JP2016133326A - Vacuum degree estimation system of double-tube system, internal combustion engine, and vacuum degree estimation method of double-tube structure - Google Patents
Vacuum degree estimation system of double-tube system, internal combustion engine, and vacuum degree estimation method of double-tube structure Download PDFInfo
- Publication number
- JP2016133326A JP2016133326A JP2015006430A JP2015006430A JP2016133326A JP 2016133326 A JP2016133326 A JP 2016133326A JP 2015006430 A JP2015006430 A JP 2015006430A JP 2015006430 A JP2015006430 A JP 2015006430A JP 2016133326 A JP2016133326 A JP 2016133326A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- double
- pipe
- temperature
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring Fluid Pressure (AREA)
- Exhaust Silencers (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明は、内燃機関の排気系配管等の保温構造に使用される二重管の外管と内管との間を真空状態にする二重管構造において、二重管構造の保温性を維持するためのメンテナンス用に、二重管内の真空度を容易に推定できる、二重管構造の真空度推定システム、内燃機関、及び、二重管構造の真空度推定方法に関する。 The present invention maintains a heat insulation property of a double pipe structure in a double pipe structure in which a space between an outer pipe and an inner pipe of a double pipe used for a heat insulation structure such as an exhaust system pipe of an internal combustion engine is in a vacuum state. The present invention relates to a double-pipe structure vacuum degree estimation system, an internal combustion engine, and a double-pipe structure vacuum degree estimation method that can easily estimate a vacuum degree in a double pipe for maintenance.
エンジンにおいては、排気ガス中のNOx等の排気ガス成分を浄化するために、後処理装置として触媒を備えた排気ガス浄化装置が備えられており、触媒を活性温度以上に保つために、排気管からの放熱により内部を流れる排気ガスが冷却されるのを防止する必要がある。 In order to purify exhaust gas components such as NOx in the exhaust gas, the engine is provided with an exhaust gas purification device including a catalyst as a post-processing device. In order to keep the catalyst at an activation temperature or higher, an exhaust pipe It is necessary to prevent the exhaust gas flowing in the interior from being cooled by heat radiation from the inside.
この排気ガスの冷却防止の手段の一つとして、例えば、エンジンの排ガス処理装置とこの排気ガス処理装置に至る排気通路の少なくとも一方において、外装を内壁と外壁を有する二重構造に形成し、この二重構造の内壁と外壁の間に、置換ガスを吸収するガス吸収剤と輻射熱遮蔽板を配備し、この二重管構造内の空気と置換した置換ガスをガス吸収剤に吸収させて二重管内を真空にすることで、比較的簡単に、しかも、保温能力が高く放熱による温度低下を防止する排ガス処理装置及び排気通路の保温構造が提案されている(例えば、特許文献1参照)。 As one of the means for preventing the cooling of the exhaust gas, for example, in at least one of the exhaust gas treatment device of the engine and the exhaust passage leading to the exhaust gas treatment device, the exterior is formed in a double structure having an inner wall and an outer wall. A gas absorbent that absorbs the replacement gas and a radiant heat shielding plate are installed between the inner wall and the outer wall of the double structure, and the replacement gas that has replaced the air in the double pipe structure is absorbed by the gas absorbent. There has been proposed an exhaust gas treatment device and a heat insulation structure of an exhaust passage which are relatively simple and have a high heat insulation capability and prevent a temperature drop due to heat radiation by evacuating the inside of the tube (see, for example, Patent Document 1).
この二重管構造は保温性が良いが、二重管構造の内壁と外壁の間の真空度が徐々に低下するという問題があり、これに対応するために、内燃機関ではなく、給湯器等の給湯配管に関するものであるが、例えば、内管部と、この内管部との間に隙間を形成した状態で、内管部に外嵌される外管部とを備えて、外管部となる2本の外管部材を、この2本の外管部材の間に介在する吸引口付き継手を用いて気密に連結するとともに、吸引口付き継手の吸引口に真空バルブを設け、必要に応じて真空バルブを開放して隙間内の空気を真空ポンプで吸引排気することによって、隙間内を所望の減圧状態にできるようにした二重管構造が提案されている(例えば、特許文献2参照)。 This double pipe structure has good heat retention, but there is a problem that the degree of vacuum gradually decreases between the inner wall and the outer wall of the double pipe structure. For example, an outer tube portion including an inner tube portion and an outer tube portion fitted on the inner tube portion in a state where a gap is formed between the inner tube portion and the inner tube portion. The two outer tube members to be connected are hermetically connected using a joint with a suction port interposed between the two outer tube members, and a vacuum valve is provided at the suction port of the joint with a suction port. Accordingly, a double pipe structure has been proposed in which a vacuum valve is opened and air in the gap is sucked and exhausted by a vacuum pump so that the inside of the gap can be brought into a desired reduced pressure state (see, for example, Patent Document 2). ).
