JP2016132019A - Welding structure of heat-resistant pipe - Google Patents

Welding structure of heat-resistant pipe Download PDF

Info

Publication number
JP2016132019A
JP2016132019A JP2015009388A JP2015009388A JP2016132019A JP 2016132019 A JP2016132019 A JP 2016132019A JP 2015009388 A JP2015009388 A JP 2015009388A JP 2015009388 A JP2015009388 A JP 2015009388A JP 2016132019 A JP2016132019 A JP 2016132019A
Authority
JP
Japan
Prior art keywords
heat
resistant
welding
pipe
resistant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015009388A
Other languages
Japanese (ja)
Other versions
JP6571937B2 (en
Inventor
国秀 橋本
Kunihide Hashimoto
国秀 橋本
暢平 遠城
Chohei Tojo
暢平 遠城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2015009388A priority Critical patent/JP6571937B2/en
Publication of JP2016132019A publication Critical patent/JP2016132019A/en
Application granted granted Critical
Publication of JP6571937B2 publication Critical patent/JP6571937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a welding structure of a heat-resistant pipe capable of suppressing structure embrittlement of a weld peripheral part of a pipe outer surface or intergranular corrosion, and improving oxidation resistance.SOLUTION: In a welding structure of a heat-resistant pipe, which is a welding structure of a heat-resistant pipe obtained by welding each austenitic high Ni heat-resistant pipe 20, 20 containing at least Cr:15%-50%, Ni:18%-70%, Al:1%-6% in terms of mass%, an alumina coat 40 containing Al oxide is formed on a weld peripheral part 35 of a pipe outer surface of each heat-resistant pipe.SELECTED DRAWING: Figure 3

Description

本発明は、耐熱管どうしを溶接してなる溶接構造に関するものであり、より具体的には、管外面の溶接周辺部の組織の脆化や粒界腐食を抑制し、耐酸化性を高めることのできる耐熱管の溶接構造に関するものである。   The present invention relates to a welded structure in which heat-resistant pipes are welded together, and more specifically, to suppress the embrittlement and intergranular corrosion of the structure around the welded outer surface of the pipe and to improve the oxidation resistance. The present invention relates to a heat-resistant pipe welded structure.

エチレンやプロピレン製造用の反応管や炭化水素の熱分解に用いられる分解管などの耐熱管は、直管どうし、及び/又は直管と曲管との管体どうしを外周面側から突合せ溶接することによって、配管系が構成される。この配管系は、900℃〜1150℃に加熱される高温酸化雰囲気で使用されるため、高温強度にすぐれるオーステナイト系の耐熱合金が用いられている。近年、操業の効率化を図るため、さらなる高温操業が求められている。   For heat-resistant pipes such as reaction pipes for ethylene and propylene production and cracking pipes used for hydrocarbon pyrolysis, straight pipes and / or pipes of straight pipes and curved pipes are butt welded from the outer peripheral surface side. Thus, a piping system is configured. Since this piping system is used in a high-temperature oxidizing atmosphere heated to 900 ° C. to 1150 ° C., an austenitic heat-resistant alloy having excellent high-temperature strength is used. In recent years, further high-temperature operation has been demanded in order to increase the efficiency of operation.

この種オーステナイト系耐熱合金は、高温強度を維持すべく高温雰囲気での使用中に母材が酸化されることを抑制する必要がある。そのため、母材に含まれる成分(Cr,Si,Al,Fe等)の一部を酸化させて、管内面に金属の酸化物層を形成し、この酸化物層がバリアとなって、母材の酸化を抑制することが提案されている(例えば、特許文献1及び特許文献2参照)。   This kind of austenitic heat-resistant alloy needs to suppress the base material from being oxidized during use in a high temperature atmosphere in order to maintain high temperature strength. Therefore, a part of the components (Cr, Si, Al, Fe, etc.) contained in the base material is oxidized to form a metal oxide layer on the inner surface of the tube, and this oxide layer serves as a barrier. It has been proposed to suppress the oxidation of (see, for example, Patent Document 1 and Patent Document 2).

特開昭52−78612号公報JP-A-52-78612 特開昭57−39159号公報JP-A-57-39159

オーステナイト系耐熱合金から構成される反応管や分解管などの耐熱管は、約1000℃以上の温度で操業を続けると、管外面の溶接周辺部に組織の脆化や、粒界腐食、耐酸化性が低下し、反応管や分解管の寿命が短くなる不都合があった。   When heat-resistant tubes such as reaction tubes and decomposition tubes made of austenitic heat-resistant alloys are operated at a temperature of about 1000 ° C or higher, the structure becomes brittle, intergranular corrosion, and oxidation-resistant in the weld periphery on the outer surface of the tube. However, there is a disadvantage that the life of the reaction tube and the decomposition tube is shortened.

そして、鋭意研究の結果、その原因が、管外面の溶接周辺部の粒界にCr炭化物が形成されることに加え、金属酸化物層としてCr酸化物(主にCr2O3(クロミア)からなる)が形成されたことによるものであることを見い出した。   And as a result of earnest research, in addition to the formation of Cr carbide at the grain boundary at the weld peripheral part of the pipe outer surface, the cause is Cr oxide (mainly composed of Cr2O3 (chromia)) as a metal oxide layer. I found out that it was due to the formation.

金属酸化物層としてCr酸化物が形成されてしまうと、酸化物の緻密性が低いため、酸素や炭素の侵入防止機能が十分ではなく、高温雰囲気下で母材が内部酸化を起こし、酸化物層が肥大化する。また、肥大化した酸化物層は、加熱と冷却の繰り返しサイクルにおいて剥離し易く、剥離に到らない場合であっても、外部雰囲気からの酸素や炭素の侵入防止機能が十分でないから、酸化物層を通過して母材に内部酸化や浸炭を生じる不都合がある。   If Cr oxide is formed as a metal oxide layer, the oxide density is low, so that the function of preventing the entry of oxygen and carbon is not sufficient, and the base material undergoes internal oxidation in a high temperature atmosphere, and the oxide The layer becomes enlarged. In addition, the enlarged oxide layer easily peels off in repeated heating and cooling cycles, and even if it does not reach peeling, the function of preventing oxygen and carbon from entering from the outside atmosphere is not sufficient. There is an inconvenience of passing through the layer and causing internal oxidation and carburization in the base material.

本発明の目的は、上記問題点を解消する為、管外面の溶接周辺部の組織の脆化や粒界腐食の抑制、耐酸化性の低下を防ぐことのできる耐熱管の溶接構造を提供することである。   In order to solve the above problems, an object of the present invention is to provide a heat resistant pipe welding structure capable of preventing the embrittlement and intergranular corrosion of the structure around the welded outer surface of the pipe and preventing the deterioration of oxidation resistance. That is.

本発明に係る耐熱管の溶接構造は、
質量%にて、Cr:15%〜50%、Ni:18%〜70%、Al:1%〜6%を少なくとも含有するオーステナイト系高Ni耐熱管どうしを溶接してなる耐熱管の溶接構造であって、
前記耐熱管どうしの管外面の溶接周辺部に、Al酸化物を含むアルミナ被膜を形成した。
The welded structure of the heat-resistant pipe according to the present invention is as follows:
A welded structure of a heat-resistant pipe formed by welding austenitic high Ni heat-resistant pipes containing at least Cr: 15% to 50%, Ni: 18% to 70%, and Al: 1% to 6%. There,
An alumina coating containing Al oxide was formed on the periphery of the welded outer surface of the heat resistant tubes.

前記溶接周辺部は、耐熱管どうしを溶接する際に熱影響を受ける管外面とすることができる。   The weld peripheral part may be a pipe outer surface that is affected by heat when welding heat-resistant pipes.

