JP2016124967A - Curable silicone composition, semiconductor sealant comprising the same and semiconductor device - Google Patents

Curable silicone composition, semiconductor sealant comprising the same and semiconductor device Download PDF

Info

Publication number
JP2016124967A
JP2016124967A JP2014266534A JP2014266534A JP2016124967A JP 2016124967 A JP2016124967 A JP 2016124967A JP 2014266534 A JP2014266534 A JP 2014266534A JP 2014266534 A JP2014266534 A JP 2014266534A JP 2016124967 A JP2016124967 A JP 2016124967A
Authority
JP
Japan
Prior art keywords
group
component
sio
carbon atoms
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266534A
Other languages
Japanese (ja)
Other versions
JP6586555B2 (en
Inventor
亮介 山崎
Ryosuke Yamazaki
亮介 山崎
能乃 戸田
Nono Toda
能乃 戸田
藤澤 豊彦
Toyohiko Fujisawa
豊彦 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Priority to JP2014266534A priority Critical patent/JP6586555B2/en
Publication of JP2016124967A publication Critical patent/JP2016124967A/en
Application granted granted Critical
Publication of JP6586555B2 publication Critical patent/JP6586555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a curable silicone composition that gives a cured product having excellent initial physical strength, and maintains high physical strength even when exposed to a high temperature of 250°C or more, and a use thereof.SOLUTION: A curable silicone composition comprises (A) an organic silicon compound having an alkylene group with 2-20 carbon atoms and an alkenyl group with 2-20 carbon atoms bound to a silicon atom in a molecule and (B) a peroxide.SELECTED DRAWING: None

Description

本発明は、硬化性シリコーン組成物、および該硬化性シリコーン組成物からなる半導体用封止剤、さらに、それを用いて封止された半導体装置に関する。   The present invention relates to a curable silicone composition, a semiconductor sealing agent comprising the curable silicone composition, and a semiconductor device sealed using the same.

硬化性シリコーン組成物は、硬化して、優れた耐熱性、耐寒性、電気絶縁性、耐候性、撥水性、透明性を有する硬化物を形成することから、幅広い産業分野で利用されている。特に、その硬化物は、他の有機材料と比較し変色しにくく、また、物理的物性の低下が小さいため、光学材料として適している。例えば、特許文献1には、アルケニル基含有シリコーンレジン、ケイ素原子結合水素原子含有オルガノポリシロキサン、およびヒドロシリル化反応用触媒からなる、発光ダイオード(LED)素子用液状シリコーンレジン組成物が提案されている。   Since the curable silicone composition is cured to form a cured product having excellent heat resistance, cold resistance, electrical insulation, weather resistance, water repellency, and transparency, it is used in a wide range of industrial fields. In particular, the cured product is less likely to be discolored than other organic materials and has a small decrease in physical physical properties, and thus is suitable as an optical material. For example, Patent Document 1 proposes a liquid silicone resin composition for a light-emitting diode (LED) element, which comprises an alkenyl group-containing silicone resin, a silicon-bonded hydrogen atom-containing organopolysiloxane, and a hydrosilylation reaction catalyst. .

一方、半導体業界にてジャンクション温度が高くなる傾向の故に、半導体封止樹脂の長期高温保管時の耐熱性への要求が高まってきている。しかし、従来半導体の封止材料として使用されてきたエポキシ樹脂組成物の硬化物は、高温での長期保管の間に寸法変化や質量変化等が起こり、クラックが入るという欠点があった。シリコーン樹脂組成物はエポキシ樹脂組成物よりも耐熱性が優れているが、機械的強度という観点でフェニルレジン系のシリコーン樹脂組成物が提案されている。一方で、フェニルレジン系のシリコーン樹脂組成物はメチル系のシリコーン樹脂組成物よりも耐熱性では劣るため、超耐熱性が必要とされるパワーデバイス等に使用される封止樹脂として最適なシリコーン樹脂組成物が見つかっていないのが現状である。   On the other hand, due to the tendency of the junction temperature to increase in the semiconductor industry, there is an increasing demand for heat resistance during long-term high-temperature storage of the semiconductor sealing resin. However, a cured product of an epoxy resin composition that has been conventionally used as a sealing material for semiconductors has a drawback in that a dimensional change or a mass change occurs during long-term storage at a high temperature and cracks occur. Silicone resin compositions have better heat resistance than epoxy resin compositions, but phenyl resin-based silicone resin compositions have been proposed in terms of mechanical strength. On the other hand, since the phenyl resin-based silicone resin composition is inferior in heat resistance to the methyl-based silicone resin composition, it is an optimal silicone resin as a sealing resin used in power devices and the like that require super heat resistance. The present condition is that the composition is not found.

例えば、特許文献2には一分子中に平均3個以上のアルケニル基を含有する、フェニル基含有オルガノポリシロキサンと、ケイ素原子に結合した有機基中、分子中に2個以上のアルケニル基を含有し、20〜60%がフェニル基で、残余がメチル基である直鎖状オルガノポリシロキサンからなるアルケニル基含有オルガノポリシロキサン、SiO4/2単位およびR''(CH3)2SiO1/2単位(式中、R''は水素原子またはメチル基)からなり、分子中に3個以上の、ケイ素原子に結合した水素原子を含むアルキルハイドロジェンポリシロキサン、および白金族金属化合物からなる硬化性シリコーン組成物が提案されているが、本組成物からなる硬化物は初期の物理的強度は優れるものの、200℃以上の高温に暴露されると強度が極端に低下するという問題がある。 For example, Patent Document 2 contains phenyl group-containing organopolysiloxane containing an average of 3 or more alkenyl groups in one molecule and organic groups bonded to silicon atoms, and containing 2 or more alkenyl groups in the molecule. An alkenyl group-containing organopolysiloxane comprising a linear organopolysiloxane having 20 to 60% phenyl groups and the remainder being methyl groups, SiO 4/2 units and R ″ (CH 3 ) 2 SiO 1/2 Curability consisting of a unit (wherein R ″ is a hydrogen atom or a methyl group), an alkylhydrogenpolysiloxane containing 3 or more hydrogen atoms bonded to a silicon atom in the molecule, and a platinum group metal compound Although a silicone composition has been proposed, a cured product comprising this composition has excellent initial physical strength, but the strength is extremely reduced when exposed to a high temperature of 200 ° C. or higher. There is a problem in that.

