JP2016133224A - Solid fuel burner - Google Patents

Solid fuel burner Download PDF

Info

Publication number
JP2016133224A
JP2016133224A JP2015005914A JP2015005914A JP2016133224A JP 2016133224 A JP2016133224 A JP 2016133224A JP 2015005914 A JP2015005914 A JP 2015005914A JP 2015005914 A JP2015005914 A JP 2015005914A JP 2016133224 A JP2016133224 A JP 2016133224A
Authority
JP
Japan
Prior art keywords
fuel
fuel nozzle
nozzle
solid fuel
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015005914A
Other languages
Japanese (ja)
Other versions
JP6382733B2 (en
Inventor
泰仁 大西
Yasuhito Onishi
泰仁 大西
三紀 下郡
Miki Shimogoori
三紀 下郡
嶺 聡彦
Satohiko Mine
聡彦 嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015005914A priority Critical patent/JP6382733B2/en
Publication of JP2016133224A publication Critical patent/JP2016133224A/en
Application granted granted Critical
Publication of JP6382733B2 publication Critical patent/JP6382733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve stability characteristics on ignitability and burning quality through high concentration of solid fuel and reduction of energy of fuel particles and speed thereof.SOLUTION: This invention relates to a solid fuel burner constituted in such a way that combustion air nozzles 4 and 5 are provided at an outer periphery of a cylindrical fuel nozzle 10 for injecting mixed fluid 3 of fine powdered coal and transfer gas thereof; there are provided a venturi 8 located at an inner wall side of the fuel nozzle 10 and metering once a transfer flow passage for the mixture gas 3 composed of fine powdered coal and transfer gas thereof in the fuel nozzle 10 toward a central axis direction, a condenser 9 for changing a flow of the mixed gas 3 outward placed at a central axis of the fuel nozzle 10 at a downstream side of the venturi 8 and a distributor 11 at the downstream side of the condenser 9 for dividing the flow passage of the fuel nozzle 10 to an outer peripheral side and an inner peripheral side; a transfer flow passage 12 between the fuel nozzle 10 and the distributor 11 is divided into at least two or more in a circumferential direction of the fuel nozzle 10; and there is provided a hindrance object 14 to cause a length in a circumferential direction of the divided flow passage 12 to be reduced as it is advanced toward the downstream side.SELECTED DRAWING: Figure 1

Description

本発明は、固体燃料を気流搬送して燃焼させる固体燃料バーナに係り、特にバイオマス粒子のように粒径の大きな燃料粒子の着火性、燃焼性を向上させるのに適した固体燃料バーナの構造に関する。   TECHNICAL FIELD The present invention relates to a solid fuel burner in which solid fuel is conveyed and burned, and more particularly to a structure of a solid fuel burner suitable for improving the ignitability and combustibility of fuel particles having a large particle size such as biomass particles. .

火力発電プラント等のボイラに用いられる固体燃料バーナの着火性の向上、火炎の安定性を高める方法としては、燃料濃度を高める、または燃料搬送気体の酸素濃度を上げる方法がある。   As a method for improving the ignitability of a solid fuel burner used in a boiler of a thermal power plant or the like and improving the stability of flame, there is a method of increasing the fuel concentration or increasing the oxygen concentration of the fuel carrier gas.

例えば、特許文献1(特開平9−310809号公報)では、図6のようなバーナ構造とすることで火炉に投入する燃料濃度を高めている。図6に示すバーナ構造は、筒状の燃料ノズル10内に微粉炭などの固体燃料とその搬送気体が供給され、燃料ノズル10の出口から火炉1に投入される。燃料ノズル10のノズル内壁側に設けられた混合気体3の流れを燃料ノズル10の中心側に絞るベンチュリ8と、ベンチュリ8の下流側で燃料ノズル10の中心軸上に設けられた混合気体3の流れを燃料ノズル10の内壁側に広げる濃縮器9と、濃縮器9の下流側で燃料ノズル10の中心軸と同軸上に設けられ上流側から下流側に向かって燃料ノズル10の流路が漸次狭まる狭小筒部19を有するとともに流路を同軸状に分割する分配器11を一体的に備えている。   For example, in Patent Document 1 (Japanese Patent Laid-Open No. 9-310809), the fuel concentration to be introduced into the furnace is increased by adopting the burner structure as shown in FIG. In the burner structure shown in FIG. 6, a solid fuel such as pulverized coal and a carrier gas thereof are supplied into a cylindrical fuel nozzle 10 and charged into the furnace 1 from the outlet of the fuel nozzle 10. A venturi 8 for restricting the flow of the mixed gas 3 provided on the nozzle inner wall side of the fuel nozzle 10 toward the center side of the fuel nozzle 10, and a mixed gas 3 provided on the central axis of the fuel nozzle 10 downstream of the venturi 8. A concentrator 9 that spreads the flow toward the inner wall side of the fuel nozzle 10, and a flow path of the fuel nozzle 10 that is provided on the downstream side of the concentrator 9 coaxially with the central axis of the fuel nozzle 10 from the upstream side toward the downstream side. A distributor 11 that has a narrowed narrow tube portion 19 and that divides the flow path coaxially is integrally provided.