本発明の耐熱管の溶接構造によれば、耐熱管どうしの管外面の溶接周辺部にアルミナ被膜を形成したことで、管外面の溶接周辺部について、高温域での組織の脆化を抑制、また、耐酸化性の低下を防ぐことができる。   According to the welded structure of the heat resistant pipe of the present invention, by forming an alumina coating on the weld peripheral part of the pipe outer surface between the heat resistant pipes, the embrittlement of the structure in the high temperature region is suppressed for the weld peripheral part of the pipe outer surface, Further, it is possible to prevent a decrease in oxidation resistance.

図1は、本発明の耐熱管の溶接構造を具える加熱炉の要部を示す説明図である。FIG. 1 is an explanatory view showing a main part of a heating furnace having a heat-resistant pipe welding structure of the present invention. 図2は、本発明に係る耐熱管どうしの溶接部近傍の拡大図である。FIG. 2 is an enlarged view of the vicinity of the welded portion of the heat-resistant pipes according to the present invention. 図3は、図2の線A−Aに沿う断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 図4は、溶接前の耐熱管の開先加工部の断面図である。FIG. 4 is a cross-sectional view of the groove processing portion of the heat-resistant pipe before welding. 図5は、発明例6の耐熱管どうしの溶接後、熱処理前の溶接部近傍の写真である。FIG. 5 is a photograph of the vicinity of the welded portion after heat-resistant pipes of Invention Example 6 and before heat treatment. 図6は、発明例6の耐熱管どうしの溶接後、熱処理を施した溶接部近傍の写真である。FIG. 6 is a photograph of the vicinity of a welded portion subjected to heat treatment after welding of heat-resistant tubes of Invention Example 6. 図7は、比較例2の耐熱管どうしの溶接後、熱処理を施した溶接部近傍の写真である。FIG. 7 is a photograph of the vicinity of a welded portion subjected to heat treatment after welding of heat resistant pipes of Comparative Example 2.

以下、本発明の実施の形態について詳細に説明する。
エチレン製造用分解炉10では、図1に示すように、直管状の耐熱管20,20を突き合わせ溶接30し、これらを部分的に置注鋳造法で製造された継手状耐熱管(フィッティング)12と溶接14して組み立てることで、コイル形状で使用される。耐熱管20のサイズは、たとえば、外径50mm〜160mm、肉厚5mm〜15mm、長さ3000mm〜6000mmである。
Hereinafter, embodiments of the present invention will be described in detail.
In the cracking furnace 10 for producing ethylene, as shown in FIG. 1, straight tubular heat-resistant pipes 20, 20 are butt-welded 30, and these joint-shaped heat-resistant pipes (fitting) 12 are partially manufactured by an in-place casting method. As a result of being assembled by welding 14, it is used in a coil shape. The heat-resistant tube 20 has, for example, an outer diameter of 50 mm to 160 mm, a wall thickness of 5 mm to 15 mm, and a length of 3000 mm to 6000 mm.

図2及び図3は、本発明の耐熱管20の突き合わせ溶接部31の溶接構造を示している。耐熱管20,20どうしの突合部や溶接部や継手との突合部には、TIG(Tungsten Inert Gas)溶接等により、耐熱管20と同等成分の溶接棒が溶加したビード33が形成されている。なお、溶接はTIG溶接に限らず、被覆アーク溶接、MIG(Metal Inert Gas)溶接、電子ビーム溶接、プラズマアーク溶接、レーザービーム溶接等も可能である。   2 and 3 show a welded structure of the butt weld portion 31 of the heat-resistant tube 20 of the present invention. A bead 33 in which a welding rod having the same component as that of the heat-resistant tube 20 is melted is formed by TIG (Tungsten Inert Gas) welding or the like at the butt portion of the heat-resistant tubes 20, 20 or the welded portion or joint. Yes. In addition, welding is not limited to TIG welding, and covering arc welding, MIG (Metal Inert Gas) welding, electron beam welding, plasma arc welding, laser beam welding, and the like are also possible.

耐熱管20は、図4に示すように、管外面21の端部に開先加工を施した状態で溶接が実施される。開先加工部25は、設計肉厚を確保するように先端にU字状の開先部26を有すると共に、外径差をなくすため開先部26に連続した平行部27と平行部27から耐熱管20の鋳放し部22に連続するテーパー部28を具える。   As shown in FIG. 4, the heat-resistant pipe 20 is welded in a state in which a groove processing is applied to an end portion of the pipe outer surface 21. The groove processing portion 25 has a U-shaped groove portion 26 at the tip so as to ensure the design thickness, and from the parallel portion 27 and the parallel portion 27 that are continuous to the groove portion 26 in order to eliminate the difference in outer diameter. A tapered portion 28 is provided continuously to the as-cast portion 22 of the heat-resistant tube 20.

なお、管内面23は、機械加工や研磨加工により内径が均一となるように加工される。   The tube inner surface 23 is processed so that the inner diameter becomes uniform by machining or polishing.

開先加工部25は、炉内で露出し、高温酸化雰囲気に曝される。従って、組織の脆化や粒界腐食、耐酸化性の劣化により、強度が低下し易い。特に、平行部27とテーパー部28は、鋳放し部22に比べて肉厚が薄いため、これら影響を受け易い。   The groove processing part 25 is exposed in the furnace and exposed to a high-temperature oxidizing atmosphere. Therefore, the strength tends to decrease due to the embrittlement of the structure, intergranular corrosion, and deterioration of oxidation resistance. In particular, since the parallel part 27 and the taper part 28 are thinner than the as-cast part 22, they are susceptible to these effects.

そこで、本発明では、溶接部31となるビード33の周辺の領域、すなわち溶接周辺部35にアルミニウム酸化物を含むアルミナ被膜40を形成している。溶接周辺部35とは、平行部27及びテーパー部28を意味する。なお、溶接周辺部35とは、少なくとも溶接の際に熱影響を受ける管外面21の熱影響部を含んでいる。   Therefore, in the present invention, the alumina coating 40 containing aluminum oxide is formed in a region around the bead 33 that becomes the welded portion 31, that is, in the welded peripheral portion 35. The weld peripheral part 35 means the parallel part 27 and the taper part 28. Note that the weld peripheral portion 35 includes at least a heat affected portion of the pipe outer surface 21 that is affected by heat during welding.

アルミナ被膜を形成するアルミニウム酸化物は、アルミナ(Al)を主体として構成される。アルミナ被膜は、緻密性が高く、酸素や炭素を透過し難いから、高温酸化雰囲気に曝される溶接周辺部の酸化を抑えることができ、酸化を主因とする減肉を防ぎ、強度等を維持するために役立つ。 The aluminum oxide that forms the alumina coating is mainly composed of alumina (Al 2 O 3 ). Alumina coating is highly dense and difficult to permeate oxygen and carbon, so it can suppress oxidation around the weld exposed to high-temperature oxidizing atmosphere, prevent thinning due to oxidation and maintain strength, etc. To help.

また、アルミナ被膜を形成することで、溶接周辺部にクロム酸化物からなるクロミア被膜の形成を抑えることができ、クロミア被膜を原因とする組織の脆化、粒界腐食、耐酸化性の低下を防止できる。   In addition, by forming an alumina coating, it is possible to suppress the formation of a chromia coating made of chromium oxide on the periphery of the weld, and the embrittlement of the structure, intergranular corrosion, and reduction in oxidation resistance caused by the chromia coating. Can be prevented.

さらに、耐熱管20には、鋳放し部22及びビード33に、クロミア被膜が形成された場合にも、これらクロミア被膜に挟まれる溶接周辺部にアルミナ被膜を形成することで、アルミナ被膜の剥離を効果的に阻止できる。   Further, even when a chromia coating is formed on the as-cast part 22 and the bead 33 on the heat-resistant tube 20, the alumina coating is formed on the periphery of the weld sandwiched between these chromia coatings, thereby peeling off the alumina coating. Can be effectively blocked.

