JP2016128796A - Flame detector - Google Patents

Flame detector Download PDF

Info

Publication number
JP2016128796A
JP2016128796A JP2015003723A JP2015003723A JP2016128796A JP 2016128796 A JP2016128796 A JP 2016128796A JP 2015003723 A JP2015003723 A JP 2015003723A JP 2015003723 A JP2015003723 A JP 2015003723A JP 2016128796 A JP2016128796 A JP 2016128796A
Authority
JP
Japan
Prior art keywords
flame
light
light receiving
signal
light reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003723A
Other languages
Japanese (ja)
Other versions
JP6526971B2 (en
Inventor
秀成 松熊
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2015003723A priority Critical patent/JP6526971B2/en
Publication of JP2016128796A publication Critical patent/JP2016128796A/en
Application granted granted Critical
Publication of JP6526971B2 publication Critical patent/JP6526971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To certainly determine the presence/absence of combustion flame on the basis of the simultaneity of time variation of a light receiving output from a plurality of light receiving units for a plurality of wavelength bands of radiation energy radiated from combustion flame.SOLUTION: A plurality of light receiving units 12a and 12b are disposed. The light receiving units 12a and 12b output light receiving signals E1 and E2 for which different wavelength bands are observed, of the radiation energy. A determination unit 15 sets, as one element for determining the presence/absence of combustion flame, the mutual correlation between the light receiving signals corresponding a predetermined period that are observed and output by the light receiving units 12a and 12b at a substantially same time. When the correlation is high, the determination unit allows flame determination based on the added light receiving signal E1, for example. When the correlation is low, the determination unit suppresses the flame determination.SELECTED DRAWING: Figure 1

Description

本発明は、有炎燃焼時のCO共鳴により発生する赤外線放射を検出して、炎の有無を判定する炎検出装置に関する。 The present invention relates to a flame detection device that detects infrared radiation generated by CO 2 resonance during flammable combustion to determine the presence or absence of a flame.

従来、有炎燃焼により発生する放射線エネルギーを検出して、炎の有無を検出する炎検出装置にあっては、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCOの共鳴放射による波長帯を含む複数の波長帯における放射線強度を検出して、それら複数の波長帯における検出値の相対比により炎の有無を検出する2波長式、3波長式等の炎検出装置や炎検出方法がよく知られている。 Conventionally, in a flame detection device that detects the presence or absence of a flame by detecting the radiation energy generated by the flammable combustion, it is generated at the time of flammable combustion in order to distinguish between a flame and an infrared radiator other than the flame. Flames of two-wavelength type, three-wavelength type, etc. that detect radiation intensity in a plurality of wavelength bands including a wavelength band by resonance emission of CO 2 and detect the presence or absence of flames by a relative ratio of detection values in the plurality of wavelength bands Detection devices and flame detection methods are well known.

ここで、従来技術における2波長式、及び、3波長式の炎検出装置について、簡単に説明する。   Here, the two-wavelength type and three-wavelength type flame detectors in the prior art will be briefly described.

図14は、燃焼炎と、その他の代表的な放射体の赤外波長域における放射線スペクトルを示す概念図であり、横軸は放射線の波長、縦軸は放射線の相対強度を示す。   FIG. 14 is a conceptual diagram showing a radiation spectrum in the infrared wavelength region of a combustion flame and other typical radiators, where the horizontal axis indicates the wavelength of the radiation and the vertical axis indicates the relative intensity of the radiation.

図14に示すように、燃焼炎のスペクトル特性100においては、COの共鳴放射により4.5μm付近の波長帯に放射線相対強度のピークがあり、また、このピーク波長の近傍に存在する特徴的な波長としては、例えば、長波長側の5.1μm付近に、放射線相対強度が低い波長帯が存在する。 As shown in FIG. 14, in the spectral characteristic 100 of the combustion flame, there is a peak of the radiation relative intensity in the wavelength band near 4.5 μm due to the resonance emission of CO 2 , and there is a characteristic that exists in the vicinity of this peak wavelength. For example, a wavelength band having a low radiation relative intensity exists in the vicinity of 5.1 μm on the long wavelength side.

なお、理論上は4.3μm帯にCOの共鳴放射による放射強度のピークがあることが知られている。しかしながら、実際に燃焼炎を観測した場合にあっては、4.4〜4.5μm付近に放射強度のピークが現れることが経験的に示されている。したがって、以下では、特に断らない限り、CO共鳴放射帯とは、4.4〜4.5μm帯を指すものとする。 Theoretically, it is known that there is a peak of radiation intensity due to resonance emission of CO 2 in the 4.3 μm band. However, when the combustion flame is actually observed, it has been empirically shown that a peak of radiation intensity appears in the vicinity of 4.4 to 4.5 μm. Therefore, hereinafter, unless otherwise specified, the CO 2 resonance radiation band refers to the 4.4 to 4.5 μm band.

そして、2波長式の炎検出装置にあっては例えば、4.4〜4.5μm付近の波長帯と、5.1μm付近の波長帯における各々の放射線エネルギーを狭帯域の光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線エネルギーを検出し、これを光電変換したうえで増幅等所定の加工を施してエネルギー量に対応する電気信号(以下、「受光信号」という)とし、上記各々の波長帯の受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定する。   In the two-wavelength flame detection device, for example, each radiation energy in the wavelength band near 4.4 to 4.5 μm and the wavelength band near 5.1 μm is converted by a narrow band optical wavelength bandpass filter. Selectively transmit (pass), detect the radiation energy by the light receiving sensor, photoelectrically convert it, and apply predetermined processing such as amplification to obtain an electrical signal corresponding to the amount of energy (hereinafter referred to as “light receiving signal”). The presence / absence of flame is determined by taking the relative ratio of the received light signal levels of the respective wavelength bands and comparing it with a predetermined threshold value.

これにより、炎以外の赤外線放射体、例えば、スペクトル特性102に示す太陽光(6000°C)等の高温放射体や、スペクトル特性104に示す300°C程度の比較的低温の放射体、スペクトル特性106に示す人体などの低温放射体等と炎との識別が可能となる。   Thereby, infrared radiators other than flames, for example, high-temperature radiators such as sunlight (6000 ° C.) shown in the spectral characteristics 102, relatively low-temperature radiators of about 300 ° C. shown in the spectral characteristics 104, spectral characteristics It becomes possible to distinguish a low-temperature radiator such as a human body shown in 106 from a flame.

また、例えば、上述した2波長に加え、COの共鳴放射帯である4.4〜4.5μm帯に対し短波長側の、例えば、3.8μm付近の波長帯における放射線エネルギーを2波長式と同様の手法で検出し、これらの3波長帯における各受光信号の相対比によって炎の有無を判定する3波長式の炎検出装置も知られており炎と炎以外の赤外線放射体との識別性能をさらに向上させている。 Further, for example, in addition to the above-described two wavelengths, the radiation energy in the wavelength band near the wavelength of 3.8 μm, for example, near the wavelength of 4.4 to 4.5 μm which is the resonance radiation band of CO 2 is a two-wavelength type. There is also known a three-wavelength flame detection device that detects the presence or absence of a flame based on the relative ratio of each received light signal in these three wavelength bands, and discriminates between the flame and an infrared radiator other than the flame. The performance is further improved.

このような炎検出装置をトンネルに設置して道路トンネル内での車両炎を監視する場合、炎検出装置を左右の両方向に検出エリアを持ち、トンネルの長手方向に沿って、隣接して配置される炎検出装置との検出エリアが相互補完的に重なるように、例えば、25m間隔又は50m間隔で連続的に配置している。また、受光素子としては例えば焦電体が利用されている。   When such a flame detection device is installed in a tunnel to monitor a vehicle flame in a road tunnel, the flame detection device has a detection area in both the left and right directions and is arranged adjacent to the longitudinal direction of the tunnel. For example, the detection areas are continuously arranged at intervals of 25 m or 50 m so that the detection areas overlap with each other. For example, a pyroelectric material is used as the light receiving element.

公昭55−33119号公報Kosho 55-33119 公昭59−34252号公報Koho 59-34252 特許第3357330号公報Japanese Patent No. 3357330

ところで、従来の炎検出装置にあっては、燃焼炎からのCOの共鳴放射による4.5μm付近の波長帯とこの波長帯を含まない例えば5.1μm付近の波長帯における放射線エネルギーによる各受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定しているが、閾値の設定如何によっては、正確に炎の有無を判断しえない場合が想定され、炎の有無をより正確に判断するためには、異なる波長帯の受光信号レベルの相対比以外の要素を取り入れて炎の有無を判断することが望まれる。 By the way, in the conventional flame detection device, each light reception by radiation energy in a wavelength band near 4.5 μm due to CO 2 resonance radiation from the combustion flame and in a wavelength band not including this wavelength band, for example, near 5.1 μm. The relative ratio of the signal levels is taken and compared with a predetermined threshold value to determine the presence or absence of flame. However, depending on the setting of the threshold value, it may be impossible to accurately determine the presence or absence of flame. In order to determine the presence / absence more accurately, it is desired to determine the presence / absence of flame by incorporating elements other than the relative ratio of the received light signal levels in different wavelength bands.

本発明は、燃焼炎から放射される放射線エネルギーの複数の波長帯について複数の受光ユニットによる受光出力の時間的変化の同時性に基づいて燃焼炎の有無を確実に判断可能とする炎検出装置を提供することを目的とする。   The present invention provides a flame detection apparatus that can reliably determine the presence or absence of a combustion flame based on the simultaneity of temporal changes in light reception output by a plurality of light receiving units for a plurality of wavelength bands of radiation energy radiated from the combustion flame. The purpose is to provide.

ここで、受光ユニットとは、光学波長フィルタと、受光素子を含む光電変換部を備えた受光センサと、該受光センサからの光電変換信号を必要に応じ適宜例えば増幅等して加工処理し受光信号として出力する電気回路を含む信号検出回路ユニットを指すものとする。   Here, the light receiving unit is a light receiving sensor including an optical wavelength filter, a photoelectric conversion unit including a light receiving element, and a photoelectric conversion signal from the light receiving sensor as necessary, for example, amplifying and processing the light receiving signal. A signal detection circuit unit including an electric circuit to be output as.

(炎検出装置)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、
各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部と、
を備えたことを特徴とする。
(Flame detection device)
The present invention is a flame detection device that detects and detects the presence or absence of a combustion flame by observing the radiation energy emitted from the combustion flame,
A plurality of light-receiving units that emit light-receiving signals observing different predetermined wavelength bands emitted from the combustion flame,
A determination unit that uses the correlation between the light reception signals for a predetermined period of time observed and output at each light receiving unit at approximately the same time as one element for determining whether or not there is a combustion flame;
It is provided with.

(受光ユニットの詳細)
1の受光ユニットは、
燃焼炎から放射される、CO共鳴放射帯域を含む所定波長帯の光を選択透過させる光学波長フィルタと、
光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子と、
を有する受光センサを備え、
他の受光ユニットは、
燃焼炎から放射される、CO共鳴放射帯域を含まない所定波長帯の光を選択透過させる光学波長フィルタと、
光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子と、
を有する受光センサを備える。
(Details of light receiving unit)
1 light receiving unit is
An optical wavelength filter that selectively transmits light of a predetermined wavelength band including a CO 2 resonance radiation band emitted from the combustion flame;
One or a plurality of light receiving elements that output light reception signals based on electrical signals obtained by photoelectrically converting light that has passed through the optical wavelength filter;
A light receiving sensor having
Other light receiving units
An optical wavelength filter that selectively transmits light of a predetermined wavelength band that does not include a CO 2 resonance radiation band, emitted from a combustion flame;
One or a plurality of light receiving elements that output light reception signals based on electrical signals obtained by photoelectrically converting light that has passed through the optical wavelength filter;
A light receiving sensor.

(受光ユニットの詳細)
受光ユニットの各々は、更に、受光センサからの電気信号から所定周波数帯域の信号成分を選択抽出する周波数選択部と、
周波数選択部から出力する信号成分を増幅する増幅部と、
を備える。
(Details of light receiving unit)
Each of the light receiving units further includes a frequency selection unit that selectively extracts a signal component of a predetermined frequency band from an electrical signal from the light receiving sensor,
An amplification unit that amplifies the signal component output from the frequency selection unit;
Is provided.

(2つの受光ユニット)
受光ユニットは、少なくとも2つ設ける。
(Two light receiving units)
At least two light receiving units are provided.

(信号振幅の相関)
判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比に基づいて燃焼炎の有無を判定する。
(Signal amplitude correlation)
The determination unit determines the presence / absence of a combustion flame based on the ratio of the signal integration values of the divided sections obtained by dividing the correlation between the received light signals into a plurality of time sections.

(信号振幅の相関による炎判断)
判断部は、各分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とする。
(Flame judgment by correlation of signal amplitude)
The determination unit determines that the light input to the light receiving unit may be due to radiation from the flame when all the ratios of the signal integration values of the respective divided sections are within a predetermined flame determination threshold range. One element.