ベンチュリ8により、燃料ノズル10の流路が縮小された後で拡大される。さらにベンチュリ8の後流側に設けられた濃縮器9で燃料ノズル10内の流路が再び縮小されるため、固体燃料粒子はその流速が加速される。さらに、いったん加速された固体燃料粒子は搬送用気体に比べて質量が大きいため、濃縮器9の下流側の流路拡大部において固体燃料ノズル10の内壁側に燃料粒子が流れやすくなる。濃縮器9の後流側の狭小筒部19と分配器11からなる流路分割体は、燃料ノズル10の流路を同軸状に分割しており、外周側流路と内周側流路の燃料粒子の流れを整える。すなわち、前記流路分割体を燃料ノズル10内の流路に配置することによって、該燃料ノズル10内の流路を流れる外周側と内周側の搬送空気の流れはそれぞれ均等になり、燃料ノズル10の径方向の速度勾配は軽減される。更に、前記流路分割体で分割される外周側の燃料濃度は高くなるので、燃料濃度の低い低負荷時や難燃性の高燃料比炭でも、火炎を安定に保つことができる。   By the venturi 8, the flow path of the fuel nozzle 10 is reduced and then enlarged. Furthermore, since the flow path in the fuel nozzle 10 is reduced again by the concentrator 9 provided on the downstream side of the venturi 8, the flow velocity of the solid fuel particles is accelerated. Furthermore, since the solid fuel particles once accelerated have a larger mass than the carrier gas, the fuel particles easily flow to the inner wall side of the solid fuel nozzle 10 in the flow path enlargement portion on the downstream side of the concentrator 9. The flow path split body composed of the narrow cylindrical portion 19 and the distributor 11 on the wake side of the concentrator 9 divides the flow path of the fuel nozzle 10 coaxially, and the outer flow path and the inner flow path are separated. Arrange the flow of fuel particles. That is, by disposing the flow path division body in the flow path in the fuel nozzle 10, the flow of the carrier air on the outer peripheral side and the inner peripheral side flowing through the flow path in the fuel nozzle 10 becomes equal, respectively. Ten radial velocity gradients are reduced. Furthermore, since the fuel concentration on the outer peripheral side divided by the flow path dividing body becomes high, the flame can be kept stable even at low loads with low fuel concentration and even in flame-retardant high fuel specific coal.

特許文献2(特開2014−1908号公報)に開示された固体燃料バーナでは、特許文献1と同様にして燃料粒子を濃縮させた後、分配器と燃料ノズルの間の流路に高酸素濃度ガスを噴出する噴出口を設けて高酸素濃度ガスを投入することで、高酸素かつ高燃料粒子濃度の領域を形成している。   In the solid fuel burner disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2014-1908), after the fuel particles are concentrated in the same manner as in Patent Document 1, a high oxygen concentration is provided in the flow path between the distributor and the fuel nozzle. A region of high oxygen and high fuel particle concentration is formed by providing a jet port for jetting gas and introducing high oxygen concentration gas.

また、特許文献3(特開平4−24404号公報)に開示された固体燃料バーナには、微粉炭バーナのバーナ負荷が低いとき、すなわち石炭粉砕ミルの起動時とバーナの低負荷時には通常燃焼時に比べて微粉炭燃焼用空気量が少なくなり、また微粉炭の供給量が少なくなるため微粉炭バーナの着火性が悪くなるので、着火性を改善するために、微粉炭ノズルの入口部に微粉炭濃度を増加させるための微粉炭流量を変更出来る弁を設け、微粉炭ノズルの出口部に濃厚微粉炭流を形成するための保炎器を設けた構造が開示されている。   Further, in the solid fuel burner disclosed in Patent Document 3 (Japanese Patent Laid-Open No. 4-24404), when the burner load of the pulverized coal burner is low, that is, when the coal crushing mill is started and when the burner is under low load, during normal combustion Compared with the reduced amount of pulverized coal combustion air and the reduced amount of pulverized coal supplied, the ignitability of the pulverized coal burner is worsened. A structure is disclosed in which a valve capable of changing the flow rate of pulverized coal for increasing the concentration is provided, and a flame holder for forming a concentrated pulverized coal flow is provided at the outlet of the pulverized coal nozzle.

特開平9−310809号公報JP-A-9-310809 特開2014−1908号公報JP 2014-1908 A 特開平4−24404号公報JP-A-4-24404

上記特許文献1〜3に記載の従来技術は、燃料粒子を燃料ノズルの径方向、つまり燃料ノズルの内壁近傍に集めることで燃料濃度の増加を図っているが、例えば、粒径が大きなバイオマスを燃料とした場合には、さらに着火性を高める配慮が必要である。   The conventional techniques described in Patent Documents 1 to 3 attempt to increase the fuel concentration by collecting the fuel particles in the radial direction of the fuel nozzle, that is, in the vicinity of the inner wall of the fuel nozzle. When it is used as fuel, it is necessary to consider further improving the ignitability.

即ち、粒径が大きなバイオマスの場合、微粉炭等の微細な粒子に比べ、バーナ開口部で着火しにくく、燃焼せずにボイラ火炉の底部に落下する割合が高くなりがちである。また、径の大きな粒子は火炉内への貫通力が大きいので、バーナ火炎の流れから離れやすくなり、燃焼性が悪くなる傾向がある。   That is, in the case of biomass having a large particle size, compared to fine particles such as pulverized coal, it is difficult to ignite at the burner opening, and the ratio of falling to the bottom of the boiler furnace without burning tends to be high. Moreover, since the large diameter particle has a large penetration force into the furnace, it tends to be separated from the flow of the burner flame, and the combustibility tends to deteriorate.

上記従来技術はともに濃縮された粒子の貫通力を低減することまでは考慮されていない。
本発明の課題は、固体燃料の粒子濃度を従来技術の固体燃料バーナより一層増加させ、かつ、火炉に投入する直前の燃料ノズル内で粒子の速度を下げることで粒子の貫通力を低減させ、固体燃料、特に粒径が大きなバイオマス粒子の着火性、火炎安定性を向上させる固体燃料バーナを提供することである。
Neither of the above prior arts considers reducing the penetration force of the concentrated particles.
The problem of the present invention is to increase the particle concentration of the solid fuel more than the solid fuel burner of the prior art, and reduce the particle penetration force by lowering the particle speed in the fuel nozzle just before entering the furnace, An object of the present invention is to provide a solid fuel burner that improves the ignitability and flame stability of a solid fuel, particularly a biomass particle having a large particle size.

本発明の上記課題は次の解決手段で解決される。
燃料ノズルの半径方向のノズル内壁近傍に濃縮させた燃料粒子を円周方向で局在化(局部的に濃縮)させることで、さらに燃料濃度を増加させ、着火性や火炎の安定性を向上させるのである。
The above-mentioned problem of the present invention is solved by the following means.
By concentrating the fuel particles concentrated near the nozzle inner wall in the radial direction of the fuel nozzle in the circumferential direction (locally concentrated), the fuel concentration is further increased, and the ignitability and flame stability are improved. It is.