耐熱管は、Cr:15%〜50%、Ni:18%〜70%、Al:1〜6%を少なくとも含有するオーステナイト系高Ni合金から形成する。なお、本明細書において、「%」は、特に表示がないときは「質量%」である。   The heat-resistant tube is formed of an austenitic high Ni alloy containing at least Cr: 15% to 50%, Ni: 18% to 70%, and Al: 1 to 6%. In the present specification, “%” is “% by mass” unless otherwise indicated.

また、耐熱管は、C:0.05%〜0.7%、Si:0%を越えて2.5%以下、Mn:0%を越えて5%以下、希土類元素:0.005%〜0.4%、並びに、W:0.5%〜10%及び/又はMo:0.1%〜5%をさらに含有し、残部Fe及び不可避的不純物からなる耐熱合金とすることが望ましい。   Further, the heat-resistant tube is C: 0.05% to 0.7%, Si: more than 0% to 2.5% or less, Mn: more than 0% to 5% or less, rare earth element: 0.005% to Desirably, the heat-resistant alloy further includes 0.4% and W: 0.5% to 10% and / or Mo: 0.1% to 5%, and the balance is Fe and inevitable impurities.

上記耐熱管には、Nb:0.1%〜3%、Ti:0.01%〜0.6%、及び、Zr:0.01%〜1%からなる群から選択される少なくとも1種を含有することが望ましい。   The heat-resistant tube includes at least one selected from the group consisting of Nb: 0.1% to 3%, Ti: 0.01% to 0.6%, and Zr: 0.01% to 1%. It is desirable to contain.

希土類元素は、La、Y、及び、Ceの少なくとも1種とすることができる。   The rare earth element can be at least one of La, Y, and Ce.

また、上記耐熱管は、B:0.001%〜0.5%を含有することが望ましい。   The heat-resistant tube preferably contains B: 0.001% to 0.5%.

さらに、上記耐熱管には、N:0.005%〜0.2%を含有することが望ましい。   Furthermore, it is desirable that the heat resistant tube contains N: 0.005% to 0.2%.

さらに、上記耐熱管には、Ca:0.001%〜0.5%を含有することが望ましい。   Furthermore, it is desirable that the heat-resistant tube contains Ca: 0.001% to 0.5%.

<成分限定理由の説明>
Cr:15%〜50%
Crは、高温強度及び繰返し耐酸化性の向上への寄与の目的のため、15%以上含有させる。しかし、含有量があまり多くなると高温クリープ破断強度の低下を招くので上限は50%とする。なお、Crの含有量は20%〜45%がより望ましい。
<Description of reasons for limiting ingredients>
Cr: 15% to 50%
Cr is contained in an amount of 15% or more for the purpose of improving the high temperature strength and the repeated oxidation resistance. However, if the content is too high, the high temperature creep rupture strength is lowered, so the upper limit is made 50%. The Cr content is more preferably 20% to 45%.

Ni:18%〜70%
Niは、繰返し耐酸化性及び金属組織の安定性の確保に必要な元素である。また、Niの含有量が少ないと、Feの含有量が相対的に多くなる結果、耐熱管の管内面及び管外面にCr−Fe−Mn酸化物が生成され易くなる。これにより、管内面のアルミナバリア層の生成が阻害される。また、管外面の溶接周辺部へのアルミナ被膜の生成も阻害される。このため、少なくとも18%以上含有させるものとする。70%を超えて含有しても増量に対応する効果が得られないので、上限は70%とする。なお、Niの含有量は20%〜50%がより望ましい。
Ni: 18% to 70%
Ni is an element necessary for ensuring repeated oxidation resistance and stability of the metal structure. Moreover, when there is little content of Ni, as a result of the content of Fe becoming relatively large, it becomes easy to produce | generate a Cr-Fe-Mn oxide on the pipe inner surface and the pipe outer surface of a heat-resistant pipe. Thereby, the production | generation of the alumina barrier layer of a pipe inner surface is inhibited. Moreover, the production | generation of the alumina film to the welding peripheral part of a pipe outer surface is also inhibited. For this reason, it shall contain at least 18% or more. Since even if it contains exceeding 70%, the effect corresponding to the increase cannot be obtained, the upper limit is made 70%. The Ni content is more preferably 20% to 50%.

Al:1%〜6%
Alは、耐浸炭性及び耐コーキング性等にすぐれたアルミナバリア層を管内面に形成し、管外面の溶接周辺部にアルミナ被膜を形成するために添加する。一方で、Alの増大はクリープ破断強度や引張り特性等の機械的特性の低下、溶接性の低下を招く。
Al: 1% to 6%
Al is added to form an alumina barrier layer excellent in carburization resistance and coking resistance on the inner surface of the tube and to form an alumina coating on the weld peripheral portion of the outer surface of the tube. On the other hand, an increase in Al leads to a decrease in mechanical properties such as creep rupture strength and tensile properties, and a decrease in weldability.

Alは、管内面にアルミナバリア層、管外面の溶接周辺部にアルミナ被膜を良好に形成するために、少なくとも1%以上含有させる。しかし、Al含有量が6%を超えると、アルミナバリア層やアルミナ被膜の形成効果はほぼ飽和するため、本発明では上限を6%に規定する。なお、Alの含有量は2.0%〜4.0%がより望ましい。   Al is contained in an amount of at least 1% in order to satisfactorily form an alumina barrier layer on the inner surface of the tube and an alumina coating on the weld peripheral portion of the outer surface of the tube. However, when the Al content exceeds 6%, the formation effect of the alumina barrier layer and the alumina coating is almost saturated, so the upper limit is defined as 6% in the present invention. The Al content is more preferably 2.0% to 4.0%.

C:0.05%〜0.7%
Cは、鋳造性を良好にし、高温クリープ破断強度を高める作用がある。このため、少なくとも0.05%を含有させる。しかし、含有量があまり多くなると、Crの一次炭化物が幅広く形成され易くなり、アルミナバリア層やアルミナ被膜を形成するAlの移動が抑制されるため、管内面及び管外面、特に溶接周辺部へのAlの供給不足が生じて、アルミナバリア層やアルミナ被膜の局部的な寸断が起こり、アルミナバリア層やアルミナ被膜の連続性が損なわれる。また、二次炭化物が過剰に析出するため、引張延性、靱性の低下を招く。このため、上限は0.7%とする。なお、Cの含有量は0.2%〜0.6%がより望ましい。
C: 0.05% to 0.7%
C has the effect of improving castability and increasing the high temperature creep rupture strength. For this reason, at least 0.05% is contained. However, if the content is too large, the primary carbide of Cr 7 C 3 is likely to be widely formed, and the movement of Al that forms the alumina barrier layer and the alumina coating is suppressed. Insufficient supply of Al to the part occurs, and local cuts of the alumina barrier layer and the alumina coating occur, and the continuity of the alumina barrier layer and the alumina coating is impaired. Moreover, since secondary carbide precipitates excessively, the tensile ductility and toughness are reduced. For this reason, the upper limit is set to 0.7%. The C content is more preferably 0.2% to 0.6%.

Si:0%を超えて2.5%以下
Siは、溶湯合金の脱酸剤として、また溶湯合金の流動性を高めるために含有させるが、含有量があまり多くなると高温クリープ破断強度の低下を招くので上限は2.5%とする。なお、Siの含有量は2.0%以下がより望ましい。
Si: more than 0% and 2.5% or less Si is included as a deoxidizer for molten alloy and to increase the fluidity of the molten alloy. However, if the content is too high, the high temperature creep rupture strength is reduced. Therefore, the upper limit is 2.5%. The Si content is more preferably 2.0% or less.

Mn:0%を超えて5%以下
Mnは、溶湯合金の脱酸剤として、また溶湯中のSを固定するために含有させるが、含有量があまり多くなると高温クリープ破断強度の低下を招くので上限は5%とする。なお、Mnの含有量は1.6%以下がより望ましい。
Mn: more than 0% and 5% or less Mn is included as a deoxidizer for molten alloy and for fixing S in the molten metal, but if the content is too large, the high temperature creep rupture strength is reduced. The upper limit is 5%. The Mn content is more preferably 1.6% or less.