この二重管構造の外管と内管との間の真空度は、車両に搭載される内燃機関等においては、二重管構造の保温性能、強いては、排気ガス浄化装置における排気ガスの浄化性能に直接関係してくるため、メイテナンス上、重要な項目となっている。しかしながら、この二重管構造の真空度を常時圧力計で測定する場合には、圧力計を取付ける必要が生じ、部品点数や配線及び取付け工数が増加するという問題がある。 The degree of vacuum between the outer tube and the inner tube of this double pipe structure is such that, in an internal combustion engine or the like mounted on a vehicle, the heat insulation performance of the double pipe structure, and hence the exhaust gas purification in the exhaust gas purification device. Since it is directly related to performance, it is an important item in terms of maintenance. However, when the degree of vacuum of this double tube structure is always measured with a pressure gauge, it is necessary to attach a pressure gauge, and there is a problem that the number of parts, wiring, and mounting man-hours increase.
一方、排気ガス浄化装置には、排気ガス浄化装置の浄化能力を回復するための、微粒子捕集装置に捕集されたPM(微粒子)を燃焼除去するために一時的に排気ガス温度を上昇するPM強制再生や、NOx吸蔵還元型触媒におけるNOx吸蔵力の再生を行うために一時的に排気ガス温度を上昇するNOx強制再生等が行われ、これらの再生制御のために排気ガス浄化装置の入口に排気ガスの温度を測定する温度センサが配置されている。 On the other hand, in the exhaust gas purification device, the exhaust gas temperature is temporarily increased in order to burn and remove PM (fine particles) collected by the fine particle collection device for recovering the purification ability of the exhaust gas purification device. Forcibly regenerating PM or forcibly regenerating NOx in order to regenerate the NOx occlusion power in the NOx occlusion reduction catalyst is performed, for example, forcibly regenerating NOx, and the inlet of the exhaust gas purification device is used for these regeneration controls. Is provided with a temperature sensor for measuring the temperature of the exhaust gas.
本発明は、上記のことを鑑みてなされたものであり、その目的は、二重管の外管と内管の間を真空状態にして内管の内側に流体を流す二重管構造において、この真空状態の真空度を容易に判定することができる、二重管構造の真空度推定システム、内燃機関、及び、二重管構造の真空度推定方法を提供することにある。 The present invention has been made in view of the above, and an object of the present invention is to provide a double-pipe structure in which a fluid is caused to flow inside the inner tube by making a vacuum between the outer tube and the inner tube of the double tube. It is an object of the present invention to provide a double-pipe structure vacuum degree estimation system, an internal combustion engine, and a double-pipe structure vacuum degree estimation method that can easily determine the vacuum degree of the vacuum state.
上記の目的を達成するための本発明の二重管構造の真空度推定システムは、二重管の外管と内管の間を真空状態にし、前記内管の内側に流体を流す二重管構造における真空状態の真空度を判定する二重管構造の真空度推定システムであって、前記内管の内部を流れる流体の温度を測定する温度測定手段と、この温度測定手段で測定した、流体の前記二重管構造の入口側温度と出口側温度の温度差、又は、この流体の出口側温度から、真空度を推定する真空度推定手段を備えて構成される。 In order to achieve the above object, a double pipe structure vacuum degree estimation system according to the present invention is a double pipe that places a vacuum between an outer pipe and an inner pipe of a double pipe and allows fluid to flow inside the inner pipe. A double-pipe structure vacuum degree estimation system for determining a vacuum degree of a vacuum state in a structure, a temperature measuring means for measuring a temperature of a fluid flowing in the inner pipe, and a fluid measured by the temperature measuring means The double pipe structure is provided with a vacuum degree estimating means for estimating a vacuum degree from the temperature difference between the inlet side temperature and the outlet side temperature of the double pipe structure or the outlet side temperature of the fluid.
