JP2016130744A - Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter - Google Patents

Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter Download PDF

Info

Publication number
JP2016130744A
JP2016130744A JP2016084334A JP2016084334A JP2016130744A JP 2016130744 A JP2016130744 A JP 2016130744A JP 2016084334 A JP2016084334 A JP 2016084334A JP 2016084334 A JP2016084334 A JP 2016084334A JP 2016130744 A JP2016130744 A JP 2016130744A
Authority
JP
Japan
Prior art keywords
thermal neutron
neutron absorption
absorption film
binder
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016084334A
Other languages
Japanese (ja)
Inventor
石渡 裕
Yutaka Ishiwatari
裕 石渡
藤田 敏之
Toshiyuki Fujita
敏之 藤田
研一 吉岡
Kenichi Yoshioka
研一 吉岡
林 大和
Yamato Hayashi
大和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016084334A priority Critical patent/JP2016130744A/en
Publication of JP2016130744A publication Critical patent/JP2016130744A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique to cover core meltdown matter which has complicated surface shape with a thermal neutron absorption film even under water conditions.SOLUTION: A covering apparatus 10 of thermal neutron absorption film includes: a supply means 20 that mixes a particulate matter 31 containing an element the thermal neutron absorption cross section of which is 100 barn or more as a major component and a binder 32 for fixing the particulate matter 31 on the surface of the core meltdown matter 30 and stirs the mixture 15 in a mixing part 23 to adjust the viscosity and supplies the same in a slurry state; and a nozzle 11 for ejecting the supplied mixture 15 over the surface of the core meltdown matter 30. The supply means 20 has a hardening unit 27 for supplying hardening means for hardening the binder 32.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、熱中性子を吸収すると核分裂を生じさせる対象物の表面に熱中性子吸収膜を被覆する技術に関する。   Embodiments of the present invention relate to a technique of coating a surface of an object that causes fission when thermal neutrons are absorbed with a thermal neutron absorption film.

原子力発電所においてシビアアクシデントが発生すると、炉心の冷却が不充分となり、炉心溶融に至る場合がある。炉心溶融により燃料形状が変化すると、原子炉が停止した状態であっても再臨界が起きる可能性が否定できない。この再臨界が起きると、原子炉圧力容器、格納容器、原子炉建屋の損傷を引き起こし、放射性物質が環境に放出される恐れがある。したがって、シビアアクシデントの発生後に再臨界の防止策をとることは、放射性物質の封じ込めの観点から重要である。   If a severe accident occurs at a nuclear power plant, the core may not be sufficiently cooled, and the core may melt. If the fuel shape changes due to core melting, the possibility of recriticality occurring even when the reactor is shut down cannot be denied. If this re-criticality occurs, the reactor pressure vessel, containment vessel, and reactor building may be damaged, and radioactive materials may be released to the environment. Therefore, it is important from the viewpoint of containment of radioactive materials to take recriticality prevention measures after the occurrence of severe accidents.

一方、炉心溶融が生じた場合は、冷温停止させた後に溶融炉心を圧力容器及び格納容器から搬出し、キャスク等の長期保管容器内に密閉する必要がある。しかし、この溶融炉心は、圧力容器や格納容器と溶融・反応して一体化していることが想定され、搬出のために炉内で切断・分割する必要のある場合がある。   On the other hand, when core melting occurs, it is necessary to carry out the cold temperature stop and then carry the molten core out of the pressure vessel and the containment vessel and seal it in a long-term storage vessel such as a cask. However, it is assumed that the melting core is integrated with the pressure vessel or the containment vessel by melting and reacting, and it may be necessary to cut and divide in the furnace for carrying out.

ところで、冷温停止状態であっても、溶融炉心内において極小規模の核分裂は起こっていると考えられる。この核分裂で発生する高速中性子は水によって減速され、次の核分裂を引き起こす熱中性子になる。
通常、圧力容器や格納容器の内部には、冷却水が存在しているために、溶融炉心の切断作業は、水に浸された状態で行うことが考えられる。
したがって、溶融炉心を切断・分割すると、切断面に水が接触し、核分裂反応が活発化して再臨界に達する想定が成り立つ。
By the way, even in the cold shutdown state, it is considered that very small-scale fission has occurred in the molten core. Fast neutrons generated by this fission are decelerated by water and become thermal neutrons that cause the next fission.
Usually, since cooling water exists inside the pressure vessel or the containment vessel, it is considered that the cutting operation of the melting core is performed in a state of being immersed in water.
Therefore, when the molten core is cut and divided, water is brought into contact with the cut surface, and the assumption is made that the fission reaction is activated and the criticality is reached.