希土類元素:0.005%〜0.4%
希土類元素とは、周期律表のLaからLuに至る15種類のランタン系列に、YとScを加えた17種類の元素を意味する。本発明の耐熱合金に含有させる希土類元素は、La、Y、及び、Ceからなる群のうち少なくとも一種以上が含まれることが好ましい。この希土類元素は、アルミナバリア層やアルミナ被膜の生成と安定化の促進に寄与する。
Rare earth elements: 0.005% to 0.4%
The rare earth element means 17 kinds of elements obtained by adding Y and Sc to 15 kinds of lanthanum series from La to Lu in the periodic table. The rare earth element contained in the heat-resistant alloy of the present invention preferably contains at least one or more members selected from the group consisting of La, Y, and Ce. This rare earth element contributes to the generation and stabilization of an alumina barrier layer and an alumina coating.

アルミナバリア層やアルミナ被膜の生成を高温の酸化性雰囲気下での加熱処理によって行なう場合は、希土類元素を0.005%以上含有させることでアルミナバリア層やアルミナ被膜の生成に有効に寄与する。
一方、あまりに多く含有すると、引張延性、靱性が悪化するので、上限は0.4%とする。
When the formation of the alumina barrier layer or the alumina coating is performed by heat treatment in a high-temperature oxidizing atmosphere, the rare earth element is contained in an amount of 0.005% or more, which effectively contributes to the formation of the alumina barrier layer or the alumina coating.
On the other hand, if the content is too large, the tensile ductility and toughness deteriorate, so the upper limit is made 0.4%.

W:0.5%〜10%及び/又はMo:0.1%〜5%
W、Moは、基地中に固溶し、基地のオーステナイト相を強化することにより、クリープ破断強度を向上させる。この効果を発揮させるために、W及びMoの少なくとも一種を含有させるものとし、Wの場合は0.5%以上、Moの場合は0.1%以上含有させる。
W: 0.5% to 10% and / or Mo: 0.1% to 5%
W and Mo are dissolved in the matrix and strengthen the austenite phase of the matrix, thereby improving the creep rupture strength. In order to exert this effect, at least one of W and Mo is contained. In the case of W, 0.5% or more is contained, and in the case of Mo, 0.1% or more is contained.

しかし、W及びMoは、含有量があまり多くなると、引張延性の低下や、耐浸炭性の劣化を招く。また、Cが多い場合と同じように、(Cr,W,Mo)の一次炭化物が幅広く形成され易くなり、アルミナバリア層やアルミナ被膜を形成するAlの移動が抑制されるため、鋳造体の表面部分へのAlの供給不足が生じ、アルミナバリア層やアルミナ被膜の局部的な寸断が起こり、アルミナバリア層やアルミナ被膜の連続性が損なわれ易くなる。また、WやMoは原子半径が大きいため、基地中に固溶することにより、AlやCrの移動を抑制してアルミナバリア層やアルミナ被膜の生成を妨げる作用がある。このため、Wは10%以下、Moは5%以下とする。なお、両元素を含有する場合でも、合計含有量は10%以下とすることが好ましい。 However, when the content of W and Mo is too large, the tensile ductility is lowered and the carburization resistance is deteriorated. Further, as in the case where there is a large amount of C, primary carbides of (Cr, W, Mo) 7 C 3 are easily formed widely, and the movement of Al forming the alumina barrier layer and the alumina coating is suppressed. Insufficient supply of Al to the surface portion of the body occurs, the local breakage of the alumina barrier layer and the alumina coating occurs, and the continuity of the alumina barrier layer and the alumina coating tends to be impaired. In addition, since W and Mo have a large atomic radius, they dissolve in the matrix, thereby suppressing the movement of Al and Cr and preventing the formation of an alumina barrier layer and an alumina coating. For this reason, W is 10% or less, and Mo is 5% or less. Even when both elements are contained, the total content is preferably 10% or less.

また、以下の成分をさらに含むことができる。   Moreover, the following components can further be included.

Nb:0.1%〜3%、Ti:0.01%〜0.6%、及び、Zr:0.01%〜1%及びからなる群から選択される少なくとも一種
Nb、Ti及びZrは、炭化物を形成し易い元素であり、WやMoほど基地中には固溶しないため、アルミナバリア層やアルミナ被膜の形成には特段の作用は認められないが、クリープ破断強度を向上させる作用がある。必要に応じて、Ti、Zr及びNbの少なくとも一種を含有させることができる。含有量は、Nbが0.1%以上、Ti及びZrが0.01%以上である。
しかし、過剰に添加すると、引張延性の低下を招く。Nbは、さらに、アルミナバリア層やアルミナ被膜の耐剥離性を低下させる。このため、上限は、Nbは1.8%、Ti及びZrは0.6%とする。
Nb: 0.1% to 3%, Ti: 0.01% to 0.6%, and Zr: 0.01% to 1% and at least one selected from the group consisting of Nb, Ti, and Zr, It is an element that tends to form carbides, and it does not dissolve as much in the matrix as W and Mo. Therefore, no special action is observed in the formation of an alumina barrier layer or an alumina coating, but it has the effect of improving the creep rupture strength. . If necessary, at least one of Ti, Zr and Nb can be contained. The content of Nb is 0.1% or more, and Ti and Zr are 0.01% or more.
However, if added excessively, the tensile ductility is reduced. Nb further reduces the peel resistance of the alumina barrier layer and the alumina coating. For this reason, the upper limit is 1.8% for Nb and 0.6% for Ti and Zr.

B:0.001%〜0.5%以下
Bは、鋳造体の粒界を強化する作用があるので、必要に応じて含有させることができる。なお、含有量が多くなるとクリープ破断強度の低下を招くため、添加する場合でも0.5%以下とする。
B: 0.001% to 0.5% or less B has an effect of strengthening the grain boundary of the cast body, and can be contained as necessary. In addition, since the fall of creep rupture strength will be caused when content increases, even when adding, it is made into 0.5% or less.

N:0.005%〜0.2%
Nは、合金基地中に固溶して高温引張強度を向上させる作用がある。しかし、その量が多くなると、Alと結合してAlNを形成し、引張延性が低下するので、0.2%以下とする。好ましくは0.06〜0.15%である。
N: 0.005% to 0.2%
N has the effect of improving the high temperature tensile strength by dissolving in the alloy matrix. However, if the amount increases, it binds to Al to form AlN, and the tensile ductility is lowered. Preferably it is 0.06 to 0.15%.

Ca:0.001%〜0.5%
Caは、脱硫・脱酸元素として作用がある。そのため、TiやAlの歩留まり向上に寄与する。この効果は、0.001%以上の添加により得られる。しかし、多量に添加すると、溶接性を損なうので、0.5%以下とする。
Ca: 0.001% to 0.5%
Ca acts as a desulfurization / deoxidation element. Therefore, it contributes to the yield improvement of Ti and Al. This effect can be obtained by adding 0.001% or more. However, if added in a large amount, the weldability is impaired, so 0.5% or less.

本発明の耐熱管は、管本体を構成する耐熱合金は、上記成分を含み、残部Feであるが、合金の溶製時に不可避的に混入するP、Sその他の不純物は、この種の合金材に通常許容される範囲であれば存在しても構わない。   In the heat-resistant pipe of the present invention, the heat-resistant alloy constituting the pipe body contains the above components and the balance is Fe, but P, S and other impurities inevitably mixed during the melting of the alloy are this kind of alloy material. May be present as long as it is normally acceptable.

<耐熱管>
耐熱管は、溶湯を溶製し、遠心力鋳造により上記組成に鋳造される。なお、静置鋳造等であっても構わない。
<Heat resistant tube>
The heat-resistant tube is made of a molten metal and cast to the above composition by centrifugal casting. Note that it may be stationary casting or the like.