また、特許文献3には一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、一分子中に少なくとも2個のケイ素原子結合水素原子を有するオルガノポリシロキサン、ヒドロシリル化反応用触媒、平均粒子径が50μm以下である略球状のシリカ微粉末、および平均繊維長が1,000μm以下であり、平均繊維径が30μm以下であるガラス繊維から少なくともなるメチル系の硬化性シリコーン組成物が提案されているが、半導体用の封止樹脂として物理的強度及び靭性について不十分である。 Patent Document 3 discloses an organopolysiloxane having at least two alkenyl groups in one molecule, an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, a catalyst for hydrosilylation reaction, an average particle Proposed is a methyl curable silicone composition comprising at least spherical silica fine powder having a diameter of 50 μm or less and glass fibers having an average fiber length of 1,000 μm or less and an average fiber diameter of 30 μm or less. However, it is insufficient in physical strength and toughness as a sealing resin for semiconductors.

一方、特許文献4には、オルガノポリシロキサンレジンを含む熱硬化性組成物において、ヒドロシリル化反応触媒と過酸化物硬化反応を併用することが提案されているが、ホットメルト性を有する硬化性シリコーン組成物、特に、分子内にアルキレン基とアルケニル基を有するオルガノポリシロキサンを事前に合成することについては、何ら記載も示唆もなされていない。 On the other hand, Patent Document 4 proposes to use a hydrosilylation catalyst and a peroxide curing reaction in a thermosetting composition containing an organopolysiloxane resin. There is no description or suggestion about pre-synthesis of a composition, especially an organopolysiloxane having an alkylene group and an alkenyl group in the molecule.

特開2004−186168号公報JP 2004-186168 A 特開2007−039483号公報JP 2007-039483 A 特開2014−065900号公報JP 2014-0665900 A 特開2007−246842号公報JP 2007-246842 A

本発明の目的は、初期の硬化物の物理的強度に優れ、かつ、250℃以上の高温に暴露した場合にも高い物理的強度を維持する、硬化性シリコーン組成物を提供することにある。さらに、本発明の他の目的は、当該硬化性シリコーン組成物からなる半導体用封止剤および半導体装置を提供することにある。   An object of the present invention is to provide a curable silicone composition that is excellent in physical strength of an initial cured product and maintains high physical strength even when exposed to a high temperature of 250 ° C. or higher. Furthermore, the other object of this invention is to provide the sealing compound for semiconductors and a semiconductor device which consist of the said curable silicone composition.

本発明の硬化性シリコーン組成物は、(A)分子内に炭素原子数2〜20のアルキレン基と、ケイ素原子に結合した炭素原子数2〜20のアルケニル基とを有する有機ケイ素化合物および(B)過酸化物を含有してなることを特徴とする。ここで、(A)成分中のアルケニル基の含有量が、0.20〜5.00モル%の範囲であることが好ましく、(A)成分中の[アルキレン基の含有量(モル%)]/[アルケニル基の含有量(モル%)]の比が0.20〜5.00の範囲であることが特に好ましい。   The curable silicone composition of the present invention comprises (A) an organosilicon compound having an alkylene group having 2 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms bonded to a silicon atom in the molecule; ) It contains a peroxide. Here, the content of the alkenyl group in the component (A) is preferably in the range of 0.20 to 5.00 mol%, and the [content of alkylene group (mol%)] in the component (A). The ratio of / [alkenyl group content (mol%)] is particularly preferably in the range of 0.20 to 5.00.

硬化物の物性は、(A)成分中のシロキサン単位により決定される。具体的には、分岐状シロキサン単位を多く有するレジン状のオルガノポリシロキサンは、硬化物に硬度と機械的強度を付与し、鎖状シロキサン単位を多く有する得られるオルガノポリシロキサンは、硬化物に強靭性を付与するものであるので、硬化物の物理的強度および硬化性、250℃以上の高温に暴露した場合にも高い物理的強度を維持できることから、(A)成分は、分子中にレジン状シロキサン構造と鎖状シロキサン構造を有することが好ましい。かかる構造を有する有機ケイ素化合物は、ヒドロシリル化反応性のレジン状オルガノポリシロキサンと、ヒドロシリル化反応性の鎖状オルガノポリシロキサンとをヒドロシリル化反応触媒の存在下において、炭素原子数2〜20のアルケニル基がヒドロシリル化反応後に残存するように設計された比率でヒドロシリル化反応させることにより得ることができる。   The physical properties of the cured product are determined by the siloxane unit in component (A). Specifically, a resinous organopolysiloxane having many branched siloxane units imparts hardness and mechanical strength to the cured product, and the resulting organopolysiloxane having many chain siloxane units is tough to the cured product. Therefore, the component (A) is resin-like in the molecule because it can maintain high physical strength even when exposed to a high temperature of 250 ° C. or higher. It preferably has a siloxane structure and a chain siloxane structure. An organosilicon compound having such a structure is obtained by reacting a hydrosilylation-reactive resinous organopolysiloxane with a hydrosilylation-reactive chain organopolysiloxane in the presence of a hydrosilylation reaction catalyst. It can be obtained by a hydrosilylation reaction in a ratio designed so that the groups remain after the hydrosilylation reaction.