(信号振幅の相関による炎判断の詳細)
判断部は、
複数の受光ユニットから出力された所定期間分の各受光信号E1〜Emを1以上の整数nの時間区間に分割した場合、これらn個の分割区間の各々について1の受光信号E1の信号積分値ΣE11〜ΣE1nと、同じ時間区間に対応する他の受光信号Emの積分値ΣE11〜ΣEmnの比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、
最初の時間区間の信号積分値の比R1に対し残りの時間区間の信号積分値の比R2〜Rnの全てが所定の炎判定閾範囲内にある場合は、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とする。
(Details of flame judgment by correlation of signal amplitude)
The decision part
When the light reception signals E1 to Em output from the plurality of light reception units for a predetermined period are divided into time intervals of an integer n of 1 or more, the signal integration value of one light reception signal E1 for each of these n division intervals. The ratios R1 to Rn of ΣE11 to ΣE1n and the integrated values ΣE11 to ΣEmn of other received light signals Em corresponding to the same time interval are
R1 to Rn = ΣE11 / ΣEm1 to ΣE1n / ΣEmn
As sought
When all of the signal integral value ratios R2 to Rn in the remaining time interval with respect to the signal integral value ratio R1 in the first time interval are within the predetermined flame determination threshold range, the light input to the light receiving unit is flame. There is a possibility of radiation from, and it is one element of the judgment of the presence of flame.

(周波数分布の相関)
判断部は、各受光信号相互の相関を、所定期間分の各受光信号から求めたそれぞれの周波数分布を比較して判定する。
(Correlation of frequency distribution)
The determination unit determines the correlation between the received light signals by comparing the frequency distributions obtained from the received light signals for a predetermined period.

(周波数分布の相関による炎判断)
判断部は、
各受光信号相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、所定範囲の周波数の相対レベル分布を求め、
各分割区間同士の周波数相対レベル分布の積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とする。
(Flame judgment by correlation of frequency distribution)
The decision part
The correlation between each received light signal is obtained by dividing each received light signal for a predetermined period into a plurality of time intervals, and obtaining a relative level distribution of a predetermined range of frequencies,
If all the ratios of the integrated values of the frequency relative level distribution of each divided section are within the predetermined flame judgment threshold range, the light input to the light receiving unit may be due to radiation from the flame, One element.

(基本的な効果)
本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部とを備えるようにしたため、相関が高い場合は燃焼炎から放射される放射線エネルギーの時間的な変化が略一致していることから受光ユニットへ入力された光が炎からの放射による可能性有りとし、この相関を炎有り判断の1要素とすることで、燃焼炎の有無をより確実に判断し検出可能とする。
(Basic effect)
The present invention is a flame detection device that detects and detects the presence or absence of a combustion flame by observing the radiation energy emitted from the combustion flame, and receives received light signals emitted from the combustion flame and observing different predetermined wavelength bands. A plurality of light receiving units to be output, and a determination unit that uses a correlation between the respective light reception signals for a predetermined period of time observed and output at each light receiving unit as one element for determining whether or not there is a combustion flame. Therefore, if the correlation is high, the temporal changes in the radiation energy radiated from the combustion flame are approximately the same, and therefore the light input to the light receiving unit may be due to the radiation from the flame. By using one element for determining whether there is a flame, the presence or absence of a combustion flame can be more reliably determined and detected.

(受光ユニットによる効果)
また、1の受光ユニットは、燃焼炎から放射される、CO共鳴放射帯域を含む所定波長帯の光を選択透過させる光学波長フィルタと、光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子とを有する受光センサを備え、他の受光ユニットは、燃焼炎から放射される、CO共鳴放射帯域を含まない所定波長帯の光を選択透過させる光学波長フィルタと、光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子とを有する受光センサを備え、更に、受光ユニットの各々は、更に、受光センサからの電気信号から所定周波数帯域の信号成分を選択抽出する周波数選択部と、周波数選択部から出力する信号成分を増幅する増幅部とを備えることで、光電ユニットの各々は、燃焼炎から放射される、概ね4.5μmを中心波長とする帯域波長の放射線エネルギー及びこれとは異なる帯域波長の放射線エネルギーの確実に光電変換して受光信号を出力することを可能とする。
(Effects of the light receiving unit)
Further, the one light receiving unit receives an optical wavelength filter that selectively emits light in a predetermined wavelength band including a CO 2 resonance radiation band emitted from the combustion flame, and receives light transmitted through the optical wavelength filter with a light receiving element. A light receiving sensor having one or a plurality of light receiving elements for outputting a light receiving signal based on the photoelectrically converted electrical signal, and the other light receiving unit emits from the combustion flame and has a predetermined wavelength band not including a CO 2 resonance radiation band A light receiving sensor having an optical wavelength filter for selectively transmitting the light of the light, and one or a plurality of light receiving elements for outputting a light reception signal based on an electric signal obtained by photoelectrically converting the light transmitted through the optical wavelength filter. In addition, each of the light receiving units further includes a frequency selection unit that selectively extracts a signal component in a predetermined frequency band from an electrical signal from the light reception sensor, and a frequency selection unit. Each of the photoelectric units is radiated from the combustion flame and has a band wavelength radiation energy having a central wavelength of approximately 4.5 μm and a radiation having a band wavelength different from the radiation energy. It is possible to photoelectrically convert energy and output a light reception signal.

また、受光センサ内に複数の受光素子を設けることで、例えば、複数の受光素子の受光特性の相違によるばらつきを、複数の受光素子で光電変換した受光出力の加算により抑制して揃えることを可能とする。   In addition, by providing multiple light receiving elements in the light receiving sensor, for example, variations due to differences in the light receiving characteristics of the multiple light receiving elements can be suppressed and aligned by adding the light receiving outputs photoelectrically converted by the multiple light receiving elements. And

(2つの受光ユニット)
また、受光ユニットは、少なくとも2つ設けるようにすることで、判断部によって、2つの受光ユニットで略同時期に観測して出力した異なる波長帯における所定期間分の受光信号の、相互の相関を炎判断の他の1要素とすることを可能とする。
(Two light receiving units)
In addition, by providing at least two light receiving units, the determination unit can correlate the light reception signals for a predetermined period in different wavelength bands, which are observed and output by the two light receiving units at substantially the same time period. It can be used as another element of flame judgment.

(信号振幅の相関による炎判断の効果)
また、判断部は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることで、燃焼炎の有りをより確実に判断し検出することを可能とする。
(Effect of flame judgment by correlation of signal amplitude)
Further, the determination unit divides the correlation between the light reception signals into a plurality of time intervals for each of the light reception signals for a predetermined period, and all of the ratios of the signal integration values between the division intervals are within a predetermined flame determination threshold range. If it is within, the light input to the light receiving unit may be caused by radiation from the flame, and by making it one element of the presence of flame, it is possible to more reliably determine and detect the presence of a combustion flame To do.

(信号振幅の相関による炎判断詳細の効果)
また、判断部は、複数の受光ユニットから出力された所定期間分の各受光信号E1〜Emを1以上の整数nの時間区間に分割した場合、これらn個の分割区間の各々について1の受光信号E1の信号積分値ΣE11〜ΣE1nと、同じ時間区間に対応する他の受光信号Emの積分値ΣE11〜ΣEmnの比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、最初の時間区間の信号積分値の比R1に対し残りの時間区間の信号積分値の比R2〜Rnの全てが所定の炎判定閾範囲内にある場合は、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とするようにしたため、最初の時間区間の2つの受光信号E1,E2の振幅変化が概ね一致している相関を基準に、残りの時間区間の相関のずれを比較し、相関のずれが少ない場合は燃焼炎の有りを判断し検出することを可能とする。
(Effect of flame judgment details by correlation of signal amplitude)
Further, when the determination unit divides the light reception signals E1 to Em for a predetermined period output from the plurality of light reception units into time intervals of an integer n of 1 or more, one light reception is performed for each of these n division intervals. The ratios R1 to Rn of the signal integration values ΣE11 to ΣE1n of the signal E1 and the integration values ΣE11 to ΣEmn of the other received light signals Em corresponding to the same time interval,
R1 to Rn = ΣE11 / ΣEm1 to ΣE1n / ΣEmn
When all of the signal integration value ratios R2 to Rn of the remaining time interval with respect to the signal integration value ratio R1 of the first time interval are within the predetermined flame determination threshold range, the signal is input to the light receiving unit. Since there is a possibility that the light is emitted from the flame and it is set as one element of the judgment of the presence of the flame, based on the correlation in which the amplitude changes of the two light reception signals E1 and E2 in the first time interval are approximately the same, The correlation deviations in the remaining time intervals are compared, and if the correlation deviation is small, it is possible to determine and detect the presence of the combustion flame.

(周波数分布の相関による炎判断の効果)
また、判断部は、各受光信号相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、所定範囲の周波数の相対レベル分布を求め、各分割区間同士の周波数相対レベル分布の積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることで、燃焼炎の有りをより確実に判断し検出することを可能とする。
(Effect of flame judgment by correlation of frequency distribution)
In addition, the determination unit obtains a relative level distribution of a predetermined range of frequencies obtained by dividing the correlation between the respective received light signals into a plurality of time sections for each predetermined period, and the frequency relative level distribution between the divided sections. If all of the integrated value ratios are within the predetermined flame judgment threshold range, the light input to the light receiving unit may be caused by radiation from the flame, and the flame is determined as one element of the judgment of the presence of flame. It is possible to more reliably determine and detect the existence of

炎検出装置の実施形態を示したブロック図Block diagram showing an embodiment of a flame detection device 図1の炎検出装置に適用される受光ユニットの概略構成を示した説明図Explanatory drawing which showed schematic structure of the light reception unit applied to the flame detection apparatus of FIG. 図2の受光センサの等価回路を示した回路図Circuit diagram showing an equivalent circuit of the light receiving sensor of FIG. 燃焼炎の放射線スペクトルを示した特性図Characteristic diagram showing the radiation spectrum of a combustion flame 図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図The characteristic view which showed the transmittance | permeability in each wavelength of the optical wavelength filter and translucent window applied to embodiment of FIG. 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットの各々から出力される受光信号を示した信号波形図A signal waveform diagram showing a light reception signal output from each of the light reception units in FIG. 1 when the radiation energy radiated from the combustion flame is observed. 2つの受光信号の振幅変化の相関を判断する図1の判断部の処理動作の手順を示したフローチャートA flowchart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation between the amplitude changes of two light reception signals. 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットの各々から出力される受光信号の周波数分布を示した説明図Explanatory diagram showing the frequency distribution of the received light signal output from each of the light receiving units in FIG. 1 when the radiation energy radiated from the combustion flame is observed 2つの受光信号の周波数分布の相関を判断する図1の判断部の処理動作の手順を示したフローチャートA flowchart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation between the frequency distributions of two received light signals. 受光ユニットに設けた複数の受光素子からの受光信号を加算する炎検出装置の実施形態を示したブロック図The block diagram which showed embodiment of the flame detection apparatus which adds the light reception signal from the several light receiving element provided in the light reception unit 図10の受光センサの等価回路を示した回路図Circuit diagram showing an equivalent circuit of the light receiving sensor of FIG. トンネル内に設置して火災を監視する炎検出装置の他の実施形態を示したブロック図The block diagram which showed other embodiment of the flame detection apparatus which installs in a tunnel and monitors a fire 図12の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図The characteristic view which showed the transmittance | permeability in each wavelength of the optical wavelength filter and translucent window applied to embodiment of FIG. 燃焼炎と、その他の代表的な放射体の放射線スペクトルを示した特性図Characteristic diagram showing the radiation spectrum of combustion flame and other typical radiators

[炎検出装置の概要]
図1は本発明に係る炎検出装置の実施形態を機能構成により示したブロック図、図2は図1の炎検出装置に適用される受光ユニットの概略構成を示した説明図、図3は図2の受光センサの等価回路を示した回路図、図4は燃焼炎の放射線スペクトルを示した特性図、図5は図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
[Outline of flame detector]
FIG. 1 is a block diagram showing an embodiment of a flame detection apparatus according to the present invention in functional configuration, FIG. 2 is an explanatory diagram showing a schematic configuration of a light receiving unit applied to the flame detection apparatus of FIG. 1, and FIG. 4 is a circuit diagram showing an equivalent circuit of the light receiving sensor of FIG. 2, FIG. 4 is a characteristic diagram showing the radiation spectrum of the combustion flame, and FIG. 5 is each wavelength of the optical wavelength filter and translucent window applied to the embodiment of FIG. It is the characteristic view which showed the transmittance | permeability in.

図1に示すように、本実施形態の炎検出装置10は、監視領域に存在する燃焼炎から放射される図4に示すスペクトル特性50をもつ放射線エネルギーを観測するものであり、大別して、燃焼炎からCO共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E1を出力する受光ユニット12aと、燃焼炎からCO共鳴により放射される概ね4.5μmを含まない例えば概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E2を出力する受光ユニット12bと、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を燃焼炎の有無判断の1要素とする判断部15とを備える。 As shown in FIG. 1, the flame detection apparatus 10 of the present embodiment observes radiation energy having a spectral characteristic 50 shown in FIG. 4 radiated from a combustion flame existing in a monitoring region. A light receiving unit 12a for observing radiation energy in a narrow band wavelength band having a central wavelength of approximately 4.5 μm emitted from the flame by CO 2 resonance and outputting a light reception signal E1 by photoelectric conversion, and CO 2 resonance from the combustion flame A light receiving unit 12b that outputs a light reception signal E2 by photoelectric conversion by observing radiation energy in a narrow band wavelength band having a center wavelength of approximately 2.3 μm, for example, which does not include approximately 4.5 μm emitted by A determination unit 1 that uses the correlation between the received light signals E1 and E2 for a predetermined period of time observed and output at approximately the same time in 12b as one element for determining whether or not there is a combustion flame. It comprises a door.

