JP2016125746A5 - - Google Patents

Download PDF

Info

Publication number
JP2016125746A5
JP2016125746A5 JP2014266465A JP2014266465A JP2016125746A5 JP 2016125746 A5 JP2016125746 A5 JP 2016125746A5 JP 2014266465 A JP2014266465 A JP 2014266465A JP 2014266465 A JP2014266465 A JP 2014266465A JP 2016125746 A5 JP2016125746 A5 JP 2016125746A5
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
temperature
gas
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266465A
Other languages
Japanese (ja)
Other versions
JP2016125746A (en
JP6456139B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014266465A priority Critical patent/JP6456139B2/en
Priority claimed from JP2014266465A external-priority patent/JP6456139B2/en
Priority to PCT/JP2015/084522 priority patent/WO2016104147A1/en
Publication of JP2016125746A publication Critical patent/JP2016125746A/en
Publication of JP2016125746A5 publication Critical patent/JP2016125746A5/ja
Application granted granted Critical
Publication of JP6456139B2 publication Critical patent/JP6456139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (8)

冷媒循環路に直列に設けられた複数段の圧縮機、凝縮器、第1膨張手段及び蒸発器と、
前記複数段の圧縮機で各圧縮機の出口と次段の圧縮機の入口とを結ぶ前記冷媒循環路に設けられ、各圧縮機の吐出ガス冷媒を冷却するためのガス冷却器と、
前記蒸発器より前記圧縮機に向かうガス冷媒と前記凝縮器から前記第1膨張手段に向かう液冷媒とを熱交換させるための再生熱交換器と、を備え、
主として前記凝縮器による等温放熱行程と、前記蒸発器による等温吸熱行程と、前記再生熱交換器における熱交換によって行われる液領域における等圧放熱行程及び過熱蒸気領域における等圧吸熱行程とを含む逆エリクソンサイクルを形成すると共に、
前記等温放熱行程のうち過熱蒸気領域で行われる部分行程が、前記複数段の圧縮機による複数段の断熱圧縮行程と、前記ガス冷却器及び前記凝縮器による複数段の等圧放熱行程とに置き換えられ、
前記再生熱交換器のガス側を前記蒸発器と前記圧縮機の間に、前記再生熱交換器の液側を前記凝縮器と前記第1膨張手段との間に配置し、
前記液側の前記再生熱交換器の出口における前記液冷媒の温度が、前記等圧吸熱行程で飽和ガス冷媒が前記再生熱交換器に導入されたときの前記等圧放熱行程の終了点となる顕熱限界過冷却点の冷媒温度Thから、前記第1膨張手段による断熱膨張行程の終了点が飽和冷媒液線上に位置するときの前記等圧放熱行程の終了点となる湿り限界過冷却点の冷媒温度Tdまでの間の温度になるように制御するための制御装置をさらに備えていることを特徴とする冷凍又は空調装置。
A plurality of compressors, condensers, first expansion means and evaporators provided in series in the refrigerant circuit;
A gas cooler for cooling the discharged gas refrigerant of each compressor, provided in the refrigerant circulation path connecting the outlet of each compressor and the inlet of the next stage compressor in the plurality of stages of compressors;
A regenerative heat exchanger for exchanging heat between the gas refrigerant from the evaporator toward the compressor and the liquid refrigerant from the condenser toward the first expansion means,
Inversely, including an isothermal heat release process by the condenser, an isothermal heat absorption process by the evaporator, an isobaric heat release process in the liquid region and an isobaric heat absorption process in the superheated steam region performed by heat exchange in the regeneration heat exchanger. While forming the Ericsson cycle,
The partial process performed in the superheated steam region in the isothermal heat dissipation process is replaced with a plurality of adiabatic compression processes by the multistage compressor and a multistage isobaric heat dissipation process by the gas cooler and the condenser. And
The gas side of the regenerative heat exchanger is disposed between the evaporator and the compressor, and the liquid side of the regenerative heat exchanger is disposed between the condenser and the first expansion means,
The temperature of the liquid refrigerant at the outlet of the regeneration heat exchanger on the liquid side becomes the end point of the isobaric heat dissipation process when saturated gas refrigerant is introduced into the regeneration heat exchanger in the isobaric heat absorption process. From the refrigerant temperature Th at the sensible heat limit supercooling point, the wetness limit supercooling point that is the end point of the isobaric heat release process when the end point of the adiabatic expansion process by the first expansion means is located on the saturated refrigerant liquid line A refrigeration or air conditioning apparatus, further comprising a control device for controlling the temperature to reach a temperature between the refrigerant temperature Td .