得られた耐熱管には、管内面23は、機械加工や研磨加工により内径が均一となるように加工が施され、管外面21には、図4に示すような開先加工が施される。図示の実施形態では、開先加工部25は、先端にU字状の開先部26を有し、開先部26に連続した平行部27と平行部27から耐熱管20の鋳放し部22に連続するテーパー部28を具える。   The obtained heat-resistant pipe is processed so that the inner diameter of the pipe inner surface 23 becomes uniform by machining or polishing, and the groove outer surface 21 is subjected to groove processing as shown in FIG. . In the illustrated embodiment, the groove processing portion 25 has a U-shaped groove portion 26 at the tip, and a cast-out portion 22 of the heat-resistant tube 20 from the parallel portion 27 and the parallel portion 27 continuous to the groove portion 26. And a tapered portion 28 that is continuous with the tape.

開先加工部は、平行部とテーパー部の表面粗さ(Ra)が6.3μm以下となるように加工することが好適であり、表面粗さ(Ra)を2.5μm〜4.0μmとすることがより望ましい。表面粗さ(Ra)を上記のように調整することで、クロミア被膜の形成を抑えることができ、続く溶接処理、熱処理によってより好適にアルミナ被膜を形成することができる。   The groove processed portion is preferably processed so that the surface roughness (Ra) of the parallel portion and the tapered portion is 6.3 μm or less, and the surface roughness (Ra) is 2.5 μm to 4.0 μm. It is more desirable to do. By adjusting the surface roughness (Ra) as described above, formation of a chromia coating can be suppressed, and an alumina coating can be more suitably formed by subsequent welding treatment and heat treatment.

なお、次に説明する溶接処理の前に、予め開先加工を施した耐熱管に熱処理を施してもよい。開先加工を施した耐熱管に熱処理を実施することで、開先加工部のAlが酸素と結合して、アルミナ被膜を予め開先加工部、特に溶接により熱影響を受ける平行部とテーパー部に形成することができる。この熱処理は、耐熱管全体に実施してもよいし、開先加工部に局部的に実施してもよい。   In addition, you may heat-process to the heat-resistant pipe which gave groove processing beforehand before the welding process demonstrated below. By performing heat treatment on the heat-resistant pipe subjected to groove processing, Al in the groove processed portion is combined with oxygen, and the alumina coating is preliminarily formed into the groove processed portion, particularly a parallel portion and a tapered portion that are thermally affected by welding. Can be formed. This heat treatment may be performed on the entire heat-resistant tube, or locally on the groove processing portion.

<溶接処理>
得られた耐熱管20,20は、端部を突き合わせた状態で同方向に回転させつつ、TIG溶接等を施すことにより、図2及び図3に示すように、溶接棒が溶加すると共に、開先部26の母材が溶融して、ビード33が開先部26に順次積層される。TIG溶接の場合、溶接条件として溶接電流70A〜180A、溶接電圧7V〜21V、溶接速度70cm/分〜180cm/分を例示できるが、耐熱管に加わる溶接温度を、700℃〜900℃の範囲内に収まるよう管理する必要がある。溶接温度が上記よりも低いとアルミナ被膜が形成され難くなり、また、溶接温度が上記よりも高いとアルミナ被膜に代えてクロミア被膜が形成されてしまうためである。
<Welding process>
While the obtained heat-resistant pipes 20 and 20 are rotated in the same direction in a state in which the end portions are butted, by performing TIG welding or the like, as shown in FIG. 2 and FIG. The base material of the groove portion 26 is melted, and the beads 33 are sequentially stacked on the groove portion 26. In the case of TIG welding, examples of the welding conditions include welding current 70A to 180A, welding voltage 7V to 21V, welding speed 70cm / min to 180cm / min, but the welding temperature applied to the heat-resistant tube is within the range of 700 ° C to 900 ° C. It is necessary to manage so that it fits in. If the welding temperature is lower than the above, it is difficult to form an alumina coating, and if the welding temperature is higher than the above, a chromia coating is formed instead of the alumina coating.

この溶接処理を酸化性雰囲気下、たとえば大気中などの酸素を20体積%以上含む酸化性ガス、スチームやCOが混合された酸化性環境において実施することで、開先加工部25、より詳細には、管外面21の溶接周辺部35は、溶接により熱影響を受けて加熱されると共に、加熱された溶接周辺部35のAlが酸化されて、溶接周辺部35には、薄いアルミナ被膜40を形成することができる。 By performing this welding process in an oxidizing atmosphere, for example, in an oxidizing environment containing 20% by volume or more of oxygen, such as air, steam or CO 2 , the groove processing section 25 is more detailed. In addition, the weld peripheral portion 35 of the pipe outer surface 21 is heated under the influence of welding and heated, and Al of the heated weld peripheral portion 35 is oxidized, and a thin alumina coating 40 is formed on the weld peripheral portion 35. Can be formed.

図5は、後述する実施例における発明例6の溶接後の写真である。溶接周辺部をSEM(走査型電子顕微鏡)により観察したところ、厚さ0.1μmの薄いアルミナ被膜が形成されていることがわかった。溶接後に形成されるアルミナ皮膜の厚さは、0.001μm以上あればよいが、0.01μm以上形成されていることがより好ましい。   FIG. 5 is a photograph after welding of Invention Example 6 in an example described later. When the periphery of the weld was observed with an SEM (scanning electron microscope), it was found that a thin alumina film having a thickness of 0.1 μm was formed. The thickness of the alumina film formed after welding may be 0.001 μm or more, but more preferably 0.01 μm or more.

<熱処理>
そして、溶接後の耐熱管20,20に熱処理を施すことで、溶接周辺部35に溶接時に形成された薄いアルミナ被膜を成長させて、より厚い被膜40とすることができる。このとき、アルミナ皮膜は0.05以上形成されており、0.5μm以上形成されることがより好ましい。なお、この熱処理は、独立した工程として実施することもできるし、加熱炉において耐熱管を設置して使用される際の高温雰囲気においても実施することができる。
<Heat treatment>
Then, by applying heat treatment to the heat-resistant pipes 20 and 20 after welding, a thin alumina film formed at the time of welding can be grown on the weld peripheral portion 35, and a thicker film 40 can be formed. At this time, the alumina film is formed to 0.05 or more, and more preferably 0.5 μm or more. In addition, this heat processing can also be implemented as an independent process, and can also be implemented in the high temperature atmosphere at the time of installing and using a heat-resistant pipe | tube in a heating furnace.

熱処理は、酸化性雰囲気下にて実施される。酸化性雰囲気とは、上記と同様、酸素を20体積%以上含む酸化性ガス、スチームやCOが混合された酸化性環境である。熱処理は、900℃〜1100℃を例示できる。熱処理は、5時間以上実施することが望ましい。 The heat treatment is performed in an oxidizing atmosphere. As described above, the oxidizing atmosphere is an oxidizing environment in which an oxidizing gas containing 20% by volume or more of oxygen, steam, or CO 2 is mixed. Examples of the heat treatment include 900 ° C. to 1100 ° C. The heat treatment is desirably performed for 5 hours or more.

溶接周辺部は、予め溶接によって薄いアルミナ被膜が形成されているから、クロム酸化物等は形成されず、薄いアルミナ被膜を通過した酸素と溶接周辺部35の表面近傍のAlが優先して結合し、アルミナ被膜40が厚く成長する。   Since a thin alumina film is formed in advance on the weld peripheral part by welding, chromium oxide or the like is not formed, and oxygen passing through the thin alumina film and Al in the vicinity of the surface of the weld peripheral part 35 are preferentially combined. The alumina coating 40 grows thick.

図6は、上記した図5の熱処理後の写真である。溶接周辺部をSEMにより観察したところ、アルミナ被膜が厚さ0.1μm〜2μmまで成長していることがわかった。   FIG. 6 is a photograph after the heat treatment of FIG. 5 described above. When the periphery of the weld was observed by SEM, it was found that the alumina coating had grown to a thickness of 0.1 μm to 2 μm.