そこで、切断・分割した溶融炉心の切断面を熱中性子吸収膜で被覆することが考えられる。切断面はもとより複雑な形状の溶融炉心を広範囲に亘り被覆することで、核分裂反応を効果的に抑制することが可能になる。
放射線を吸収し遮蔽する技術として、表面にホウ化物をコーティングした直径0.2〜2mmの球状の鉛粉を用いる方法が提案されている(例えば、特許文献1)。
また、金属アルミニウム粉末と炭化ホウ素(B4C)粉末とを溶射により金属基材の表面にコーティングしておく技術が提案されている(例えば、特許文献2)。
さらに、無機コア粒子(放射線の吸収・遮蔽材)の表面を有機ポリマーで被覆した複合微粒子を用いる方法が提案されている(例えば、特許文献3)。
Therefore, it is conceivable to cover the cut surface of the molten core that has been cut and divided with a thermal neutron absorption film. It is possible to effectively suppress the fission reaction by covering the melt core having a complicated shape as well as the cut surface over a wide range.
As a technique for absorbing and shielding radiation, a method of using spherical lead powder having a diameter of 0.2 to 2 mm whose surface is coated with boride has been proposed (for example, Patent Document 1).
In addition, a technique has been proposed in which metal aluminum powder and boron carbide (B 4 C) powder are coated on the surface of a metal substrate by thermal spraying (for example, Patent Document 2).
Furthermore, a method using composite fine particles in which the surface of inorganic core particles (radiation absorption / shielding material) is coated with an organic polymer has been proposed (for example, Patent Document 3).

特開2011−7510号公報JP 2011-7510 A 特開2007−290017号公報JP 2007-290017 A 特開2008−81728号公報JP 2008-81728 A

しかし、前記した特許文献1の遮蔽材では、主成分の鉛粉により熱中性子を遮蔽・吸収できず、熱中性子の遮蔽効果を有するホウ化物は、鉛粉を被覆する程度なので、中性子吸収効果を得るのには量的に不十分である。
また、前記した特許文献2の技術では、炭化ホウ素は炉心溶融温度に到達する以前に熱分解してしまい、また溶射によりホウ素単体を金属表面にコーティングすることは不可能である。
さらに、前記した特許文献3の技術では、ポリマー粒子を固めてブロック形状やシート形状の製品を作ることは容易であるが、溶融炉心の表面を被覆することは困難である。
However, in the shielding material of the above-mentioned Patent Document 1, thermal neutrons cannot be shielded / absorbed by the main component lead powder, and borides having a thermal neutron shielding effect are only covered with lead powder. It is insufficient in quantity to obtain.
Further, in the technique of Patent Document 2 described above, boron carbide is thermally decomposed before reaching the core melting temperature, and it is impossible to coat boron alone on the metal surface by thermal spraying.
Furthermore, in the technique of Patent Document 3 described above, it is easy to solidify polymer particles to produce a block-shaped or sheet-shaped product, but it is difficult to coat the surface of the molten core.

本発明の実施形態はこのような事情を考慮してなされたもので、水中環境であっても複雑な表面形状を有する対象物に熱中性子吸収膜を被覆する技術を提供することを目的とする。   Embodiments of the present invention have been made in view of such circumstances, and an object thereof is to provide a technique for coating a thermal neutron absorbing film on an object having a complicated surface shape even in an underwater environment. .

熱中性子吸収膜の被覆装置において、熱中性子吸収断面積が100バーン以上の元素を主成分とする粒状物質及びこの粒状物質を炉心溶融物の表面に固定化させるバインダの混合物を混練部において攪拌混合させ粘度を調整しスラリー状にして供給する供給手段と、前記供給された混合物を前記炉心溶融物の表面に放出させるノズルと、を備え、前記供給手段は、前記バインダを硬化させる硬化手段を供給する硬化部を有する。   In a thermal neutron absorption film coating apparatus, a mixture of a granular material whose main component is an element having a thermal neutron absorption cross-section of 100 burns or more and a binder for immobilizing the granular material on the surface of the core melt is stirred and mixed in a kneading section. A supply means for adjusting the viscosity and supplying the mixture in a slurry state, and a nozzle for discharging the supplied mixture to the surface of the core melt, and the supply means supplies a curing means for curing the binder. It has a hardened part.

本発明に係る熱中性子吸収膜の被覆装置の第1実施形態を示すブロック図。The block diagram which shows 1st Embodiment of the coating | coated apparatus of the thermal neutron absorption film which concerns on this invention. (A)熱中性子を吸収すると核分裂を生じさせる対象物の表面に熱中性子吸収膜を被覆した状態を示す断面図、(B)熱中性子吸収膜の表面にさらに耐環境性物質を含む保護被膜を形成させた状態を示す断面図。(A) A cross-sectional view showing a state in which a thermal neutron absorbing film is coated on the surface of an object that causes fission when absorbing thermal neutrons, and (B) a protective coating further containing an environmentally resistant substance on the surface of the thermal neutron absorbing film. Sectional drawing which shows the state formed. 各実施形態において粒状物質の主成分として採用することができる元素の一覧表。The table | surface of the element which can be employ | adopted as a main component of a granular material in each embodiment. 第2実施形態に係る熱中性子吸収膜の被覆装置に適用されるノズルの部分拡大図。The partial enlarged view of the nozzle applied to the coating apparatus of the thermal neutron absorption film which concerns on 2nd Embodiment. 本発明に係る溶融炉心物の回収方法の実施形態を説明する説明図。Explanatory drawing explaining embodiment of the collection | recovery method of the molten core which concerns on this invention. 本発明に係る溶融炉心物の回収方法の実施形態を説明する説明図。Explanatory drawing explaining embodiment of the collection | recovery method of the molten core which concerns on this invention.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1に示すように第1実施形態に係る熱中性子吸収膜の被覆装置10は、熱中性子吸収断面積が100バーン以上の元素を主成分とする粒状物質31及びこの粒状物質31を対象物30の表面に固定化させるバインダ32の混合物15を供給する供給手段20と、供給された混合物15を対象物30の表面に放出させるノズル11と、を備えている。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the thermal neutron absorption film coating apparatus 10 according to the first embodiment includes a granular material 31 whose main component is an element having a thermal neutron absorption cross-sectional area of 100 burns or more, and the granular material 31 as an object 30. Supply means 20 for supplying the mixture 15 of the binder 32 to be immobilized on the surface, and a nozzle 11 for discharging the supplied mixture 15 to the surface of the object 30.