すなわち、請求項1記載の発明は、固体燃料(微粉炭)とその搬送気体の混合流体を噴出する円筒状の燃料ノズルと、前記燃料ノズルの外側に配置された燃焼用ガスを噴出する燃焼用ガスノズルと、前記燃料ノズルの内壁側に配置され、燃料ノズル内の固体燃料と搬送気体の搬送流路を一旦中心軸方向に向けて絞るベンチュリと、当該ベンチュリの後流側の当該燃料ノズルの中心軸に設けられ当該ノズル内の流れを外向きに変える濃縮器と、当該濃縮器の後流側に当該ノズルの流路を外周部と内周部に分割する分配器を備え、燃料ノズルの出口部に歯付き保炎器を備え、前記固体燃料ノズルの内壁と分配器との間の搬送流路を円周方向に少なくとも2つ以上に分割させ、その流路の円周方向の長さが後流側に進むに従って縮小する形状としたことを特徴とする固体燃料バーナである。   That is, the invention according to claim 1 is a cylinder fuel nozzle that ejects a mixed fluid of solid fuel (pulverized coal) and its carrier gas, and a combustion gas that ejects a combustion gas disposed outside the fuel nozzle. A gas nozzle, a venturi which is disposed on the inner wall side of the fuel nozzle, and once squeezes the transport path for the solid fuel and the transport gas in the fuel nozzle toward the central axis, and the center of the fuel nozzle on the downstream side of the venturi A concentrator provided on the shaft for changing the flow in the nozzle outward, and a distributor for dividing the flow path of the nozzle into an outer peripheral portion and an inner peripheral portion on the downstream side of the concentrator; A toothed flame stabilizer in the part, the conveying flow path between the inner wall of the solid fuel nozzle and the distributor is divided into at least two in the circumferential direction, and the circumferential length of the flow path is A shape that shrinks as it goes to the wake side Is a solid fuel burner characterized and.

請求項2記載の発明は、固体燃料ノズルの出口部に歯付き保炎器を備え、前記固体燃料ノズルの内壁と分配器の間の分割された前記搬送流路の出口を、火炉側から見たときに前記歯付き保炎器の歯と重なる位置に設置したことを特徴とする請求項1記載の固体燃料バーナである。   According to a second aspect of the present invention, a toothed flame stabilizer is provided at the outlet of the solid fuel nozzle, and the outlet of the transport channel divided between the inner wall of the solid fuel nozzle and the distributor is viewed from the furnace side. The solid fuel burner according to claim 1, wherein the solid fuel burner is installed at a position overlapping with a tooth of the toothed flame holder.

請求項3記載の発明は、前記燃料ノズルの内壁と分配器との間にある円周方向に分割された搬送流路の上流側入口と下流側出口の断面積を同一ないしは前記搬送流路の出口の断面積が入口に比べ拡大する構造となっていることを特徴とする請求項1又は2記載の固体燃料バーナである。   According to a third aspect of the present invention, the cross-sectional areas of the upstream inlet and the downstream outlet of the circumferentially divided transport channel between the inner wall of the fuel nozzle and the distributor are the same or the same of the transport channel. 3. The solid fuel burner according to claim 1, wherein a cross-sectional area of the outlet is larger than that of the inlet.

本発明によれば、以下のような効果が得られる。
請求項1記載の発明によれば、固体燃料バーナの燃料ノズルの内部に、バーナ上流から順に、流路を絞るベンチュリと流路を拡大する濃縮器を設けると、燃料粒子には、濃縮器に沿って燃料ノズルの外周方向に向かう速度成分が誘起される。燃料粒子は、搬送気体よりも慣性力が大きいので、燃料ノズルの内壁側に濃縮される。このため、燃料ノズルの内壁と分配器の間を流れる搬送流路の燃料濃度は高くなる。ここまでは従来技術と同様である。
According to the present invention, the following effects can be obtained.
According to the first aspect of the present invention, when the venturi for narrowing the flow path and the concentrator for enlarging the flow path are provided in the fuel nozzle of the solid fuel burner in order from the upstream side of the burner, A velocity component is induced along the outer circumferential direction of the fuel nozzle. Since the fuel particles have an inertial force larger than that of the carrier gas, they are concentrated on the inner wall side of the fuel nozzle. For this reason, the fuel concentration of the conveyance flow path which flows between the inner wall of a fuel nozzle and a divider | distributor becomes high. So far, it is the same as that of the prior art.

更に、前記固体燃料ノズルの内壁と分配器との間の搬送流路が円筒状の固体燃料ノズルの円周方向に少なくとも2つ以上に分割され、該搬送流路の円周方向の長さが縮小した分だけ円周方向の長さ方向に濃縮されるので、濃縮された下流側の燃料ノズルの出口部における固体燃料の高濃度化および燃料粒子のエネルギー及び速度低減による着火性と燃焼安定性を高めることができる。   Furthermore, the conveyance flow path between the inner wall of the solid fuel nozzle and the distributor is divided into at least two in the circumferential direction of the cylindrical solid fuel nozzle, and the circumferential length of the conveyance flow path is Since the oil is concentrated in the circumferential direction by the reduced amount, the ignitability and combustion stability by increasing the concentration of solid fuel and reducing the energy and speed of the fuel particles at the outlet of the concentrated downstream fuel nozzle Can be increased.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、前記搬送流路の出口を火炉側から見て歯付き保炎器の歯と重なる位置に設けると、歯付き保炎器の歯は燃料粒子が当たる障害物の役割を果たすこととなり、火炉投入直前の前記搬送流路において、燃料粒子が、その流れ方向と垂直に設置されている保炎器の歯に一度当たるため、燃料粒子の速度は下がり、貫通力が減少する。このように、火炉に入る直前の燃料粒子の貫通力が減少すると、燃料の着火性が向上し、また、貫通力が減少した燃料粒子はバーナ火炎を突き抜けることなく燃焼するため、燃料の燃焼性が向上する。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, when the outlet of the transfer channel is provided at a position overlapping the teeth of the toothed flame holder as viewed from the furnace side, The flame holder teeth act as an obstacle to which the fuel particles hit, and in the conveying flow path just before the furnace is charged, the fuel particles are once applied to the flame holder teeth installed perpendicular to the flow direction. As a result, the velocity of the fuel particles decreases and the penetration force decreases. Thus, if the penetration force of the fuel particles immediately before entering the furnace decreases, the ignitability of the fuel improves, and the fuel particles with reduced penetration force burn without penetrating the burner flame. Will improve.