溶接周辺部に形成された厚いアルミナ被膜は、緻密性が高く、外部から酸素、炭素、窒素の母材への侵入を防ぐバリアとして作用するから、溶接周辺部は、操業時に高温酸化雰囲気に曝されても、組織の脆化や粒界腐食が抑えられ、耐酸化性の低下も防止されるから、強度低下も防ぐことができる。   The thick alumina coating formed on the periphery of the weld is highly dense and acts as a barrier to prevent oxygen, carbon, and nitrogen from entering the base metal from the outside, so the weld periphery is exposed to a high-temperature oxidizing atmosphere during operation. Even if it is done, the embrittlement and intergranular corrosion of the structure are suppressed, and the deterioration of the oxidation resistance is also prevented, so that the strength can be prevented from being lowered.

本発明では、図3に示すように、鋳放し部22とビード33に形成されるクロミア被膜50,50によってアルミナ被膜40が挟まれている。これにより、アルミナ被膜40の剥離を好適に抑えることができる。   In the present invention, as shown in FIG. 3, the alumina coating 40 is sandwiched between chromia coatings 50 and 50 formed on the as-cast portion 22 and the bead 33. Thereby, peeling of the alumina coating 40 can be suitably suppressed.

高周波誘導溶解炉の大気溶解により溶湯を溶製し、金型遠心力鋳造により、下記表1に掲げる合金組成の耐熱管を夫々2本ずつ作製し、機械加工を施した。機械加工前の管本体は、内径80mm、外径100mm、長さ250mmである。なお、表1中「−」は含有していないか不可避的に含有していることを意味する。   The molten metal was melted by melting in the air in a high-frequency induction melting furnace, and two heat-resistant tubes each having an alloy composition listed in Table 1 below were produced and machined by die centrifugal casting. The tube body before machining has an inner diameter of 80 mm, an outer diameter of 100 mm, and a length of 250 mm. In Table 1, “-” means not contained or unavoidably contained.

得られた耐熱管について、夫々端部に図4に示すように開先加工を施して、対となる同じ組成の管体どうしを突合せTIG溶接により接合した。なお、平行部27及びテーパー部28の表面粗さ(Ra)は3.2μmである。また、TIG溶接条件は、溶接電流90A〜150A、溶接電圧9V〜17V、溶接速度80〜160cm/分で行ない、耐熱管に加わる溶接温度について、発明例は700℃〜900℃、比較例は900℃を超える温度に調整した。   As shown in FIG. 4, the obtained heat-resistant pipes were subjected to groove processing as shown in FIG. 4, and pipe bodies having the same composition as a pair were joined to each other by butt TIG welding. In addition, the surface roughness (Ra) of the parallel part 27 and the taper part 28 is 3.2 micrometers. Moreover, TIG welding conditions are welding current 90A-150A, welding voltage 9V-17V, welding speed 80-160 cm / min, and about the welding temperature added to a heat-resistant pipe, invention examples are 700 to 900 degreeC, and a comparative example is 900. The temperature was adjusted to over ° C.

図5は、発明例6の溶接後の写真である。溶接周辺部をSEMにより観察したところ、厚さ0.005μm以上の薄いアルミナ被膜が形成されていることがわかった。また、その他の発明例についても厚さ0.1μm以上となる0.1μm〜1.5μmの薄いアルミナ被膜が溶接周辺部に形成されていた。   FIG. 5 is a photograph of Example 6 after welding. Observation of the weld peripheral part by SEM revealed that a thin alumina film having a thickness of 0.005 μm or more was formed. Also, in other invention examples, a thin alumina film having a thickness of 0.1 μm to 1.5 μm having a thickness of 0.1 μm or more was formed on the periphery of the weld.

一方、比較例について、同様にSEMにより観察したところ、アルミナ被膜は形成されておらず、クロミア被膜のみが形成されていた。これは、耐熱管に加わる溶接温度が900℃を超えていたため、アルミナ被膜が形成される前にクロミア被膜が形成されたためである。   On the other hand, when the comparative example was similarly observed by SEM, an alumina coating was not formed and only a chromia coating was formed. This is because the chromia coating was formed before the alumina coating was formed because the welding temperature applied to the heat-resistant tube exceeded 900 ° C.

続いて、溶接により接合された耐熱管について、夫々大気中(酸素約21%)、1000℃、8時間の加熱を施し、加熱後、炉冷する処理を行なった。   Subsequently, the heat-resistant pipes joined by welding were each heated in the atmosphere (oxygen of about 21%) at 1000 ° C. for 8 hours, followed by a furnace cooling treatment.

発明例及び比較例について、溶接周辺部をSEMにより観察し、アルミナ被膜の形成の有無を調べた。結果を表2に示す。なお、表2中、溶接周辺部にアルミナ被膜が形成されたものは「○」、クロミア被膜が形成されたものは「×」としている。   About the invention example and the comparative example, the welding peripheral part was observed by SEM, and the presence or absence of formation of an alumina film was investigated. The results are shown in Table 2. In Table 2, “◯” indicates that the alumina coating is formed on the periphery of the weld, and “X” indicates that the chromia coating is formed.

表2を参照すると、発明例は何れもアルミナ被膜が溶接周辺部に良好に形成されていることがわかる。図6は、発明例6の熱処理後の写真である。発明例6の溶接周辺部をSEMにより観察したところ、アルミナ被膜が厚さ約0.1μm〜2μmまで成長していることがわかった。また、その他の発明例についても同様に厚さ0.1μm〜2μmの厚いアルミナ被膜が溶接周辺部に形成されていた。   Referring to Table 2, it can be seen that in all of the inventive examples, the alumina coating is well formed on the periphery of the weld. FIG. 6 is a photograph after heat treatment of Invention Example 6. Observation of the welded peripheral portion of Invention Example 6 by SEM revealed that the alumina coating had grown to a thickness of about 0.1 μm to 2 μm. In the other invention examples as well, a thick alumina coating having a thickness of 0.1 μm to 2 μm was formed on the periphery of the weld.

一方、比較例について、同様にSEMにより観察したところ、何れも溶接周辺部にはクロミア被膜が形成されていた。図7は、比較例2の熱処理後の写真である。図7を参照すると、比較例2では、鋳放し部、ビードだけでなく、溶接周辺部までもクロミア被膜が形成されていることが観察された。   On the other hand, when the comparative example was similarly observed by SEM, a chromia coating was formed on the periphery of the weld. FIG. 7 is a photograph after heat treatment of Comparative Example 2. Referring to FIG. 7, in Comparative Example 2, it was observed that a chromia coating was formed not only on the as-cast part and the bead but also on the weld peripheral part.

発明例について、上記のように厚いアルミナ被膜が形成されたのは、溶接周辺部は、予め溶接によって薄いアルミナ被膜が形成されており、クロム酸化物等は形成されず、薄いアルミナ被膜を通過した酸素と溶接周辺部の表面近傍のAlが優先して結合し、アルミナ被膜が成長したためである。   As for the invention example, the thick alumina film was formed as described above because the welded peripheral part was previously formed with a thin alumina film by welding, and chrome oxide or the like was not formed, but passed through the thin alumina film. This is because oxygen and Al in the vicinity of the surface of the periphery of the weld were preferentially bonded and an alumina coating was grown.

比較例は、溶接によって溶接周辺部にクロミア被膜が形成された結果、熱処理を実施しても溶接周辺部にはクロミア被膜の厚さが増しただけであり、アルミナ被膜は形成されなかったと考えられる。   In the comparative example, as a result of forming a chromia film on the weld peripheral part by welding, it was considered that even when heat treatment was performed, the thickness of the chromia film only increased on the weld peripheral part, and no alumina film was formed. .