従って、本発明の硬化性シリコーン組成物は、好適には、
(A)成分が、
(a1):以下の(a1−1)成分または(a1−2)成分を50:50〜100:0の質量比で混合した一分子中に炭素原子数2〜20のアルケニル基を少なくとも2個有する、1種以上のオルガノポリシロキサン
(a1−1) 下記構造式で示されるアルケニル基含有レジン状オルガノポリシロキサン
[RVi SiO0.5[R SiO0.5[RSiO1.5[SiO2.0(R1/2)
式中、RViは炭素原子数2〜20のアルケニル基であり、Rは炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基、水酸基またはエポキシ基含有基から選ばれる少なくとも1種の基であり、Rは水素原子または炭素原子数1〜6のアルキル基であり、p+q+r+s=1.0であり、(p+q):(r+s)=0.15〜0.70:0.85〜0.30であり、p>0であり、eは0〜0.05の範囲内の数である。
(a1−2) 下記構造式で示されるアルケニル基含有鎖状オルガノポリシロキサン
[RVi SiO0.5[R SiO1.0]t
式中、RVi、Rは前記同様の基であり、tは1〜1000の範囲の数である、
および
(a2):以下の(a2−1)成分または(a2−2)成分を50:50〜100:0の質量比で混合した、1種以上のオルガノハイドロジェンポリシロキサン:
(a2−1) 下記構造式で示される分子構造の末端にケイ素原子結合水素原子を有するレジン状または鎖状のオルガノハイドロジェンポリシロキサン
[HR SiO0.5[R SiO1.0[RSiO1.5[SiO2.0(R1/2)
式中、RおよびRは前記同様の基であり、u+v+w+x=1.0であり、u:(v+w+x)=0.01〜0.75:0.99〜0.25であり、eは0〜0.05の範囲内の数である。
(a2−2) 下記構造式で示される側鎖にケイ素原子結合水素原子を有する鎖状のオルガノハイドロジェンポリシロキサン
[R SiO0.5[HRSiO1.0
式中、Rは前記同様の基であり、yは2〜1000の範囲の数である、
を、(a3)ヒドロシリル化反応触媒の存在下において、(a1)成分に含まれる炭素原子数2〜20のアルケニル基 1モルに対し、(a2)成分中のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子のモル数が、0.2〜0.7モルとなる量でヒドロシリル化反応させて得た有機ケイ素化合物であることが好ましく、
(B)成分は、10時間半減期温度が90℃以上である過酸化物であることが特に好ましい。さらに、当該硬化性シリコーン組成物は、(C)無機フィラーを(A)成分100質量部に対して10〜2000質量部の範囲で含むことが特に好ましい。
Therefore, the curable silicone composition of the present invention preferably has
(A) component is
(A1): at least two alkenyl groups having 2 to 20 carbon atoms in one molecule obtained by mixing the following components (a1-1) or (a1-2) at a mass ratio of 50:50 to 100: 0. One or more organopolysiloxanes (a1-1) having an alkenyl group-containing resinous organopolysiloxane represented by the following structural formula [R Vi R 2 2 SiO 0.5 ] p [R 2 3 SiO 0.5 ] q [R 2 SiO 1.5 ] r [SiO 2.0 ] s (R 5 O 1/2 ) e
In the formula, R Vi is an alkenyl group having 2 to 20 carbon atoms, R 2 is an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms. An aryl group and at least one group selected from a halogen-substituted aryl group having 6 to 20 carbon atoms, a hydroxyl group or an epoxy group-containing group, and R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. P + q + r + s = 1.0, (p + q) :( r + s) = 0.15-0.70: 0.85-0.30, p> 0, and e is in the range of 0-0.05. Is a number.
(A1-2) Alkenyl group-containing chain organopolysiloxane [R Vi R 2 2 SiO 0.5 ] 2 [R 2 2 SiO 1.0 ] t represented by the following structural formula
In the formula, R Vi and R 2 are the same groups as described above, and t is a number in the range of 1 to 1000.
And (a2): one or more organohydrogenpolysiloxanes in which the following components (a2-1) or (a2-2) are mixed at a mass ratio of 50:50 to 100: 0:
(A2-1) Resin-like or chain-like organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom at the end of the molecular structure represented by the following structural formula [HR 2 2 SiO 0.5 ] u [R 2 2 SiO 1 .0] v [R 2 SiO 1.5 ] w [SiO 2.0] x (R 5 O 1/2) e
In the formula, R 2 and R 5 are the same groups as described above, u + v + w + x = 1.0, u: (v + w + x) = 0.01 to 0.75: 0.99 to 0.25, and e is It is a number in the range of 0 to 0.05.
(A2-2) Chain-like organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom in the side chain represented by the following structural formula [R 2 3 SiO 0.5 ] 2 [HR 2 SiO 1.0 ] y
Wherein R 2 is the same group as described above, and y is a number in the range of 2 to 1000.
In the presence of (a3) hydrosilylation reaction catalyst, 1 mol of alkenyl group having 2 to 20 carbon atoms contained in component (a1) and silicon atom in organohydrogenpolysiloxane in component (a2) It is preferably an organosilicon compound obtained by hydrosilylation reaction in an amount such that the number of moles of bonded hydrogen atoms is 0.2 to 0.7 moles,
The component (B) is particularly preferably a peroxide having a 10-hour half-life temperature of 90 ° C. or higher. Furthermore, it is particularly preferable that the curable silicone composition contains (C) an inorganic filler in a range of 10 to 2000 parts by mass with respect to 100 parts by mass of the component (A).

また、本発明の半導体用封止剤は、前記の硬化性シリコーン組成物からなるものであり、本発明の半導体装置は、前記の硬化性シリコーン組成物を硬化させてなる硬化物を有するものである。   Moreover, the sealing agent for semiconductors of this invention consists of said curable silicone composition, and the semiconductor device of this invention has the hardened | cured material which hardens said curable silicone composition. is there.

本発明の硬化性シリコーン組成物は、初期の硬度が高く、250℃以上の高温に暴露した場合であっても、物理的強度が大きく低下しないという特徴がある。このため、発光ダイオード(LED)素子やパワー半導体を含む、各種の半導体の封止剤として用いた場合、取扱作業性に優れ、かつ、高出力/高温に晒される条件下であっても、半導体の耐久性および信頼性を著しく改善できる利点がある。さらに、本発明の硬化性シリコーン組成物には、任意で、25℃において非流動性で、表面粘着性が低く、加熱により容易に溶融するという特徴(=ホットメルト性)を付与することができる。   The curable silicone composition of the present invention has a high initial hardness and is characterized in that the physical strength is not greatly reduced even when exposed to a high temperature of 250 ° C. or higher. For this reason, when used as a sealant for various semiconductors, including light emitting diode (LED) elements and power semiconductors, the semiconductor is excellent in handling workability and even under conditions exposed to high output / high temperature. There is an advantage that the durability and reliability can be remarkably improved. Furthermore, the curable silicone composition of the present invention can optionally be imparted with a feature (= hot melt property) that is non-flowable at 25 ° C., has low surface tackiness, and is easily melted by heating. .

