JP2016130581A - Slide component and its manufacturing method - Google Patents

Slide component and its manufacturing method Download PDF

Info

Publication number
JP2016130581A
JP2016130581A JP2016001406A JP2016001406A JP2016130581A JP 2016130581 A JP2016130581 A JP 2016130581A JP 2016001406 A JP2016001406 A JP 2016001406A JP 2016001406 A JP2016001406 A JP 2016001406A JP 2016130581 A JP2016130581 A JP 2016130581A
Authority
JP
Japan
Prior art keywords
sliding
cutting
ultrasonic
processing
lathe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016001406A
Other languages
Japanese (ja)
Inventor
拓郎 佐藤
Takuo Sato
拓郎 佐藤
澤田 敬
Takashi Sawada
敬 澤田
堀切川 一男
Kazuo Horikirigawa
一男 堀切川
圭 柴田
Kei Shibata
圭 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APUTO KK
Original Assignee
APUTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APUTO KK filed Critical APUTO KK
Publication of JP2016130581A publication Critical patent/JP2016130581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide component and its manufacturing method having high abrasion resistance, low sliding resistance, and an excellent sliding property.SOLUTION: In a slide component 10 having a curved sliding face on its outer periphery, the sliding face 11 is composed of a processed face by lathe cutting processing while superposing ultrasonic wave to a cutting tool. A spiral continuous belt-like cutting mark is formed on the sliding face 11, and on the cutting mark, concavo-convex parts are repeatedly formed in a circumferential direction, that is, a cutting direction. By the ultrasonic lathe cutting method, even a material having high abrasion resistance but hard to be processed, can be comparatively easily processed with high accuracy, surface hardening processing by post-processing becomes unnecessary, and texture as an oil reservoir for reducing sliding resistance simultaneously with processing, can be formed with high controllability.SELECTED DRAWING: Figure 1

Description

本発明は、油圧バルブのような摺動機構を有する機械製品において、超音波を重畳した切削加工方法により、所望の形状に加工すると同時に、加工面に超音波加工特有の微細な規則性のあるテクスチャーを形成し、このテクスチャーが油潜まりを形成し、摺動部の摩擦力を低減し耐摩耗性を向上させた、摺動部品並びにその製造方法に関する。   The present invention provides a machine product having a sliding mechanism such as a hydraulic valve, which is processed into a desired shape by a cutting method in which ultrasonic waves are superimposed, and at the same time has a fine regularity peculiar to ultrasonic processing on a processed surface. The present invention relates to a sliding component and a method for manufacturing the same, in which a texture is formed, the texture forms an oil submergence, reduces the frictional force of the sliding portion, and improves the wear resistance.

摺動部品の摩擦力低減や摩耗を防止するために、一般的には摺動面を硬くし、且つ摺動面に潤滑油を供給し、摺動部品が油膜を介して接触するようにする方法がとられている。表面を硬くする方法としては、焼入れ、浸炭、窒化等の熱処理方法が多用される。一方、油膜が切れると、一気に摩擦力や摩耗が増加するため、摺動面に常に油膜を形成しておくことが肝要であり、そのため、摺動面に凹凸の油溜まりを形成する方法がいろいろ試みられてきた。   In order to reduce frictional force and prevent wear of sliding parts, generally harden the sliding surface and supply lubricating oil to the sliding surface so that the sliding part contacts through the oil film. The method is taken. As a method for hardening the surface, heat treatment methods such as quenching, carburizing, and nitriding are frequently used. On the other hand, if the oil film breaks, the frictional force and wear increase at a stretch, so it is important to always form an oil film on the sliding surface.Therefore, there are various methods for forming an uneven oil reservoir on the sliding surface. Has been tried.

例えば、旋盤、フライス盤等の工作機械による切削、研削、研磨等の機械加工を施して金属成品の表面粗さを向上させる方法、摺動部の表面を少量ずつ削り取るきさげ加工方法、金属加工面にサンドブラストやショットピーニングなどの処理をして表面に凹面のディンプルを形成する方法(例えば、特許文献1参照)、パルス状のYAGレーザーを照射し制御されたディンプルを形成する方法(例えば、特許文献2参照)、などが代表的な例である。   For example, a method of improving the surface roughness of a metal product by machining, such as cutting, grinding, polishing, etc. with a machine tool such as a lathe or a milling machine, a scraping method of scraping the surface of a sliding part little by little, a metal processing surface A method of forming concave dimples on the surface by processing such as sandblasting or shot peening (see, for example, Patent Document 1), and a method of forming controlled dimples by irradiating a pulsed YAG laser (for example, Patent Documents) 2)) is a typical example.