請求項3記載の発明によれば、請求項1又は2記載の発明の効果に加えて、前記搬送流路の入口と出口の断面積を同一とすれば、前記搬送流路中の流速を変えずに燃料の濃度を高めることができる。また、搬送流路出口の断面積が入口の断面積に比べ拡大する構造とすれば、前記搬送流路入口に比べ前記搬送流路出口の流速は遅くなる。よって、着火性の向上に必要な、低流速かつ高濃度の燃料粒子と搬送気体の混合流を形成することができる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, if the cross-sectional areas of the inlet and outlet of the transfer channel are the same, the flow velocity in the transfer channel is changed. Without increasing the fuel concentration. In addition, if the cross-sectional area of the transfer flow path outlet is larger than the cross-sectional area of the inlet, the flow speed of the transfer flow path outlet is slower than that of the transfer flow path inlet. Therefore, it is possible to form a mixed flow of the low flow velocity and high concentration fuel particles and the carrier gas necessary for improving the ignitability.

本発明の実施例1の固体燃料バーナの側断面図(図1(a))と図1(a)のA−A線断面矢視図(図1(b))と図1(a)のB−B線断面矢視図(図1(c))と図1(a),図1(b)及び図1(c)のC−C線断面矢視図(図1(d))である。FIG. 1A is a side sectional view of a solid fuel burner according to a first embodiment of the present invention (FIG. 1A), and FIG. 1A is a sectional view taken along line AA in FIG. A cross-sectional view taken along the line B-B (FIG. 1C) and a cross-sectional view taken along the line C-C in FIG. 1A, FIG. 1B, and FIG. 1C (FIG. 1D). is there. 本発明の実施例1の燃料ノズルと流路分割ノズルの間の流路に設置する障害物の斜視図である。It is a perspective view of the obstruction installed in the channel between the fuel nozzle and the channel division nozzle of Example 1 of the present invention. 本発明の実施例2の燃料濃縮流路の斜視図(図3(a))と図1(a)のA−A線断面矢視図(図3(b))と図1(a)のB−B線断面矢視図(図3(c))と図1(a),図3(b)及び図3(c)のC−C線断面矢視図(図3(d))である。FIG. 3A is a perspective view of a fuel concentration flow path according to a second embodiment of the present invention (FIG. 3A), a cross-sectional view taken along line AA in FIG. 1A, and FIG. A cross-sectional view taken along the line B-B (FIG. 3C) and a cross-sectional view taken along the line C-C in FIG. 1A, FIG. 3B, and FIG. 3C (FIG. 3D). is there. 本発明の実施例3の固体燃料バーナの側断面図(図4(a))と火炉から見た正面図(図4(b))と図4(a)のC−C線断面矢視図(図4(c))である。Side sectional view (FIG. 4 (a)) of the solid fuel burner of Example 3 of the present invention, a front view seen from the furnace (FIG. 4 (b)), and a sectional view taken along the line CC in FIG. 4 (a). (FIG. 4C). 本発明の実施例4の固体燃料バーナの側断面図である。It is a sectional side view of the solid fuel burner of Example 4 of the present invention. 従来の固体燃料バーナの概略構成図である。It is a schematic block diagram of the conventional solid fuel burner.

本発明の一実施例を図面と共に説明する。従来技術と共通する構成、作用については前述の通りである。
図1は、本発明の一実施例の固体燃料バーナの構造を示す縦断面概略図である。固体燃料と搬送気体が流れる燃料ノズル10が火炉1の壁面に設けられ、燃料ノズル10の外周には、燃焼用空気を火炉1に噴出する燃焼用ガスノズル(2次燃焼用ガスノズル)4と、該燃焼用ガスノズル4の外周にバーナ出口で旋回流を形成するためのエアレジスタ6を設置した燃焼用ガスノズル(3次燃焼用ガスノズル)5を備え、2次燃焼用ガスノズル4と3次燃焼用ガスノズル5には風箱7から燃焼用ガスが供給される構造になっている。
An embodiment of the present invention will be described with reference to the drawings. The configuration and operation common to the prior art are as described above.
FIG. 1 is a schematic longitudinal sectional view showing the structure of a solid fuel burner according to an embodiment of the present invention. A fuel nozzle 10 through which solid fuel and carrier gas flow is provided on the wall surface of the furnace 1, and a combustion gas nozzle (secondary combustion gas nozzle) 4 for injecting combustion air into the furnace 1 on the outer periphery of the fuel nozzle 10, The combustion gas nozzle 4 is provided with a combustion gas nozzle (third combustion gas nozzle) 5 provided with an air register 6 for forming a swirling flow at the burner outlet on the outer periphery of the combustion gas nozzle 4, and the secondary combustion gas nozzle 4 and the tertiary combustion gas nozzle 5 In the structure, combustion gas is supplied from the wind box 7.

燃料ノズル10のノズル内壁側には混合気体3の流れを燃料ノズル10の中心側に絞るベンチュリ8と、該ベンチュリ8の下流側で燃料ノズル10の中心軸上に設けられた濃縮器9と、該濃縮器9の下流側で流路を径方向に分割する分配器11を備えている。   A venturi 8 that restricts the flow of the mixed gas 3 toward the center of the fuel nozzle 10 on the nozzle inner wall side of the fuel nozzle 10; a concentrator 9 provided on the center axis of the fuel nozzle 10 downstream of the venturi 8; A distributor 11 that divides the flow path in the radial direction is provided on the downstream side of the concentrator 9.

なお、燃料ノズル10の中心軸上にはオイルガン2が配置されているので、濃縮器9は、該オイルガン2上に配置され、また分配器11は燃料ノズル10の内壁に支持されている。   Since the oil gun 2 is disposed on the central axis of the fuel nozzle 10, the concentrator 9 is disposed on the oil gun 2, and the distributor 11 is supported on the inner wall of the fuel nozzle 10. .