本発明の硬化性シリコーン組成物は、(A)分子内に炭素原子数2〜20のアルキレン基と、ケイ素原子に結合した炭素原子数2〜20のアルケニル基とを有する有機ケイ素化合物および(B)過酸化物を含有することを特徴とする。さらに、当該硬化性シリコーン組成物は、(C)無機フィラーを(A)成分100質量部に対して10〜2000質量部の範囲で含むことが特に好ましく、所望により、(D)反応抑制剤、接着付与剤および耐熱性付与剤から選ばれる1種以上、ならびにその他の添加剤、蛍光体を含有してもよい。以下、各成分について説明する。   The curable silicone composition of the present invention comprises (A) an organosilicon compound having an alkylene group having 2 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms bonded to a silicon atom in the molecule; ) It contains a peroxide. Further, the curable silicone composition particularly preferably contains (C) an inorganic filler in a range of 10 to 2000 parts by mass with respect to 100 parts by mass of the component (A). If desired, (D) a reaction inhibitor, You may contain 1 or more types chosen from an adhesion | attachment imparting agent and a heat resistance imparting agent, and another additive and fluorescent substance. Hereinafter, each component will be described.

[有機ケイ素化合物((A)成分)]
(A)成分は、分子内に炭素原子数2〜20のアルキレン基と、ケイ素原子に結合した炭素原子数2〜20のアルケニル基とを有する有機ケイ素化合物であり、本組成物に機械的強度と(B)過酸化物による硬化性および高温耐久性を付与する成分である。(A)成分は、事前に調製されていてもよく、後述の(A)成分の各原料成分を分子中にアルキレン基およびアルケニル基が残存するように設計された反応比率で混合しておき、(B)過酸化物による硬化反応温度よりも低い温度で事前に反応させるものであってもよい。
[Organic silicon compound (component (A))]
The component (A) is an organosilicon compound having an alkylene group having 2 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms bonded to a silicon atom in the molecule. And (B) a component imparting curability and high-temperature durability due to peroxide. The component (A) may be prepared in advance, and each raw material component of the component (A) described later is mixed in a reaction ratio designed so that an alkylene group and an alkenyl group remain in the molecule, (B) You may make it react in advance at the temperature lower than the curing reaction temperature by a peroxide.

(A)成分は、分子内に炭素原子数2〜20のアルキレン基と、ケイ素原子に結合した炭素原子数2〜20のアルケニル基とを有する有機ケイ素化合物であり、ケイ素−ケイ素間のアルキレン結合により鎖状またはレジン状のポリシロキサン構造が結合したシルアルキレン・ポリシロキサン構造を有し、かつ、過酸化物により熱硬化反応が可能なアルケニル基を有する。かかる構造を有することにより、残存するアルケニル基により(B)過酸化物による熱硬化が可能であるので、初期の硬度が高く、250℃以上の高温に暴露した場合であっても、物理的強度が大きく低下しないという利点を有する。 The component (A) is an organosilicon compound having an alkylene group having 2 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms bonded to a silicon atom in the molecule, and an alkylene bond between silicon and silicon. And a silalkylene-polysiloxane structure in which a chain or resin-like polysiloxane structure is bonded, and an alkenyl group capable of thermosetting reaction with a peroxide. By having such a structure, the (B) peroxide can be thermally cured by the remaining alkenyl group, so that the initial strength is high and the physical strength even when exposed to a high temperature of 250 ° C. or higher. Has the advantage that it does not drop significantly.

上記の(B)過酸化物による熱硬化性の見地から、(A)成分中の[アルキレン基の含有量(モル%)]/[アルケニル基の含有量(モル%)]の比は、0.20〜5.00の範囲であってよく、0.20〜4.00の範囲が好ましい。この比が前記下限未満ではアルケニル基の量が過剰となり、初期の硬度や強度等の物理的物性が不十分となる場合がある。一方、この比が前記上限を超えると、(B)過酸化物による熱硬化性および高温耐久性が不十分となる場合がある。(A)成分中のアルケニル基の含有量((A)成分中のケイ素原子結合官能基全体に占めるアルケニル基のモル%)は、所望により設計可能であるが、(B)過酸化物による熱硬化性および高温耐久性の見地から、0.20〜5.00モル%であってよく、0.40〜5.00モル%の範囲が好ましい。アルケニル基の含有量が前記下限未満では、(B)過酸化物による熱硬化性が不十分となる場合があり、前記上限を超えると、アルケニル基の含有量が過剰となり、硬化物の初期の硬度や強度等の物理的物性が損なわれる場合があるためである。 From the viewpoint of the thermosetting property due to the above (B) peroxide, the ratio of [alkylene group content (mol%)] / [alkenyl group content (mol%)] in component (A) is 0. It may be in the range of .20 to 5.00 and is preferably in the range of 0.20 to 4.00. If this ratio is less than the lower limit, the amount of alkenyl groups becomes excessive, and physical properties such as initial hardness and strength may be insufficient. On the other hand, if this ratio exceeds the upper limit, (B) thermosetting and high-temperature durability due to peroxide may be insufficient. The content of the alkenyl group in the component (A) (mol% of the alkenyl group in the entire silicon atom-bonded functional group in the component (A)) can be designed as desired. From the viewpoint of curability and high temperature durability, it may be 0.20 to 5.00 mol%, and is preferably in the range of 0.40 to 5.00 mol%. When the content of the alkenyl group is less than the lower limit, the thermosetting property by (B) peroxide may be insufficient, and when the content exceeds the upper limit, the content of the alkenyl group becomes excessive, and the initial cured product This is because physical properties such as hardness and strength may be impaired.