一方、研削時にマイクロ波を重畳させる研削加工法が検討されている(例えば、非特許文献1参照)。振動を重畳させることで、研削砥石に埋め速まれた砥粒により加工面に凹凸のテクスチャーが形成され、このテクスチャーに油溜まりの効果が期待されている。研削の場合は砥石を使用するが、砥石にはCBN(立方晶窒化ホウ素)やダイヤモンド粒などの砥粒が埋め込まれている。   On the other hand, a grinding method in which a microwave is superimposed during grinding has been studied (for example, see Non-Patent Document 1). By superimposing the vibration, the texture of the unevenness is formed on the processed surface by the abrasive grains buried in the grinding wheel, and an oil sump effect is expected on this texture. In the case of grinding, a grindstone is used, but abrasive grains such as CBN (cubic boron nitride) and diamond grains are embedded in the grindstone.

特許第3212433号公報Japanese Patent No. 3212433 特許第3890495号公報Japanese Patent No. 3890495

平成22〜24年度戦略的基盤技術高度化支援事業「マイクロ超音波・電解ハイブリッド内面加工装置の開発」研究開発成果報告書(平成25年3月)FY2010-2012 Strategic Fundamental Technology Advancement Support Project “Development of Micro Ultrasonic / Electrolytic Hybrid Internal Machining System” Research and Development Results Report (March 2013)

しかしながら、耐摩耗性の高い硬い材料は加工が難しい。また、加工しやすい材料で所望の形状に加工してから、後処理で表面を硬化し、さらに後加工で潤滑油の油溜まりとなる凹凸を形成するのは、加工工程が増え生産性が極端に低下してしまう。
また、サンドブラストやショットピーニングなどの処理の場合、形状や分布を制御された凹みディンプルの形成は困難である。
研削の場合は、CBN(立方晶窒化ホウ素)やダイヤモンド粒などの砥粒埋め込み砥石を使用するが、形状やサイズにも分布がある砥粒が不規則に埋め込まれており、テクスチャーの形状や分布を制御するのは難しい。摺動特性は、摺動面のテクスチャー形状や分布に大きく依存するため、摺動部材や摺動機構に即した制御性の高いテクスチャー形成技術が求められる。
However, hard materials with high wear resistance are difficult to process. In addition, after processing into a desired shape with an easy-to-process material, the surface is hardened by post-processing, and unevenness that becomes a reservoir of lubricating oil is formed by post-processing. It will drop to.
In the case of processing such as sand blasting or shot peening, it is difficult to form dent dimples whose shape and distribution are controlled.
For grinding, abrasive grains embedded with CBN (Cubic Boron Nitride) or diamond grains are used, but abrasive grains that are distributed in shape and size are irregularly embedded, and the shape and distribution of the texture. It is difficult to control. Since the sliding characteristics greatly depend on the texture shape and distribution of the sliding surface, a texture forming technique with high controllability in accordance with the sliding member and the sliding mechanism is required.

本発明は、このような問題に基づきなされたものであり、耐摩耗性が高く、摺動抵抗が低い、優れた摺動特性を示す摺動部品及びその製造方法を提供することを目的とする。   The present invention has been made based on such problems, and an object of the present invention is to provide a sliding component exhibiting excellent sliding characteristics with high wear resistance and low sliding resistance, and a method for manufacturing the same. .

本発明の摺動部品は、外周に曲面の摺動面を有するものであって、摺動面は、切削工具に超音波を重畳させて旋盤切削加工した加工面であるものである。   The sliding component of the present invention has a curved sliding surface on the outer periphery, and the sliding surface is a machining surface obtained by lathe cutting by superposing ultrasonic waves on a cutting tool.

本発明の摺動部品の製造方法は、外周に曲面の摺動面を有する摺動部品を製造するものであって、摺動面を、切削工具に超音波を重畳させて旋盤切削加工により加工するものである。   The manufacturing method of the sliding component of the present invention is to manufacture a sliding component having a curved sliding surface on the outer periphery, and the sliding surface is processed by lathe cutting with superposition of ultrasonic waves on a cutting tool. To do.