固体燃料と搬送気体(1次空気)からなる混合気体3は燃料ノズル10に供給され、ベンチュリ8により混合気体3に燃料ノズル10の中心軸方向の速度成分を誘起させる。さらに濃縮器9により混合気体3には濃縮器9に沿って燃料ノズル10の外周方向に向かう速度成分が誘起される。燃料粒子は搬送気体よりも慣性力が大きいので、搬送気体の流れに追従できない。このため、燃料粒子は燃料ノズル10の内壁付近に濃縮される。よって、濃縮器9の下流に設置した分配器11と燃料ノズル10の間の流路は燃料粒子濃度の高い燃料濃縮流路12となり、分配器の内側は燃料粒子の少ない燃料希薄流路13となる。   A mixed gas 3 composed of solid fuel and carrier gas (primary air) is supplied to the fuel nozzle 10, and a velocity component in the central axis direction of the fuel nozzle 10 is induced in the mixed gas 3 by the venturi 8. Further, a speed component directed toward the outer peripheral direction of the fuel nozzle 10 along the concentrator 9 is induced in the mixed gas 3 by the concentrator 9. Since the fuel particles have a greater inertial force than the carrier gas, they cannot follow the flow of the carrier gas. For this reason, the fuel particles are concentrated near the inner wall of the fuel nozzle 10. Therefore, the flow path between the distributor 11 and the fuel nozzle 10 installed downstream of the concentrator 9 becomes a fuel concentration flow path 12 with a high fuel particle concentration, and the inside of the distributor has a fuel lean flow path 13 with few fuel particles. Become.

また、燃料ノズル10と分配器11と間の燃料濃縮流路12には図2の斜視図に示すようなくさび状の障害物14が設置されており、該障害物14の上面14cが燃料ノズル10の内壁面と接し、障害物底面14dが分配器11と接し、また障害物14の上面14cと底面14dの間には2つの側面14eがあり、障害物先端14aと底面14dとが燃料ノズル10と分配器11の上流側の端を垂直に繋ぐように設置されており、障害物14により、燃料ノズル10と分配器11の間の流路は図1(b)、図1(c)及び図1(d)に示すように分割されている。図1(b)は図1(a)のA−A線断面矢視図であり、図1(c)は図1(a)のB−B線断面矢視図であり、図1(d)は図1(a),図1(b)及び図1(c)のC−C線断面矢視図である。   Further, a wedge-shaped obstacle 14 is installed in the fuel concentration passage 12 between the fuel nozzle 10 and the distributor 11 as shown in the perspective view of FIG. 2, and an upper surface 14c of the obstacle 14 is a fuel nozzle. 10, the bottom surface 14 d of the obstacle is in contact with the distributor 11, and there are two side surfaces 14 e between the top surface 14 c and the bottom surface 14 d of the obstacle 14, and the front end 14 a and the bottom surface 14 d of the obstacle are the fuel nozzles. 10 and the upstream end of the distributor 11 are vertically connected, and due to the obstacle 14, the flow path between the fuel nozzle 10 and the distributor 11 is shown in FIGS. 1 (b) and 1 (c). And it is divided as shown in FIG. 1 (b) is a cross-sectional view taken along line AA in FIG. 1 (a), and FIG. 1 (c) is a cross-sectional view taken along line BB in FIG. 1 (a). ) Is a cross-sectional view taken along line CC in FIGS. 1 (a), 1 (b), and 1 (c).

図1(d)に示すように、燃料濃縮流路12内に設置された障害物14により、燃料濃縮流路12は円筒状の燃料ノズル10の円周方向に分割され、かつ、それぞれの分割された燃料濃縮流路12の円周方向の長さは後流に進むに従って円周方向に短くなる。   As shown in FIG. 1 (d), the obstacle 14 installed in the fuel concentration channel 12 divides the fuel concentration channel 12 in the circumferential direction of the cylindrical fuel nozzle 10, and the respective divisions. The length in the circumferential direction of the fuel concentration channel 12 thus made becomes shorter in the circumferential direction as it proceeds to the wake.

燃料濃縮流路12に集められている燃料粒子は、障害物14の側面14eに当たりながら、後流に進むにつれ分割された燃料濃縮流路12の中央方向へと集められていく。その結果、燃料ノズル10の内壁近傍に濃縮され、燃料濃縮流路入口12aの幅の広がりを持って流れ始めた燃料粒子は、流路12の幅の中心方向に濃縮したのちに燃料濃縮流路出口12bから出ていく。   The fuel particles collected in the fuel enrichment flow path 12 are collected toward the center of the fuel enrichment flow path 12 divided as they proceed to the downstream while hitting the side surface 14e of the obstacle 14. As a result, the fuel particles that have been concentrated near the inner wall of the fuel nozzle 10 and started to flow with the widening of the width of the fuel concentration passage inlet 12a are concentrated in the center of the width of the passage 12, and then the fuel concentration passage. Exit from exit 12b.

図3は、本発明の実施例2の燃料ノズル10の構造を示す図である。実施例2の燃料ノズル10の構造は、図1に示す構造とは異なり、分配器11と障害物14に代えて、図3(a)に斜視図で示す3枚の板状のコの字状の障害物15の上流側の側面15aの端が接するように、円周方向に繋げていくことで形成される。   FIG. 3 is a view showing the structure of the fuel nozzle 10 according to the second embodiment of the present invention. The structure of the fuel nozzle 10 of the second embodiment is different from the structure shown in FIG. 1, and instead of the distributor 11 and the obstacle 14, three plate-shaped U-shapes shown in a perspective view in FIG. It is formed by connecting in the circumferential direction so that the end of the upstream side surface 15a of the obstacle 15 is in contact.

図3(a)に斜視図で示す3枚の板状のコの字状の障害物15を燃料ノズル10に沿って繋げていくと、燃料ノズル10と3枚の板状のコの字状の障害物15の間の流路は図3(b)、図3(c)及び図3(d)に示すように分割されている。図3(b)は図1(a)のA−A線断面矢視図であり、図3(c)は図1(a)のB−B線断面矢視図であり、図3(d)は図1(a),図3(b)及び図3(c)のC−C線断面矢視図である。   When the three plate-shaped U-shaped obstacles 15 shown in a perspective view in FIG. 3A are connected along the fuel nozzle 10, the fuel nozzle 10 and the three plate-shaped U-shaped obstacles are connected. The flow path between the obstacles 15 is divided as shown in FIGS. 3B, 3C, and 3D. 3 (b) is a cross-sectional view taken along line AA in FIG. 1 (a), and FIG. 3 (c) is a cross-sectional view taken along line BB in FIG. 1 (a). ) Is a cross-sectional view taken along the line CC in FIGS. 1 (a), 3 (b) and 3 (c).