この構成によれば、二重管の外管と内管の間の真空状態を、この二重管で放熱又は受熱した熱量の変化、即ち、内管の内側を流れる流体の温度の変化によって、判断するので、温度センサという比較的丈夫で安価なセンサで、真空度を推定することができるようになる。 According to this configuration, the vacuum state between the outer tube and the inner tube of the double pipe is changed by the change in the amount of heat radiated or received by the double pipe, that is, the change in the temperature of the fluid flowing inside the inner pipe. Since the determination is made, the degree of vacuum can be estimated with a relatively strong and inexpensive sensor called a temperature sensor.
一般的に、外管の外側の環境の変化は少ないか、環境状態を表す、外気温などのパラメータを測定できるので、これらの環境状態を示すパラメータに基づく、内管の内部を流れる流体の入口側温度と出口側温度の温度差に対する真空度の関係を、予めマップデータ等のデータベースで備えておき、温度差からこのデータベースを参照して真空度を推定することができる。 In general, the environment outside the outer pipe is little changed, or parameters such as the outside air temperature that represent the environmental state can be measured. Therefore, the inlet of the fluid flowing inside the inner pipe based on the parameter indicating the environmental state is measured. The relationship of the degree of vacuum with respect to the temperature difference between the side temperature and the outlet side temperature is prepared in advance in a database such as map data, and the degree of vacuum can be estimated by referring to this database from the temperature difference.
特に、二重管の入口側の流体の温度が予め予測又は算出できる場合には、出口側温度のみで、二重管の放熱量又は受熱量ができ、二重管の伝熱状態が分かり、これから、真空度を推定できる。通常は、この出口側温度と真空度の関係を予めマップデータ等のデータベースで備えておき、出口側温度からこのデータベースを参照して真空度を推定することができる。 In particular, when the temperature of the fluid on the inlet side of the double pipe can be predicted or calculated in advance, only the outlet side temperature can be used for heat dissipation or heat reception of the double pipe, and the heat transfer state of the double pipe can be understood. From this, the degree of vacuum can be estimated. Usually, the relationship between the outlet side temperature and the degree of vacuum is prepared in advance in a database such as map data, and the degree of vacuum can be estimated from the outlet side temperature with reference to this database.
上記の二重管構造の真空度推定システムにおいて、前記二重管が内燃機関の排気ガスを浄化するための排気ガス浄化装置の上流側の排気ガス通路に配置され、前記温度測定手段が、前記排気ガス浄化装置の入口側に配置した排気ガスの温度を測定する温度センサを備えて構成されると、通常は、排気ガス浄化装置には、排気ガス浄化装置の浄化能力を回復するための、微粒子捕集装置におけるPM強制再生や、NOx吸蔵還元型触媒におけるNOx強制再生の制御のために排気ガス浄化装置の入口に排気ガスの温度を測定する温度センサが配置されているので、これを利用して真空度の推定ができるようになる。 In the above-described double pipe structure vacuum degree estimation system, the double pipe is disposed in an exhaust gas passage on the upstream side of an exhaust gas purification device for purifying exhaust gas of an internal combustion engine, and the temperature measuring means includes When it is configured with a temperature sensor that measures the temperature of the exhaust gas disposed on the inlet side of the exhaust gas purification device, the exhaust gas purification device is usually used to recover the purification capability of the exhaust gas purification device. A temperature sensor that measures the temperature of exhaust gas is arranged at the inlet of the exhaust gas purification device for controlling the forced regeneration of PM in the particulate collection device and NOx forced regeneration in the NOx storage reduction catalyst. Thus, the degree of vacuum can be estimated.