図2(A)は、熱中性子を吸収すると核分裂を生じさせる対象物30の表面に熱中性子吸収膜33を被覆した状態を示す断面図である。図2(B)は、熱中性子吸収膜33の表面にさらに耐環境性物質を含む保護被膜34を形成させた状態を示す断面図である。   FIG. 2A is a cross-sectional view showing a state in which a thermal neutron absorption film 33 is coated on the surface of an object 30 that causes fission when absorbing thermal neutrons. FIG. 2B is a cross-sectional view showing a state in which a protective coating 34 further containing an environmental resistant material is formed on the surface of the thermal neutron absorption film 33.

ノズル11は、例えばスプレイガンであって、圧力ガスにより粒状物質31とバインダ32の混合物15を対象物30の表面に噴霧させる。これにより、対象物30の表面に空隙の少ない良好な熱中性子吸収膜33を形成すことができる。
また混合物15は、圧力ガス等の圧力により噴霧されることに限定されるものでなく、重力によりノズル11から放出されても良い。
The nozzle 11 is, for example, a spray gun, and sprays the mixture 15 of the particulate material 31 and the binder 32 on the surface of the object 30 with a pressure gas. Thereby, the favorable thermal neutron absorption film 33 with few voids can be formed on the surface of the object 30.
The mixture 15 is not limited to being sprayed by pressure such as pressure gas, but may be discharged from the nozzle 11 by gravity.

供給手段20は、粒状物質31とバインダ32の混合物15を収容する収容部21と、この混合物15を噴霧させるガスコンプレッサ26と、バインダ32を硬化させる硬化手段を供給する硬化部27とを有している。
なお、収容部21には、収容されている混合物15をノズル11に導くホース12が接続され、ガスコンプレッサ26には圧力ガスをノズル11に導くホース13が接続され、硬化部27には硬化手段をノズル11に導くホース14が接続されている。
The supply unit 20 includes a storage unit 21 that stores the mixture 15 of the particulate material 31 and the binder 32, a gas compressor 26 that sprays the mixture 15, and a curing unit 27 that supplies a curing unit that cures the binder 32. ing.
In addition, the hose 12 that guides the mixture 15 that is contained to the nozzle 11 is connected to the containing portion 21, the hose 13 that guides the pressure gas to the nozzle 11 is connected to the gas compressor 26, and the curing means is the curing means 27. Is connected to the nozzle 11.

この硬化手段は、バインダ32の種類に応じて種々のものが適用される。
例えば、バインダ32として珪酸ソーダ系(Na2O・nSiO2・mH2O)の無機化合物が用いられる場合は、炭酸ガス、紫外線、セメント等の硬化手段を用いることができる。
また、水分により硬化するバインダである場合、硬化部27は、加湿気体を供給するものであり、UV硬化性のバインダである場合、硬化部27は、UVランプ等である。
このような硬化手段が供給されることにより、無機または有機バインダ32の硬化反応を制御して被覆と同時に熱中性子吸収膜33を対象物30の表面に固定化することができ、施工時間を著しく短縮し施工コストを抑えることができる。
Various curing means are applied depending on the type of the binder 32.
For example, if the inorganic compound of sodium silicate-based (Na 2 O · nSiO 2 · mH 2 O) is used as the binder 32 may be carbon dioxide, UV, the curing means such as cement.
When the binder is cured by moisture, the curing unit 27 supplies a humidified gas. When the binder is a UV curable binder, the curing unit 27 is a UV lamp or the like.
By supplying such a curing means, the curing reaction of the inorganic or organic binder 32 can be controlled, and the thermal neutron absorption film 33 can be immobilized on the surface of the object 30 at the same time as the coating. This shortens the construction cost.

供給手段20はさらに、粒状物質31及びバインダ32を混練して混合物にする混練部23を備えることができる。
この場合、粒状物質31及びバインダ32は、それぞれ別々の容器24,25に保持され、適時、混練部23により攪拌混合しスラリー状にして収容部21に収容される。
この混練部23における攪拌混合は、対象物30の表面形状に応じて、混合物15が適正な粘度範囲となるように調整する。
The supply unit 20 may further include a kneading unit 23 that kneads the particulate material 31 and the binder 32 to form a mixture.
In this case, the granular material 31 and the binder 32 are held in separate containers 24 and 25, respectively, and are agitated and mixed by the kneading unit 23 in a slurry state and stored in the storage unit 21 as appropriate.
The stirring and mixing in the kneading unit 23 is adjusted according to the surface shape of the object 30 so that the mixture 15 has an appropriate viscosity range.