前記凝縮器における冷媒の凝縮圧力をPcとし、前記蒸発器における冷媒の蒸発圧力をPeとし、前記複数段の圧縮機の段数をnとしたとき、前記複数段の断熱圧縮行程において前記複数段の圧縮機間の圧縮比rを(Pc/Pe)1/nとし、
前記制御装置は、前記ガス冷却器による前記複数段の等圧放熱行程において、各段の吐出ガス冷媒(凝縮温度+α)を凝縮温度近傍まで冷却するものであることを特徴とする請求項1に記載の冷凍又は空調装置。
When the condensation pressure of the refrigerant in the condenser is Pc, the evaporation pressure of the refrigerant in the evaporator is Pe, and the number of stages of the plurality of compressors is n, the plurality of stages of adiabatic compression strokes The compression ratio r between the compressors is (Pc / Pe) 1 / n ,
The said control apparatus cools the discharge gas refrigerant | coolant (condensation temperature + (alpha)) of each step | paragraph to the condensing temperature vicinity in the said multiple steps | paragraphs isobaric heat radiation process by the said gas cooler. The refrigeration or air conditioner described.
前記再生熱交換器と前記第1膨張手段との間の前記冷媒循環路に設けられた第1液ガス分離器と、
前記第1液ガス分離器の入口側の前記冷媒循環路に設けられた第2膨張手段と、
前記第1液ガス分離器のガス冷媒を前記複数段の圧縮機のうちの低段側圧縮機の出口と次段の圧縮機の入口に接続された冷媒路に供給する中間ガス路と、を有する中間冷却装置をさらに備えていることを特徴とする請求項1又は2に記載の冷凍又は空調装置。
A first liquid gas separator provided in the refrigerant circuit between the regenerative heat exchanger and the first expansion means;
A second expansion means provided in the refrigerant circuit on the inlet side of the first liquid gas separator;
An intermediate gas passage for supplying gas refrigerant of the first liquid gas separator to a refrigerant passage connected to an outlet of a low-stage compressor of the plurality of stages of compressors and an inlet of a next-stage compressor; The refrigeration or air conditioning apparatus according to claim 1, further comprising an intermediate cooling apparatus having the intermediate cooling apparatus.
前記再生熱交換器と前記第1膨張手段との間の前記冷媒循環路に設けられた第2液ガス分離器と、
前記第2液ガス分離器の入口側の前記冷媒循環路に設けられた第3膨張手段と、
前記第2液ガス分離器のガス冷媒を前記複数段の圧縮機のうちの低段側圧縮機の中間圧領域に供給するエコノマイザガス路と、を有するエコノマイザ装置をさらに備えていることを特徴とする請求項1乃至3の何れか1項に記載の冷凍又は空調装置。
A second liquid gas separator provided in the refrigerant circuit between the regenerative heat exchanger and the first expansion means;
Third expansion means provided in the refrigerant circuit on the inlet side of the second liquid gas separator;
An economizer device having an economizer gas path for supplying a gas refrigerant of the second liquid gas separator to an intermediate pressure region of a low-stage compressor of the plurality of stages of compressors. The refrigeration or air conditioning apparatus according to any one of claims 1 to 3.
前記複数段の圧縮機の段数が2段又は3段であることを特徴とする請求項1乃至4の何れか1項に記載の冷凍又は空調装置。   The refrigeration or air conditioning apparatus according to any one of claims 1 to 4, wherein the number of stages of the plurality of compressors is two or three. 冷媒循環路に直列に設けられた複数段の圧縮機、凝縮器、第1膨張手段及び蒸発器と、
前記複数段の圧縮機で各圧縮機の出口と次段の圧縮機の入口と結ぶ前記冷媒循環路に設けられ、各圧縮機の吐出ガス冷媒を冷却するためのガス冷却器と、
前記蒸発器より前記圧縮機に向かうガス冷媒と前記凝縮器から前記第1膨張手段に向かう液冷媒とを熱交換させるための再生熱交換器と、を備え、前記再生熱交換器のガス側を前記蒸発器と前記圧縮機の間に、前記再生熱交換器の液側を前記凝縮器と前記第1膨張手段との間に配置した冷凍又は空調装置の制御方法において、
主として前記凝縮器による等温放熱行程と、前記蒸発器による等温吸熱行程と、前記再生熱交換器における熱交換によって行われる液領域における等圧放熱行程及び過熱蒸気領域における等圧吸熱行程を含む逆エリクソンサイクルを形成すると共に、
前記等温放熱行程のうち過熱蒸気領域で行われる部分行程が、前記複数段の圧縮機による複数段の断熱圧縮行程と、前記ガス冷却器及び前記凝縮器による複数段の等圧放熱行程とに置き換えた第1行程と、
前記液側の前記再生熱交換器の出口における前記液冷媒の温度が、前記等圧吸熱行程で飽和ガス冷媒が前記再生熱交換器に導入されたときの前記等圧放熱行程の終了点となる顕熱限界過冷却点の冷媒温度Thから、前記第1膨張手段による断熱膨張行程の終了点が飽和冷媒液線上に位置するときの前記等圧放熱行程の終了点となる湿り限界過冷却点の冷媒温度Tdまでの間の温度になるように制御する第2行程と、を含むことを特徴とする冷凍又は空調装置の制御方法。
A plurality of compressors, condensers, first expansion means and evaporators provided in series in the refrigerant circuit;