本発明によれば、摺動面を切削工具に超音波を重畳して旋盤切削加工するようにしたので、耐摩耗性は高いが硬く加工が難しい材料であっても、比較的容易に高精度に加工することができる。よって、油溜まりとなるテクスチャーを制御性高く形成することができ、耐摩耗性が高く、摺動抵抗が低い、優れた摺動特性を示す摺動部品を容易に得ることができる。また、後処理による表面硬化処理が不要になり、且つ加工と同時に摺動抵抗低減のための油溜まりとなるテクスチャーを制御性高く形成することができるので、生産性を大幅に向上させることができる。   According to the present invention, since the sliding surface is subjected to lathe cutting by superimposing ultrasonic waves on the cutting tool, it is relatively easy to achieve high accuracy even for materials that are hard but difficult to machine. Can be processed. Therefore, a texture that becomes an oil reservoir can be formed with high controllability, and a sliding component that exhibits excellent sliding characteristics with high wear resistance and low sliding resistance can be easily obtained. Further, the surface hardening treatment by post-treatment is not necessary, and the texture that becomes the oil reservoir for reducing the sliding resistance simultaneously with the processing can be formed with high controllability, so that the productivity can be greatly improved. .

本発明の一実施の形態に係る摺動部品の構成を表す図である。It is a figure showing the structure of the sliding component which concerns on one embodiment of this invention. 慣行の切削法と超音波切削法で加工した摺動面の光学顕微鏡写真である。It is the optical microscope photograph of the sliding surface processed by the conventional cutting method and the ultrasonic cutting method. 慣行の切削法と超音波切削法で加工した摺動面の切削方向における表面粗さの測定結果を表す特性図である。It is a characteristic view showing the measurement result of the surface roughness in the cutting direction of the sliding surface processed by the conventional cutting method and the ultrasonic cutting method. 摩擦力の測定原理を説明する図である。It is a figure explaining the measurement principle of frictional force. 試験時間が55秒〜75秒までの摩擦係数の測定データを示す特性図である。It is a characteristic view which shows the measurement data of the coefficient of friction for test time to 55 second-75 second. 試験時間が470秒〜490秒までの摩擦係数の測定データを示す特性図である。It is a characteristic view which shows the measurement data of a friction coefficient from 470 seconds to 490 seconds for a test time. 往復摺動回数における摩擦係数の変化を表す特性図である。It is a characteristic view showing the change of the friction coefficient in the frequency | count of reciprocating sliding. 往復摺動回数における摩擦係数の変動率を表す特性図である。It is a characteristic view showing the variation rate of the friction coefficient in the number of reciprocating sliding. 往復摺動回数における摩擦係数の標準偏差を表す特性図である。It is a characteristic view showing the standard deviation of the friction coefficient in the number of reciprocating sliding.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施の形態に係る摺動部品の構成を表すものである。この摺動部品10は、外周に曲面の摺動面11を有するものであり、この摺動面11は、切削工具に超音波を重畳させて旋盤切削加工した加工面により構成されている。摺動面11は、例えば、円柱面であり、直径の異なる複数の円柱面を有していてもよい。また、円錐面や円錐台の側面のように少なくとも一部がテーパー状となっていてもよい。   FIG. 1 shows a configuration of a sliding component according to an embodiment of the present invention. This sliding component 10 has a curved sliding surface 11 on the outer periphery, and this sliding surface 11 is constituted by a machining surface obtained by lathe cutting by superposing ultrasonic waves on a cutting tool. The sliding surface 11 is, for example, a cylindrical surface, and may have a plurality of cylindrical surfaces having different diameters. Moreover, at least a part may be tapered like a conical surface or a side surface of a truncated cone.

このように、切削加工の際に、加工工具に超音波を重畳させる加工方法は、超音波切削加工法として知られている。超音波切削加工法では、加工刃を超音波振動させ、加工刃が被切削物に周期的に作用することで加工がなされる。そのため、常時刃先が被切削物に接触したまま加工が進む慣行の切削方法に比較し、加工部位の発熱が抑制され切削工具への負荷も軽減され、また切削時の応力が刃先に集中し被切削物へのダメージも低いという優れた特徴があり、硬度の高い難削材の加工に適している。   As described above, a machining method in which ultrasonic waves are superimposed on a machining tool at the time of cutting is known as an ultrasonic cutting method. In the ultrasonic cutting method, the machining blade is ultrasonically vibrated, and machining is performed by the machining blade periodically acting on the workpiece. Therefore, compared with the conventional cutting method in which machining is performed while the cutting edge is always in contact with the workpiece, heat generation at the machining site is suppressed, the load on the cutting tool is reduced, and stress during cutting is concentrated on the cutting edge. It has an excellent feature that the damage to the cut object is low, and it is suitable for processing difficult-to-cut materials with high hardness.