(受光ユニット構成)
受光ユニット12aは、燃焼炎からCO共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16aと、受光センサ16aから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24aと、前置フィルタ24aを通過した信号成分を初段増幅するプリアンプ26aと、プリアンプ26aからの出力を、後述する炎判断処理に適した信号レベルに増幅して受光信号E1を出力するメインアンプ28aとで構成する。
(Light receiving unit configuration)
The light receiving unit 12a includes a light receiving sensor 16a that converts radiation energy, which is emitted from the combustion flame by CO 2 resonance and has a narrow band wavelength band having a central wavelength of approximately 4.5 μm, into an electric signal, and outputs the electric signal. The pre-filter 24a that passes only the signal component of a predetermined frequency band from the light reception signal output from the pre-amplifier 26a, the preamplifier 26a that amplifies the signal component that has passed the pre-filter 24a, and the output from the pre-amplifier 26a are described later. And a main amplifier 28a that amplifies the signal level suitable for the flame determination process and outputs the light reception signal E1.

また、受光ユニット12bは、燃焼炎からり放射される、概ね2.3μmを中心波長とする狭帯域波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16bと、受光センサ16bから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24bと、前置フィルタ24bを通過した信号成分を初段増幅するプリアンプ26bと、プリアンプ26bからの出力を、後述する炎判断処理に適した信号レベルに増幅して受光信号E2を出力するメインアンプ28bとで構成する。   In addition, the light receiving unit 12b includes a light receiving sensor 16b for converting radiation energy having a narrow band wavelength band having a center wavelength of approximately 2.3 μm, which is radiated from the combustion flame, into an electric signal, and a light receiving sensor 16b. A pre-filter 24b that passes only a signal component in a predetermined frequency band from the output light reception signal, a preamplifier 26b that amplifies the signal component that has passed through the pre-filter 24b, and an output from the preamplifier 26b will be described later. The main amplifier 28b is configured to amplify the signal level suitable for flame determination processing and output the light reception signal E2.

ここで、受光センサ16a,16bは、サファイアガラス等の赤外線透光性の部材を用いて共用する透光性窓18、光学波長フィルタ20a,20a、及び焦電型の受光素子22a,22bを備えている。   Here, the light receiving sensors 16a and 16b include a light transmissive window 18, optical wavelength filters 20a and 20a, and pyroelectric light receiving elements 22a and 22b that are shared by using an infrared light transmissive member such as sapphire glass. ing.

受光ユニット12a,12bからアンプ28a,28bを介して出力された受光信号E1、受光信号E2は、判断部15に設けたA/D変換ポート30a,30bによりデジタル受光信号に変換して読み込まれ、後述する炎判断が実行される。以下、各構成について具体的に説明する。   The light reception signals E1 and E2 output from the light reception units 12a and 12b through the amplifiers 28a and 28b are converted into digital light reception signals by the A / D conversion ports 30a and 30b provided in the determination unit 15 and read. The flame determination described later is executed. Each configuration will be specifically described below.

(受光センサ16a,16b)
受光ユニット12aに設けた受光センサ16aは、光学波長フィルタ20a、受光素子22a及び共用する透光性窓18で構成する。光学波長フィルタ20aは、図5に示すように、有炎燃焼時に発生するCO共鳴により放射される概ね4.5μmの波長帯を含む所定帯域の光のみを高い透過率で透過する透過特性54をもつ光学式のバンドパスフィルタであって、例えば、4.5μmを含み且つ、後述する他の波長帯を含まない、所定帯域の光を選択透過する。受光素子22aは焦電体とFETによる光電変換機能を備え、光学波長フィルタ20aを透過した光を受光して電気信号に変換して出力する。
(Light receiving sensors 16a and 16b)
The light receiving sensor 16a provided in the light receiving unit 12a includes an optical wavelength filter 20a, a light receiving element 22a, and a light-transmitting window 18 shared. As shown in FIG. 5, the optical wavelength filter 20a transmits only light in a predetermined band including a wavelength band of approximately 4.5 μm radiated by CO 2 resonance generated during flammable combustion with a high transmittance. An optical bandpass filter having a wavelength of, for example, selectively transmits light in a predetermined band including 4.5 μm and not including other wavelength bands described later. The light receiving element 22a has a photoelectric conversion function using a pyroelectric material and an FET, receives the light transmitted through the optical wavelength filter 20a, converts it into an electrical signal, and outputs it.

具体的には、図2に示すように、受光センサ16aは、基板36aの表面に配置された複数の焦電体25aと基板36aの裏面に配置されたFET27aを備えた受光素子22aと、基板36aを基部38a上に支持するための基板搭載部40aと、基板搭載部40a側の背面側から端子42aが延在して設けられた基部38aと、受光素子22aの前方に狭帯域バンドパスフィルタである光学波長フィルタ20aを備えたカバー部材44aとからなるパッケージ化された構成を有している。   Specifically, as shown in FIG. 2, the light receiving sensor 16a includes a plurality of pyroelectric bodies 25a disposed on the front surface of the substrate 36a and a light receiving element 22a including FETs 27a disposed on the back surface of the substrate 36a. A substrate mounting portion 40a for supporting 36a on the base portion 38a, a base portion 38a provided with a terminal 42a extending from the back side on the substrate mounting portion 40a side, and a narrow band-pass filter in front of the light receiving element 22a. And a cover member 44a provided with the optical wavelength filter 20a.

また、受光素子22aの等価回路は、図3に示すように、FET27aのゲートから例えば焦電体25と高抵抗29の並列回路を介してゲート端子Gに接続し、またFET27のドレインとソースをそれぞれドレイン端子Dとソース端子Sに接続している。   Further, as shown in FIG. 3, the equivalent circuit of the light receiving element 22a is connected to the gate terminal G from the gate of the FET 27a through, for example, a parallel circuit of the pyroelectric body 25 and the high resistance 29, and the drain and source of the FET 27 are connected. The drain terminal D and the source terminal S are connected to each other.

一方、受光センサ16bは、光学波長フィルタ20b、受光素子22b及び共用する透光性窓18で構成する。光学波長フィルタ20bは、図5に示すように、燃焼炎から放射される概ね2.3μmの波長帯を含む所定帯域の光のみを高い透過率で透過する透過特性58をもつ光学式のバンドパスフィルタであって、例えば、2.3μmを含み、CO共鳴により放射される概ね4.5μmの波長帯の波長帯を含まない、所定帯域の光を選択透過する。受光素子22bは焦電体とFETによる光電変換機能を備え、光学波長フィルタ20bを透過した光を受光して電気信号に変換して出力する。 On the other hand, the light receiving sensor 16b includes an optical wavelength filter 20b, a light receiving element 22b, and a shared light transmissive window 18. As shown in FIG. 5, the optical wavelength filter 20b is an optical bandpass having a transmission characteristic 58 that transmits only light in a predetermined band including a wavelength band of approximately 2.3 μm emitted from the combustion flame with high transmittance. For example, the filter selectively transmits light in a predetermined band that includes 2.3 μm and does not include a wavelength band of approximately 4.5 μm emitted by CO 2 resonance. The light receiving element 22b has a photoelectric conversion function using a pyroelectric material and an FET, receives the light transmitted through the optical wavelength filter 20b, converts it into an electrical signal, and outputs it.

具体的には、図2に示すように、受光センサ16bは、基板36bの表面に配置された複数の焦電体25bと基板36bの裏面に配置されたFET27bを備えた受光素子22bと、基板36bを基部38b上に支持するための基板搭載部40bと、基板搭載部40b側の背面側から端子42bが延在して設けられた基部38bと、受光素子22bの前方に狭帯域バンドパスフィルタである光学波長フィルタ20bを備えたカバー部材44bとからなるパッケージ化された構成を有している。また、受光素子22bの等価回路は、図3に示す受光素子22aと同様である。   Specifically, as shown in FIG. 2, the light receiving sensor 16b includes a plurality of pyroelectric bodies 25b disposed on the surface of the substrate 36b and a light receiving element 22b including FETs 27b disposed on the back surface of the substrate 36b. A substrate mounting portion 40b for supporting 36b on the base portion 38b, a base portion 38b provided with a terminal 42b extending from the back side on the substrate mounting portion 40b side, and a narrow band-pass filter in front of the light receiving element 22b. And a cover member 44b provided with the optical wavelength filter 20b. The equivalent circuit of the light receiving element 22b is the same as that of the light receiving element 22a shown in FIG.

また、受光センサ16a,16bは、本体カバー46内に設けられた共通の取り付け部材48上に、互いに近接して所定の配列で配置されている。   Further, the light receiving sensors 16a and 16b are arranged in a predetermined arrangement on the common attachment member 48 provided in the main body cover 46, close to each other.

ここで、光学波長フィルタ20a、20bは、例えば、シリコン、ゲルマニウム、サファイア等の基板上に、公知の方法でそれぞれ形成することができる。   Here, the optical wavelength filters 20a and 20b can be formed on a substrate such as silicon, germanium, or sapphire by a known method.

(透光性窓18)
透光性窓18は、受光センサ16a、16bが収納された本体カバー46の監視エリア側に相当する上面側であって、受光センサ16a、16bの前面側に設けた所定の開口部に配置し、例えば、サファイアガラス等の赤外線透光性の部材により形成している。このため受光素子22a、22bは、各々の受光限界視野が透光性窓20a,20bの縁辺部で規制されることにより、略同一の拡がり角度を有する検知エリアが設定される。
(Translucent window 18)
The translucent window 18 is arranged on a predetermined opening provided on the front side of the light receiving sensors 16a and 16b on the upper surface side corresponding to the monitoring area side of the main body cover 46 in which the light receiving sensors 16a and 16b are accommodated. For example, it is formed of an infrared translucent member such as sapphire glass. For this reason, in the light receiving elements 22a and 22b, detection areas having substantially the same spread angle are set by restricting the respective light receiving limit fields of view at the edge portions of the translucent windows 20a and 20b.

ここで、透光性窓48を構成するサファイアガラスは、図5に示すように、概ね7.0μm付近以下の波長帯の放射線を良好に透過するショートウェーブパス特性52、換言すれば、概ね7.0μm付近より長波長の放射線を遮断するロングウェーブカット特性を有するフィルタ部材として機能する。また、本実施形態にあっては、透光性窓18は共用部材として、受光センサ16a,16bに含まれるものとして説明する。   Here, the sapphire glass constituting the translucent window 48 is, as shown in FIG. 5, a short wave path characteristic 52 that transmits light in a wavelength band of approximately 7.0 μm or less, in other words, approximately 7 in general. Functions as a filter member having a long wave cut characteristic that blocks radiation having a wavelength longer than about 0.0 μm. Moreover, in this embodiment, the translucent window 18 is demonstrated as what is contained in the light reception sensors 16a and 16b as a shared member.

(受光センサ16a,16この波長透過特性)
図5は、図1の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Light receiving sensor 16a, 16 wavelength transmission characteristics)
FIG. 5 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and translucent window applied to the embodiment of FIG.

図1の透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性52と、光学波長フィルタ20aを構成する、概ね4.5μm付近を中心波長とするバンドパスフィルタの、当該中心波長近傍の波長帯の放射線エネルギーを高い透過率で透過する透過率特性54との組合せにより、概ね4.5μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性56を狭帯域バンドパスフィルタを構成する。   The sapphire glass, which is the translucent window 18 in FIG. 1, has a short wave path characteristic 52 that allows good transmission of radiation of about 7.0 μm or less, and an optical wavelength filter 20a, and has a central wavelength of about 4.5 μm. The band pass filter transmits a radiation energy in a wavelength band of approximately 4.5 μm with a high transmittance by combining with a transmittance characteristic 54 that transmits a radiation energy in a wavelength band near the center wavelength with a high transmittance. The transmission characteristic 56 constitutes a narrow band-pass filter.

また、透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性52と、光学波長フィルタ20aを構成する、概ね2.3μm付近を中心波長とするバンドパスフィルタの、当該中心波長近傍の波長帯の放射線エネルギーを高い透過率で透過する透過率特性58との組合せにより、概ね2.3μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性60をもつ狭帯域バンドパスフィルタを構成する。   Further, the sapphire glass that is the light-transmitting window 18 has a short wave path characteristic 52 that allows good transmission of radiation of approximately 7.0 μm or less and a wavelength around 2.3 μm that constitutes the optical wavelength filter 20a. In combination with the transmission characteristic 58 that transmits the radiation energy in the wavelength band near the center wavelength of the band-pass filter with a high transmittance, the transmission that transmits the radiation energy in the wavelength band of approximately 2.3 μm with a high transmittance. A narrow-band bandpass filter having the characteristic 60 is constructed.