A gas cooler for cooling the discharged gas refrigerant of each compressor, provided in the refrigerant circulation path connecting the outlet of each compressor and the inlet of the next stage compressor in the plurality of stages of compressors;
A regenerative heat exchanger for exchanging heat between the gas refrigerant from the evaporator toward the compressor and the liquid refrigerant from the condenser toward the first expansion means, and the gas side of the regenerative heat exchanger In the control method of the refrigeration or air conditioner in which the liquid side of the regenerative heat exchanger is disposed between the condenser and the first expansion means between the evaporator and the compressor .
Inverse Ericsson mainly including an isothermal heat release process in the condenser, an isothermal heat absorption process in the evaporator, an isobaric heat release process in the liquid region and an isobaric heat absorption process in the superheated steam region performed by heat exchange in the regenerative heat exchanger Forming a cycle,
The partial process performed in the superheated steam region in the isothermal heat dissipation process is replaced with a plurality of adiabatic compression processes by the multistage compressor and a multistage isobaric heat dissipation process by the gas cooler and the condenser. The first step,
The temperature of the liquid refrigerant at the outlet of the regeneration heat exchanger on the liquid side becomes the end point of the isobaric heat dissipation process when saturated gas refrigerant is introduced into the regeneration heat exchanger in the isobaric heat absorption process. From the refrigerant temperature Th at the sensible heat limit supercooling point, the wetness limit supercooling point that is the end point of the isobaric heat release process when the end point of the adiabatic expansion process by the first expansion means is located on the saturated refrigerant liquid line And a second step of controlling the temperature so as to reach a temperature between the refrigerant temperature Td .
前記第2行程は、少なくとも前記複数段の圧縮機を駆動するモータの回転数制御と、前記第1膨張手段の制御とで行われることを特徴とする請求項6に記載の冷凍又は空調装置の制御方法。   The refrigeration or air conditioning apparatus according to claim 6, wherein the second stroke is performed by at least rotation speed control of a motor that drives the plurality of stages of compressors and control of the first expansion means. Control method. 前記第2行程は、
前記凝縮器から前記第1膨張手段に向かう液冷媒の前記再生熱交換器出口における温度を検出する第1ステップと、
前記第1ステップで検出した温度検出値を、前記顕熱限界過冷却点における冷媒温度から前記蒸発器における冷媒の蒸発温度までの間の温度に制御する第2ステップと、を含むことを特徴とする請求項6又は7に記載の冷凍又は空調装置の制御方法。
The second stroke is
A first step of detecting a temperature at the outlet of the regenerative heat exchanger of liquid refrigerant from the condenser toward the first expansion means;
And a second step of controlling the temperature detection value detected in the first step to a temperature between the refrigerant temperature at the sensible heat limit supercooling point and the evaporation temperature of the refrigerant in the evaporator. The control method of the refrigerating or air-conditioning apparatus of Claim 6 or 7.
JP2014266465A 2014-12-26 2014-12-26 Refrigeration or air conditioner and control method thereof Active JP6456139B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014266465A JP6456139B2 (en) 2014-12-26 2014-12-26 Refrigeration or air conditioner and control method thereof
PCT/JP2015/084522 WO2016104147A1 (en) 2014-12-26 2015-12-09 Refrigerating or air conditioning device and control method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266465A JP6456139B2 (en) 2014-12-26 2014-12-26 Refrigeration or air conditioner and control method thereof