各コの字状の障害物15は、両側側面15aと該両側側面15aの間を接続する燃料ノズル10の内壁面に沿った底面15bとからなり、両側側面15aの底面15bの反対側の長辺が燃料ノズル10の内壁に接するように取り付ける。コの字状の障害物15の上流において燃料ノズル10の内壁付近に集められていた粒子は、コの字の障害物15と燃料ノズル10で囲まれた領域を流れるため、この領域に燃料濃縮流路12が形成される。   Each U-shaped obstacle 15 includes a side surface 15a and a bottom surface 15b along the inner wall surface of the fuel nozzle 10 that connects the side surfaces 15a. The length of the side surface 15a opposite to the bottom surface 15b is long. The side is attached so as to contact the inner wall of the fuel nozzle 10. Since the particles collected near the inner wall of the fuel nozzle 10 upstream of the U-shaped obstacle 15 flow in a region surrounded by the U-shaped obstacle 15 and the fuel nozzle 10, the fuel is concentrated in this region. A flow path 12 is formed.

断面コの字状の板からなる障害物15を用いたので、本実施例の障害物15は、実施例1の中実状のくさび状障害物14とは異なり、コの字状の障害物15で形成される燃料濃縮流路12の外側には燃料希薄流路13があり、またコ字状の障害物15の内外に燃料流路が形成されるので図1に示す実施形態に比べ燃料濃縮流路12、13を仕切る障害物15と混合気体3の接する面積が増え、障害物15が冷却されやすい。   Unlike the solid wedge-shaped obstacle 14 of the first embodiment, the obstacle 15 of the present embodiment is different from the solid wedge-shaped obstacle 14 of the first embodiment because the obstacle 15 having a U-shaped plate is used. A fuel lean flow path 13 is provided outside the fuel concentration flow path 12 formed in FIG. 1, and a fuel flow path is formed inside and outside the U-shaped obstacle 15, so that the fuel concentration is compared with the embodiment shown in FIG. The area where the obstacle 15 partitioning the flow paths 12 and 13 contacts the mixed gas 3 increases, and the obstacle 15 is easily cooled.

図4は、本発明の実施例3の構成を示し、歯付き保炎器16を採用した例である。
図4(a)は本実施例の固体燃料バーナの側断面図、図4(b)は火炉1から見た燃料ノズル10の構成図であり、図4(c)は図4(a)のC−C線断面矢視図である。
FIG. 4 shows the configuration of the third embodiment of the present invention, in which a toothed flame holder 16 is employed.
4A is a side sectional view of the solid fuel burner of the present embodiment, FIG. 4B is a configuration diagram of the fuel nozzle 10 viewed from the furnace 1, and FIG. 4C is a diagram of FIG. It is CC sectional view taken on the line.

歯付き保炎器16の複数の歯17は図4(b)の火炉側から見た図に示すように、環状に配置された複数のくさび状障害物14とは重ならないように環状の保炎器16に均等な間隔で環状に配置されている。そのため隣接する2つのくさび状障害物14の間にできる燃料濃縮流路出口12b(図4(c))と保炎器16の歯17が燃料流路の前後方向から見て重なるように設置されている。   As shown in the view from the furnace side in FIG. 4B, the plurality of teeth 17 of the toothed flame holder 16 are annularly held so as not to overlap with the plurality of wedge-shaped obstacles 14 arranged in an annular shape. It is annularly arranged in the flame unit 16 at equal intervals. Therefore, the fuel concentration passage outlet 12b (FIG. 4C) formed between two adjacent wedge-shaped obstacles 14 and the teeth 17 of the flame holder 16 are installed so as to overlap each other when viewed from the front-rear direction of the fuel passage. ing.

本実施例では、燃料濃縮流路出口12bを通り火炉1に投入される燃料粒子が保炎器16の歯17に当たるように燃料濃縮流路出口12bと保炎器16の歯17が1対1で対応し重なるように設けることが望ましい。その際には、燃料粒子が保炎器16の歯17に当たることなく、火炉内へ投入されることを避けるため、燃料濃縮流路出口12bの円周方向の幅W1が保炎器16の歯17の円周方向の直線上の幅W2と同程度または前記幅W2よりより小さく、燃料濃縮流路出口12bの径方向の高さh1が保炎器16の歯17の径方向の高さh2より小さくなることが望ましい。しかし、燃料濃縮流路出口12bの径方向の高さh1が小さすぎると、燃料粒子が詰まる恐れがあるため、燃料濃縮流路出口12(b)の径方向の幅h1が歯付き保炎器の歯17の径方向の幅h2より大きくなってもよい。粒子の流れ18に示すように、燃料濃縮流路入口12(a)から流入した燃料粒子は、流路の中央方向に集められながら燃料濃縮流路12を通って燃料濃縮流路出口12bから出た後、保炎器16の歯17に当たった後、火炉1に投入される。   In the present embodiment, the fuel concentration passage outlet 12b and the teeth 17 of the flame holder 16 are in a one-to-one relationship so that the fuel particles introduced into the furnace 1 through the fuel concentration passage outlet 12b hit the teeth 17 of the flame holder 16. It is desirable to provide it so as to correspond and overlap. In this case, the circumferential width W1 of the fuel concentration passage outlet 12b is set so that the fuel particles do not hit the teeth 17 of the flame holder 16 and are not put into the furnace. 17 is equal to or smaller than the width W2 on the circumferential straight line, and the radial height h1 of the fuel concentration passage outlet 12b is the height h2 of the teeth 17 of the flame holder 16 in the radial direction. It is desirable to be smaller. However, if the height h1 in the radial direction of the fuel concentration passage outlet 12b is too small, fuel particles may be clogged. Therefore, the radial width h1 of the fuel concentration passage outlet 12 (b) has a toothed flame stabilizer. The width 17 of the teeth 17 may be larger than the radial width h2. As shown in the particle flow 18, the fuel particles flowing in from the fuel concentration passage inlet 12 (a) pass through the fuel concentration passage 12 and exit from the fuel concentration passage outlet 12b while being collected in the central direction of the passage. Then, after hitting the teeth 17 of the flame holder 16, the flame holder 16 is put into the furnace 1.