すなわち、対象物30の表面が入り組んでいる場合は、スラリーを低粘度に調整して、細部まで混合物15が浸透するようにする。逆にフラットに近い場合は、スラリーを高粘度に調整して、表面張力により混合物15が周囲に流動することを防止する。
これにより、図2(A)に示すように、ほぼ一様な厚さで熱中性子吸収膜33が対象物30の表面に形成されるようにする。そして、この熱中性子吸収膜33には、バインダ32に粒状物質31が均一状態に分散している。
That is, when the surface of the object 30 is complicated, the slurry is adjusted to a low viscosity so that the mixture 15 penetrates to the finest details. On the other hand, when it is nearly flat, the slurry is adjusted to a high viscosity to prevent the mixture 15 from flowing around due to surface tension.
Thereby, as shown in FIG. 2A, the thermal neutron absorption film 33 is formed on the surface of the object 30 with a substantially uniform thickness. In the thermal neutron absorption film 33, the particulate matter 31 is dispersed in a binder 32 in a uniform state.

図2(B)に示すように、対象物30の表面に形成された熱中性子吸収膜33の表面に対し、耐環境性物質を含む保護被膜34を形成する場合がある。
熱中性子吸収膜33を構成するバインダ32の成分によっては、水や温水と反応して溶出する物質があり、また溶融炉心から放出される中性子により劣化する物質もある。そこで、表面に保護被膜34を形成することにより、熱中性子吸収膜33の長期健全性を確保したり冷却水の汚染防止等を図ったりする。
As shown in FIG. 2B, a protective coating 34 containing an environmental resistant material may be formed on the surface of the thermal neutron absorption film 33 formed on the surface of the object 30.
Depending on the components of the binder 32 constituting the thermal neutron absorption film 33, there are substances that react and elute with water and hot water, and there are substances that deteriorate due to neutrons emitted from the molten core. Therefore, by forming the protective film 34 on the surface, the long-term soundness of the thermal neutron absorption film 33 is ensured or the cooling water is prevented from being contaminated.

図3は、各実施形態において粒状物質31の主成分として採用することができる元素の一覧を示している。
熱中性子吸収断面積の大きい元素を含む粒状物質31が分散する熱中性子吸収膜33を溶融炉心等の対象物30の表面に形成することにより、少量でも効果的に熱中性子を吸収することができる。
これにより、熱中性子吸収膜33の厚さを増さなくても再臨界を防止でき、また施工コスト面も大きな効果が得られる。
FIG. 3 shows a list of elements that can be employed as the main component of the granular material 31 in each embodiment.
By forming the thermal neutron absorption film 33 in which the particulate matter 31 containing the element having a large thermal neutron absorption cross section is dispersed on the surface of the object 30 such as a molten core, thermal neutrons can be effectively absorbed even in a small amount. .
Thus, recriticality can be prevented without increasing the thickness of the thermal neutron absorption film 33, and a great effect can be obtained in terms of construction cost.

粒状物質31の主成分は、熱中性子吸収断面積、化学的安定性、入手性およびコスト等の観点から、酸化ガドリニウムまたは炭化ホウ素が好適である。
また、ガドリニウムとホウ素では、吸収する熱中性子のスペクトルが異なるために、溶融炉心から放出される熱中性子のスペクトルに応じて両者の組成を最適化することにより、再臨界を効果的に防止することができる。
The main component of the particulate material 31 is preferably gadolinium oxide or boron carbide from the viewpoint of thermal neutron absorption cross section, chemical stability, availability, cost, and the like.
In addition, since gadolinium and boron have different thermal neutron spectra, it is possible to effectively prevent recriticality by optimizing the composition of both according to the spectrum of thermal neutrons emitted from the molten core. Can do.

なお、酸化ガドリニウム及び炭化ホウ素は、2000℃以上の高融点であるために、溶融、溶射、焼結等の熱プロセスで対象物30の表面に固定化することが困難である。このために、バインダ32とともにノズル11から放出することにより、粒状物質31を対象物30の表面に安定的に固定する。   In addition, since gadolinium oxide and boron carbide have a high melting point of 2000 ° C. or higher, it is difficult to immobilize on the surface of the object 30 by a thermal process such as melting, thermal spraying, and sintering. For this purpose, the particulate material 31 is stably fixed to the surface of the object 30 by being discharged from the nozzle 11 together with the binder 32.

粒状物質31の主成分は、酸化ガドリニウム、炭化ホウ素又はこれらの組み合わせに限定されるものではなく、ガドリニウム、ガドリニウム化合物、ホウ素、ホウ素化合物の群の中から選択して採用することができる。
さらに、本発明に適用できる中性子吸収元素としては、ボロン(B)、ガドリニウム(Gd)、ハフニウム(Hf)、エルビウム(Er)、銀(Ag)、インジウム(In)、カドミウム(Cd)、ユーロピウム(Eu)等の熱中性子吸収断面積が100バーン以上のものを例示することができる。
そして、これらの単体および化合物を複数組合せたものを主成分とした粒状物質31を適宜採用することができる。
The main component of the particulate material 31 is not limited to gadolinium oxide, boron carbide, or a combination thereof, and can be selected from the group of gadolinium, gadolinium compounds, boron, and boron compounds.
Further, as neutron absorbing elements applicable to the present invention, boron (B), gadolinium (Gd), hafnium (Hf), erbium (Er), silver (Ag), indium (In), cadmium (Cd), europium ( Examples are those having a thermal neutron absorption cross section of 100 burns or more, such as Eu).
And the granular material 31 which has as a main component what combined these single substance and multiple compounds can be employ | adopted suitably.