(A)成分は、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンと一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノポリシロキサンとを、[アルケニル基のモル数]/[ケイ素原子結合水素原子のモル数]>1となる反応比でヒドロシリル化反応させることにより得ることができる。反応原料中のアルケニル基は、ケイ素原子結合水素原子とのヒドロシリル化反応により、ポリシロキサン間のシルアルキレン結合を形成し、一方、過剰のアルケニル基は、得られたヒドロシリル化反応物中である(A)成分中のケイ素結合アルケニル基として、(B)過酸化物による熱硬化反応に用いられる。 Component (A) comprises an organopolysiloxane having at least two alkenyl groups in one molecule and an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule [number of moles of alkenyl groups] / It can be obtained by a hydrosilylation reaction at a reaction ratio of [number of moles of silicon-bonded hydrogen atoms]> 1. The alkenyl group in the reaction raw material forms a silalkylene bond between polysiloxanes by a hydrosilylation reaction with a silicon atom-bonded hydrogen atom, while excess alkenyl groups are in the resulting hydrosilylation reaction product ( As the silicon-bonded alkenyl group in component A), it is used for (B) a thermosetting reaction with a peroxide.

(A)成分中のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基、ウンデセニル基、ドデセニル基等の炭素数2〜20のアルケニル基が例示され、これらは直鎖状でも分岐鎖状でもよく、好ましくは、ビニル基またはヘキセニル基である。同様に(A)成分中のアルキレン基としては、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等の炭素数2〜20のアルケニル基が例示され、これらは直鎖状でも分岐鎖状でもよく、好ましくは、エチレン基またはヘキシレン基である。 (A) As an alkenyl group in a component, it is C2-C20, such as vinyl group, an allyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, decenyl group, undecenyl group, dodecenyl group These may be linear or branched, and are preferably a vinyl group or a hexenyl group. Similarly, examples of the alkylene group in component (A) include alkenyl groups having 2 to 20 carbon atoms such as ethylene group, propylene group, butylene group, pentylene group, and hexylene group, which may be linear or branched. However, it is preferably an ethylene group or a hexylene group.

一方、(A)成分中のアルケニル基以外のケイ素原子に結合する基としては、炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基、水酸基、アルコキシ基、およびエポキシ基含有基が例示され、特に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基、アントラセニル基、フェナントリル基、ピレニル基等の炭素数6〜20のアリール基およびこれらの基に結合している水素原子の一部または全部を塩素原子、臭素原子等のハロゲン原子で置換した基、下記構造式で表されるエポキシ基含有基が例示される。特に好ましくは、メチル基、フェニル基、グリシドキシプロピル基または水酸基である。なお、グリシドキシプロピル基等のエポキシ基含有基は、接着付与剤に用いられる官能基であり、半硬化反応後の(A)成分がこれらのエポキシ基含有基を有することにより、得られる硬化物の硬化密着性および接着性がさらに改善される場合がある。

Figure 2016124967
(式中、kは1〜10、特に2〜8の数である。) On the other hand, as the group bonded to the silicon atom other than the alkenyl group in the component (A), an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group having 1 to 20 carbon atoms, and 6 to 20 carbon atoms. Examples include aryl groups, and halogen-substituted aryl groups having 6 to 20 carbon atoms, hydroxyl groups, alkoxy groups, and epoxy group-containing groups. Particularly, methyl groups, ethyl groups, propyl groups, butyl groups, pentyl groups, hexyl groups, Alkyl group such as heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, etc .; C6-C20 such as phenyl group, tolyl group, xylyl group, naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group A group in which some or all of the aryl groups and hydrogen atoms bonded to these groups are substituted with halogen atoms such as chlorine atoms and bromine atoms; Epoxy group-containing group represented by the serial structure can be exemplified. Particularly preferred is a methyl group, a phenyl group, a glycidoxypropyl group or a hydroxyl group. An epoxy group-containing group such as a glycidoxypropyl group is a functional group used for an adhesion-imparting agent, and the cured product obtained when the component (A) after the semi-curing reaction has these epoxy group-containing groups. In some cases, the cured adhesiveness and adhesiveness of the product may be further improved.
Figure 2016124967
(In the formula, k is a number of 1 to 10, particularly 2 to 8.)

また、(A)成分は、ケイ素原子に結合した一価の有機基の10モル%以上、好適には20モル%以上をアリール基、好適にはフェニル基とすることで25℃において非流動性で、表面粘着性が低いホットメルト性の有機ケイ素化合物を含む硬化性組成物を与えることが可能である。 The component (A) is non-flowable at 25 ° C. by making 10 mol% or more, preferably 20 mol% or more of the monovalent organic group bonded to the silicon atom an aryl group, preferably a phenyl group. Thus, it is possible to provide a curable composition containing a hot-melt organosilicon compound having low surface tackiness.

(A)成分を構成するシロキサン単位、あるいはシルアルキレン基含有シロキサン単位は特に制限されるものではないが、得られる硬化物に十分な硬度と機械的物性を付与するには、直鎖状のポリシロキサン単位と、レジン状のポリシロキサン単位の両方が同一分子内にあることが好ましい。このような有機ケイ素化合物は、好適には、以下のシロキサン単位およびシルアルキレン基含有シロキサン単位により構成される。
M単位:R SiO0.5で表されるシロキサン単位、
D単位:RSiO1.0で表されるシロキサン単位、
M/RD単位:R 0.5 SiO0.5で表されるシルアルキレン基含有シロキサン単位及びR 0.5SiO1.0で表されるシルアルキレン基含有シロキサン単位から選ばれる少なくとも1種のシロキサン単位、並びに
T/Q単位:RSiO1.5で表されるシロキサン単位およびSiO2.0で表されるシロキサン単位から選ばれる少なくとも1種のシロキサン単位
The siloxane unit or the silalkylene group-containing siloxane unit constituting the component (A) is not particularly limited, but in order to impart sufficient hardness and mechanical properties to the resulting cured product, a linear poly It is preferable that both the siloxane unit and the resin-like polysiloxane unit are in the same molecule. Such an organosilicon compound is preferably composed of the following siloxane units and silalkylene group-containing siloxane units.
M unit: siloxane unit represented by R 1 R 2 2 SiO 0.5 ,
D unit: siloxane unit represented by R 1 R 2 SiO 1.0 ,
R 3 M / R 3 D unit: Silalkylene group-containing siloxane unit represented by R 3 0.5 R 2 2 SiO 0.5 and a silalkylene group represented by R 3 0.5 R 2 SiO 1.0 At least one siloxane unit selected from contained siloxane units, and T / Q unit: at least one siloxane selected from siloxane units represented by R 2 SiO 1.5 and siloxane units represented by SiO 2.0 unit