(前置フィルタ24a、24b)
前置フィルタ24a、24bは、周波数選択部として機能し、受光センサ16a,16bの受光素子22a、22bの各々から出力される受光信号から、炎判断処理に用いられる特定の周波数帯域の信号成分のみを通過させる例えばアクティブフィルタであり、後段のプリアンプ26a、26bに特定の周波数帯域の信号成分を含む受光信号を出力する。
(Pre-filters 24a and 24b)
The pre-filters 24a and 24b function as a frequency selection unit, and only the signal components in a specific frequency band used for the flame determination process from the light-receiving signals output from the light-receiving elements 22a and 22b of the light-receiving sensors 16a and 16b. For example, an active filter that outputs a light receiving signal including a signal component in a specific frequency band to the preamplifiers 26a and 26b in the subsequent stage.

(プリアンプ26a、26bとメインアンプ28a、28b)
プリアンプ26a、26bは、前置フィルタ24a、24bを介して入力される受光信号を所定の増幅率で初段増幅し、メインアンプ28a,28bは、プリアンプ26a、26bからの各受光信号を、後述する炎判断処理に適した信号レベルに増幅し、受光信号E1,E2として出力する。
(Preamplifiers 26a and 26b and main amplifiers 28a and 28b)
The preamplifiers 26a and 26b amplify the light reception signals input via the pre-filters 24a and 24b at a first stage with a predetermined amplification factor, and the main amplifiers 28a and 28b describe the light reception signals from the preamplifiers 26a and 26b, which will be described later. Amplified to a signal level suitable for flame determination processing and output as light reception signals E1 and E2.

(A/D変換ポート30a,30b)
A/D変換ポート30a、30bは判断部15の入力ポートとして設けたA/D変換器であり、受光信号(アナログ受光信号)E1,E2を判断部15のデジタル処理に適したデジタル信号に変換して読み込む。
(A / D conversion ports 30a, 30b)
The A / D conversion ports 30 a and 30 b are A / D converters provided as input ports of the determination unit 15, and convert the light reception signals (analog light reception signals) E 1 and E 2 into digital signals suitable for the digital processing of the determination unit 15. And read.

(判断部15)
判断部15は、ハードウェアとして、CPU、メモリ、A/D変換ポート30a,30bを含む各種の入出力ポート等を備えたマイクロプロセッサユニット(MPU)等で構成する。また、判断部15は、CPUによるプログラムの実行により炎判断の制御機能を実現する。
(Judgment unit 15)
The determination unit 15 includes a microprocessor, a microprocessor unit (MPU) including various input / output ports including a CPU, a memory, and A / D conversion ports 30a and 30b as hardware. The determination unit 15 realizes a flame determination control function by executing a program by the CPU.

判断部15は、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を燃焼炎の有無判断の1要素とする制御を行う。   The determination unit 15 performs control using the correlation between the light reception signals E1 and E2 for a predetermined period of time observed and output by the light reception units 12a and 12b as one element for determining the presence or absence of the combustion flame.

即ち、判断部15は、受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を求め、相互の相関が所定基準を充足する場合は、受光ユニット12a,12bへ入力された光が炎からの放射による可能性有りとし、炎有りの1要素として、炎の有無を判断し検出する制御を行う。   That is, the determination unit 15 obtains a mutual correlation between the light reception signals E1 and E2 for a predetermined period observed and output by the light reception units 12a and 12b at approximately the same period, and when the mutual correlation satisfies a predetermined standard, The light input to the light receiving units 12a and 12b is assumed to have a possibility of radiation from the flame, and as one element with the flame, control is performed to determine and detect the presence or absence of the flame.

(受光信号E1,E2の、相互の相関による炎判断)
判断部15による受光ユニット12a,12bで略同時期に観測して出力した所定期間分の受光信号E1,E2の、相互の相関を求めて行う炎判断の詳細を説明すると次のようになる。
(Flame judgment based on the correlation between the received light signals E1 and E2)
The details of the flame determination performed by obtaining the correlation between the light reception signals E1 and E2 for a predetermined period of time observed and output by the light reception units 12a and 12b by the determination unit 15 are described as follows.

図6は燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニット12aから出力される4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーによる受光信号E1と、受光ユニット12bから出力される2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーによる受光信号E2を示しており、受光信号E1に対し受光信号E2はレベルの低い相似した波形となっている。   FIG. 6 shows a light reception signal E1 based on radiation energy in a narrow band wavelength band having a center wavelength of 4.5 μm, which is output from the light receiving unit 12a of FIG. 1 when the radiation energy radiated from the combustion flame is observed, and the light receiving unit 12b. 2 shows a light reception signal E2 by radiation energy in a narrow band wavelength band having a center wavelength of 2.3 μm output from the light reception signal E2, and the light reception signal E2 has a similar waveform with a low level with respect to the light reception signal E1.

また、図6に示す受信信号E1,E2の信号波形は、判断部15に設けたA/D変換ポート30a,30bで、各受光信号E1,E2を例えば64Hzでサンプリングしてデジタル受光信号に変換し、1回の相関演算の対象として所定期間T=2秒の受光信号E1,E2をバッファメモリに一時的に記憶した状態を、アナログ波形として示している。   In addition, the signal waveforms of the received signals E1 and E2 shown in FIG. 6 are converted into digital received light signals by sampling the received light signals E1 and E2 at, for example, 64 Hz at the A / D conversion ports 30a and 30b provided in the determination unit 15. A state in which the received light signals E1 and E2 for a predetermined period T = 2 seconds are temporarily stored in the buffer memory as a target of one correlation calculation is shown as an analog waveform.

判断部15は、所定期間T=2秒を、例えば500ミリ秒の4つの時間区間T1,T2,T3,T4に分割し、受光信号E1,E2の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値として、受光信号E1について、各時間区間T1〜T4の積分値ΣE11,ΣE12,ΣE13,ΣE14を求め、また、受光信号E2について、各時間区分T1〜T4の積分値ΣE21,ΣE22,ΣE23,ΣE24を求める。   The determination unit 15 divides the predetermined period T = 2 seconds into, for example, four time intervals T1, T2, T3, and T4 of 500 milliseconds, and plus and minus from the reference potential that is the midpoint of the light reception signals E1 and E2. Integral values ΣE11, ΣE12, ΣE13, ΣE14 of the time intervals T1 to T4 are obtained for the light reception signal E1 as an integral value that is an absolute value of the difference from the amplitude on the side, and each time interval T1 for the light reception signal E2 Integral values ΣE21, ΣE22, ΣE23, and ΣE24 of ˜T4 are obtained.

次いで、判断部15は、同じ時間区間T1〜T4同士の各々について、受光信号E1の信号積分値ΣE11,ΣE12,ΣE13,ΣE14と、受光信号E2の積分値ΣE21ΣE22,ΣE23,ΣE24の比R1,R2,R3,R4を、
R1=ΣE11/ΣE21 式(1)
R2=ΣE12/ΣE22 式(2)
R3=ΣE13/ΣE23 式(3)
R4=ΣE14/ΣE24 式(4)
として求め、これを受光信号E1,E2の、相互の相関とする。
Next, for each of the same time intervals T1 to T4, the determination unit 15 compares the ratio R1, R2 of the signal integration values ΣE11, ΣE12, ΣE13, ΣE14 of the light reception signal E1 and the integration values ΣE21ΣE22, ΣE23, ΣE24 of the light reception signal E2. , R3, R4,
R1 = ΣE11 / ΣE21 Formula (1)
R2 = ΣE12 / ΣE22 Formula (2)
R3 = ΣE13 / ΣE23 Formula (3)
R4 = ΣE14 / ΣE24 Formula (4)
And this is taken as the correlation between the received light signals E1 and E2.

受光信号E1,E2の相互の相関を判断するため、判断部15は、最初の時間区間T1の積分値の比R1に基づき、下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定する。   In order to determine the correlation between the received light signals E1 and E2, the determination unit 15 sets a flame determination threshold range having a lower limit threshold TH1 and an upper limit threshold TH2 based on the ratio R1 of the integral values of the first time interval T1.

判断部15は、下限閾値TH1及び上限閾値Th2を、最初の時間区間T1の比R1に対し例えば±10%の上限と下限の閾値TH1、TH2を、TH1=0.9・R1、TH2=1.1・R1として炎判定閾範囲を設定する。これを一般的に表現すると、最初の区間T1の信号積分値の比R1に、1未満の所定の定数αを乗じて下限閾値TH1(=α・R1)を設定すると共に、1を超える所定の定数βを乗じて上限閾値TH2(=β・R1)を設定ことを意味し、係数α,βの値は必要に応じて適宜の値が設定可能である。   The determination unit 15 sets the lower limit threshold TH1 and the upper limit threshold Th2 to the upper and lower thresholds TH1 and TH2 of, for example, ± 10% with respect to the ratio R1 of the first time interval T1, and TH1 = 0.9 · R1, TH2 = 1. Set the flame judgment threshold range as .1 · R1. Generally expressing this, the lower limit threshold TH1 (= α · R1) is set by multiplying the ratio R1 of the signal integral value in the first interval T1 by a predetermined constant α less than 1, and a predetermined value exceeding 1 This means that the upper limit threshold TH2 (= β · R1) is set by multiplying by a constant β, and the values of the coefficients α and β can be set as appropriate.

このように下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定した場合、判断部15は、次の条件の成立の有無を判定する。
0.9R1≦R2≦1.1R1 式(5)
0.9R1≦R3≦1.1R1 式(6)
0.9R1≦R4≦1.1R1 式(7)
判断部15は、前記式(5)〜(7)の全ての条件の成立を判定した場合、即ち、最初の時間区間T1の信号積分値の比R1に対し、残りの時間区間T2〜T4の全ての信号積分値の比R2〜R4が所定の炎判定閾範囲内にある場合、受光信号E1,E2の振幅波形が概ね相似し、受光ユニット12a,12bは共に燃焼炎からの放射線エネルギーをそれぞれ異なる波長帯で観測していると推定できることから、この場合に、炎有りの判断の1要素とし、例えば燃焼炎からCO共鳴により放射される4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーによる十分な振幅レベルを持つ受光信号E1に基づく炎判断を許容する。
When the flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2 is set as described above, the determination unit 15 determines whether or not the following condition is satisfied.
0.9R1 ≦ R2 ≦ 1.1R1 Formula (5)
0.9R1 ≦ R3 ≦ 1.1R1 Formula (6)
0.9R1 ≦ R4 ≦ 1.1R1 Formula (7)
When the determination unit 15 determines that all the conditions of the expressions (5) to (7) are satisfied, that is, the signal integration value ratio R1 of the first time interval T1 is the remaining time intervals T2 to T4. When the ratios R2 to R4 of all the signal integration values are within a predetermined flame determination threshold range, the amplitude waveforms of the light reception signals E1 and E2 are substantially similar, and the light reception units 12a and 12b both receive radiation energy from the combustion flame. Since it can be estimated that the observation is performed in a different wavelength band, in this case, as one element of the determination of the presence of a flame, for example, a narrow band wavelength band having a central wavelength of 4.5 μm radiated from the combustion flame by CO 2 resonance. The flame determination based on the light reception signal E1 having a sufficient amplitude level due to the radiation energy is allowed.

この場合の受光信号E1による炎判断として、判断部15は、例えば受光信号E1から高速フーリエ変換(FFT)等の演算方法により周波数分布を求め、炎固有のゆらぎ周波数を含む例えば8Hz以下の周波数分布の積分値を求め、この積分値が所定の閾値以上の場合に、炎の可能性ありと判断し、更に他の炎判断の要素を考慮して炎と判断する処理を行う。   In this case, as a flame determination based on the light reception signal E1, the determination unit 15 obtains a frequency distribution from the light reception signal E1 by a calculation method such as fast Fourier transform (FFT), for example, and includes a fluctuation frequency unique to the flame, for example, a frequency distribution of 8 Hz or less. When the integral value is equal to or greater than a predetermined threshold value, it is determined that there is a possibility of flame, and further, a process for determining the flame is performed in consideration of other elements of flame determination.

また、判断部15は、前記式(5)〜(7)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、最初の時間区間T1の信号積分値の比R1に対し残りの時間区間T2〜T4の信号積分値の比R2〜R4の少なくとも1つが所定の炎判定閾範囲を外れた場合は、燃焼炎以外からの放射線エネルギーによる受光信号E1,E2と推定できるので、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。   In addition, when the determination unit 15 determines that at least one of the conditions (5) to (7) is not satisfied, that is, the remaining time interval with respect to the ratio R1 of the signal integral value of the first time interval T1. When at least one of the signal integration value ratios R2 to R4 of T2 to T4 is out of a predetermined flame determination threshold range, it can be estimated that the received light signals E1 and E2 are from radiation energy other than the combustion flame. It is not an element, and flame judgment based on the light reception signal E1 is suppressed.

