と周波数15kHzのサイン波が重畳された信号により変調及び掃引されている。受光器24からの出力をロックインアンプ26に入力し、15kHzのサイン波の倍成分である30kHzの成分を検波し、出力をオシロスコープ27に入力する。オシロスコープ27は1Hzの鋸歯状波と同期されており、鋸歯状波により発生波長が変調されているので、時間軸が波長の変化に相当し、ロックインアンプ26からの2f成分のスペクトルを観測している。   The wavelength of the input light source is modulated and swept by a signal generated by superimposing a sawtooth wave with a frequency of 1 Hz and a sine wave with a frequency of 15 kHz emitted from the signal generator 25. The output from the light receiver 24 is input to the lock-in amplifier 26, a 30 kHz component that is a double component of the 15 kHz sine wave is detected, and the output is input to the oscilloscope 27. The oscilloscope 27 is synchronized with the 1 Hz sawtooth wave, and the generated wavelength is modulated by the sawtooth wave. Therefore, the time axis corresponds to the change of the wavelength, and the spectrum of the 2f component from the lock-in amplifier 26 is observed. ing.

温度変調を行わなかった場合のオシロスコープ波形を図6(a)に示す。中央に乱れはあるが、出力光のフリンジが原因となるほぼサイン波型の出力波形が得られた。なお、図6(a)及び後述の図6(b)においても、横軸は波長に相当する時間を示し、縦軸は2f成分の信号強度を示している。   FIG. 6A shows an oscilloscope waveform when temperature modulation is not performed. Although there was a disturbance in the center, an almost sine wave type output waveform caused by the fringe of the output light was obtained. In FIG. 6A and FIG. 6B described later, the horizontal axis indicates the time corresponding to the wavelength, and the vertical axis indicates the signal intensity of the 2f component.

次に、ベース13上のサーミスタ14の温度表示をもとに、ペルチェ素子12に流す電流量をフィードバック制御して、全体の温度制御に加えて、Δtの微小な温度変調をΔtsin(2πFT)で示される正弦波形状で施した(Tは時間)。微小な温度変調は、上述した式(7)の計算により、温度変調振幅として0.225℃(変調強度は0.45℃)であればよく、この振幅で温度変調を加えた。温度変調周波数Fとしては92.3Hzで変調を行った。なお、本実施例でも、図2に示したような、1つのペルチェ素子12及びサーミスタ14によりフィードバック制御を行っているが、図3で示したような、2つのペルチェ素子12、16及びサーミスタ14、17により、より精密に制御を行うこともできる。   Next, based on the temperature display of the thermistor 14 on the base 13, the amount of current flowing through the Peltier device 12 is feedback-controlled, and in addition to the overall temperature control, a minute temperature modulation of Δt is Δtsin (2πFT). The sine wave shape shown was applied (T is time). The minute temperature modulation may be 0.225 ° C. (modulation intensity is 0.45 ° C.) as the temperature modulation amplitude by the calculation of the above-described equation (7), and the temperature modulation is applied with this amplitude. Modulation was performed at a temperature modulation frequency F of 92.3 Hz. Also in this embodiment, feedback control is performed by one Peltier element 12 and the thermistor 14 as shown in FIG. 2, but two Peltier elements 12, 16 and the thermistor 14 as shown in FIG. , 17 can also be controlled more precisely.

温度変調を行い、得られたスペクトルを統計平均した所、図6(b)に示すように、ほぼ中央付近にピークが観測され、理論予測されるO2の吸収線の位置と一致した。ロックインアンプ26の時定数によるなまりにより、フリンジの変動強度は減少していたが、更に、スペクトルの統計平均を行うことにより、効果的にフリンジを除去することができた。以上のように、温度変調によりに周期的な屈折率変調を施すことにより、フリンジの影響を抑えることに成功した。 When the temperature was modulated and the obtained spectrum was statistically averaged, as shown in FIG. 6B, a peak was observed in the vicinity of the center, which coincided with the theoretically predicted position of the O 2 absorption line. Although the fluctuation intensity of the fringe decreased due to the rounding due to the time constant of the lock-in amplifier 26, the fringe could be effectively removed by performing statistical averaging of the spectrum. As described above, the effect of fringe has been successfully suppressed by performing periodic refractive index modulation by temperature modulation.