上式中、Rは各々独立に炭素原子数1〜20の一価炭化水素基であり、炭素原子数2〜20のアルケニル基、炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基、炭素原子数7〜20のアラルキル基、アルコキシ基、水酸基または前記構造式で表されるエポキシ基含有基から選ばれる少なくとも1種の基が例示される。ただし、全てのシロキサン単位のうち、少なくとも1以上のRは炭素原子数2〜20のアルケニル基であり、前記同様の基が例示される。全てのRのうち、(A)成分中のアルケニル基の含有量が、0.20〜5.00モル%の範囲となる数が炭素原子数2〜20のアルケニル基であることが好ましい。Rとして好適には、メチル基、ビニル基、ヘキセニル基、グリシドキシプロピル基およびフェニル基である。 In the above formula, each R 1 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, or 1 to 1 carbon atoms. 20 halogen-substituted alkyl groups, aryl groups having 6 to 20 carbon atoms, and halogen-substituted aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, alkoxy groups, hydroxyl groups, or the above structural formula Examples thereof include at least one group selected from epoxy group-containing groups. However, among all the siloxane units, at least one R 1 is an alkenyl group having 2 to 20 carbon atoms, and examples thereof are the same groups as described above. Among all R 1, the number of alkenyl groups in the component (A) in the range of 0.20 to 5.00 mol% is preferably an alkenyl group having 2 to 20 carbon atoms. R 1 is preferably a methyl group, a vinyl group, a hexenyl group, a glycidoxypropyl group or a phenyl group.

上式中、Rは各々独立に炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基、前記構造式で表されるエポキシ基含有基から選ばれる少なくとも1種の基であり、前記同様の基が例示される。Rとして好適には、メチル基、フェニル基、グリシドキシプロピル基または水酸基である。 In the above formula, each R 2 independently represents an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 6 to 20 carbon atoms. It is at least one group selected from a halogen-substituted aryl group and an epoxy group-containing group represented by the structural formula, and examples thereof are the same groups as described above. R 2 is preferably a methyl group, a phenyl group, a glycidoxypropyl group or a hydroxyl group.

上式中、Rは他のシロキサン単位中のケイ素原子に結合した、直鎖状または分岐鎖状の炭素原子数2〜20のアルキレン基(=シルアルキレン基)である。アルキレン基として、前記同様の基が例示され、エチレン基またはヘキシレン基が好適である。ここで、他のシルアルキレンを介した他のシロキサン単位との結合形態は主に以下の通りである。なお、末端のOは各々他のシロキサン単位中のケイ素原子に結合する。

Figure 2016124967
In the above formula, R 3 is a linear or branched alkylene group having 2 to 20 carbon atoms (= silalkylene group) bonded to a silicon atom in another siloxane unit. Examples of the alkylene group include the same groups as described above, and an ethylene group or a hexylene group is preferable. Here, the bonding form with other siloxane units via other silalkylene is mainly as follows. Each terminal O is bonded to a silicon atom in another siloxane unit.
Figure 2016124967

M単位は(A)成分である有機ケイ素化合物の末端を構成するシロキサン単位であり、D単位は直鎖状のポリシロキサン構造を構成するシロキサン単位である。なお、これらのM単位またはD単位、特に好適にはM単位上にアルケニル基またはケイ素原子結合水素原子があることが好ましい。一方、RM単位およびRD単位はシルアルキレン結合を介して他のシロキサン単位中のケイ素原子に結合し、かつ、酸素原子を介して他のシロキサン単位中のケイ素原子に結合するシロキサン単位である。T/Q単位はポリシロキサンにレジン状の構造を与える分岐のシロキサン単位であり、本願発明においては、(A)成分がRSiO1.5で表されるシロキサン単位およびSiO2.0で表されるシロキサン単位から選ばれる少なくとも1種のシロキサン単位を含むことが好ましい。特に、本組成物に良好なホットメルト性を付与したい場合、(A)成分中のアリール基の含有量を調整する見地から、(A)成分はRSiO1.5で表されるシロキサン単位を含むことが好ましく、特に、Rがフェニル基であるシロキサン単位を含むことが好ましい。 The M unit is a siloxane unit that constitutes the end of the organosilicon compound that is the component (A), and the D unit is a siloxane unit that constitutes a linear polysiloxane structure. In addition, it is preferable that an alkenyl group or a silicon atom-bonded hydrogen atom is present on these M units or D units, particularly preferably M units. On the other hand, the R 3 M unit and the R 3 D unit are bonded to a silicon atom in another siloxane unit through a silalkylene bond and bonded to a silicon atom in another siloxane unit through an oxygen atom. It is. The T / Q unit is a branched siloxane unit that gives a resinous structure to polysiloxane. In the present invention, the (A) component is represented by a siloxane unit represented by R 2 SiO 1.5 and a SiO 2.0 unit. It is preferable to contain at least one siloxane unit selected from siloxane units to be prepared. In particular, when it is desired to impart good hot melt properties to the composition, from the viewpoint of adjusting the content of aryl groups in the component (A), the component (A) is a siloxane unit represented by R 2 SiO 1.5. In particular, R 2 preferably contains a siloxane unit having a phenyl group.