図5は、本発明の実施例4の構造を示す固体燃料バーナの側断面図である。分配器11が下流方向に進むにつれ燃料ノズル10の中心軸方向に近接している点が図1に示すバーナとは異なる。分配器11が下流方向に進むにつれ燃料ノズル10の中心軸方向に近接するために燃料濃縮流路12は下流に進むにつれ流路横断面積が燃料ノズル10の径方向に広がる構造となる。   FIG. 5 is a side sectional view of a solid fuel burner showing the structure of Embodiment 4 of the present invention. 1 differs from the burner shown in FIG. 1 in that the distributor 11 moves closer to the central axis of the fuel nozzle 10 as it advances in the downstream direction. As the distributor 11 advances in the downstream direction, the fuel concentration passage 12 becomes closer to the central axis direction of the fuel nozzle 10, so that the passage cross-sectional area increases in the radial direction of the fuel nozzle 10 as it advances downstream.

燃料濃縮流路12の横断面積は一定、もしく流路12の出口の横断面積が入口に比べ拡大する構造となる。前記断面積を一定にすることで、燃料濃縮流路入口12aと燃料濃縮流路出口12bの流速は一定となる。また、燃料濃縮流路入口12aの横断面積より燃料濃縮流路出口12bの横断面積を広くすれば、燃料濃縮流路入口12aでの混合気体3の流速より燃料濃縮流路出口12bの前記流速の方が遅くなり、低流速又は高濃度の燃料粒子と搬送気体の混合流を容易に形成することでき、固体燃料の高濃度化および燃料粒子のエネルギー及び速度低減による着火性の向上、燃焼性の向上が達成できる。   The cross-sectional area of the fuel concentration channel 12 is constant, or the cross-sectional area of the outlet of the channel 12 is larger than that of the inlet. By making the cross-sectional area constant, the flow speeds of the fuel concentration passage inlet 12a and the fuel concentration passage outlet 12b are constant. Further, if the cross-sectional area of the fuel concentration passage outlet 12b is made larger than the cross-sectional area of the fuel concentration passage inlet 12a, the flow velocity of the fuel concentration passage outlet 12b becomes larger than the flow velocity of the mixed gas 3 at the fuel concentration passage inlet 12a. Slower, can easily form a low flow rate or mixed flow of high concentration fuel particles and carrier gas, increase solid fuel concentration and reduce fuel particle energy and speed, improve ignitability, Improvement can be achieved.

1 火炉
2 オイルガン
3 混合気体
4 燃焼用ガスノズル(2次ノズル)
5 燃焼用ガスノズル(3次ノズル)
6 エアレジスタ
7 ウインドボックス
8 ベンチュリ
9 濃縮器
10 燃料ノズル
11 分配器
12 燃料濃縮流路
13 燃料希薄流路
14 障害物(くさび状)
15 障害物(板状)
16 歯付き保炎器
17 歯付き保炎器の歯
18 粒子の流れ
19 狭小筒部
20 水管

1 furnace 2 oil gun 3 gas mixture 4 combustion gas nozzle (secondary nozzle)
5 Combustion gas nozzle (third nozzle)
6 Air register 7 Wind box 8 Venturi 9 Concentrator 10 Fuel nozzle 11 Distributor 12 Fuel enrichment flow path 13 Fuel lean flow path 14 Obstacle (wedge shape)
15 Obstacle (plate)
16 Toothed flame holder 17 Toothed flame holder tooth 18 Particle flow 19 Narrow tube 20 Water tube

Claims (3)

固体燃料とその搬送気体の混合流体を噴出する円筒状の燃料ノズルと、
前記燃料ノズルの外周に配置された燃焼用ガスを噴出する燃焼用ガスノズルと、
前記燃料ノズルの内壁側に配置され、燃料ノズル内の固体燃料と搬送気体の搬送流路を一旦中心軸方向に向けて絞るベンチュリと、当該ベンチュリの後流側の当該燃料ノズルの中心軸に設けられ当該燃料ノズル内の流れを外向きに変える濃縮器と、当該濃縮器の後流側に当該燃料ノズルの流路を外周部と内周部に分割する分配器を備えた固体燃料バーナにおいて、
前記燃料ノズルと分配器との間の搬送流路が該燃料ノズルの円周方向に少なくとも2つ以上に分割されており、分割された流路の円周方向の長さが後流に進むにつれ縮小する形状を持つ
ことを特徴とする固体燃料バーナ。
A cylindrical fuel nozzle that ejects a mixed fluid of solid fuel and its carrier gas;
A combustion gas nozzle for injecting combustion gas disposed on the outer periphery of the fuel nozzle;
A venturi that is disposed on the inner wall side of the fuel nozzle and temporarily squeezes the transport path for the solid fuel and the transport gas in the fuel nozzle toward the central axis direction, and is provided on the central axis of the fuel nozzle on the downstream side of the venturi A solid fuel burner provided with a concentrator that changes the flow in the fuel nozzle outward, and a distributor that divides the flow path of the fuel nozzle into an outer peripheral portion and an inner peripheral portion on the downstream side of the concentrator,
The conveying flow path between the fuel nozzle and the distributor is divided into at least two in the circumferential direction of the fuel nozzle, and the circumferential length of the divided flow path advances to the wake. A solid fuel burner characterized by having a reduced shape.
前記燃料ノズル出口部に歯付き保炎器を有する請求項1に記載の固体燃料バーナにおいて、
前記燃料ノズルと分配器との間にある円周方向に分割された搬送流路の出口が、火炉側から見たときに歯付き保炎器の歯の円周方向の幅と同程度あるいは歯付き保炎器の歯の円周方向の幅内に収まるように重なる
ことを特徴とする請求項1記載の固体燃料バーナ。
The solid fuel burner according to claim 1, wherein the fuel nozzle outlet has a toothed flame holder.
The outlet of the circumferentially divided conveying flow path between the fuel nozzle and the distributor is approximately the same as the circumferential width of the teeth of the toothed flame stabilizer or the teeth when viewed from the furnace side. The solid fuel burner according to claim 1, wherein the burners overlap so as to be within the circumferential width of the teeth of the attached flame holder.
前記燃料ノズルと分配器との間にある円周方向に分割された搬送流路の上流側入口と下流側出口の断面積を同一ないしは前記搬送流路の出口の断面積が入口に比べ拡大する構造となっている
ことを特徴とする請求項1又は2記載の固体燃料バーナ。
The cross-sectional area of the upstream inlet and the downstream outlet of the circumferentially divided transfer passage between the fuel nozzle and the distributor is the same or the cross-sectional area of the outlet of the transfer passage is larger than that of the inlet. The solid fuel burner according to claim 1 or 2, wherein the solid fuel burner has a structure.
JP2015005914A 2015-01-15 2015-01-15 Solid fuel burner Active JP6382733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015005914A JP6382733B2 (en) 2015-01-15 2015-01-15 Solid fuel burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015005914A JP6382733B2 (en) 2015-01-15 2015-01-15 Solid fuel burner