なお、粒状物質31は、10〜100μm範囲の粒子径の球状粒子が好ましい。この範囲を逸脱すると、バインダ32との混合物15の流動性、分散性、均質性、充填性等の諸性質のいずれかが、低下する場合がある。   The granular material 31 is preferably spherical particles having a particle diameter in the range of 10 to 100 μm. If it deviates from this range, any of various properties such as fluidity, dispersibility, homogeneity, and fillability of the mixture 15 with the binder 32 may decrease.

バインダ32は、水分と反応して硬化するシアノアクリレートや、紫外線で硬化する変性アクリレート等のビニルモノマーのような有機化合物を主成分とすることができる。
なお、有機化合物系のバインダ成分は、環境中の水分やUV照射により反応し、熱中性子吸収膜33が対象物30の表面に馴染む前に硬化する可能性があるので、外部環境と遮断して施工することが好ましい。
またバインダ32は、炭酸ガス、紫外線、セメント等で硬化する珪酸ソーダ系(Na2O・nSiO2・mH2O)の無機化合物を主成分とすることができる。
The binder 32 can be mainly composed of an organic compound such as a vinyl monomer such as cyanoacrylate that is cured by reacting with moisture or a modified acrylate that is cured by ultraviolet rays.
The organic compound binder component reacts with moisture in the environment or UV irradiation, and may be cured before the thermal neutron absorption film 33 conforms to the surface of the object 30. Construction is preferable.
In addition, the binder 32 can contain, as a main component, a sodium silicate-based (Na 2 O.nSiO 2 .mH 2 O) inorganic compound that is hardened with carbon dioxide, ultraviolet light, cement, or the like.

このようなバインダ32によれば、対象物30に被覆した直後は変形性に富むゲル状態であるため、複雑な表面形状に対し均一な熱中性子吸収膜33を形成することができる。
そして、このゲル状態が対象物30の表面に馴染んできたところで、熱プロセスを用いずに硬化させ、密着力が強固な熱中性子吸収膜33を得ることができる。
According to such a binder 32, since the gel state is rich in deformability immediately after the object 30 is coated, the uniform thermal neutron absorption film 33 can be formed for a complicated surface shape.
And when this gel state has become familiar with the surface of the target object 30, it can harden | cure without using a thermal process and the thermal neutron absorption film | membrane 33 with strong adhesive force can be obtained.

(第2実施形態)
図4は、第2実施形態に係る熱中性子吸収膜の被覆装置のノズル11の部分拡大図である。なお、図4において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
(Second Embodiment)
FIG. 4 is a partially enlarged view of the nozzle 11 of the thermal neutron absorption film coating apparatus according to the second embodiment. 4, parts having the same configuration or function as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted.

第2実施形態においてノズル11は、対象物30側に開口を有するチャンバ16の内側に設けられている。
対象物30が溶融炉心物である場合は、周辺が冷却水で覆われている。このように、対象物30の表面が濡れている場合は、熱中性子吸収膜33は、十分な密着力が得られないこともある。そのような場合の対処として、被覆施工に際し、チャンバ16を用い対象物30の表面の水分を除去する。
In the second embodiment, the nozzle 11 is provided inside a chamber 16 having an opening on the object 30 side.
When the object 30 is a melting core, the periphery is covered with cooling water. Thus, when the surface of the object 30 is wet, the thermal neutron absorption film 33 may not have sufficient adhesion. As a countermeasure in such a case, the moisture on the surface of the object 30 is removed using the chamber 16 in the coating construction.

そして、供給手段20(図1)のガスコンプレッサ26は、このチャンバ16の内側をパージするパージガス17も供給する。
大気中における施工の場合は特に問題ないが、水中における施工の場合は、ノズル11から噴霧した混合物15の運動エネルギーが水の抵抗により減衰し、熱中性子吸収膜33の密着性や緻密性を損なうおそれがある。
チャンバ16の内側がガスでパージされることにより、ノズル11から混合物15が対象物30の表面に直接的に放出されるので、良好な熱中性子吸収膜33が形成される。
The gas compressor 26 of the supply means 20 (FIG. 1) also supplies a purge gas 17 that purges the inside of the chamber 16.
In the case of construction in the atmosphere, there is no particular problem, but in the case of construction in water, the kinetic energy of the mixture 15 sprayed from the nozzle 11 is attenuated by the resistance of water, and the adhesion and denseness of the thermal neutron absorption film 33 are impaired. There is a fear.
Since the inside of the chamber 16 is purged with gas, the mixture 15 is directly discharged from the nozzle 11 to the surface of the object 30, so that a good thermal neutron absorption film 33 is formed.