しかし、超音波切削加工法では、切削速度を30m/min程度に遅くした場合には、上述したように優れた効果を得ることができるが、汎用旋盤加工の一般的切削速度、例えば150m/min〜250m/mindと速くすると、加工刃が被切削物から離れないので、常時刃先が被削物に接触したまま加工が進む慣行の切削方法と変わらなくなり、超音波を重畳する効果は発揮されないと言われてきた。そのため、超音波切削加工法は切削速度を速くすることができず、生産効率が悪く、数多く加工するような生産には利用されていなかった。   However, in the ultrasonic cutting method, when the cutting speed is slowed down to about 30 m / min, an excellent effect can be obtained as described above, but a general cutting speed of general-purpose lathe processing, for example, 150 m / min. If the speed is as fast as ˜250 m / min, the machining blade does not move away from the workpiece, so the cutting method is not different from the conventional cutting method in which machining always proceeds while the cutting edge is in contact with the workpiece, and the effect of superimposing ultrasonic waves is not exhibited. I have been told. For this reason, the ultrasonic cutting method cannot increase the cutting speed, has low production efficiency, and has not been used for production in which many machinings are performed.

ところが、発明者等の研究成果(原圭祐,磯部浩已,佐藤拓郎,佐藤守穂「超音波振動援用高速切削に関する研究(第4報)−電磁ステンレス鋼の高速振動切削−」2014年度精密工学会秋季大会学術講演会講演論文集 p.625−626(2014))によれば、外周に曲面の摺動面11を有する摺動部品10について、摺動面11を切削工具に超音波を重畳させて旋盤切削加工する場合に、切削速度を例えば150m/min〜250m/minと速くし、加工刃が被切削物から離れないと言われていた切削速度にしても超音波振動力を高めることにより、低い切削速度で超音波を重畳した場合と同様の効果を得ることができる。このように、超音波切削方法によれば、切削速度に関わらず、切削工具が被切削物に超音波振動により周期的に作用するため、加工面には、周期的なテクスチャーが必然的に形成されることが分かった。   However, the research results of the inventors etc. (Yusuke Hara, Hiroshi Isobe, Takuro Sato, Moriho Sato “Study on Ultrasonic Vibration Assisted High Speed Cutting (4th Report) —High Speed Vibration Cutting of Electromagnetic Stainless Steel”) According to the Academic Conference Autumn Meeting Annual Conference Proceedings, p. 625-626 (2014)), for the sliding component 10 having the curved sliding surface 11 on the outer periphery, the sliding surface 11 is superposed on the cutting tool. When turning a lathe, the cutting speed is increased to, for example, 150 m / min to 250 m / min, and the ultrasonic vibration force is increased even at the cutting speed at which the processing blade is said not to be separated from the workpiece. Thus, the same effect as that obtained when superposing ultrasonic waves at a low cutting speed can be obtained. Thus, according to the ultrasonic cutting method, regardless of the cutting speed, since the cutting tool periodically acts on the workpiece by ultrasonic vibration, a periodic texture is inevitably formed on the processed surface. I found out that

図2に、SUS304、直径11mmの円柱状部材について、超音波を重畳しない慣行の旋盤切削法で切削した時の加工面の顕微鏡写真と、同じ材料を、超音波旋盤切削法で切削した時の加工面の顕微鏡写真を比較して示す。また、図3に、この加工面の切削加工方向の凹凸を測定した結果を示す。図2に示したように、慣行法ではほぼ平坦な連続した切削痕が続いているが、超音波旋盤切削法では、形状とピッチが制御された綺麗なテクスチャーが形成されている。具体的には、超音波旋盤切削法による摺動面11には、螺旋状に連続する帯状の切削加工痕が形成され、この切削加工痕には、円周方向、すなわち切削方向に凹凸が繰り返し形成されている。   FIG. 2 shows a micrograph of a processed surface of SUS304, a cylindrical member having a diameter of 11 mm, which is cut by a conventional lathe cutting method without superimposing ultrasonic waves, and when the same material is cut by an ultrasonic lathe cutting method. The micrographs of the processed surfaces are compared and shown. FIG. 3 shows the result of measuring the unevenness of the machined surface in the cutting direction. As shown in FIG. 2, the conventional method has a continuous cutting trace that is almost flat, but the ultrasonic lathe cutting method forms a beautiful texture with a controlled shape and pitch. Specifically, a strip-shaped cutting trace that is continuous in a spiral shape is formed on the sliding surface 11 by an ultrasonic lathe cutting method, and the cutting trace is repeatedly uneven in the circumferential direction, that is, the cutting direction. Is formed.