上記の二重管構造の真空度推定システムにおいて、前記二重管の前記外管と前記内管の間を真空引きするための真空引き配管に逆止弁を設けて構成すると、真空度が低下し、二重管の外管と内管の間の空気圧力が高くなっているときに、真空度を回復するための真空引き配管に、真空ポンプあるいは真空タンクに接続する外部配管を接続するだけで、外管と内管の間の真空引きを行うことができ、外部配管を取り外すだけで逆止弁により真空度を保つことができるようになるので、メンテナンスを簡単にすることができて、工数を減少することができる。 In the above-described double pipe structure vacuum degree estimation system, if a check valve is provided in the vacuum pipe for vacuuming between the outer pipe and the inner pipe of the double pipe, the degree of vacuum is lowered. However, when the air pressure between the outer and inner pipes of the double pipe is high, just connect an external pipe connected to the vacuum pump or vacuum tank to the vacuum pipe to restore the degree of vacuum. Therefore, vacuuming can be performed between the outer pipe and the inner pipe, and the degree of vacuum can be maintained by the check valve just by removing the external pipe, so maintenance can be simplified. Man-hours can be reduced.
上記の目的を達成するための本発明の内燃機関は、前記排気ガス浄化装置の浄化能力回復制御における、内燃機関の気筒から排出される排気ガスの温度を、上記の二重管構造の真空度推定システムで、推定した真空度に応じて、制御するように構成される。 In order to achieve the above object, an internal combustion engine according to the present invention provides the temperature of exhaust gas discharged from a cylinder of the internal combustion engine in the purification capability recovery control of the exhaust gas purification device, and the degree of vacuum of the double pipe structure. The estimation system is configured to control according to the estimated degree of vacuum.
この構成によれば、経年変化により二重管構造の真空度が変化して、二重管構造の出口側の排気ガスの温度が低下するようになった場合でも、浄化能力回復制御においては、気筒から排出される排気ガスの温度を上昇させて、浄化能力の回復に必要な排気ガス温度を維持できるので、二重管構造の真空度の変化に対応して排気ガスの浄化性能を良好な状態で維持できる。 According to this configuration, even when the degree of vacuum of the double pipe structure changes due to secular change and the temperature of the exhaust gas on the outlet side of the double pipe structure decreases, in the purification capacity recovery control, The exhaust gas temperature exhausted from the cylinder can be raised to maintain the exhaust gas temperature necessary for recovery of the purification capacity, so the exhaust gas purification performance is good in response to changes in the vacuum degree of the double-pipe structure. Can be maintained in a state.
上記の内燃機関において、前記真空度推定手段で推定した真空度が予め設定した真空度以下になったときに、前記二重管構造の真空引きを促す警報を出すように構成されると、この警報を受けた運転者が排気ガスの浄化性能が劣化する前に点検工場などでメンテナンスすることができるので、排気ガスの浄化性能を良好な状態で維持できる。 In the internal combustion engine, when the degree of vacuum estimated by the degree-of-vacuum estimation unit is equal to or lower than a preset degree of vacuum, an alarm for prompting evacuation of the double-pipe structure is provided. Since the driver who has received the alarm can perform maintenance at an inspection factory or the like before the exhaust gas purification performance deteriorates, the exhaust gas purification performance can be maintained in a good state.
上記の目的を達成するための本発明の二重管構造の真空度推定方法は、二重管の外管と内管の間を真空状態にし、前記内管の内側に流体を流す二重管構造における真空状態の真空度を判定する二重管構造の真空度推定方法であって、前記内管の内部を流れる流体の温度を測定し、流体の前記二重管構造の入口側温度と出口側温度の温度差、又は、流体の出口側温度から、真空度を判定することを特徴とする方法である。この方法によれば、二重管構造の真空度推定システムと同様の効果を奏することができる。 In order to achieve the above object, the method for estimating the degree of vacuum of a double pipe structure according to the present invention is a double pipe that places a vacuum between an outer pipe and an inner pipe of a double pipe and allows a fluid to flow inside the inner pipe. A method of estimating the degree of vacuum of a double-pipe structure for determining the degree of vacuum in a vacuum state in the structure, wherein the temperature of the fluid flowing through the inner pipe is measured, and the inlet side temperature and outlet of the double-pipe structure In this method, the degree of vacuum is determined from the temperature difference between the side temperatures or the fluid outlet side temperature. According to this method, an effect similar to that of the double-pipe structure vacuum degree estimation system can be obtained.