図5及び図6を参照して溶融炉心物の回収方法を説明する。
図5に示すように、原子力発電所においてシビアアクシデントが発生し、炉心溶融が生じた場合は、溶融・反応して原子炉構造物36と一体化した溶融炉心(対象物30)を冷温停止させた後に、搬出のために炉内で切断・分割する。
ところで、冷温停止状態であっても、溶融炉心(対象物30)の内部において極小規模の核分裂は起こっていると考えられる。このために溶融炉心(対象物30)を切断・分割した際の切断面35に冷却水18が接触すると、核分裂反応が活発化し再臨界に達するという想定が成り立つ。
A method for recovering the molten core will be described with reference to FIGS. 5 and 6.
As shown in FIG. 5, when a severe accident occurs at a nuclear power plant and core melting occurs, the molten core (object 30) integrated with the reactor structure 36 is cooled and stopped by melting and reacting. After that, it is cut and divided in a furnace for carrying out.
By the way, even in the cold shutdown state, it is considered that very small-scale nuclear fission has occurred inside the molten core (object 30). For this reason, it is assumed that when the cooling water 18 comes into contact with the cut surface 35 when the molten core (object 30) is cut and divided, the fission reaction is activated and the criticality is reached.

そこで、図6に示すように、切断・分割した溶融炉心(対象物30)の切断面はもとより複雑な形状の溶融炉心を広範囲に亘り熱中性子吸収膜33で被覆し、核分裂反応を効果的に抑制する。
さらに溶融炉心に限らず、核燃料保管用のキャスクや、原子炉燃料の解体工事用機器・器具等を対象物30として熱中性子吸収膜33を形成することにより、再臨界の防止を強化することができる。
Therefore, as shown in FIG. 6, not only the cut surface of the cut / divided molten core (object 30) but also the molten core having a complicated shape is covered with a thermal neutron absorption film 33 over a wide range to effectively perform the fission reaction. Suppress.
Further, the formation of the thermal neutron absorption film 33 with the object 30 as a nuclear fuel storage cask or reactor fuel demolition work equipment / equipment is not limited to the molten core, thereby enhancing the prevention of recriticality. it can.

なお熱中性子吸収膜33の厚さは、再臨界を防止するのに十分な厚さを確保する必要がある。この熱中性子吸収膜33の厚みが増すと表面張力により膜厚の維持が困難になるので、混合物15を放出と同時に硬化させる施工を実施することが好ましい。
もしくは、硬化させた熱中性子吸収膜33の上に積層させるように複数回にわたり施工を実施してもよい。
The thermal neutron absorption film 33 needs to have a sufficient thickness to prevent recriticality. When the thickness of the thermal neutron absorption film 33 increases, it becomes difficult to maintain the film thickness due to surface tension. Therefore, it is preferable to perform a construction in which the mixture 15 is cured simultaneously with the release.
Alternatively, the construction may be performed a plurality of times so as to be laminated on the cured thermal neutron absorption film 33.

以上述べた少なくともひとつの実施形態の熱中性子吸収膜の被覆装置によれば、熱中性子吸収断面積が100バーン以上の元素を主成分とする粒状物質をバインダとともにノズルから対象物の表面に放出させることにより、複雑な表面形状を有する対象物であってもその再臨界を確実に防止することができる。   According to the thermal neutron absorption film coating apparatus of at least one embodiment described above, the particulate matter whose main component is an element having a thermal neutron absorption cross-sectional area of 100 burns or more is discharged from the nozzle together with the binder onto the surface of the object. This makes it possible to reliably prevent the recriticality of an object having a complicated surface shape.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, changes, and combinations can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

10…被覆装置、11…ノズル、12,13,14…ホース、15…混合物、16…チャンバ、17…パージガス、18…冷却水、20…供給手段、21…収容部、23…混練部、24…粒状物質の容器、25…バインダの容器、26…ガスコンプレッサ、27…硬化部、30…対象物、31…粒状物質、32…バインダ、33…熱中性子吸収膜、34…保護被膜、35…切断面、36…原子炉構造物。   DESCRIPTION OF SYMBOLS 10 ... Coating | coated apparatus, 11 ... Nozzle, 12, 13, 14 ... Hose, 15 ... Mixture, 16 ... Chamber, 17 ... Purge gas, 18 ... Cooling water, 20 ... Supply means, 21 ... Storage part, 23 ... Kneading part, 24 DESCRIPTION OF SYMBOLS ... Container for particulate matter, 25 ... Container for binder, 26 ... Gas compressor, 27 ... Curing part, 30 ... Object, 31 ... Particulate matter, 32 ... Binder, 33 ... Thermal neutron absorption film, 34 ... Protective coating, 35 ... Cut surface, 36 ... reactor structure.