このテクスチャーは、超音波旋盤切削法で加工すれば、加工と同時に形成される。また、この超音波旋盤切削法により形成されたテクスチャーは、油溜まりとして作用すると考えられ、これにより摺動面11の摩擦係数が小さくなり、耐摩耗性が向上する。テクスチャーの高さや深さは振幅と切込量を変えることで、ピッチは超音波振動数と切削速度の組み合わせで、それぞれ最適の値に容易に制御形成できる。このようにして形成したテクスチャー面を油潤滑摺動面とした場合、テクチャーが良好な油溜まりとして機能し、摩擦力低減に大きく寄与する。なお、摩擦力は、例えば、次のようにして測定できる。   This texture is formed at the same time as processing if processed by an ultrasonic lathe cutting method. Further, it is considered that the texture formed by this ultrasonic lathe cutting method acts as an oil sump, thereby reducing the friction coefficient of the sliding surface 11 and improving the wear resistance. By changing the amplitude and depth of cut for the height and depth of the texture, the pitch can be easily controlled and formed to an optimum value by a combination of the ultrasonic frequency and cutting speed. When the textured surface thus formed is an oil-lubricated sliding surface, the texture functions as a good oil reservoir and greatly contributes to reducing the frictional force. The frictional force can be measured as follows, for example.

摩擦力は、例えば、図4に示した装置により測定することができる。具体的には、例えば、ステージ21が配設された測定容器22に潤滑油23を満たし、ステージに摺動部品10を固定して、測定子24を摺動面11に当てて測定子24に垂直静荷重(N)を加え、この状態で摺動部品10が固定されていえるステージ21を往復運動させ、ロードセルにより摩擦力(F)を求める。なお、摩擦の大きさを表す、摩擦係数(μ)は垂直静荷重(N)及び摩擦力(F)から下記式1で求められる。
(式1) μ=F÷N
The frictional force can be measured by, for example, the apparatus shown in FIG. Specifically, for example, the measurement container 22 in which the stage 21 is disposed is filled with the lubricating oil 23, the sliding component 10 is fixed to the stage, and the measuring element 24 is applied to the sliding surface 11 to the measuring element 24. A vertical static load (N) is applied, and the stage 21 that can be said to be fixed while the sliding component 10 is fixed in this state is reciprocated to obtain the frictional force (F) by the load cell. In addition, the friction coefficient (μ) representing the magnitude of friction is obtained by the following formula 1 from the vertical static load (N) and the friction force (F).
(Formula 1) μ = F ÷ N

摺動部品10は、例えば、金属材料により構成され、耐摩耗性の高い硬い材料により構成されることが好ましい。例えば、ソレノイドバルブの芯材等の摺動部品10では、耐摩耗性の高い硬い材料として、鉄コバルト系の電磁ステンレス鋼KM−38、KM−45(東北特殊鋼(株))等が使用される。硬い材料は加工が難しいが、超音波旋盤切削法によれば、比較的容易に所望の形状に加工をすることができる。   The sliding component 10 is preferably made of, for example, a metal material and is made of a hard material having high wear resistance. For example, in the sliding part 10 such as a solenoid valve core, iron-cobalt electromagnetic stainless steels KM-38 and KM-45 (Tohoku Special Steel Co., Ltd.) are used as hard materials having high wear resistance. The Hard materials are difficult to process, but according to the ultrasonic lathe cutting method, it can be processed into a desired shape relatively easily.

超音波旋盤切削法で摺動部品を加工する効果を纏めると以下のようになる。
(1)耐摩耗性の高い難削材が使えるので、表面硬化のための後処理が不要となる。
(2)形状加工と同時に油溜まりの役割をする、テクスチャーが形成できる。
(3)油溜まりとなるテクスチャーを規則的に形成でき、摺動抵抗低減効果が大きい。
(4)テクスチャーのピッチ、高さや深さを容易に最適の値に制御できる。
このように、本実施の形態によれば、高精度加工、高耐摩耗性、低摺動抵抗の、高性能の摺動部品を生産性高く提供できるようになる。よって、摺動部品となる材料を超音波旋盤切削法で所望の形状に加工すれば、そのまま摺動特性に優れた摺動部品として実用に供することができる。
The effects of machining sliding parts by the ultrasonic lathe cutting method are summarized as follows.
(1) Since difficult-to-cut materials with high wear resistance can be used, post-treatment for surface hardening becomes unnecessary.
(2) It is possible to form a texture that functions as an oil reservoir simultaneously with shape processing.
(3) The texture which becomes an oil sump can be formed regularly, and the sliding resistance reduction effect is large.
(4) The texture pitch, height and depth can be easily controlled to optimum values.
As described above, according to the present embodiment, it is possible to provide a high-performance sliding component having high precision processing, high wear resistance, and low sliding resistance with high productivity. Therefore, if a material to be a sliding part is processed into a desired shape by an ultrasonic lathe cutting method, it can be put to practical use as a sliding part having excellent sliding characteristics.