[他の変形例]
上記実施例1〜3では、コア層に2次非線形光学結晶であるニオブ酸リチウムを用いたが、ニオブ酸リチウムにプロトンが拡散されたものや他の2次非線形光学媒質を用いても良い。特に、ニオブ酸リチウムやタンタル酸リチウムを用いたり、ニオブ酸リチウムやタンタル酸リチウムにMg、Zn、Sc及びInからなる群から選ばれた少なくとも一種が添加物として含有された材料を用いたりすることが望ましい。又、上記実施例1〜3では、差周波発生と第二高調波発生に関して示したが、和周波発生などの他の2次非線形光学効果を用いて波長変換をしても、同様の効果が得られる。
[Other variations]
In Examples 1 to 3, lithium niobate which is a second-order nonlinear optical crystal is used for the core layer. However, a material in which protons are diffused in lithium niobate or another second-order nonlinear optical medium may be used. In particular, using lithium niobate or lithium tantalate, or using a material containing at least one selected from the group consisting of Mg, Zn, Sc and In as an additive in lithium niobate or lithium tantalate Is desirable. In the first to third embodiments, the difference frequency generation and the second harmonic generation are shown. However, even if wavelength conversion is performed using other second-order nonlinear optical effects such as sum frequency generation, the same effect can be obtained. can get.

本発明は、ガスのセンシングや物質の光学分光に好適なものである。   The present invention is suitable for gas sensing and substance optical spectroscopy.

10 導波路型波長変換素子
12、16 ペルチェ素子
14、17 サーミスタ
20 中赤外光源
21 合波器
22 信号光光源
23 励起光光源
24 受光器
25 シグナルジェネレータ
26 ロックインアンプ
27 オシロスコープ
32 温度制御部
33 電源
DESCRIPTION OF SYMBOLS 10 Waveguide type | mold wavelength conversion element 12, 16 Peltier element 14, 17 Thermistor 20 Mid-infrared light source 21 Multiplexer 22 Signal light source 23 Excitation light source 24 Light receiver 25 Signal generator 26 Lock-in amplifier 27 Oscilloscope 32 Temperature control part 33 Power supply

Claims (5)