Claims (12)

熱中性子吸収断面積が100バーン以上の元素を主成分とする粒状物質及びこの粒状物質を炉心溶融物の表面に固定化させるバインダの混合物を混練部において攪拌混合させ粘度を調整しスラリー状にして供給する供給手段と、
前記供給された混合物を前記炉心溶融物の表面に放出させるノズルと、を備え、
前記供給手段は、前記バインダを硬化させる硬化手段を供給する硬化部を有することを特徴とする熱中性子吸収膜の被覆装置。
A mixture of a particulate material whose main component is an element having a thermal neutron absorption cross-section of 100 burns or more and a binder for immobilizing this particulate material on the surface of the core melt is agitated and mixed in a kneading section to adjust the viscosity to form a slurry. Supply means for supplying;
A nozzle for discharging the supplied mixture to the surface of the core melt,
The apparatus for coating a thermal neutron absorption film, wherein the supply means has a curing unit for supplying a curing means for curing the binder.
前記ノズルは、圧力ガスにより前記混合物を前記炉心溶融物の表面に噴霧させる請求項1に記載の熱中性子吸収膜の被覆装置。   2. The thermal neutron absorption film coating apparatus according to claim 1, wherein the nozzle sprays the mixture onto a surface of the core melt with a pressure gas. 3. 前記炉心溶融物の表面に形成された熱中性子吸収膜の表面に耐環境性物質を含む保護被膜を形成させる請求項1又は請求項2に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorption film coating apparatus according to claim 1 or 2, wherein a protective coating containing an environmentally resistant substance is formed on the surface of the thermal neutron absorption film formed on the surface of the core melt. 前記粒状物質の主成分は、ガドリニウム、ガドリニウム化合物、ホウ素、ホウ素化合物の群の中から少なくとも一つ選択されたものである請求項1から請求項3のいずれか1項に記載の熱中性子吸収膜の被覆装置。   4. The thermal neutron absorption film according to claim 1, wherein the main component of the particulate material is at least one selected from the group consisting of gadolinium, a gadolinium compound, boron, and a boron compound. 5. Coating equipment. 前記ガドリニウム化合物は酸化ガドリニウムであり前記ホウ素化合物は炭化ホウ素である請求項4に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorption film coating apparatus according to claim 4, wherein the gadolinium compound is gadolinium oxide and the boron compound is boron carbide. 前記バインダは、水分、紫外線又は炭酸ガスにより化学反応が促進されて硬化する化合物を含有する請求項1から請求項5のいずれか1項に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorption film coating apparatus according to any one of claims 1 to 5, wherein the binder contains a compound that is cured by a chemical reaction accelerated by moisture, ultraviolet rays, or carbon dioxide gas. 前記バインダは、珪酸ソーダを主成分とした物質を用いる請求項1から請求項5のいずれか1項に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorption film coating apparatus according to any one of claims 1 to 5, wherein the binder is made of a substance mainly composed of sodium silicate. 前記硬化手段はセメントであることを特徴とする請求項1又は請求項7に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorption film coating apparatus according to claim 1 or 7, wherein the curing means is cement. 前記ノズルは、前記炉心溶融物側に開口を有するチャンバの内側に設けられている請求項1から請求項8のいずれか1項に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorbing film coating apparatus according to any one of claims 1 to 8, wherein the nozzle is provided inside a chamber having an opening on the core melt side. 前記供給手段は、前記チャンバの内側をパージするパージガスも供給する請求項9に記載の熱中性子吸収膜の被覆装置。   The thermal neutron absorption film coating apparatus according to claim 9, wherein the supply unit also supplies a purge gas for purging the inside of the chamber. 熱中性子吸収断面積が100バーン以上の元素を主成分とする粒状物質及びこの粒状物質を炉心溶融物の表面に固定化させるバインダの混合物を混練部において攪拌混合させ粘度を調整しスラリー状にして供給するステップと、
前記供給された混合物を前記炉心溶融物の表面に放出させるステップと、
前記供給された混合物を構成する無機バインダを硬化させる硬化手段を供給するステップと、を含むことを特徴とする熱中性子吸収膜の被覆方法。
A mixture of a particulate material whose main component is an element having a thermal neutron absorption cross-section of 100 burns or more and a binder for immobilizing this particulate material on the surface of the core melt is agitated and mixed in a kneading section to adjust the viscosity to form a slurry. Supplying step;
Discharging the supplied mixture to the surface of the core melt;
Supplying a curing means for curing the inorganic binder constituting the supplied mixture, and a method for coating a thermal neutron absorption film.
請求項11に記載の熱中性子吸収膜の被覆方法を用いて再臨界を防止することを特徴とする溶融炉心物の回収方法。   A method for recovering a molten core, wherein recriticality is prevented by using the coating method of a thermal neutron absorption film according to claim 11.
JP2016084334A 2016-04-20 2016-04-20 Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter Pending JP2016130744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084334A JP2016130744A (en) 2016-04-20 2016-04-20 Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084334A JP2016130744A (en) 2016-04-20 2016-04-20 Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012177449A Division JP6021510B2 (en) 2012-08-09 2012-08-09 Thermal neutron absorption film coating apparatus, method thereof and method of recovering molten core

Publications (1)

Publication Number Publication Date
JP2016130744A true JP2016130744A (en) 2016-07-21

Family

ID=56415410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084334A Pending JP2016130744A (en) 2016-04-20 2016-04-20 Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter

Country Status (1)

Country Link
JP (1) JP2016130744A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125905A (en) * 2019-02-01 2020-08-20 一般社団法人Nb研究所 Processing method of fuel debris