本発明の二重管構造の真空度推定システム、内燃機関、及び、二重管構造の真空度推定方法によれば、二重管の外管と内管の間の真空状態を、この二重管で放熱又は受熱した熱量の変化、即ち、内管の内側を流れる流体の温度の変化によって、判断するので、温度センサという比較的丈夫で安価なセンサで、真空度を推定することができるようになる。 According to the double-pipe structure vacuum degree estimation system, the internal combustion engine, and the double-pipe structure vacuum degree estimation method of the present invention, the vacuum state between the outer pipe and the inner pipe of the double pipe is changed to the double pipe structure. Judgment is based on changes in the amount of heat radiated or received by the pipe, that is, changes in the temperature of the fluid flowing inside the inner pipe, so that the degree of vacuum can be estimated with a relatively strong and inexpensive sensor called a temperature sensor. become.
以下、本発明に係る実施の形態の二重管構造の真空度推定システム、内燃機関、及び、二重管構造の真空度推定方法について図面を参照しながら説明する。なお、本発明に係る実施の形態の内燃機関は、本発明に係る実施の形態の二重管構造の真空度推定システムを備えた内燃機関である。 DESCRIPTION OF EMBODIMENTS Hereinafter, a double-pipe structure vacuum degree estimation system, an internal combustion engine, and a double-pipe structure vacuum degree estimation method according to embodiments of the present invention will be described with reference to the drawings. In addition, the internal combustion engine of embodiment which concerns on this invention is an internal combustion engine provided with the vacuum degree estimation system of the double pipe structure of embodiment which concerns on this invention.
図1に示すように、本発明に係る実施の形態の二重管構造の真空度推定システム10は、二重管20の外管21と内管22の間を真空状態にし、内管22の内側に流体を流す二重管構造における真空状態の真空度を判定するシステムであり、この二重管構造の真空度推定システム10は、内管22の内部を流れる流体の温度Tを測定する温度測定手段31と、この温度測定手段31で測定した、流体の二重管構造の入口側温度Tiと出口側温度Toの温度差ΔT(=Ti−To)、又は、この流体の出口側温度Toから、真空度を推定する真空度推定手段32を備えて構成される。
As shown in FIG. 1, the double pipe structure vacuum
また、この二重管構造の真空度推定システム10は、二重管20が内燃機関の排気ガスを浄化するための排気ガス浄化装置3の上流側の排気ガス通路2に配置され、温度測定手段31が、二重管20の入口側の排気ガスの温度Tiを測定する入口側温度センサ31aと、二重管20の出口側、即ち、排気ガス浄化装置3の入口側の排気ガスの温度Toを測定する出口側温度センサ31bを備えて構成される。
Further, in this double pipe structure vacuum
通常は、排気ガス浄化装置3には、排気ガス浄化装置3の浄化能力を回復するための、微粒子捕集装置におけるPM強制再生や、NOx吸蔵還元型触媒におけるNOx強制再生の制御のために排気ガス浄化装置3の入口に排気ガスの温度を測定する温度センサが配置されているので、これを真空度の推定用の出口側温度センサ31bとして利用することができる。
Normally, the exhaust gas purifying
また、二重管20の外管21と内管22の間を真空引きするための真空引き配管23に逆止弁24を設けて構成する。これにより、真空度が低下し、二重管20の外管21と内管22の間の空気圧力が高くなっているときに、真空度を回復するための真空引き配管23に、真空ポンプあるいは真空タンクに接続する外部配管40を接続するだけで、外管21と内管22の間の真空引きを行うことができ、外部配管40を取り外すだけで逆止弁24により真空度を保つことができるようになる。従って、メンテナンスを簡単にすることができて、工数を減少することができる。
Further, a
そして、本発明に係る実施の形態の内燃機関において、排気ガス浄化装置3の浄化能力回復制御における、内燃機関の気筒から排出される排気ガスの温度Tgを、二重管構造の真空度推定システム10で、推定した真空度に応じて、制御するように構成される。
In the internal combustion engine according to the embodiment of the present invention, the temperature Tg of the exhaust gas discharged from the cylinder of the internal combustion engine in the purification capacity recovery control of the exhaust
これにより、経年変化により二重管構造の真空度が変化して、二重管構造の出口側の排気ガスの温度Toが低下するようになった場合でも、浄化能力回復制御においては、気筒から排出される排気ガスの温度Tgを上昇させて、浄化能力の回復に必要な排気ガス温度を維持できるので、二重管構造の真空度の変化に対応して排気ガスの浄化性能を良好な状態で維持できるようになる。 As a result, even when the degree of vacuum of the double-pipe structure changes due to secular change and the temperature To of the exhaust gas on the outlet side of the double-pipe structure decreases, in the purification capacity recovery control, from the cylinder The exhaust gas temperature Tg can be raised to maintain the exhaust gas temperature necessary for recovery of the purification capacity, so the exhaust gas purification performance is in good condition in response to changes in the vacuum degree of the double-pipe structure. Can be maintained.