周期分極反転構造を有する2次非線形光学媒質からなり、第1の波長の光と第2の波長の光とを入射することにより、2次非線形光学効果によって新たな第3の波長の光を発生させる導波路型波長変換素子と、測定対象を透過した前記第3の波長の光を受光する受光器とを少なくとも備え、前記第1の波長の光及び前記第2の波長の光の少なくとも一方の光の波長を掃引することで、前記第3の光の波長を掃引することにより分光を行う分光装置において、
前記導波路型波長変換素子の温度を周期的に変調させて、前記導波路型波長変換素子の屈折率を周期的に変調させる温度変調手段を設け、
前記受光器の出力を前記変調の1周期以上に渡って時間平均する、あるいは、前記出力を複数回統計平均することにより分光スペクトルを得る
ことを特徴とする分光装置。
It consists of a second-order nonlinear optical medium having a periodically poled structure, and generates light of a new third wavelength by the second-order nonlinear optical effect by entering light of the first wavelength and light of the second wavelength. And at least one of the light of the first wavelength and the light of the second wavelength, and a waveguide type wavelength conversion element to be received and a light receiver that receives the light of the third wavelength transmitted through the measurement object In the spectroscopic device that performs spectroscopy by sweeping the wavelength of the third light by sweeping the wavelength of the light,
Providing temperature modulation means for periodically modulating the temperature of the waveguide type wavelength conversion element, and periodically modulating the refractive index of the waveguide type wavelength conversion element;
A spectroscopic device that obtains a spectrum by averaging the output of the light receiver over time over one period of the modulation or by statistically averaging the output multiple times.
請求項1に記載の分光装置において、
前記温度変調手段は、前記導波路型波長変換素子の温度変調強度として、温度変調の際の温度変化による前記導波路型波長変換素子の位相差が2π以上となる温度変調強度を用いる
ことを特徴とする分光装置。
The spectroscopic device according to claim 1,
The temperature modulation means uses, as the temperature modulation intensity of the waveguide type wavelength conversion element, a temperature modulation intensity at which a phase difference of the waveguide type wavelength conversion element due to a temperature change during temperature modulation is 2π or more. A spectroscopic device.
請求項1又は請求項2に記載の分光装置において、
前記導波路型波長変換素子が、LiNbO3又はLiNbO3にMg、Zn、Sc及びInからなる群から選ばれた少なくとも一種が添加物として含有された材料からなる
ことを特徴とする分光装置。
The spectroscopic device according to claim 1 or 2,
The spectroscopic device, wherein the waveguide type wavelength conversion element is made of a material containing at least one selected from the group consisting of Mg, Zn, Sc and In as an additive in LiNbO 3 or LiNbO 3 .
第1の波長の光と第2の波長の光とを周期分極反転構造を有する2次非線形光学媒質からなる導波路型波長変換素子に入射して、前記導波路型波長変換素子の2次非線形光学効果により新たな第3の波長の光を発生させると共に、前記第1の波長の光及び前記第2の波長の光の少なくとも一方の光の波長を掃引することにより、前記第3の光の波長を掃引し、
前記導波路型波長変換素子で発生させた前記第3の波長の光を測定対象に入射し、前記測定対象を透過した前記第3の波長の光を受光器で受光して分光測定を行う分光検出方法において、
前記導波路型波長変換素子の温度を周期的に変調させて、前記導波路型波長変換素子の屈折率を周期的に変調させると共に、
前記受光器の出力を前記変調の1周期以上に渡って時間平均する、あるいは、前記出力を複数回統計平均することにより分光スペクトルを得る
ことを特徴とする分光検出方法。
The light of the first wavelength and the light of the second wavelength are incident on a waveguide type wavelength conversion element made of a second order nonlinear optical medium having a periodically poled structure, and the second order nonlinearity of the waveguide type wavelength conversion element. By generating a light of a new third wavelength by the optical effect, and sweeping the wavelength of at least one of the light of the first wavelength and the light of the second wavelength, Sweep wavelength,
Spectroscopy in which light of the third wavelength generated by the waveguide type wavelength conversion element is incident on a measurement object, and the light of the third wavelength transmitted through the measurement object is received by a light receiver to perform spectroscopic measurement In the detection method,
While periodically modulating the temperature of the waveguide type wavelength conversion element, and periodically modulating the refractive index of the waveguide type wavelength conversion element,
A spectral detection method characterized in that a spectral spectrum is obtained by time averaging the output of the light receiver over one period or more of the modulation, or by statistically averaging the output a plurality of times.
請求項4に記載の分光検出方法において、
前記導波路型波長変換素子の温度変調強度として、温度変調の際の温度変化による前記導波路型波長変換素子の位相差が2π以上となる温度変調強度を用いる
ことを特徴とする分光検出方法。
The spectroscopic detection method according to claim 4.
A spectral detection method using a temperature modulation intensity at which a phase difference of the waveguide type wavelength conversion element is 2π or more due to a temperature change during temperature modulation, as the temperature modulation intensity of the waveguide type wavelength conversion element.
JP2015009075A 2015-01-21 2015-01-21 Spectroscopic apparatus and spectral detection method Active JP6199327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009075A JP6199327B2 (en) 2015-01-21 2015-01-21 Spectroscopic apparatus and spectral detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009075A JP6199327B2 (en) 2015-01-21 2015-01-21 Spectroscopic apparatus and spectral detection method

Publications (2)

Publication Number Publication Date
JP2016133438A true JP2016133438A (en) 2016-07-25
JP6199327B2 JP6199327B2 (en) 2017-09-20

Family

ID=56437860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009075A Active JP6199327B2 (en) 2015-01-21 2015-01-21 Spectroscopic apparatus and spectral detection method

Country Status (1)