なお、発明例について、鋳放し部とビードを観察すると、何れもクロミア被膜が形成されており、これらクロミア被膜に溶接周辺部のアルミナ被膜が挟まれて存在していた。これにより、溶接周辺部に形成されたアルミナ被膜の剥離を好適に抑えることができるものと考えられる。   In addition, when the as-cast part and the bead were observed in the inventive examples, a chromia coating was formed in each case, and the alumina coating at the weld peripheral portion was sandwiched between these chromia coatings. Thereby, it is thought that peeling of the alumina film formed in the welding peripheral part can be suitably suppressed.

上記説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或いは範囲を限縮するように解すべきではない。また、本発明の各部構成は、上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。   The above description is for explaining the present invention, and should not be construed as limiting the invention described in the claims or limiting the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and various modifications can be made within the technical scope described in the claims.

20 耐熱管
22 鋳放し部
25 開先加工部
26 開先部
27 平行部
28 テーパー部
31 溶接部
33 ビード
40 アルミナ被膜
50 クロミア被膜
20 heat resistant tube 22 as cast part 25 groove processing part 26 groove part 27 parallel part 28 taper part 31 weld part 33 bead 40 alumina coating 50 chromia coating

Claims (11)

質量%にて、Cr:15%〜50%、Ni:18%〜70%、Al:1%〜6%を少なくとも含有するオーステナイト系高Ni耐熱管どうしを溶接してなる耐熱管の溶接構造であって、
前記耐熱管どうしの管外面の溶接周辺部に、Al酸化物を含むアルミナ被膜を形成した、
ことを特徴とする耐熱管の溶接構造。
A welded structure of a heat-resistant pipe formed by welding austenitic high Ni heat-resistant pipes containing at least Cr: 15% to 50%, Ni: 18% to 70%, and Al: 1% to 6%. There,
An alumina coating containing Al oxide was formed on the periphery of the welded outer surface of the heat-resistant tubes,
This is a heat-resistant pipe welded structure.
前記溶接周辺部は、耐熱管どうしを溶接する際に熱影響を受ける管外面である、
請求項1に記載の耐熱管の溶接構造。
The weld peripheral part is a pipe outer surface that is affected by heat when welding heat-resistant pipes,
The welding structure of the heat-resistant pipe according to claim 1.
前記アルミナ被膜は、厚さ0.1μm〜2μmである、
請求項1又は請求項2に記載の耐熱管の溶接構造。
The alumina coating has a thickness of 0.1 μm to 2 μm.
The welded structure of the heat-resistant pipe according to claim 1 or 2.
前記耐熱管は、質量%にて、
C:0.05%〜0.7%、Si:0%を越えて2.5%以下、Mn:0%を越えて5%以下、希土類元素:0.005%〜0.4%、並びに、
W:0.5%〜10%及び/又はMo:0.1%〜5%を含有し、
残部Fe及び不可避的不純物からなる、
請求項1乃至請求項3の何れかに記載の耐熱管の溶接構造。
The heat-resistant tube is in mass%,
C: 0.05% to 0.7%, Si: more than 0% to 2.5% or less, Mn: more than 0% to 5% or less, rare earth elements: 0.005% to 0.4%, and ,
W: 0.5% to 10% and / or Mo: 0.1% to 5%,
Consisting of the balance Fe and inevitable impurities,
The welded structure of a heat-resistant pipe according to any one of claims 1 to 3.
前記耐熱管は、質量%にて、
Nb:0.1%〜3%、Ti:0.01%〜0.6%、及び、Zr:0.01%〜1%からなる群から選択される少なくとも1種を含有している、
請求項4に記載の耐熱管の溶接構造。
The heat-resistant tube is in mass%,
Containing at least one selected from the group consisting of Nb: 0.1% to 3%, Ti: 0.01% to 0.6%, and Zr: 0.01% to 1%,
The welded structure of the heat-resistant pipe according to claim 4.
前記希土類元素は、La、Y、及び、Ceの少なくとも1種である、
請求項4又は請求項5に記載の耐熱管の溶接構造。
The rare earth element is at least one of La, Y, and Ce.
The heat-resistant pipe welded structure according to claim 4 or 5.
前記耐熱管は、質量%にて、
B:0.001%〜0.5%を含有している、
請求項4乃至請求項6の何れかに記載の耐熱管の溶接構造。
The heat-resistant tube is in mass%,
B: 0.001% to 0.5% is contained,
The heat-resistant pipe welded structure according to any one of claims 4 to 6.
前記耐熱管は、質量%にて、
N:0.005%〜0.2%を含有している、
請求項4乃至請求項7の何れかに記載の耐熱管の溶接構造。
The heat-resistant tube is in mass%,
N: 0.005% to 0.2% is contained,
The heat-resistant pipe welded structure according to any one of claims 4 to 7.
前記耐熱管は、質量%にて、
Ca:0.001%〜0.5%を含有している、
請求項4乃至請求項8の何れかに記載の耐熱管の溶接構造。
The heat-resistant tube is in mass%,
Ca: 0.001% to 0.5% is contained,
The heat-resistant pipe welded structure according to any one of claims 4 to 8.
前記溶接周辺部は、表面粗さ(Ra)が6.3μm以下である、
請求項1乃至請求項9の何れかに記載の耐熱管の溶接構造。
The weld peripheral portion has a surface roughness (Ra) of 6.3 μm or less.
The heat-resistant pipe welded structure according to any one of claims 1 to 9.
請求項1乃至請求項10の何れかに記載の耐熱管の溶接構造を有する加熱炉。   A heating furnace having a heat-resistant pipe welded structure according to any one of claims 1 to 10.
JP2015009388A 2015-01-21 2015-01-21 Heat-resistant pipe welded structure Active JP6571937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009388A JP6571937B2 (en) 2015-01-21 2015-01-21 Heat-resistant pipe welded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009388A JP6571937B2 (en) 2015-01-21 2015-01-21 Heat-resistant pipe welded structure

Publications (2)

Publication Number Publication Date
JP2016132019A true JP2016132019A (en) 2016-07-25
JP6571937B2 JP6571937B2 (en) 2019-09-04

Family

ID=56437232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009388A Active JP6571937B2 (en) 2015-01-21 2015-01-21 Heat-resistant pipe welded structure

Country Status (1)