SUS304、直径11mmの円柱状部材を用意し、超音波を重畳しない通常慣用切削法と超音波旋盤切削法とでそれぞれ切削加工を行い、摺動部品10を得た。各切削法における条件を表1に示す。   A cylindrical member having a diameter of SUS304 and a diameter of 11 mm was prepared, and a cutting part 10 was obtained by cutting each of the normal and conventional lathe cutting methods without superimposing ultrasonic waves. Table 1 shows the conditions in each cutting method.

得られた摺動部品10の摺動面11の光学顕微鏡写真は図2に示した通りであり、摺動面11の切削方向における表面粗さの測定結果は図3に示した通りである。図2及び図3に示したように、超音波旋盤切削法により加工した摺動面11には、特有の規則性の高いテクスチャーが形成されていた。   The optical micrograph of the sliding surface 11 of the obtained sliding component 10 is as shown in FIG. 2, and the measurement result of the surface roughness in the cutting direction of the sliding surface 11 is as shown in FIG. As shown in FIGS. 2 and 3, a unique regular texture was formed on the sliding surface 11 processed by the ultrasonic lathe cutting method.

また、得られた摺動部品10について、図4に示したようにして摩擦力を測定した。測定装置には、トライボマスターTypeμV1000を使用し、摺動部品10を横にして潤滑油23に浸漬し、両端をステージ21に固定し、測定子24には、端面を研磨したSUS303よりなる直径4mmの円柱状棒を用い、端面を摺動面11に当てて垂直に立て、垂直静荷重4.9Nを加え、ステージを10mm/secの速度で往復運動をさせた。摩擦力はステージ移動時の力をロードセルにより求めた。また、垂直荷重と得られた摩擦力から摩擦係数を求めた。   Further, the frictional force of the obtained sliding component 10 was measured as shown in FIG. As the measuring device, a tribomaster Type μV1000 is used, the sliding part 10 is immersed in the lubricating oil 23 with the sliding part 10 on its side, both ends are fixed to the stage 21, and the measuring element 24 has a diameter of 4 mm made of SUS303 whose end face is polished. The columnar bar was used, the end face was placed vertically against the sliding surface 11, a vertical static load of 4.9 N was applied, and the stage was reciprocated at a speed of 10 mm / sec. The frictional force was obtained with the load cell when moving the stage. In addition, the friction coefficient was obtained from the vertical load and the obtained friction force.

図5から図9に得られた結果を示す。図5は、試験時間が55秒〜75秒までの摩擦係数の測定データを示すものであり、図6は、試験時間が470秒〜490秒までの摩擦係数の測定データを示すものである。なお、摩擦係数の正負は、往復すべり運動における摩擦力の作用方向に対応している。図7は、往復摺動回数における摩擦係数の変化を示すものであり、図8は、往復摺動回数における摩擦係数の変動率を示すものであり、図9は、往復摺動回数における摩擦係数の標準偏差を示すものである。なお、図7に示した摩擦係数は、各回摺動時の平均摩擦係数である。   The results obtained are shown in FIGS. FIG. 5 shows the friction coefficient measurement data for the test time from 55 seconds to 75 seconds, and FIG. 6 shows the friction coefficient measurement data for the test time from 470 seconds to 490 seconds. The sign of the friction coefficient corresponds to the direction of the frictional force in the reciprocating sliding motion. FIG. 7 shows the change of the friction coefficient with the number of reciprocating slides, FIG. 8 shows the variation rate of the friction coefficient with the number of reciprocating slides, and FIG. 9 shows the friction coefficient with the number of reciprocating slides. The standard deviation is shown. In addition, the friction coefficient shown in FIG. 7 is an average friction coefficient at each sliding.

図5及び図6を見れば分かるように、超音波旋盤切削法により加工した摺動部品10によれば、通常慣用切削法に比べて、すべり運動中の摩擦係数の変動が小さく、かつ、摩擦係数平均値も小さかった。また、超音波旋盤切削法により加工した摺動部品10の方が、通常慣用切削法に比べて、摩擦係数が50%以上小さかった。   As can be seen from FIGS. 5 and 6, according to the sliding component 10 machined by the ultrasonic lathe cutting method, the variation of the friction coefficient during the sliding motion is small and the frictional force is smaller than that of the normal cutting method. The coefficient average value was also small. In addition, the sliding component 10 machined by the ultrasonic lathe cutting method had a friction coefficient of 50% or more smaller than that of the normal conventional cutting method.