また、二重管構造の真空度推定システム10で推定した真空度が予め設定した真空度以下になったときに、二重管構造の真空引きを促す警報を出すように構成する。これにより、この警報を受けた運転者が点検工場などでメンテナンスすることを促されるので、排気ガスの浄化性能が劣化する前に点検工場などでメンテナンスして真空度を回復することができるので、排気ガス浄化装置3の排気ガスの浄化性能を良好な状態で維持できる。
In addition, when the degree of vacuum estimated by the double-pipe structure vacuum
次に、本発明に係る実施の形態の二重管構造の真空度推定方法について説明する。この方法は、二重管20の外管21と内管22の間を真空状態にし、内管22の内側に流体を流す二重管構造における真空状態の真空度を判定する二重管構造の真空度推定方法であり、この方法において、内管22の内部を流れる流体の温度Tを測定し、流体の二重管構造の入口側温度Tiと出口側温度Toの温度差ΔT、又は、流体の出口側温度Toから、真空度を判定することを特徴とする方法である。
Next, the vacuum degree estimation method for the double tube structure according to the embodiment of the present invention will be described. In this method, the space between the
上記の構成の二重管構造の真空度推定システム10、エンジン20、及び、二重管構造の真空度推定方法によれば、一般的に、外管21の外側の環境の変化は少ないか、環境状態を表す、外気温などのパラメータを測定できるので、これらの環境状態を示すパラメータに基づく、内管22の内部を流れる流体の入口側温度Tiと出口側温度Toの温度差ΔTに対する真空度の関係を、予めマップデータ等のデータベースで備えておき、この温度差ΔTからこのデータベースを参照して真空度を推定することができる。
According to the double-pipe structure vacuum
特に、二重管20の入口側の流体の温度Tiが予め予測又は算出できる場合には、出口側温度Toのみで、二重管20の放熱量又は受熱量ができ、二重管20の伝熱状態が分かり、これから、真空度を推定できる。通常は、この出口側温度Toと真空度の関係を予めマップデータ等のデータベースで備えておき、出口側温度Toからこのデータベースを参照して真空度を推定することができる。
In particular, when the temperature Ti of the fluid on the inlet side of the
従って、二重管20の外管21と内管22の間の真空状態を、この二重管20で放熱又は受熱した熱量の変化、即ち、内管22の内側を流れる流体の温度の変化によって、判断するので、温度センサ31a、31bという比較的丈夫で安価なセンサで、真空度を推定することができるようになる。
Accordingly, the vacuum state between the
10 二重管構造の真空度推定システム
20 二重管
21 外管
22 内管
23 真空引き配管
24 逆止弁
30 制御装置
31 温度測定手段
31a 入口側温度センサ
31b 出口側温度センサ
32 真空度推定手段
40 外部配管
Ti 入口側温度
To 出口側温度
10 Double pipe structure vacuum
Claims (6)
前記内管の内部を流れる流体の温度を測定する温度測定手段と、
この温度測定手段で測定した、流体の前記二重管構造の入口側温度と出口側温度の温度差、又は、この流体の出口側温度から、真空度を推定する真空度推定手段を備えたことを特徴とする二重管構造の真空度推定システム。 A double-pipe structure vacuum degree estimation system for determining a vacuum degree in a double-pipe structure in which a vacuum state is established between an outer pipe and an inner pipe of a double pipe and a fluid flows inside the inner pipe. ,
Temperature measuring means for measuring the temperature of the fluid flowing through the inner pipe;
It was equipped with a vacuum degree estimation means for estimating the degree of vacuum from the temperature difference between the inlet side temperature and the outlet side temperature of the double pipe structure of the fluid measured by this temperature measuring means, or the outlet side temperature of this fluid. This is a double-pipe structure vacuum degree estimation system.