(一般化した相互の相関の判断)
ここで、所定期間Tを分割する区間数iをi=1〜nと一般化し、また受光信号をE1〜Emと一般化すると、判断部15は、所定期間Tを、区間T1〜Tnに分割し、受光信号E1,Emの中点となる基準電位に対する差分の絶対値を積算した値(振幅積分値)として、受光信号E1について、各時間区間T1〜Tnの積分値ΣE11〜ΣE1nを求め、また、受光信号Emについて、各時間区間T1〜T4の積分値ΣEm1〜ΣEm2nを求め、更に、両者の比R1〜R4を、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、これを受光信号E1,Emの、相互の相関とする。
(Generalized judgment of mutual correlation)
Here, when the number of sections i dividing the predetermined period T is generalized as i = 1 to n and the received light signals are generalized as E1 to Em, the determination unit 15 divides the predetermined period T into the sections T1 to Tn. The integrated values ΣE11 to ΣE1n of the time intervals T1 to Tn are obtained for the light reception signal E1 as a value (amplitude integral value) obtained by integrating the absolute values of the differences with respect to the reference potential which is the middle point of the light reception signals E1 and Em. Further, for the received light signal Em, the integral values ΣEm1 to ΣEm2n of the time intervals T1 to T4 are obtained, and the ratios R1 to R4 of both are obtained as follows:
R1 to Rn = ΣE11 / ΣEm1 to ΣE1n / ΣEmn
This is determined as the correlation between the received light signals E1 and Em.

次いで、前述と同様にして下限閾値TH1と上限閾値TH2を設定した場合、判断部15は、次の炎判定閾範囲内となる条件の成立の有無を判定する。
0.9R1≦R2≦1.1R1〜0.9R1≦Rn≦1.1R1
この炎判定閾範囲内となる条件の成立を判定した場合、受光信号E1,E2の振幅波形が概ね相似し、受光ユニット12a,12bは燃焼炎からの放射線エネルギーを観測していると推定できることから、炎有りの判断の1要素とし、受光信号E1に基づく炎判断を許容する。
Next, when the lower limit threshold TH1 and the upper limit threshold TH2 are set in the same manner as described above, the determination unit 15 determines whether or not a condition that falls within the next flame determination threshold range is satisfied.
0.9R1 ≦ R2 ≦ 1.1R1 to 0.9R1 ≦ Rn ≦ 1.1R1
When it is determined that the condition within the flame determination threshold range is satisfied, the amplitude waveforms of the light reception signals E1 and E2 are substantially similar, and it can be estimated that the light reception units 12a and 12b are observing radiation energy from the combustion flame. The flame determination based on the light reception signal E1 is allowed as one element of the determination of the presence of flame.

一方、判断部15は、炎判定閾範囲外となる少なくとも何れか1つの条件の不成立を判定した場合は、燃焼炎以外からの放射線エネルギーによる受光信号E1,E2と推定できるので、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。   On the other hand, if the determination unit 15 determines that at least one of the conditions that are outside the flame determination threshold range is not satisfied, the light reception signals E1 and E2 due to radiation energy from other than the combustion flame can be estimated. It is not an element, and flame judgment based on the light reception signal E1 is suppressed.

(炎判断の処理動作)
図7は2つの受光信号の振幅変化の相関を判断する図1の判断部の処理動作の手順を示したフローチャートである。
(Flame judgment processing action)
FIG. 7 is a flowchart showing the procedure of the processing operation of the determination unit in FIG. 1 for determining the correlation between the amplitude changes of two light reception signals.

(ステップS1)
まず、判断部15は、受光ユニット12a,12bから出力する受光信号E1,E2を、所定サンプリング周期でA/D変換ポート30a、30bを介して所定時間T、例えばT=2秒に亘り取り込み、バッファメモリに一時的に記憶する。
(Step S1)
First, the determination unit 15 captures the light reception signals E1 and E2 output from the light reception units 12a and 12b through the A / D conversion ports 30a and 30b at a predetermined sampling period for a predetermined time T, for example, T = 2 seconds. Temporarily store in buffer memory.

(ステップS2)
次いで、判断部15は、ステップS1で取り込んだ所定期間Tの受光信号E1,E2を4つの時間区間T1,T2,T3,T4に分割し、各分割区間T1〜T4の受光信号E1の信号振幅の積分値ΣE11,ΣE12,ΣE13,ΣE14と、受光信号E2の積分値ΣE21,ΣE22,ΣE23,ΣE24を算出する。
(Step S2)
Next, the determination unit 15 divides the light reception signals E1 and E2 of the predetermined period T captured in step S1 into four time intervals T1, T2, T3, and T4, and the signal amplitude of the light reception signal E1 of each division interval T1 to T4. Integral values ΣE11, ΣE12, ΣE13, ΣE14 and integral values ΣE21, ΣE22, ΣE23, ΣE24 of the received light signal E2.

なお、ステップS2以降の処理は、判断部15がA/D変換ポート30aから取り込んでいる受光信号E1の信号レベルが所定の閾値以上となった場合に実行することが望ましい。   It should be noted that the processing after step S2 is desirably executed when the signal level of the received light signal E1 taken in by the determination unit 15 from the A / D conversion port 30a is equal to or higher than a predetermined threshold value.

(ステップS3)
次いで、判断部15は、ステップS2で算出した受光信号E1,E2の各分割区間T1〜T4の積分値の比R1,R2,R3,R4を前記式(1)〜(4)により算出する。
(Step S3)
Next, the determination unit 15 calculates the ratios R1, R2, R3, and R4 of the integral values of the divided sections T1 to T4 of the received light signals E1 and E2 calculated in step S2 by the above formulas (1) to (4).

(ステップS4)
次いで、判断部15は、最初の時間区間T1の積分値の比R1に基づき、下限閾値TH1と上限閾値TH2を、例えばTH1=0.9・R1、TH2=1.1・R1とした炎判定閾範囲を設定する。
(Step S4)
Next, the determination unit 15 determines the flame with the lower limit threshold TH1 and the upper limit threshold TH2 set to, for example, TH1 = 0.9 · R1 and TH2 = 1.1 · R1 based on the ratio R1 of the integral values of the first time interval T1. Set the threshold range.

(ステップS5)
次いで、判断部15は、ステップS3で算出した受光信号E1,E2の最初の時間区間T1に続く残りの時間区間T2〜T4の積分値の比R2,R3,R4が前記式(5)〜(7)により下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲内か否か判定する。
(Step S5)
Next, the determination unit 15 determines that the ratios R2, R3, R4 of the integration values of the remaining time intervals T2-T4 following the first time interval T1 of the received light signals E1, E2 calculated in step S3 are the above formulas (5)-( 7), it is determined whether or not it is within a flame determination threshold range having a lower limit threshold TH1 and an upper limit threshold TH2.

(ステップS6、S7)
次いで、判断部15は、ステップS6で前記式(5)〜(7)の全ての条件が成立することで、時間区間T2〜T4の積分値の比R2,R3,R4が全て炎判定閾範囲内にあることを判定した場合に、受光信号E1,E2の振幅波形が概ね相似して燃焼炎からの放射線エネルギーによる受光信号であると推定して、炎判断の1要素と判断し、ステップS7に進んで受光信号E1に基づく炎判断を許容する。
(Steps S6 and S7)
Next, the determination unit 15 determines that the ratios R2, R3, and R4 of the integral values of the time intervals T2 to T4 are all in the flame determination threshold range when all the conditions of the expressions (5) to (7) are satisfied in step S6. If it is determined that the received light signal is within the range, the amplitude waveforms of the light reception signals E1 and E2 are approximately similar and are estimated to be a light reception signal based on the radiation energy from the combustion flame. Proceeding to allow flame judgment based on the light reception signal E1.

(ステップS6、S8)
一方、判断部15は、ステップS6で前記式(5)〜(7)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、TH1=0.9・R1、TH2=1.1・R1とした炎判定閾範囲外にあることを判定した場合、受光ユニット12a,12bからの受光信号E1,E2は燃焼炎からの放射線エネルギーによるものではないと推定し、ステップS8に進んで、受光信号E1に基づく炎判断を抑止する。
(Steps S6 and S8)
On the other hand, the determination unit 15 determines that at least one of the conditions (5) to (7) is not satisfied in step S6, that is, TH1 = 0.9 · R1, TH2 = 1.1 · R1. If it is determined that it is outside the flame determination threshold range, it is estimated that the light reception signals E1 and E2 from the light receiving units 12a and 12b are not due to the radiation energy from the combustion flame, and the process proceeds to step S8 to receive the light reception signal. The flame judgment based on E1 is suppressed.

[受光信号E1,E2の周波数分布の、相互の相関による判断]
(判断部15の概要)
図1に示した判断部15の他の実施形態として、受光信号E1,E2の周波数分布から相互の相関を求めて炎判断を行うことができる。
[Judgment by mutual correlation of frequency distribution of light reception signals E1, E2]
(Overview of the judgment unit 15)
As another embodiment of the determination unit 15 shown in FIG. 1, flame determination can be performed by obtaining a mutual correlation from the frequency distribution of the received light signals E1 and E2.

この場合、判断部15は、受光ユニット12a,12bから出力された受光信号E1,E2の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割して、各分割区間の受光信号から所定範囲の周波数の相対レベル分布(周波数分布)を求め、各分割区間同士の周波数の相対レベル分布の積分値の比が全て所定の炎判定閾範囲内にある場合、受光ユニット12a,12bへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素として、炎の有無を判断し検出する制御を行う。   In this case, the determination unit 15 divides the correlation between the light reception signals E1 and E2 output from the light reception units 12a and 12b into a plurality of time intervals for each light reception signal for a predetermined period, and receives light in each division interval. When a relative level distribution (frequency distribution) of a predetermined range of frequencies is obtained from the signal and the ratios of the integrated values of the relative level distributions of the frequencies of the respective divided sections are all within the predetermined flame determination threshold range, the light receiving units 12a and 12b. Assuming that there is a possibility that the light input to is due to radiation from the flame, a control for judging and detecting the presence or absence of flame is performed as one element of the judgment of the presence of flame.

(判断部の周波数分布の相互相関に基づく炎判断)
図8は、燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニット12a,12bの各々から出力される受光信号E1,E2の周波数分布を示した説明図である。
(Flame judgment based on cross-correlation of frequency distribution of judgment part)
FIG. 8 is an explanatory diagram showing the frequency distribution of the light reception signals E1 and E2 output from each of the light reception units 12a and 12b of FIG. 1 when the radiation energy radiated from the combustion flame is observed.

図8に示すように、燃焼炎から放射される放射線エネルギーを周波数軸で観測すると、概ね8Hzよりも低周波側に高い出力レベルを示す周波数特性が得られることから、実質的な炎のちらつき周波数が8Hzまでの周波数帯域に存在し、8Hzを超える例えば16Hzまでの高周波側は低いレベルを示す。このため、受光信号E1,E2の周波数分布の相互の相関は、例えば8Hzまでの範囲となる低周波側の周波数分布の相関を判断すれば良い。   As shown in FIG. 8, when the radiation energy radiated from the combustion flame is observed on the frequency axis, a frequency characteristic showing a high output level on the lower frequency side than about 8 Hz is obtained, so that the substantial flicker frequency of the flame is obtained. Exists in the frequency band up to 8 Hz, and the high frequency side exceeding 8 Hz, for example, up to 16 Hz shows a low level. For this reason, the correlation between the frequency distributions of the light reception signals E1 and E2 may be determined, for example, by determining the correlation of the frequency distribution on the low frequency side in a range up to 8 Hz.

まず、判断部15は、受光ユニット12a,12bから出力された所定期間T=2秒の受光信号E1,E2をA/D変換してバッファメモリに記憶し、例えば500ミリ秒の4つの時間区間T1,T2,T3,T4に分割し、各時間区間T1〜T4の受光信号E1,E2をそれぞれ高速フーリエ変換(FFT)して、各時間区間での周波数の相対レベル分布を求める。   First, the determination unit 15 A / D converts the light reception signals E1 and E2 output from the light receiving units 12a and 12b for a predetermined period T = 2 seconds and stores them in the buffer memory, for example, four time intervals of 500 milliseconds. The signals are divided into T1, T2, T3, and T4, and the received light signals E1 and E2 in each time interval T1 to T4 are subjected to fast Fourier transform (FFT), and the relative level distribution of the frequency in each time interval is obtained.

続いて、判断部15は、受光信号E1の各区間T1〜T4の周波数の相対レベル分布の積分値Σf11,Σf12,Σf13,Σf14を求め、また、受光信号E2についても、各区間T1〜T4の周波数の相対レベル分布の積分値Σf21,Σf22,Σf23,Σf24を求める。   Subsequently, the determination unit 15 obtains integral values Σf11, Σf12, Σf13, and Σf14 of the relative level distribution of the frequency in each section T1 to T4 of the light reception signal E1, and also the light reception signal E2 in each section T1 to T4. The integral values Σf21, Σf22, Σf23, and Σf24 of the frequency relative level distribution are obtained.