M/RD単位は、(A)成分の特徴的な構造であり、Rであるシルアルキレン基を介して、ケイ素原子間が架橋された構造を表す。具体的には、R 0.5 SiO0.5で表されるシルアルキレン基含有シロキサン単位及びR 0.5SiO1.0で表されるシルアルキレン基含有シロキサン単位から選ばれる少なくとも1種のシロキサン単位であり、(A)成分を構成する全シロキサン単位の少なくとも二つはこれらのシルアルキレン基含有シロキサン単位である必要がある。Rであるシルアルキレン基を有するシロキサン単位間の好適な結合形態は前記の通りであり、二つのシルアルキレン基含有シロキサン単位間のRの数は、M単位における酸素等と同様に結合価「0.5」として表現している。仮にRの数を1とすれば、[O0.5 SiRSiR 0.5]、[O0.5 SiRSiR1.0] および[O1.0SiRSiR1.0]で表されるシロキサンの構造単位から選ばれる少なくとも1以上が(A)成分中に含まれ、各酸素原子(O)は、前記のM,D,T/Q単位に含まれるケイ素原子に結合する。かかる構造を有することで、(A)成分は、D単位からなる鎖状ポリシロキサン構造、T/Q単位を含むレジン状のポリシロキサン構造を分子内に有する構造を比較的容易に設計可能であり、その物理的物性において著しく優れたものである。 The R 3 M / R 3 D unit is a characteristic structure of the component (A), and represents a structure in which silicon atoms are bridged via a silalkylene group as R 3 . Specifically, from a silalkylene group-containing siloxane unit represented by R 3 0.5 R 2 2 SiO 0.5 and a silalkylene group-containing siloxane unit represented by R 3 0.5 R 2 SiO 1.0 It is at least one siloxane unit selected, and at least two of the total siloxane units constituting the component (A) need to be these silalkylene group-containing siloxane units. The preferred bonding form between the siloxane units having a silalkylene group as R 3 is as described above, and the number of R 3 between the two silalkylene group-containing siloxane units is the same as that of oxygen in the M unit. It is expressed as “0.5”. Assuming that the number of R 3 is 1, [O 0.5 R 2 2 SiR 3 SiR 2 2 O 0.5 ], [O 0.5 R 2 2 SiR 3 SiR 2 O 1.0 ] and [O 1.0 R 2 SiR 3 SiR 2 O 1.0 ] is included in the component (A), and at least one selected from structural units of siloxane represented by 1.0 R 2 SiR 3 SiR 2 O 1.0 ]. Bonds to silicon atoms contained in D, T / Q units. By having such a structure, the component (A) can be designed relatively easily with a chain polysiloxane structure consisting of D units and a resin-like polysiloxane structure containing T / Q units in the molecule. , The physical properties are remarkably excellent.

このような(A)成分は、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンと一分子中にケイ素原子結合水素原子を少なくとも2個有するオルガノポリシロキサンとを、[アルケニル基のモル数]/[ケイ素原子結合水素原子のモル数]>1となる反応比でヒドロシリル化反応させることにより得ることができるものであるが、より好適には、(A)成分は、分子中にレジン状シロキサン構造と鎖状シロキサン構造を有するものであり、ヒドロシリル化反応性のオルガノポリシロキサンの少なくとも一部が、レジン状シロキサン構造を有するオルガノポリシロキサンであり、他の一部が鎖状シロキサン構造を有するオルガノポリシロキサンであることが好ましい。 Such component (A) comprises an organopolysiloxane having at least two alkenyl groups in one molecule and an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule. Number] / [number of moles of silicon-bonded hydrogen atoms]> 1, which can be obtained by a hydrosilylation reaction at a reaction ratio, more preferably, the component (A) is a resin in the molecule. It has a chain siloxane structure and a chain siloxane structure, and at least part of the hydrosilylation-reactive organopolysiloxane is an organopolysiloxane having a resinous siloxane structure, and the other part has a chain siloxane structure. It is preferable that it is the organopolysiloxane which has.

例えば、(A)成分は、
(A)分子中にRSiO1.5で表されるシロキサン単位およびSiO2.0で表されるシロキサン単位から選ばれる少なくとも1種のシロキサン単位(式中、Rは、前記同様の基である)を含有し、かつ、炭素原子数2〜20のアルケニル基およびケイ素原子結合水素原子から選ばれるヒドロシリル化反応性の官能基を有する、少なくとも1種のレジン状オルガノポリシロキサン、および、
(A)分子中にR SiO1.0で表されるシロキサン単位(式中、Rは、前記同様の基である)を含有し、かつ、前記の(A)成分とヒドロシリル化反応可能な官能基であって、炭素原子数2〜20のアルケニル基およびケイ素原子結合水素原子から選ばれる反応性官能基を有する、少なくとも1種の鎖状オルガノポリシロキサンを、
(A)成分または(A)成分中の炭素原子数2〜20のアルケニル基がヒドロシリル化反応後に残存するように設計された比率で反応させて得た有機ケイ素化合物である。
For example, the component (A) is
(A R ) At least one siloxane unit selected from a siloxane unit represented by R 2 SiO 1.5 and a siloxane unit represented by SiO 2.0 in the molecule (wherein R 2 is the same as defined above) And at least one resinous organopolysiloxane having a hydrosilylation reactive functional group selected from an alkenyl group having 2 to 20 carbon atoms and a silicon-bonded hydrogen atom, and
(A L) siloxane units (wherein, R 2 is a is a similar group) represented by R 2 2 SiO 1.0 in the molecule contains, and said (A R) component hydrosilyl At least one chain organopolysiloxane having a reactive functional group selected from a C2-C20 alkenyl group and a silicon atom-bonded hydrogen atom,
It is an organosilicon compound obtained by reacting at a ratio designed so that an alkenyl group having 2 to 20 carbon atoms in the (A R ) component or the (A L ) component remains after the hydrosilylation reaction.

上記の(A)成分の少なくとも一部が、炭素原子数2〜20のアルケニル基を有するレジン状オルガノポリシロキサンである場合、(A)成分の少なくとも一部はケイ素原子結合水素原子を有する鎖状オルガノポリシロキサンであることが好ましい。 When at least a part of the (A R ) component is a resinous organopolysiloxane having an alkenyl group having 2 to 20 carbon atoms, at least a part of the (A L ) component has a silicon atom-bonded hydrogen atom. A chain organopolysiloxane is preferred.