Country Link
JP (1) JP6199327B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674430A (en) * 2022-04-12 2022-06-28 中国科学技术大学 Quantum interference detection system and method for detecting spectral intensity of celestial body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850116A1 (en) * 2006-04-27 2007-10-31 IR Microsystems S.A. Gas detection method and gas detection device
JP2009085872A (en) * 2007-10-02 2009-04-23 Nippon Telegr & Teleph Corp <Ntt> Light absorption analysis device
JP2011021996A (en) * 2009-07-15 2011-02-03 Nippon Soken Inc Gas concentration measuring instrument
JP2011196832A (en) * 2010-03-19 2011-10-06 Fuji Electric Co Ltd Laser type gas analyzer
JP2012118333A (en) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion element
JP2012181554A (en) * 2012-06-12 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Mid-infrared light source, and infrared light absorption analyzer using the same
JP2014211539A (en) * 2013-04-18 2014-11-13 日本電信電話株式会社 Wavelength conversion element
JP2014235103A (en) * 2013-06-03 2014-12-15 日本電信電話株式会社 Light absorption measurement laser source and light absorption measurement apparatus using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850116A1 (en) * 2006-04-27 2007-10-31 IR Microsystems S.A. Gas detection method and gas detection device
JP2007298510A (en) * 2006-04-27 2007-11-15 Ir Microsystems Sa Gas detection method and gas detection device
JP2009085872A (en) * 2007-10-02 2009-04-23 Nippon Telegr & Teleph Corp <Ntt> Light absorption analysis device
JP2011021996A (en) * 2009-07-15 2011-02-03 Nippon Soken Inc Gas concentration measuring instrument
JP2011196832A (en) * 2010-03-19 2011-10-06 Fuji Electric Co Ltd Laser type gas analyzer
JP2012118333A (en) * 2010-12-01 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Wavelength conversion element
JP2012181554A (en) * 2012-06-12 2012-09-20 Nippon Telegr & Teleph Corp <Ntt> Mid-infrared light source, and infrared light absorption analyzer using the same
JP2014211539A (en) * 2013-04-18 2014-11-13 日本電信電話株式会社 Wavelength conversion element
JP2014235103A (en) * 2013-06-03 2014-12-15 日本電信電話株式会社 Light absorption measurement laser source and light absorption measurement apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674430A (en) * 2022-04-12 2022-06-28 中国科学技术大学 Quantum interference detection system and method for detecting spectral intensity of celestial body

Also Published As

Publication number Publication date
JP6199327B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP4921307B2 (en) Optical absorption analyzer
US10725359B2 (en) Terahertz wave generating device, optical parametric amplifier, terahertz wave detector, and nonlinear optical element
JP2015222414A (en) Terahertz wave generator, and measuring apparatus using the same
JPWO2009025195A1 (en) Quantum entanglement generation apparatus and method, and quantum entanglement generation detection apparatus and method
JP2007193034A (en) Wavelength conversion device and light absorption measuring instrument
Morozov et al. Poly-harmonic Analysis of Raman and Mandelstam-Brillouin Scatterings and Bragg Reflection Spectra
Sharma et al. Electro optic sensor for high precision absolute distance measurement using multiwavelength interferometry
Ko et al. Dynamic measurement for electric field sensor based on wavelength-swept laser
Chen et al. Sensitivity enhanced fiber optic temperature sensor based on optical carrier microwave photonic interferometry with harmonic Vernier effect
US8654801B2 (en) Light source device, analysis device, and light generation method
Loridat et al. All integrated lithium niobate standing wave Fourier transform electro-optic spectrometer
JP2015076467A (en) Mid-infrared laser light source
JP2011203376A (en) Wavelength conversion element and wavelength conversion light source
Armstrong et al. Detection of CH $ _ {4} $ in the Mid-IR Using Difference Frequency Generation With Tunable Diode Laser Spectroscopy
JP6199327B2 (en) Spectroscopic apparatus and spectral detection method
Hao et al. Enhanced laser self-mixing interferometry based on tunable Fabry-Perot filter
JP2009036578A (en) Light absorption measuring instrument
JP6673774B2 (en) Mid-infrared laser light source and laser spectrometer
JP2012181554A (en) Mid-infrared light source, and infrared light absorption analyzer using the same
JP6199326B2 (en) Spectroscopic apparatus and spectral detection method
JP2015176072A (en) Mid-infrared laser beam generation device, gas detection device, mid-infrared laser beam generation method, and gas detection method
JP2023079135A (en) Fiber sensing device
JP6280445B2 (en) Coherent optical frequency domain reflectometry measurement system
JP6093246B2 (en) Mid-infrared wavelength conversion light source
JP2010181193A (en) Optical detection apparatus and optical detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170823

R150 Certificate of patent or registration of utility model

Ref document number: 6199327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150