更に、図7に示したように、超音波旋盤切削法により加工した摺動部品10によれば、200回までの往復摺動回数において、摩擦係数は安定して0.15以下と非常に小さい値であった。これに対して、通常慣用切削法では、往復摺動回数が増えると摩擦係数は大きくなり、往復摺動回数が30回を過ぎたあたりで摩擦係数は0.2を超え、更に往復摺動回数が増えると、摩擦係数は更に大きくなった後、小さくなる傾向が見られたが、0.2よりも大きな値であった。   Furthermore, as shown in FIG. 7, according to the sliding component 10 machined by the ultrasonic lathe cutting method, the friction coefficient is stable and very small as 0.15 or less in the number of reciprocating sliding up to 200 times. Value. On the other hand, in the normal cutting method, the coefficient of friction increases as the number of reciprocating slides increases, and the coefficient of friction exceeds 0.2 when the number of reciprocating slidings exceeds 30. As the frictional force increased, the friction coefficient tended to decrease after increasing further, but was a value larger than 0.2.

加えて、図8に示したように、超音波旋盤切削法により加工した摺動部品10によれば、200回までの往復摺動回数において、摩擦係数の変動は小さく、いずれも50%以下であったのに対して、通常慣用切削法では、全体的に60%を超える場合が多く、100%を超える場合もあった。更にまた、図9に示したように、超音波旋盤切削法により加工した摺動部品10によれば、200回までの往復摺動回数において、摩擦係数の標準偏差は小さく、いずれも0.011程度であったのに対して、通常慣用切削法では、0.03を超える場合が多く、0.05を超える場合もあった。   In addition, as shown in FIG. 8, according to the sliding part 10 processed by the ultrasonic lathe cutting method, the fluctuation of the friction coefficient is small in the number of reciprocating sliding up to 200 times, and both are 50% or less. On the other hand, the usual cutting method often exceeds 60% as a whole and sometimes exceeds 100%. Furthermore, as shown in FIG. 9, according to the sliding component 10 machined by the ultrasonic lathe cutting method, the standard deviation of the friction coefficient is small in the number of reciprocating sliding operations up to 200 times, both of which are 0.011. In contrast, the conventional cutting method often exceeded 0.03 and sometimes exceeded 0.05.

以上の結果より、超音波旋盤切削法よれば、摩擦係数を安定して小さくすることができることが分かった。すなわち、超音波旋盤切削法よれば、耐摩耗性が高く、摺動抵抗が低い、優れた摺動特性を得ることができることが分かった。   From the above results, it was found that the friction coefficient can be stably reduced by the ultrasonic lathe cutting method. That is, according to the ultrasonic lathe cutting method, it was found that excellent sliding characteristics with high wear resistance and low sliding resistance can be obtained.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made.

回転運動や直線運動をする摺動部品に用いることができる。   It can be used for sliding parts that rotate or linearly move.

10…摺動部品、11…摺動面、21…ステージ、22…測定容器、23…潤滑油、24…測定子   DESCRIPTION OF SYMBOLS 10 ... Sliding component, 11 ... Sliding surface, 21 ... Stage, 22 ... Measuring container, 23 ... Lubricating oil, 24 ... Measuring element

Claims (3)

外周に曲面の摺動面を有する摺動部品であって、
前記摺動面は、切削工具に超音波を重畳させて旋盤切削加工した加工面であることを特徴とする摺動部品。
A sliding component having a curved sliding surface on the outer periphery,
The sliding part according to claim 1, wherein the sliding surface is a machined surface obtained by lathe cutting by superposing ultrasonic waves on a cutting tool.
前記摺動面は、螺旋状に連続する帯状の切削加工痕を有し、この切削加工痕には、円周方向に凹凸が繰り返し形成されていることを特徴とする請求項1記載の摺動部品。   The sliding surface according to claim 1, wherein the sliding surface has a strip-shaped cutting trace that is continuous in a spiral shape, and irregularities are repeatedly formed in the circumferential direction on the cutting trace. parts. 外周に曲面の摺動面を有する摺動部品の製造方法であって、
前記摺動面を、切削工具に超音波を重畳させて旋盤切削加工により加工することを特徴とする揺動部品の製造方法。
A manufacturing method of a sliding component having a curved sliding surface on the outer periphery,
A method of manufacturing an oscillating component, characterized in that the sliding surface is machined by a lathe cutting process with ultrasonic waves superimposed on a cutting tool.
JP2016001406A 2015-01-09 2016-01-06 Slide component and its manufacturing method Pending JP2016130581A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015014754 2015-01-09
JP2015014754 2015-01-09