次いで、判断部15は、同じ時間区間T1〜T4の各々について、受光信号E1の周波数分布の積分値Σf11,Σf12,Σf13,Σf14と、受光信号E2の周波数分布の積分値Σf21Σf22,Σf23,Σf24との比Rf1,Rf2,Rf3,Rf4を、
Rf1=Σf11/Σf21 式(8)
Rf2=Σf12/Σf22 式(9)
Rf3=Σf13/Σf23 式(10)
Rf4=Σf14/Σf24 式(11)
として求め、これを受光信号E1,E2の、周波数分布の相互の相関とする。
Next, for each of the same time interval T1 to T4, the determination unit 15 integrates the frequency distribution integral values Σf11, Σf12, Σf13, Σf14 of the light reception signal E1, and the integration values Σf21Σf22, Σf23, Σf24 of the frequency distribution of the light reception signal E2. Ratio Rf1, Rf2, Rf3, Rf4,
Rf1 = Σf11 / Σf21 Formula (8)
Rf2 = Σf12 / Σf22 Formula (9)
Rf3 = Σf13 / Σf23 Formula (10)
Rf4 = Σf14 / Σf24 Formula (11)
This is taken as the correlation between the frequency distributions of the received light signals E1 and E2.

受光信号E1,E2の周波数の相対レベル分布の相互の相関を判断するため、判断部15は、最初の時間区間T1の積分値の比Rf1に基づき、下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定する。   In order to determine the correlation between the relative level distributions of the frequencies of the received light signals E1 and E2, the determination unit 15 determines the flame having the lower limit threshold TH1 and the upper limit threshold TH2 based on the ratio Rf1 of the integral values of the first time interval T1. Set the threshold range.

判断部15は、下限閾値THf1及び上限閾値THf2を、最初の時間区間T1の比Rf1に対し例えば±10%の炎判定閾範囲とし、THf1=0.9・Rf1、THf2=1.1・Rf1に設定する。   The determination unit 15 sets the lower limit threshold THf1 and the upper limit threshold THf2 to a flame determination threshold range of, for example, ± 10% with respect to the ratio Rf1 of the first time interval T1, and THf1 = 0.9 · Rf1, THf2 = 1.1 · Rf1 Set to.

このように下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲を設定した場合、判断部15は、次の条件の成立の有無を判定する。
0.9Rf1≦Rf2≦1.1Rf1 式(12)
0.9Rf1≦Rf3≦1.1Rf1 式(13)
0.9Rf1≦Rf4≦1.1Rf1 式(14)
判断部15は、前記式(12)〜(14)の全ての条件の成立を判定した場合、即ち、最初の時間区間T1の周波数の相対レベル分布の積分値の比Rf1に対し、残りの時間区間T2〜T4の全ての周波数の相対レベル分布の積分値の比Rf2〜Rf4が所定の炎判定閾範囲内にある場合、受光信号E1,E2の周波数分布が概ね相似し、受光ユニット12a,12bは共に燃焼炎からの放射線エネルギーによる受光信号E1,E2を出力していると推定でき、炎有りの判断の1要素とし、例えば受光信号E1に基づく炎判断を許容する。
When the flame determination threshold range having the lower limit threshold TH1 and the upper limit threshold TH2 is set as described above, the determination unit 15 determines whether or not the following condition is satisfied.
0.9Rf1 ≦ Rf2 ≦ 1.1Rf1 Formula (12)
0.9Rf1 ≦ Rf3 ≦ 1.1Rf1 Formula (13)
0.9Rf1 ≦ Rf4 ≦ 1.1Rf1 Formula (14)
When the determination unit 15 determines that all the conditions of the expressions (12) to (14) are satisfied, that is, the remaining time with respect to the ratio Rf1 of the integral value of the relative level distribution of the frequency in the first time interval T1. When the ratios Rf2 to Rf4 of the integrated values of the relative level distributions of all the frequencies in the sections T2 to T4 are within a predetermined flame determination threshold range, the frequency distributions of the light reception signals E1 and E2 are substantially similar, and the light reception units 12a and 12b. Can be estimated to output the light reception signals E1 and E2 based on the radiation energy from the combustion flame, and is used as one element of the determination of the presence of the flame, for example, allows the flame determination based on the light reception signal E1.

また、判断部15は、前記式(12)〜(14)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、最初の時間区間T1の周波数分布の積分値の比Rf1に対し残りの時間区間T2〜T4の周波数の相対レベル分布の積分値の比Rf2〜Rf4の少なくとも1つが所定の炎判定閾範囲を外れた場合は、受光ユニット12a,12bは燃焼炎以外からの放射線エネルギーによる受光信号E1,E2を出力していると推定でき、炎有りの1要素とせず、受光信号E1に基づく炎判断を抑止する。   In addition, when the determination unit 15 determines that at least one of the conditions of the expressions (12) to (14) is not satisfied, that is, the remaining ratio with respect to the ratio Rf1 of the integrated value of the frequency distribution in the first time interval T1. When at least one of the ratios Rf2 to Rf4 of the integral value of the relative level distribution of the frequency in the time interval T2 to T4 is outside the predetermined flame determination threshold range, the light receiving units 12a and 12b receive light by radiation energy from other than the combustion flame. It can be estimated that the signals E1 and E2 are being output, and the flame determination based on the light reception signal E1 is suppressed instead of being one element with a flame.

(周波数分布の相関に基づく炎判断の処理動作)
図9は2つの受光信号の周波数分布の相関を判断する図1の判断部の処理動作の手順を示したフローチャートである。
(ステップS11)
まず、判断部15は、受光ユニット12a,12bから出力する受光信号E1,E2を、所定サンプリング周期でA/D変換ポート30a、30bを介して所定時間T、例えばT=2秒に亘り取り込み、バッファメモリに一時的に記憶する。
(Flame judgment processing operation based on correlation of frequency distribution)
FIG. 9 is a flowchart showing the procedure of the processing operation of the determination unit of FIG. 1 for determining the correlation between the frequency distributions of two received light signals.
(Step S11)
First, the determination unit 15 captures the light reception signals E1 and E2 output from the light reception units 12a and 12b through the A / D conversion ports 30a and 30b at a predetermined sampling period for a predetermined time T, for example, T = 2 seconds. Temporarily store in buffer memory.

(ステップS12)
次いで、判断部15は、ステップS11で取り込んだ所定期間Tの受光信号E1,E2を4区間T1,T2,T3,T4に分割し、各区間T1〜T4の受光信号E1を高速フーリエ変換して8Hz以下の周波数範囲における相対レベル分布の積分値Σf11,Σf12,Σf13,Σf14と、受光信号E2について、高速フーリエ変換して8Hz以下の周波数範囲における相対レベルの積積分値Σf21,Σf22,Σf23,Σf24を算出する。
(Step S12)
Next, the determination unit 15 divides the light reception signals E1 and E2 of the predetermined period T captured in step S11 into four sections T1, T2, T3, and T4, and performs fast Fourier transform on the light reception signals E1 of the sections T1 to T4. The integral values Σf11, Σf12, Σf13, Σf14 of the relative level distribution in the frequency range of 8 Hz or less and the light reception signal E2 are subjected to fast Fourier transform to product integration values Σf21, Σf22, Σf23, Σf24 of the relative level in the frequency range of 8 Hz or less. Is calculated.

なお、ステップS12以降の処理は、判断部15がA/D変換ポート30aから取り込んでいる受光信号E1の信号レベルが所定の閾値以上となった場合に実行することが望ましい。   It should be noted that the processing after step S12 is desirably executed when the signal level of the received light signal E1 captured by the determination unit 15 from the A / D conversion port 30a is equal to or higher than a predetermined threshold value.

(ステップS13)
次いで、判断部15は、ステップS12で算出した受光信号E1,E2の各区間T1〜T4の周波数の相対レベル分布の積分値の比Rf1,Rf2,Rf3,Rf4を前記式(8)〜(11)により算出する。
(Step S13)
Next, the determination unit 15 calculates the ratios Rf1, Rf2, Rf3, and Rf4 of the relative value distributions of the relative level distribution of the frequencies T1 to T4 of the received light signals E1 and E2 calculated in step S12 from the above equations (8) to (11). ).

(ステップS14)
次いで、判断部15は、最初の区間T1の周波数の相対レベル分布の積分値の比Rf1に基づき、下限閾値THf1と上限閾値THf2を、例えばTHf1=0.9・Rf1、THf2=1.1・Rf1に設定する。
(Step S14)
Next, the determination unit 15 determines the lower limit threshold THf1 and the upper limit threshold THf2, for example, THf1 = 0.9 · Rf1, THf2 = 1.1 · based on the ratio Rf1 of the integral value of the relative level distribution of the frequency in the first section T1. Set to Rf1.

(ステップS15)
次いで、判断部15は、ステップS13で算出した受光信号E1,E2の最初の区間T1に続く残り区間T2〜T4の周波数の相対レベル分布の積分値の比Rf2,Rf3,Rf4を前記式(12)〜(14)により下限閾値TH1と上限閾値TH2を持つ炎判定閾範囲内となるか否か判定する。
(Step S15)
Next, the determination unit 15 calculates the ratios Rf2, Rf3, and Rf4 of the relative values of the relative level distributions of the frequencies in the remaining sections T2 to T4 following the first section T1 of the received light signals E1 and E2 calculated in step S13. ) To (14), it is determined whether or not it is within a flame determination threshold range having a lower limit threshold TH1 and an upper limit threshold TH2.

(ステップS16、S17)
次いで、判断部15は、ステップS16で前記式(12)〜(14)の全ての条件が成立することで炎判定閾範囲内にあることを判定した場合、受光信号E1,E2の周波数分布か概ね相似し、受光ユニット12a,12bは燃焼炎からの放射線エネルギーによる受光信号E1,E2を出力している推定し、炎判断の1要素と判定し、ステップS17に進んで、受光信号E1に基づく炎判断を許容する。
(Steps S16 and S17)
Next, when the determination unit 15 determines in step S16 that all the conditions of the expressions (12) to (14) are satisfied and is within the flame determination threshold range, the frequency distribution of the light reception signals E1 and E2 is determined. The light receiving units 12a and 12b are estimated to be outputting light reception signals E1 and E2 based on the radiation energy from the combustion flame, are determined as one element of flame determination, proceed to step S17, and are based on the light reception signal E1. Allow flame judgment.

(ステップS16、S18)
一方、判断部15は、ステップS16で前記式(12)〜(14)の少なくとも何れか1つの条件の不成立を判定した場合、即ち、THf1=0.9・Rf1、THf2=1.1・Rf1とした炎判定閾範囲外にあることを判定した場合、受光ユニット12a,12bは燃焼炎以外の放射線エネルギーによる受光信号E1,E2を出力していると推定し、ステップS18に進んで、受光信号E1炎判断を抑止する。
(Steps S16 and S18)
On the other hand, the determination unit 15 determines that at least one of the conditions (12) to (14) is not satisfied in step S16, that is, THf1 = 0.9 · Rf1, THf2 = 1.1 · Rf1. If it is determined that the light receiving unit 12a, 12b is outside the flame determination threshold range, it is estimated that the light receiving signals E1, E2 are output by radiation energy other than the combustion flame, and the process proceeds to step S18 to receive the light receiving signal. E1 flame judgment is suppressed.

[複数の受光素子を備えた受光ユニットの実施形態]
図10は受光ユニットに設けた複数の受光素子からの受光信号を加算する炎検出装置の他の実施形態による機能構成を示したブロック図である。
[Embodiment of light receiving unit including a plurality of light receiving elements]
FIG. 10 is a block diagram showing a functional configuration according to another embodiment of a flame detection apparatus that adds light reception signals from a plurality of light receiving elements provided in the light receiving unit.

図10に示すように、本実施形態の受光ユニット12a,12bに設けた受光センサ16a,16bは、4つの受光素子22a,22bを各々備えている。受光素子22a,22bは、図2に示したカバー部材44a,44bの内部に配置した基板36a,36bの表側に例えば4個の焦電体25a,25bを配置し、図11の受光センサ16aの等価回路に示すように、焦電体25a、高抵抗29及びFET27aで構成した4つの受光素子22aを設け、各FET27aのドレインとゲートをそれぞれドレイン端子Dとゲート端子Gに共通接続し、各FET27aのソースはソース端子S1〜S4に個別に接続している。   As shown in FIG. 10, the light receiving sensors 16a and 16b provided in the light receiving units 12a and 12b of this embodiment include four light receiving elements 22a and 22b, respectively. In the light receiving elements 22a and 22b, for example, four pyroelectric bodies 25a and 25b are arranged on the front side of the substrates 36a and 36b arranged inside the cover members 44a and 44b shown in FIG. 2, and the light receiving sensor 16a in FIG. As shown in the equivalent circuit, four light receiving elements 22a composed of a pyroelectric body 25a, a high resistance 29, and an FET 27a are provided, and the drain and gate of each FET 27a are connected in common to the drain terminal D and gate terminal G, respectively. Are individually connected to the source terminals S1 to S4.

再び図10を参照するに、4つの受光素子22a,22bの出力は4つの前置フィルタ24a,24bを通過した後に、電流出力となる4つの受光信号を加算(電流加算)してプリアンプ26a,26bに入力している。   Referring to FIG. 10 again, the outputs of the four light receiving elements 22a and 22b pass through the four pre-filters 24a and 24b, and then add (receive current) four received light signals as current outputs to add the preamplifier 26a, 26b.