前記内管の内部を流れる流体の温度を測定し、流体の前記二重管構造の入口側温度と出口側温度の温度差、又は、流体の出口側温度から、真空度を判定することを特徴とする二重管構造の真空度推定方法。 A method for estimating the degree of vacuum of a double tube structure in which a vacuum state is determined in a double tube structure in which a vacuum is created between an outer tube and an inner tube of a double tube, and a fluid flows inside the inner tube. ,
The temperature of the fluid flowing inside the inner pipe is measured, and the degree of vacuum is determined from the temperature difference between the inlet side temperature and the outlet side temperature of the fluid in the double pipe structure or the outlet side temperature of the fluid. A method for estimating the degree of vacuum of a double tube structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015006430A JP2016133326A (en) | 2015-01-16 | 2015-01-16 | Vacuum degree estimation system of double-tube system, internal combustion engine, and vacuum degree estimation method of double-tube structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015006430A JP2016133326A (en) | 2015-01-16 | 2015-01-16 | Vacuum degree estimation system of double-tube system, internal combustion engine, and vacuum degree estimation method of double-tube structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016133326A true JP2016133326A (en) | 2016-07-25 |
Family
ID=56437843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015006430A Pending JP2016133326A (en) | 2015-01-16 | 2015-01-16 | Vacuum degree estimation system of double-tube system, internal combustion engine, and vacuum degree estimation method of double-tube structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2016133326A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022042207A (en) * | 2020-09-02 | 2022-03-14 | いすゞ自動車株式会社 | Abnormality diagnostic device and abnormality diagnostic method |
-
2015
- 2015-01-16 JP JP2015006430A patent/JP2016133326A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022042207A (en) * | 2020-09-02 | 2022-03-14 | いすゞ自動車株式会社 | Abnormality diagnostic device and abnormality diagnostic method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5142624B2 (en) | Exhaust gas purification device, exhaust gas purification method, and particulate measurement method | |
US8608835B2 (en) | Exhaust gas purification system for an internal combustion engine | |
CN105008684B (en) | The abnormity judgement set of emission-control equipment and abnormality judgment method | |
JP5565005B2 (en) | DPF failure detection method and DPF failure detection device | |
US20110072789A1 (en) | Particulate matter sensor and exhaust gas purification apparatus | |
US20150020504A1 (en) | Exhaust flow estimation | |
JP2008101606A (en) | Particulate detection sensor | |
WO2015001955A1 (en) | Anomaly determination system and anomaly determination method | |
JP2015059472A (en) | Diagnostic system | |
US10060314B2 (en) | Exhaust soot control system | |
JP5992992B2 (en) | Exhaust purification device for watercraft and method of operating the exhaust purification device | |
JP2006037742A (en) | Exhaust emission control device for internal combustion engine | |
WO2011135717A1 (en) | Particulate matter quantity detection apparatus | |
JP2015532397A (en) | Steam trap monitoring device equipped with diagnostic instrument and steam trap operation monitoring method | |
WO2007145382A1 (en) | Pm trapper failure detection system | |
CN107709773B (en) | Exhaust system | |
CN204419324U (en) | Exhaust after treatment system | |
JP2015132453A (en) | Boiler water wall tube overheat damage diagnostic apparatus and boiler water wall tube overheat damage diagnostic method | |
JP2016133326A (en) | Vacuum degree estimation system of double-tube system, internal combustion engine, and vacuum degree estimation method of double-tube structure | |
JP2011191278A (en) | Pressure sensor | |
JP6163996B2 (en) | Diagnostic equipment | |
JP2015094265A (en) | Exhaust emission control device for engine | |
JP2011179491A (en) | Particle sensor and exhaust emission control device | |
CN111764991A (en) | Diagnostic device and diagnostic method for removing fault of particulate matter trap | |
JP2008519193A5 (en) |