Publications (2)

Publication Number Publication Date
JP2016133224A true JP2016133224A (en) 2016-07-25
JP6382733B2 JP6382733B2 (en) 2018-08-29

Family

ID=56437809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015005914A Active JP6382733B2 (en) 2015-01-15 2015-01-15 Solid fuel burner

Country Status (1)

Country Link
JP (1) JP6382733B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207559A1 (en) 2017-05-11 2018-11-15 三菱日立パワーシステムズ株式会社 Solid fuel burner and combustion device
WO2019022059A1 (en) * 2017-07-25 2019-01-31 株式会社Ihi Powder fuel burner
JP2021173505A (en) * 2020-04-30 2021-11-01 株式会社Ihi Powder fuel burner
JP2021188841A (en) * 2020-06-01 2021-12-13 株式会社Ihi Powder fuel burner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142610U (en) * 1986-02-25 1987-09-09
JPH03110308A (en) * 1989-09-25 1991-05-10 Babcock Hitachi Kk Pulverized coal feeder
JPH09159109A (en) * 1995-12-08 1997-06-20 Hitachi Ltd Combustion method of pulverized coal, pulverized coal combustion device and pulverized coal combustion burner
JPH09329304A (en) * 1996-06-07 1997-12-22 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JPH10220707A (en) * 1997-02-10 1998-08-21 Babcock Hitachi Kk Burner for powdery solid fuel and combustion apparatus therewith
US5799594A (en) * 1993-11-08 1998-09-01 Ivo International Oy Method and apparatus for reducing nitrogen oxide emissions from burning pulverized fuel
JPH11281010A (en) * 1998-03-26 1999-10-15 Babcock Hitachi Kk Solid fuel combustion burner and solid fuel combustor
JP2012255600A (en) * 2011-06-09 2012-12-27 Babcock Hitachi Kk Solid fuel burner and combustion device including the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142610U (en) * 1986-02-25 1987-09-09
JPH03110308A (en) * 1989-09-25 1991-05-10 Babcock Hitachi Kk Pulverized coal feeder
US5799594A (en) * 1993-11-08 1998-09-01 Ivo International Oy Method and apparatus for reducing nitrogen oxide emissions from burning pulverized fuel
JPH09159109A (en) * 1995-12-08 1997-06-20 Hitachi Ltd Combustion method of pulverized coal, pulverized coal combustion device and pulverized coal combustion burner
JPH09329304A (en) * 1996-06-07 1997-12-22 Ishikawajima Harima Heavy Ind Co Ltd Pulverized coal burner
JPH10220707A (en) * 1997-02-10 1998-08-21 Babcock Hitachi Kk Burner for powdery solid fuel and combustion apparatus therewith
JPH11281010A (en) * 1998-03-26 1999-10-15 Babcock Hitachi Kk Solid fuel combustion burner and solid fuel combustor
JP2012255600A (en) * 2011-06-09 2012-12-27 Babcock Hitachi Kk Solid fuel burner and combustion device including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207559A1 (en) 2017-05-11 2018-11-15 三菱日立パワーシステムズ株式会社 Solid fuel burner and combustion device
KR20200006094A (en) 2017-05-11 2020-01-17 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Solid fuel burners and combustion units
US11346546B2 (en) 2017-05-11 2022-05-31 Mitsubishi Power, Ltd. Solid fuel burner and combustion device
WO2019022059A1 (en) * 2017-07-25 2019-01-31 株式会社Ihi Powder fuel burner
JP2021173505A (en) * 2020-04-30 2021-11-01 株式会社Ihi Powder fuel burner
JP7396186B2 (en) 2020-04-30 2023-12-12 株式会社Ihi powder fuel burner
JP2021188841A (en) * 2020-06-01 2021-12-13 株式会社Ihi Powder fuel burner
JP7415803B2 (en) 2020-06-01 2024-01-17 株式会社Ihi powder fuel burner

Also Published As

Publication number Publication date
JP6382733B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
AU2004229021C1 (en) Solid fuel burner, solid fuel burner combustion method, combustion apparatus and combustion apparatus operation method
US7914279B2 (en) Method and apparatus for injecting a gas into a two-phase stream
KR101547083B1 (en) Combustion burner, solid-fuel-fired burner, solid-fuel-fired boiler, boiler, and method for operating boiler
JP5897363B2 (en) Pulverized coal biomass mixed burner
CN102235666B (en) Pulverized coal burner and pulverized coal fired boiler comprising same
US6189464B1 (en) Pulverized coal combustion burner and combustion method thereby
KR101327570B1 (en) Solid fuel burner and solid fuel boiler
JP6382733B2 (en) Solid fuel burner
JP2009079794A (en) Solid fuel burner, combustion device using the same, and its operation method
EP2738461B1 (en) Solid fuel burner
JP5386230B2 (en) Fuel burner and swirl combustion boiler
JP2008170040A (en) Pulverized coal burning boiler and pulverized coal combustion method of pulverized coal burning boiler
MX2014004260A (en) Solid fuel burner.
JP2005024136A (en) Combustion apparatus
JP5797238B2 (en) Fuel burner and swirl combustion boiler
JP2014102043A (en) Biomass burner
KR101494993B1 (en) Solid fuel burner
JP2012255600A (en) Solid fuel burner and combustion device including the same
WO2015037589A1 (en) Solid fuel burner
JP2010270990A (en) Fuel burner and turning combustion boiler
JP2010139182A (en) Turning combustion boiler
JP2008075911A (en) Gas injection port
JP2020024061A (en) Solid fuel burner, and method of adjusting pulverized coal concentration therefor
JP2001082705A (en) Pulverized fuel combustion burner, boiler, and pulverized fuel combustion method

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350