ここで、4つの受光素子22aからの受光出力は、4つの前置フィルタ24aを通過した後に受光電流を加算してプリアンプ26aに入力していることから、ランダムなノイズ成分については電流加算による増加はほとんどなく、燃焼炎からCO共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを光電変換した信号成分の電流加算となり、S/N比を低下させることなく、1つの受光素子による受光出力の概ね4倍に相当する受光電流としての受光信号を生成可能とする。 Here, the light receiving outputs from the four light receiving elements 22a are added to the preamplifier 26a after adding the light receiving current after passing through the four pre-filters 24a. There is almost no, and it becomes the current addition of the signal component photoelectrically converted from the radiation energy of a narrow band wavelength band with a central wavelength of about 4.5 μm radiated from the combustion flame by CO 2 resonance, and lowers the S / N ratio. Rather, it is possible to generate a light reception signal as a light reception current corresponding to approximately four times the light reception output by one light receiving element.

この点は、4つの受光素子22bからの出力についても同様であり、4つの前置フィルタ24bを通過した後に受光電流を加算してプリアンプ26bに入力していることから、ランダムなノイズ成分については電流加算による増加はほとんどなく、燃焼炎から放射される、概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを光電変換した信号成分の電流加算となり、S/N比を低下させることなく、1つの受光素子による受光出力の概ね4倍に相当する受光電流としての受光信号を生成可能とする。   This also applies to the outputs from the four light receiving elements 22b. Since the light receiving current is added after passing through the four pre-filters 24b and inputted to the preamplifier 26b, random noise components are There is almost no increase due to current addition, and current addition of signal components obtained by photoelectric conversion of radiation energy in a narrow band wavelength band with a center wavelength of approximately 2.3 μm, emitted from the combustion flame, reduces the S / N ratio. Rather, it is possible to generate a light reception signal as a light reception current corresponding to approximately four times the light reception output by one light receiving element.

このように光学ユニット12a,12bは、受光する燃焼炎から放射された放射線エネルギーが微弱であっても、4つの受光素子22a,22bで光電変換した受光信号を加算することで、受光ユニット12a,12はS/N比を低下することなく十分なレベルをもつ受光信号E1,E2を出力可能となり、炎検出エリアを大幅に拡大可能とする。   As described above, the optical units 12a and 12b add the light reception signals photoelectrically converted by the four light receiving elements 22a and 22b even if the radiation energy radiated from the combustion flame to receive light is weak. No. 12 can output light reception signals E1 and E2 having a sufficient level without lowering the S / N ratio, and can greatly expand the flame detection area.

なお、プリアンプ26a,26bから判断部15までの構成及び機能は、図1の実施形態の場合と同様になることから、その説明を省略する。   The configuration and functions from the preamplifiers 26a and 26b to the determination unit 15 are the same as those in the embodiment shown in FIG.

また、受光センサ16a,16bに設ける受光素子22a,22bの数は必要に応じて適宜に定めることができる。また、受光センサ16a,16bに設ける受光素子22a,22bの数は同数としても良いし、その数を異ならせるようにしても良い。   Further, the number of light receiving elements 22a and 22b provided in the light receiving sensors 16a and 16b can be appropriately determined as necessary. The number of the light receiving elements 22a and 22b provided in the light receiving sensors 16a and 16b may be the same or different.

[トンネル用炎検出装置]
次に、図1の実施形態に示した炎検出装置の構成を、トンネル用の炎検出装置に適用した場合の実施形態について説明する。
[Flame detector for tunnels]
Next, an embodiment when the configuration of the flame detection device shown in the embodiment of FIG. 1 is applied to a tunnel flame detection device will be described.

図12はトンネル内に設置して炎を監視する炎検出装置の他の実施形態を示したブロック図である。   FIG. 12 is a block diagram showing another embodiment of a flame detection apparatus that is installed in a tunnel and monitors a flame.

(受光ユニット12a,12b)
図12に示すように、受光ユニット12a,12bは、図1の実施形態と同じであり、燃焼炎からCO共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E1と概ね2.3μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E2を出力し、それぞれ判断部15に設けたA/D変換ポート30a,30bの各々でデジタル受光信号に変換して取り込んでいる。
(Light receiving unit 12a, 12b)
As shown in FIG. 12, the light receiving units 12a and 12b are the same as those in the embodiment of FIG. 1, and radiate from a combustion flame by CO 2 resonance in a narrow band wavelength band having a central wavelength of approximately 4.5 μm. The light reception signal E1 in which the energy is observed and the light reception signal E2 in which the radiation energy in a narrow band wavelength band having a central wavelength of about 2.3 μm are output, and the A / D conversion ports 30a and 30b provided in the determination unit 15 are output. Each is converted into a digital received light signal and captured.

(受光ユニット12c)
受光ユニット12cは、受光センサ16a,16bとは異なる所定の波長帯を有する放射線エネルギーを電気信号に変換して出力する受光センサ16cを備える。即ち、受光ユニット12cは、概ね5.0μm〜7.0μmの波長帯の放射線エネルギーを電気信号に変換した受光信号E3を出力する。
(Light receiving unit 12c)
The light receiving unit 12c includes a light receiving sensor 16c that converts radiation energy having a predetermined wavelength band different from that of the light receiving sensors 16a and 16b into an electric signal and outputs the electric signal. That is, the light receiving unit 12c outputs a light receiving signal E3 obtained by converting radiation energy in a wavelength band of approximately 5.0 μm to 7.0 μm into an electric signal.

また、受光ユニット12cは、受光センサ16cに続いて、受光センサ16cから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24cと、前置フィルタ24cを通過した信号成分を初段増幅するプリアンプ26cと、プリアンプ26cからの出力を増幅するメインアンプ28cとで構成する。受光ユニット12cのメインアンプ28cから出力された受光信号E3は、判断部15のA/D変換ポート30cによりデジタル受光信号に変換して読み込まれ、炎の判断処理に用いられる。   Further, the light receiving unit 12c, following the light receiving sensor 16c, from the light receiving signal output from the light receiving sensor 16c, a pre-filter 24c that passes only a signal component of a predetermined frequency band, and a signal that has passed through the pre-filter 24c. A preamplifier 26c that amplifies the components in the first stage and a main amplifier 28c that amplifies the output from the preamplifier 26c. The light reception signal E3 output from the main amplifier 28c of the light reception unit 12c is converted into a digital light reception signal by the A / D conversion port 30c of the determination unit 15 and is read and used for flame determination processing.

(受光センサ16cの構成)
受光センサ16cは、概ね5.0μmを超える所定の波長帯の放射線を良好に透過するカットオンフィルタで構成されるロングパスフィルタである光学波長フィルタ20cと、光学波長フィルタ20cを透過した光を受光して電気信号に変換して出力する図3の等価回路でなる受光素子22cを備え、図2に示したと同様な構造により、パッケージ化された構成を有し、光学ユニット12a,12bの受光センサ16a,16bと共に、本体カバー46内に設けられた共通の取り付け部材48上に、互いに近接して所定の配列で配置している。
(Configuration of the light receiving sensor 16c)
The light receiving sensor 16c receives an optical wavelength filter 20c that is a long-pass filter composed of a cut-on filter that satisfactorily transmits radiation in a predetermined wavelength band exceeding approximately 5.0 μm, and light transmitted through the optical wavelength filter 20c. The light receiving element 22c having the equivalent circuit of FIG. 3 that is converted into an electrical signal and output, and has a packaged configuration with the same structure as shown in FIG. 2, and the light receiving sensor 16a of the optical units 12a and 12b. , 16b and a common mounting member 48 provided in the main body cover 46, are arranged in a predetermined arrangement close to each other.

(透光性窓18)
透光性窓18は、図2に示した受光センサ16a,16bと共に受光センサ16cが収納された本体カバー46の監視エリア側となる前面側に設けられた所定の開口部に配置され、例えば、サファイアガラス等の赤外線透光性の部材により形成され、受光センサ16a,16b、16cの受光素子22a,22b,22cは、各々の受光限界視野が透光性窓18の縁辺部で規制されることにより、略同一の拡がり角度を有する検知エリアが設定される。
(Translucent window 18)
The translucent window 18 is disposed in a predetermined opening provided on the front side which is the monitoring area side of the body cover 46 in which the light receiving sensor 16c is housed together with the light receiving sensors 16a and 16b shown in FIG. The light-receiving elements 22a, 22b, and 22c of the light-receiving sensors 16a, 16b, and 16c are formed of an infrared light-transmitting member such as sapphire glass, and the respective light-receiving limit visual fields are restricted by the edge of the light-transmitting window 18. Thus, detection areas having substantially the same spread angle are set.

(受光センサ16a〜16cの波長透過特性)
図13は、図12の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Wavelength transmission characteristics of the light receiving sensors 16a to 16c)
FIG. 13 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and the translucent window applied to the embodiment of FIG.

図13に示すように、受光センサ16aの透過特性56と受光センサ16bの透過特性60は図5と同じになる。   As shown in FIG. 13, the transmission characteristic 56 of the light receiving sensor 16a and the transmission characteristic 60 of the light receiving sensor 16b are the same as those in FIG.

一方、受光センサ16cは、透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線エネルギーが良好に透過するショートウェーブパス特性52と、光学波長フィルタ20cを構成するロングパスフィルタの、概ね5.0μm付近を超える所定の波長帯の放射線エネルギーを良好に透過するカットオンフィルタ特性を有する透過率特性62との組合せにより、概ね5.0μm〜7.0μmの波長帯の放射線エネルギーを高い透過率で透過する透過特性64をもつ広帯域バンドパスフィルタを構成する。   On the other hand, the light receiving sensor 16c is composed of a sapphire glass that is a translucent window 18 and a short wave path characteristic 52 that allows good transmission of radiation energy of about 7.0 μm or less, and a long-pass filter that constitutes the optical wavelength filter 20c. High radiation energy in the wavelength band of approximately 5.0 μm to 7.0 μm due to the combination with the transmittance characteristic 62 having the cut-on filter characteristic that transmits the radiation energy in the predetermined wavelength band exceeding approximately 5.0 μm. A wideband bandpass filter having a transmission characteristic 64 that transmits with transmittance is formed.

(炎判断)
判断部15は、受光ユニット12a,12bから出力される受光信号E1,E2の所定期間の、相互の相関から炎有りの1要素を判断した場合、受光信号E1および受光ユニット12cから出力した受光信号E3を、A/D変換ポート30a,30cを介して所定時間取り込み、受光信号E1,E3毎に信号振幅の時間積分処理を行い、積分値ΣE1,ΣE3を算出する。ここで、積分値ΣE1,ΣE3は、便宜上、炎積分値ΣE1,非炎積分値ΣE3として区別する。
(Flame judgment)
When the determination unit 15 determines one element with a flame from the correlation between the light reception signals E1 and E2 output from the light reception units 12a and 12b in a predetermined period, the light reception signal E1 and the light reception signal output from the light reception unit 12c. E3 is taken in through the A / D conversion ports 30a and 30c for a predetermined time, and signal amplitude time integration processing is performed for each of the received light signals E1 and E3 to calculate integrated values ΣE1 and ΣE3. Here, the integral values ΣE1 and ΣE3 are distinguished as a flame integral value ΣE1 and a non-flame integral value ΣE3 for convenience.

次いで、判断部15は、炎積分値ΣE1が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、炎積分値ΣE1が基準レベルを超えた場合には、非炎積分値ΣE3との相対比(ΣE1/ΣE3)を算出し、相対比(ΣE1/ΣE3)が、予め設定された閾値を超えた場合は、炎と判定して炎判断の1要素とし、閾値以下の場合には、例えば、人体や車両等の炎以外の比較的低温の放射線源による受光出力があったものとして、炎判断は抑止して行わない。   Next, when the flame integral value ΣE1 is equal to or lower than a preset reference level, the determination unit 15 determines that the received light output corresponding to the flame has not been detected, while the flame integral value ΣE1 is the reference level. If the relative ratio (ΣE1 / ΣE3) exceeds the preset threshold value, the flame is determined to be flame. If it is one element of the flame determination and is below the threshold value, the flame determination is not suppressed by assuming that there is a light reception output from a relatively low temperature radiation source other than a flame such as a human body or a vehicle.

なお、判断部15は、受光ユニット12a,12bから出力される受光信号E1,E2の所定期間の、相互の相関から炎有りの1要素を判断した場合、図1の実施形態に示したように、A/D変換ポート30aを介して所定時間取り込んだ受光信号E1の高速フーリエ変換による8Hz以下の周波数帯域の周波数分布を他の1要素とし、複数の要素に基づく複合的な炎判断を行うようにしてもよい。   When the determination unit 15 determines one element with a flame from the mutual correlation of the light reception signals E1 and E2 output from the light reception units 12a and 12b, as shown in the embodiment of FIG. The frequency distribution in the frequency band of 8 Hz or less by the fast Fourier transform of the received light signal E1 captured through the A / D conversion port 30a for a predetermined time is set as another element, and a complex flame determination based on a plurality of elements is performed. It may be.