Publications (3)

Publication Number Publication Date
JP2016125746A JP2016125746A (en) 2016-07-11
JP2016125746A5 true JP2016125746A5 (en) 2017-07-20
JP6456139B2 JP6456139B2 (en) 2019-01-23

Family

ID=56150177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266465A Active JP6456139B2 (en) 2014-12-26 2014-12-26 Refrigeration or air conditioner and control method thereof

Country Status (2)

Country Link
JP (1) JP6456139B2 (en)
WO (1) WO2016104147A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6852642B2 (en) * 2017-10-16 2021-03-31 株式会社デンソー Heat pump cycle
FR3118484A1 (en) * 2020-12-28 2022-07-01 Commissariat A L’Energie Atomique Et Aux Energies Alternatives Compression system with multiple compression stages mounted in series

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556567A (en) * 1978-10-20 1980-04-25 Takatama Mitsuko Method of refrigeration by vapor compression
JP2004061061A (en) * 2002-07-31 2004-02-26 Matsushita Electric Ind Co Ltd Freezing cycle device and its operation method
US8141381B2 (en) * 2006-03-27 2012-03-27 Mayekawa Mfg. Co., Ltd. Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
DE102007003989A1 (en) * 2007-01-26 2008-07-31 Grasso Gmbh Refrigeration Technology CO2 refrigeration system with oil-immersed screw compressors in two-stage arrangement
JP4948374B2 (en) * 2007-11-30 2012-06-06 三菱電機株式会社 Refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
KR100958399B1 (en) Hvac system with powered subcooler
EP2543941B1 (en) Chiller
RU2012122709A (en) CASCADE REFRIGERATING SYSTEM WITH FLUOROFIN REFRIGERANT
JP5805567B2 (en) Refrigeration cycle and refrigeration showcase
JP6042026B2 (en) Refrigeration cycle equipment
JP2013510286A5 (en)
WO2016058365A1 (en) Air conditioning unit and operation method
WO2016018692A1 (en) Cooling system
US20140352352A1 (en) Outdoor heat exchanger and air conditioner
JP2012504221A (en) Increase in capacity when pulling down
JP2016125746A5 (en)
CN107848375A (en) The kind of refrigeration cycle of air conditioner for vehicles and the vehicle for carrying it
JP6670197B2 (en) Condenser for compression refrigerator
JP2012102992A (en) Parallel flow multi-stage condensation subcooler for outdoor unit
KR20170000029U (en) cascade heat pump
JP6456139B2 (en) Refrigeration or air conditioner and control method thereof
EP2889560B1 (en) Refrigerating device
EP2889557A1 (en) Air conditioner
EP3999791A1 (en) Chiller system with multiple compressors
KR101873751B1 (en) Air conditoner
US20220252306A1 (en) Series flow chiller system
KR20170000028U (en) cascade heat pump with improvement on heat exchange efficiency
KR101870672B1 (en) smart Air conditioner control apparatus
KR20140035640A (en) Evaporator and refrigerating machine using there of
KR20150098141A (en) Heat exchanger and air conditional having the same