Country Link
JP (1) JP6571937B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075606A (en) * 2016-11-09 2018-05-17 株式会社クボタ Alloy for hardfacing welding and powder for welding
WO2018088069A1 (en) * 2016-11-09 2018-05-17 株式会社クボタ Alloy for overlay welding, welding powder, and reaction tube
JP2018075605A (en) * 2016-11-09 2018-05-17 株式会社クボタ Reaction tube having projection on its inner surface
JP6339284B1 (en) * 2017-11-06 2018-06-06 株式会社クボタ Steel products used in contact with steel
JP6422608B1 (en) * 2017-11-06 2018-11-14 株式会社クボタ Heat-resistant alloy and reaction tube
WO2019088075A1 (en) * 2017-11-06 2019-05-09 株式会社クボタ Heat-resistant alloy, and reaction tube
CN109996900A (en) * 2016-11-09 2019-07-09 株式会社久保田 The method of the tube body and the inner surface formation metal oxide layer in tube body that are used under high-temperature atmosphere
CN110218940A (en) * 2019-06-24 2019-09-10 江苏大学 A kind of high-temperature alloy seamless pipe and preparation method thereof
JP2019189910A (en) * 2018-04-25 2019-10-31 株式会社クボタ Heat resistant alloy having high temperature corrosion resistance, powder for weldment, and piping having thick weldment layer
JP2019210516A (en) * 2018-06-05 2019-12-12 株式会社クボタ Iron steel product excellent in oxidation resistance
US11612967B2 (en) 2016-11-09 2023-03-28 Kubota Corporation Alloy for overlay welding and reaction tube
WO2023047142A1 (en) * 2021-09-27 2023-03-30 Alloyed Limited Austenitic stainless steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278612A (en) * 1975-10-29 1977-07-02 Nippon Steel Corp Austenite-based heat-resistant steel capable of forming film of a#o# a t high temperatures in oxidizing atmosphere
JP2002235136A (en) * 2000-11-16 2002-08-23 Sumitomo Metal Ind Ltd Ni BASED HEAT RESISTANT ALLOY AND WELDED JOINT THEREOF
JP2009233721A (en) * 2008-03-28 2009-10-15 Kubota Corp STRUCTURE OF WELDED PART OF AUSTENITIC HIGH Ni STEEL, AND WELDING METHOD THEREOF
JP2013199672A (en) * 2012-03-23 2013-10-03 Kubota Corp Cast product having alumina barrier layer, and method for manufacturing the same
JP2013198917A (en) * 2012-03-23 2013-10-03 Kubota Corp Cast product having alumina barrier layer, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278612A (en) * 1975-10-29 1977-07-02 Nippon Steel Corp Austenite-based heat-resistant steel capable of forming film of a#o# a t high temperatures in oxidizing atmosphere
JP2002235136A (en) * 2000-11-16 2002-08-23 Sumitomo Metal Ind Ltd Ni BASED HEAT RESISTANT ALLOY AND WELDED JOINT THEREOF
JP2009233721A (en) * 2008-03-28 2009-10-15 Kubota Corp STRUCTURE OF WELDED PART OF AUSTENITIC HIGH Ni STEEL, AND WELDING METHOD THEREOF
JP2013199672A (en) * 2012-03-23 2013-10-03 Kubota Corp Cast product having alumina barrier layer, and method for manufacturing the same
JP2013198917A (en) * 2012-03-23 2013-10-03 Kubota Corp Cast product having alumina barrier layer, and method for manufacturing the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3540088A4 (en) * 2016-11-09 2020-04-29 Kubota Corporation Tubular body used in high temperature atmosphere and method for forming metal oxide layer on inner surface of tubular body
WO2018088069A1 (en) * 2016-11-09 2018-05-17 株式会社クボタ Alloy for overlay welding, welding powder, and reaction tube
JP2018075605A (en) * 2016-11-09 2018-05-17 株式会社クボタ Reaction tube having projection on its inner surface
US11612967B2 (en) 2016-11-09 2023-03-28 Kubota Corporation Alloy for overlay welding and reaction tube
CN109996900B (en) * 2016-11-09 2022-06-07 株式会社久保田 Pipe body used under high temperature atmosphere and method for forming metal oxide layer on inner surface of pipe body
TWI746840B (en) * 2016-11-09 2021-11-21 日商久保田股份有限公司 Tube body used in high temperature environment and method for forming metal oxide layer on inner surface of tube body
US11162151B2 (en) 2016-11-09 2021-11-02 Kubota Corporation Tube body that is to be used in high-temperature atmosphere and method for forming metal oxide layer on inner surface of tube body
JP2018075606A (en) * 2016-11-09 2018-05-17 株式会社クボタ Alloy for hardfacing welding and powder for welding
KR102300936B1 (en) * 2016-11-09 2021-09-10 구보다코포레이션 A method of forming a metal oxide layer on a tube body used in a high-temperature atmosphere and the inner surface of the tube body
US11059134B2 (en) 2016-11-09 2021-07-13 Kubota Corporation Alloy for overlay welding and reaction tube
CN109996900A (en) * 2016-11-09 2019-07-09 株式会社久保田 The method of the tube body and the inner surface formation metal oxide layer in tube body that are used under high-temperature atmosphere
KR20190082676A (en) * 2016-11-09 2019-07-10 구보다코포레이션 A method of forming a metal oxide layer on the inner surface of a tube body and a tube used in a high temperature atmosphere
KR102303628B1 (en) 2017-11-06 2021-09-17 구보다코포레이션 Heat-resistant alloy and reaction tube
WO2019087539A1 (en) * 2017-11-06 2019-05-09 株式会社クボタ Steel product used in contact with steel material
JP6339284B1 (en) * 2017-11-06 2018-06-06 株式会社クボタ Steel products used in contact with steel
JP6422608B1 (en) * 2017-11-06 2018-11-14 株式会社クボタ Heat-resistant alloy and reaction tube
KR20200070152A (en) * 2017-11-06 2020-06-17 구보다코포레이션 Heat-resistant alloy and reaction tube
WO2019088075A1 (en) * 2017-11-06 2019-05-09 株式会社クボタ Heat-resistant alloy, and reaction tube
JP2019085605A (en) * 2017-11-06 2019-06-06 株式会社クボタ Steel product used in contact with steel
TWI737940B (en) * 2017-11-06 2021-09-01 日商久保田股份有限公司 Heat-resistant alloy and reaction tube
JP2019085643A (en) * 2017-11-06 2019-06-06 株式会社クボタ Heat-resistant alloy and reaction tube
JP2019085638A (en) * 2017-11-06 2019-06-06 株式会社クボタ Heat-resistant alloy and reaction tube
US11136655B2 (en) 2017-11-06 2021-10-05 Kubota Corporation Heat-resistant alloy, and reaction tube
JP7016283B2 (en) 2018-04-25 2022-02-04 株式会社クボタ High temperature corrosion resistant heat resistant alloy, welding powder and piping with overlay welding layer on the outer peripheral surface
JP2019189910A (en) * 2018-04-25 2019-10-31 株式会社クボタ Heat resistant alloy having high temperature corrosion resistance, powder for weldment, and piping having thick weldment layer
JP7009312B2 (en) 2018-06-05 2022-02-10 株式会社クボタ Steel products with excellent oxidation resistance
JP2019210516A (en) * 2018-06-05 2019-12-12 株式会社クボタ Iron steel product excellent in oxidation resistance
WO2020259246A1 (en) * 2019-06-24 2020-12-30 江苏大学 High-temperature alloy seamless tube and preparation method therefor
CN110218940A (en) * 2019-06-24 2019-09-10 江苏大学 A kind of high-temperature alloy seamless pipe and preparation method thereof
WO2023047142A1 (en) * 2021-09-27 2023-03-30 Alloyed Limited Austenitic stainless steel

Also Published As

Publication number Publication date
JP6571937B2 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6571937B2 (en) Heat-resistant pipe welded structure
US11602780B2 (en) Tube and a method of manufacturing a tube
JP5389000B2 (en) Ni-base alloy weld metal, Ni-base alloy-coated arc welding rod
JP6309576B2 (en) Reaction tube for ethylene production having an alumina barrier layer
JP5381677B2 (en) Manufacturing method of welding wire
JP2016125088A (en) Heat resistant tube having alumina barrier layer
JPWO2019131954A1 (en) Austenitic heat resistant alloy
JP5928726B2 (en) Covered arc welding rod
US11059134B2 (en) Alloy for overlay welding and reaction tube
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP2009091654A (en) Ferritic stainless steel having excellent weldability
JP5355919B2 (en) Austenitic high Ni steel materials welded joint structure and welding method
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP2004337863A (en) Wire for submerged arc welding of high-tensile steel
JP6282191B2 (en) First layer submerged arc welding method of high Cr CSEF steel
JP6335248B2 (en) Overlay welding alloys and welding powders
US11612967B2 (en) Alloy for overlay welding and reaction tube
JP5977054B2 (en) Method for producing a cast product having an alumina barrier layer
JP6335247B2 (en) Reaction tube with internal protrusion
JP2023553255A (en) Nickel-based alloys for manufacturing pipeline tubes
JP2016151052A (en) Submerged arc weld metal of high strength uoe steel tube excellent in sr resistance
JP2015066586A (en) Welding construction method and welding structure
WO2015107647A1 (en) Ferritic steel for welding, and welded structure comprising ferritic steel members welded together

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190809

R150 Certificate of patent or registration of utility model

Ref document number: 6571937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150