[本発明の変形例]
上記の実施形態は、各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比から燃焼炎の有無を判定しているが、信号積分値の比に限定されず、各受光信号の相関係数等の適宜の値による相互の相関から燃焼炎の有無を判定しても良い。
[Modification of the present invention]
In the above embodiment, the correlation between the light reception signals is determined by determining the presence or absence of the combustion flame from the ratio of the signal integration values of the divided sections obtained by dividing the light reception signals for a predetermined period into a plurality of time sections. However, the present invention is not limited to the ratio of the signal integral values, and the presence or absence of the combustion flame may be determined from the mutual correlation based on an appropriate value such as the correlation coefficient of each received light signal.

また、上記の実施形態は、トンネル用の炎検出装置として、燃焼炎のCO共鳴放射帯である4.5μm付近の波長帯と2.3μm付近の波長帯の放射線エネルギーの観測による相関と、及び5.0μm付近の波長帯における放射線エネルギーを観測して炎を判定しているが、4.5μm付近の波長帯と2.3μmの波長帯の放射線エネルギーの観測による相関と、3.8μm付近の波長帯における放射線エネルギーを観測して炎の有無を判定するようにしても良い。 In the above embodiment, as a flame detection device for a tunnel, a correlation by observation of radiation energy in a wavelength band near 4.5 μm and a wavelength band near 2.3 μm, which is a CO 2 resonance radiation band of a combustion flame, The flame is judged by observing radiation energy in the wavelength band near 5.0 μm and the correlation between the observation of radiation energy in the wavelength band near 4.5 μm and the wavelength band of 2.3 μm, and near 3.8 μm. The presence or absence of flame may be determined by observing radiation energy in the wavelength band.

また、4.5μm付近の波長帯と2.3μmの波長帯の放射線エネルギーの観測による相関に加え、3.8μm付近の波長帯及び5.0μm付近の波長帯における放射線エネルギーを観測して炎の有無を判定するにようにしても良い。   Moreover, in addition to the correlation by observation of radiation energy in the wavelength band near 4.5 μm and 2.3 μm, the radiation energy in the wavelength band near 3.8 μm and the wavelength band near 5.0 μm is observed to detect the flame The presence / absence may be determined.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。   Further, the present invention includes appropriate modifications that do not impair the object and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

10:炎検出装置
12a,12b,12c:受光ユニット
15:判断部
16a,16b,16c:受光センサ
18:透光性窓
20a,20b,20c:光学波長フィルタ
22a,22b,22c:受光素子
24a,24b,24c:前置フィルタ
25a,25b:焦電体
26a,26b,26c:プリアンプ
27a,27b:FET
28a,28b,28c:メインアンプ
30a,30b,30c:A/D変換ポート
10: Flame detectors 12a, 12b, 12c: Light receiving unit 15: Determination units 16a, 16b, 16c: Light receiving sensor 18: Translucent windows 20a, 20b, 20c: Optical wavelength filters 22a, 22b, 22c: Light receiving element 24a, 24b, 24c: Prefilters 25a, 25b: Pyroelectric bodies 26a, 26b, 26c: Preamplifiers 27a, 27b: FETs
28a, 28b, 28c: main amplifiers 30a, 30b, 30c: A / D conversion ports

Claims (9)

燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
燃焼炎から放射される、それぞれ異なる所定波長帯を観測した受光信号を出力する複数の受光ユニットと、
前記各受光ユニットで略同時期に観測して出力した所定期間分の各受光信号の、相互の相関を燃焼炎の有無判断の1要素とする判断部と、
を備えたことを特徴とする炎検出装置。
A flame detection device that detects and detects the presence of a combustion flame by observing radiation energy emitted from the combustion flame,
A plurality of light-receiving units that emit light-receiving signals observing different predetermined wavelength bands emitted from the combustion flame,
A determination unit that uses a correlation between the respective light reception signals for a predetermined period of time observed and output by each of the light reception units as one element for determining whether or not there is a combustion flame;
A flame detection apparatus comprising:
請求項1又2に記載の炎検出装置に於いて、
前記1の受光ユニットは、
燃焼炎から放射される、CO共鳴放射帯域を含む所定波長帯の光を選択透過させる光学波長フィルタと、
前記光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子と、
を有する受光センサを備え、
前記他の受光ユニットは、
燃焼炎から放射される、CO共鳴放射帯域を含まない所定波長帯の光を選択透過させる光学波長フィルタと、
前記光学波長フィルタを透過した光を受光素子で受光して光電変換した電気信号に基づく受光信号を出力する1または複数の受光素子と、
を有する受光センサを備え、
たことを特徴とする炎検出装置。
In the flame detection device according to claim 1 or 2,
The one light receiving unit is:
An optical wavelength filter that selectively transmits light of a predetermined wavelength band including a CO 2 resonance radiation band emitted from the combustion flame;
One or a plurality of light receiving elements that output light reception signals based on electrical signals obtained by photoelectrically converting light that has passed through the optical wavelength filter;
A light receiving sensor having
The other light receiving unit is:
An optical wavelength filter that selectively transmits light of a predetermined wavelength band that does not include a CO 2 resonance radiation band, emitted from a combustion flame;
One or a plurality of light receiving elements that output light reception signals based on electrical signals obtained by photoelectrically converting light that has passed through the optical wavelength filter;
A light receiving sensor having
A flame detection device characterized by that.
請求項2記載の炎検出装置に於いて、
前記受光ユニットの各々は、更に、前記受光センサからの電気信号から所定周波数帯域の信号成分を選択抽出する周波数選択部と、
周波数選択部から出力する信号成分を増幅する増幅部と、
を備えたことを特徴とする炎検出装置。
In the flame detection apparatus according to claim 2,
Each of the light receiving units further includes a frequency selecting unit that selectively extracts a signal component of a predetermined frequency band from an electrical signal from the light receiving sensor;
An amplification unit that amplifies the signal component output from the frequency selection unit;
A flame detection apparatus comprising:
請求項1乃至3の何れかに記載の炎検出装置に於いて、前記受光ユニットは、少なくとも2つ設けたことを特徴とする炎検出装置。
The flame detection apparatus according to any one of claims 1 to 3, wherein at least two light receiving units are provided.
請求項1記載の炎検出装置に於いて、前記判断部は、前記各受光信号の相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、各分割区間同士の信号積分値の比に基づいて燃焼炎の有無を判定することを特徴とする炎検出装置。
2. The flame detection apparatus according to claim 1, wherein the determination unit divides the correlation between the light reception signals into a plurality of time intervals and divides the light reception signals for a predetermined period into a plurality of time intervals. A flame detection device that determines the presence or absence of a combustion flame based on a ratio of values.
請求項5記載の炎検出装置に於いて、前記判断部は、前記各分割区間同士の信号積分値の比の全てが所定の炎判定閾範囲内にある場合、受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とする。
6. The flame detection apparatus according to claim 5, wherein when the ratio of the signal integral values of the respective divided sections is within a predetermined flame determination threshold range, the determination unit receives light input to the light receiving unit. There is a possibility of radiation from the flame, and it is one element of the judgment of the presence of flame.
請求項1記載の炎検出装置に於いて、前記判断部は、
前記複数の受光ユニットから出力された所定期間分の各受光信号E1〜Emを1以上の整数nの時間区間に分割した場合、これらn個の分割区間の各々について1の受光信号E1の信号積分値ΣE11〜ΣE1nと、同じ時間区間に対応する他の受光信号Emの積分値ΣE11〜ΣEmnの比R1〜Rnを、
R1〜Rn=ΣE11/ΣEm1〜ΣE1n/ΣEmn
として求め、
最初の時間区間の信号積分値の比R1に対し残りの時間区間の信号積分値の比R2〜Rnの全てが所定の炎判定閾範囲内にある場合は、前記受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることを特徴とする炎検出装置。
The flame detection device according to claim 1, wherein the determination unit includes:
When the light reception signals E1 to Em for a predetermined period output from the plurality of light reception units are divided into time intervals of an integer n of 1 or more, the signal integration of one light reception signal E1 for each of the n division intervals. The ratios R1 to Rn of the values ΣE11 to ΣE1n and the integrated values ΣE11 to ΣEmn of the other received light signals Em corresponding to the same time interval,
R1 to Rn = ΣE11 / ΣEm1 to ΣE1n / ΣEmn
As sought
When all of the signal integral value ratios R2 to Rn in the remaining time interval with respect to the signal integral value ratio R1 in the first time interval are within a predetermined flame determination threshold range, the light input to the light receiving unit is A flame detection device characterized by the possibility of radiation from a flame and being used as one element for determining the presence of a flame.
請求項1記載の炎検出装置に於いて、前記判断部は、前記各受光信号相互の相関を、所定期間分の各受光信号から求めたそれぞれの周波数分布を比較して判定することを特徴とする炎検出装置。
The flame detection apparatus according to claim 1, wherein the determination unit determines a correlation between the light reception signals by comparing respective frequency distributions obtained from the light reception signals for a predetermined period. Flame detection device.
請求項8記載の炎検出装置に於いて、前記判断部は、
各受光信号相互の相関を、所定期間分の各受光信号を複数の時間区間に分割した、所定範囲の周波数の相対レベル分布を求め、
各分割区間同士の周波数相対レベル分布の積分値の比の全てが所定の炎判定閾範囲内にある場合、前記受光ユニットへ入力された光が炎からの放射による可能性有りとし、炎有り判断の1要素とすることを特徴とする炎検出装置。
The flame detection device according to claim 8, wherein the determination unit includes:
The correlation between each received light signal is obtained by dividing each received light signal for a predetermined period into a plurality of time intervals, and obtaining a relative level distribution of a predetermined range of frequencies,
When all the ratios of the integrated values of the frequency relative level distribution between the divided sections are within a predetermined flame determination threshold range, it is determined that the light input to the light receiving unit may be emitted from the flame, and the presence of the flame is determined. A flame detection device characterized by comprising one element.
JP2015003723A 2015-01-10 2015-01-10 Flame detector Active JP6526971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003723A JP6526971B2 (en) 2015-01-10 2015-01-10 Flame detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003723A JP6526971B2 (en) 2015-01-10 2015-01-10 Flame detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018230482A Division JP6748696B2 (en) 2018-12-10 2018-12-10 Flame detector

Publications (2)

Publication Number Publication Date
JP2016128796A true JP2016128796A (en) 2016-07-14
JP6526971B2 JP6526971B2 (en) 2019-06-05

Family

ID=56384248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003723A Active JP6526971B2 (en) 2015-01-10 2015-01-10 Flame detector

Country Status (1)

Country Link
JP (1) JP6526971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113475874A (en) * 2021-08-09 2021-10-08 广西民族大学 Multifunctional park seat

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114708559B (en) * 2022-05-31 2022-11-04 杭州微影软件有限公司 Image processing method and device, thermal imaging equipment and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249047A (en) * 1999-12-28 2001-09-14 Hochiki Corp Flame-detecting apparatus
JP2002163738A (en) * 2000-11-29 2002-06-07 Nittan Co Ltd Flame sensor and flame detecting method
JP2002162293A (en) * 2000-11-22 2002-06-07 Hochiki Corp Fire alarm and fire detection method
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001249047A (en) * 1999-12-28 2001-09-14 Hochiki Corp Flame-detecting apparatus
JP2002162293A (en) * 2000-11-22 2002-06-07 Hochiki Corp Fire alarm and fire detection method
JP2002163738A (en) * 2000-11-29 2002-06-07 Nittan Co Ltd Flame sensor and flame detecting method
JP2006275772A (en) * 2005-03-29 2006-10-12 Nohmi Bosai Ltd Flame sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113475874A (en) * 2021-08-09 2021-10-08 广西民族大学 Multifunctional park seat

Also Published As

Publication number Publication date
JP6526971B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP5109079B2 (en) Flame detector
US10061034B2 (en) Signal processing device and noise strength determining method
JPWO2018198504A1 (en) Abnormality detector
JP6430795B2 (en) Flame detection device
JP2016128796A (en) Flame detector
JP6894551B2 (en) Flame detector
JP6748696B2 (en) Flame detector
JP7170791B2 (en) flame detector
JP7400034B2 (en) flame detection device
JP7011969B2 (en) Flame detector
JP2019067246A (en) Optical monitoring system
JP7016765B2 (en) Flame detector
JP7184269B2 (en) Flame detector
JP7061517B2 (en) Flame detector
JP7032982B2 (en) Flame detector
JP7114306B2 (en) Flame detector
JP7322205B2 (en) Flame detector
JP7277643B2 (en) flame detector
JP6682147B2 (en) Flame detector
JP6134026B1 (en) Flame detector
JP6826719B2 (en) Flame detector
JP7462722B2 (en) Flame Detection Device
JPH06331755A (en) Human body detector equipped with function for detecting abnormality such as fire
US8803065B2 (en) Light barrier and method for pulsed operation in which the incidence of extraneous light on the detector can be detected and compensated for
JP5797992B2 (en) Flame detector and flame judgment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190509

R150 Certificate of patent or registration of utility model

Ref document number: 6526971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150