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347697A (en) * 1976-10-09 1978-04-28 Ishikawajima Harima Heavy Ind Co Ltd Method of forming film of coating under the water
JPS6085899A (en) * 1983-10-12 1985-05-15 早川 康信 Dry machining device for underwater structure
JPS63182600A (en) * 1987-01-24 1988-07-27 ジャパン・ザイペックス株式会社 Concrete material for radiation protection
JPH11147214A (en) * 1997-11-19 1999-06-02 Shinagawa Refract Co Ltd Wet spray device
JP2004523759A (en) * 2001-03-12 2004-08-05 ノースロップ・グルマン・ニューポート・ニューズ Radiation shielding
JP2008538136A (en) * 2004-12-20 2008-10-09 メリディアン リサーチ アンド ディベロップメント Radiation-sensitive protective article
JP2009520876A (en) * 2005-11-14 2009-05-28 ローレンス・リバモア・ナショナル・セキュリティ・エルエルシー Corrosion resistant neutron absorption coating
JP2009531651A (en) * 2005-12-06 2009-09-03 コー−オペレーションズ, インコーポレイテッド Chemically bondable ceramic radiation shielding material and manufacturing method
JP2011007510A (en) * 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield
JP2012504773A (en) * 2008-10-06 2012-02-23 グランクリート,インコーポレイテッド Composition for radiation shielding structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347697A (en) * 1976-10-09 1978-04-28 Ishikawajima Harima Heavy Ind Co Ltd Method of forming film of coating under the water
JPS6085899A (en) * 1983-10-12 1985-05-15 早川 康信 Dry machining device for underwater structure
JPS63182600A (en) * 1987-01-24 1988-07-27 ジャパン・ザイペックス株式会社 Concrete material for radiation protection
JPH11147214A (en) * 1997-11-19 1999-06-02 Shinagawa Refract Co Ltd Wet spray device
JP2004523759A (en) * 2001-03-12 2004-08-05 ノースロップ・グルマン・ニューポート・ニューズ Radiation shielding
JP2008538136A (en) * 2004-12-20 2008-10-09 メリディアン リサーチ アンド ディベロップメント Radiation-sensitive protective article
JP2009520876A (en) * 2005-11-14 2009-05-28 ローレンス・リバモア・ナショナル・セキュリティ・エルエルシー Corrosion resistant neutron absorption coating
JP2009531651A (en) * 2005-12-06 2009-09-03 コー−オペレーションズ, インコーポレイテッド Chemically bondable ceramic radiation shielding material and manufacturing method
JP2012504773A (en) * 2008-10-06 2012-02-23 グランクリート,インコーポレイテッド Composition for radiation shielding structure
JP2011007510A (en) * 2009-06-23 2011-01-13 Fukuda Metal Foil & Powder Co Ltd Radiation shield, radiation shield storage employing the same, and molded product of radiation shield

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125905A (en) * 2019-02-01 2020-08-20 一般社団法人Nb研究所 Processing method of fuel debris

Similar Documents

Publication Publication Date Title
JP6021510B2 (en) Thermal neutron absorption film coating apparatus, method thereof and method of recovering molten core
KR100706012B1 (en) Cask, composition for neutron shielding body, and method of manufacturing the neutron shielding body
US7250119B2 (en) Composite materials and techniques for neutron and gamma radiation shielding
US9646722B2 (en) Method and apparatus for a fret resistant fuel rod for a light water reactor (LWR) nuclear fuel bundle
JP3150672B1 (en) Neutron shield and cask using the same
US4437013A (en) Neutron and gamma radiation shielding material, structure, and process of making structure
CN101235246B (en) Epoxy coating system for nuclear power station
JP2016130744A (en) Covering apparatus of thermal neutron absorption film, method thereof and collection method of core meltdown matter
JP2014115143A (en) Thermal neutron absorbing material and coating method using the same
JP2018017647A (en) Neutron absorber and method for manufacturing the same
JP2004028987A (en) Cask, composition for neutron shield, and production method for neutron shield
JP2016180593A (en) Molten nuclear fuel storage container
DE102005057428B3 (en) Radiation resisting and -shielding coating system for components and structures, comprises carrier- and covering layers formed by sprayable gum out of isocyanate hardening polymer and composition of gum particles
RU2522580C2 (en) Fire-resistant neutron-protective material
JP2013205359A (en) Gelatinous neutron absorber and molten core recovery method
JP2017026563A (en) Neutron shielding material, method for manufacturing the same, and neutron shielding container
JP2013190263A (en) Thermal neutron absorption material and coating method of the same
US8755483B2 (en) Nuclear fuel
KR101132322B1 (en) Neutron shielding material having excellent shield property, high strength and non-frammable and method for manufacturing the same
Costes et al. Conditioning of graphite bricks from dismantled gas-cooled reactors for disposal
JP2007292682A (en) Metal cask and method for manufacturing it
JP2015152463A (en) Radiation shield body and radiation shield structure
US11783954B2 (en) Injectable sacrificial material systems and methods to contain molten corium in nuclear accidents
KR100298037B1 (en) Epoxy resin system neutron shield composition
JP2004061463A (en) Composition for neutron shield, shield, and shielding vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170829