Publications (1)

Publication Number Publication Date
JP2016130581A true JP2016130581A (en) 2016-07-21

Family

ID=56415779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001406A Pending JP2016130581A (en) 2015-01-09 2016-01-06 Slide component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2016130581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109958710A (en) * 2017-12-25 2019-07-02 米巴精密零部件(中国)有限公司 For sliding bearing sleeve or the method and apparatus of bearing shell
CN113894498A (en) * 2021-10-28 2022-01-07 山东大学 Micro-nano texture guide rail and method based on ultrasonic rolling and femtosecond laser processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020293B1 (en) * 1970-12-29 1975-07-14
JPS62140701A (en) * 1985-12-16 1987-06-24 Junichiro Kumabe Superposed vibration cutting method
JP2006026778A (en) * 2004-07-14 2006-02-02 Honda Motor Co Ltd Sliding surface formation method and sliding surface shape in sliding member
JP2007044849A (en) * 2005-08-12 2007-02-22 Utsunomiya Univ Cutting method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5020293B1 (en) * 1970-12-29 1975-07-14
JPS62140701A (en) * 1985-12-16 1987-06-24 Junichiro Kumabe Superposed vibration cutting method
JP2006026778A (en) * 2004-07-14 2006-02-02 Honda Motor Co Ltd Sliding surface formation method and sliding surface shape in sliding member
JP2007044849A (en) * 2005-08-12 2007-02-22 Utsunomiya Univ Cutting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
原圭祐,橋階大輔,小岩俊彦,磯部浩巳,岳将士: "超音波振動援用高速切削に関する研究(第2報)−SUS304における加工面・構成刃先に及ぼす振動の効果", 2013年度精密工学会春季大会学術講演会講演論文集, JPN6017026392, 2013, JP, pages 117 - 118, ISSN: 0003877115 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109958710A (en) * 2017-12-25 2019-07-02 米巴精密零部件(中国)有限公司 For sliding bearing sleeve or the method and apparatus of bearing shell
CN113894498A (en) * 2021-10-28 2022-01-07 山东大学 Micro-nano texture guide rail and method based on ultrasonic rolling and femtosecond laser processing
CN113894498B (en) * 2021-10-28 2022-07-29 山东大学 Micro-nano texture guide rail and method based on ultrasonic rolling and femtosecond laser processing

Similar Documents

Publication Publication Date Title
Kumar et al. Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process
Hashimoto et al. Abrasive fine-finishing technology
Mulik et al. Magnetic abrasive finishing of hardened AISI 52100 steel
Akkurt Comparison of roller burnishing method with other hole surface finishing processes applied on AISI 304 austenitic stainless steel
Jang et al. Deburring microparts using a magnetorheological fluid
Horsch et al. Deburring and surface conditioning of micro milled structures by micro peening and ultrasonic wet peening
Das et al. Effect of manual grinding operations on surface integrity
Grzesik et al. Comparison of surface textures produced by finish cutting, abrasive and burnishing operations in terms of their functional properties
KR102173928B1 (en) Method of surface treatment of metal products and metal products
JP2016130581A (en) Slide component and its manufacturing method
KR20130092606A (en) Method of polishing the diamond-surface
Dehghanghadikolaei et al. Abrasive machining techniques for biomedical device applications
Abdullah et al. Profile wear of resin-bonded nickel-coated diamond wheel and roughness in creep-feed grinding of cemented tungsten carbide
Dehghanghadikolaei et al. Abrasive flow finishing of stainless steel 304 biomedical devices
Chaudhari et al. Experimental analyses into dry ultrasonic vibration-assisted grinding of difficult-to-machine tool steel with alumina wheel
RU2423220C1 (en) Method of combined processing by grinding and surface plastic deformation
Dashti et al. A review on surface roughness (Ra) ranges for some finishing processes
Mabuchi et al. High precision turning of hardened steel by use of PcBN insert sharpened with short pulse laser
JP5903689B2 (en) High frequency vibration internal grinding machine
Baron Magnetic abrasive deburring technology for blanks
Moravčíková Cutting material influence on the quality of the machined surface
Bulla et al. Influence of different steel alloys on the machining results in ultrasonic assisted diamond turning
Grigoriev et al. Characterization of microrelief forming on the hardened steel surface with ultrasonic reinforcing burnishing processing
Feng et al. Polishing investigation on zirconia ceramics using magnetic compound fluid slurry
RU115706U1 (en) TOOL FOR FORMING SURFACE SURFACES WITH NANOCRYSTAL STRUCTURE ON DETAILS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170331

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170331

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180911