同様に、上記の(A)成分の少なくとも一部が、ケイ素原子結合水素原子を有するレジン状オルガノポリシロキサンである場合、(A)成分の少なくとも一部は炭素原子数2〜20のアルケニル基を有する鎖状オルガノポリシロキサンであることが好ましい。 Similarly, when at least a part of the (A R ) component is a resinous organopolysiloxane having a silicon atom-bonded hydrogen atom, at least a part of the (A L ) component is an alkenyl having 2 to 20 carbon atoms. A linear organopolysiloxane having a group is preferred.

このような組み合わせは特に限定されるものではないが、好適には、
(a1):以下の(a1−1)成分または(a1−2)成分を含有する、分子中に炭素原子数2〜20のアルケニル基を少なくとも2個有するオルガノポリシロキサン
(a1−1) 下記構造式で示されるアルケニル基含有レジン状オルガノポリシロキサン
[RVi SiO0.5[R SiO0.5[RSiO1.5[SiO2.0(R1/2)
式中、RViは炭素原子数2〜20のアルケニル基であり、Rは炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基、水酸基またはエポキシ基から選ばれる少なくとも1種の基であり、Rは水素原子または炭素原子数1〜6のアルキル基であり、p+q+r+s=1.0であり、(p+q):(r+s)=0.15〜0.70:0.85〜0.30であり、p>0であり、eは0〜0.05の範囲内の数である。
(a1−2) 下記構造式で示されるアルケニル基含有鎖状オルガノポリシロキサン
[RVi SiO0.5[R SiO1.0]t
式中、RVi、Rは前記同様の基であり、tは1〜2000の範囲の数である、
および
(a2):以下の(a2−1)成分または(a2−2)成分を含有するオルガノハイドロジェンポリシロキサン:
(a2−1) 下記構造式で示される分子構造の末端にケイ素原子結合水素原子を有するレジン状または鎖状のオルガノハイドロジェンポリシロキサン
[HR SiO0.5[R SiO1.0[RSiO1.5[SiO2.0(R1/2)
式中、RおよびRは前記同様の基であり、u+v+w+x=1.0であり、u:(v+w+x)=0.01〜0.75:0.99〜0.25であり、eは0〜0.05の範囲内の数である。
(a2−2) 下記構造式で示される側鎖にケイ素原子結合水素原子を有する鎖状のオルガノハイドロジェンポリシロキサン
[R SiO0.5[HRSiO1.0
式中、Rは前記同様の基であり、yは2〜1000の範囲の数である、
を、(a3)ヒドロシリル化反応触媒の存在下において、(a1)成分に含まれる炭素原子数2〜20のアルケニル基 1モルに対し、(a2)成分中のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子のモル数が、0.2〜0.7モルとなる量でヒドロシリル化反応させることが好ましい。
Such a combination is not particularly limited, but preferably,
(A1): Organopolysiloxane having at least two alkenyl groups having 2 to 20 carbon atoms in the molecule, containing the following component (a1-1) or component (a1-2) (a1-1) Alkenyl group-containing resinous organopolysiloxane represented by the formula: [R Vi R 2 2 SiO 0.5 ] p [R 2 3 SiO 0.5 ] q [R 2 SiO 1.5 ] r [SiO 2.0 ] s (R 5 O 1/2 ) e
In the formula, R Vi is an alkenyl group having 2 to 20 carbon atoms, R 2 is an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group having 1 to 20 carbon atoms, or 6 to 20 carbon atoms. An aryl group and at least one group selected from a halogen-substituted aryl group having 6 to 20 carbon atoms, a hydroxyl group or an epoxy group, R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and p + q + r + s = 1.0, (p + q) :( r + s) = 0.15-0.70: 0.85-0.30, p> 0, and e is in the range of 0-0.05. Is a number.
(A1-2) Alkenyl group-containing chain organopolysiloxane [R Vi R 2 2 SiO 0.5 ] 2 [R 2 2 SiO 1.0 ] t represented by the following structural formula
In the formula, R Vi and R 2 are the same groups as described above, and t is a number in the range of 1 to 2000.
And (a2): organohydrogenpolysiloxane containing the following component (a2-1) or component (a2-2):
(A2-1) Resin-like or chain-like organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom at the end of the molecular structure represented by the following structural formula [HR 2 2 SiO 0.5 ] u [R 2 2 SiO 1 .0] v [R 2 SiO 1.5 ] w [SiO 2.0] x (R 5 O 1/2) e
In the formula, R 2 and R 5 are the same groups as described above, u + v + w + x = 1.0, u: (v + w + x) = 0.01 to 0.75: 0.99 to 0.25, and e is It is a number in the range of 0 to 0.05.
(A2-2) Chain-like organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom in the side chain represented by the following structural formula [R 2 3 SiO 0.5 ] 2 [HR 2 SiO 1.0 ] y
Wherein R 2 is the same group as described above, and y is a number in the range of 2 to 1000.
In the presence of (a3) hydrosilylation reaction catalyst, 1 mol of alkenyl group having 2 to 20 carbon atoms contained in component (a1) and silicon atom in organohydrogenpolysiloxane in component (a2) The hydrosilylation reaction is preferably carried out in such an amount that the number of moles of bonded hydrogen atoms is 0.2 to 0.7 mole.

上記の(a1)成分は、(a1−1)成分と(a1−2)成分の質量比が100:0〜0:100の混合物であってよく、特に、(a1−1)成分であるアルケニル基含有レジン状オルガノポリシロキサンを含むか、単独であることが好ましく、(a1−1)成分と(a1−2)成分の質量比が50:50〜100:0であってもよく、60:40〜100:0の範囲であることが好ましい。なお、(a1)成分が(a1−2)成分であるアルケニル基含有鎖状オルガノポリシロキサンのみからなる場合、(a2)成分の少なくとも一部は、(a2−1)成分であるレジン状のオルガノハイドロジェンポリシロキサンであることが好ましい。 The component (a1) may be a mixture having a mass ratio of the component (a1-1) and the component (a1-2) of 100: 0 to 0: 100, and in particular, the alkenyl that is the component (a1-1). It is preferable that the group-containing resinous organopolysiloxane is contained or is independent, and the mass ratio of the component (a1-1) to the component (a1-2) may be 50:50 to 100: 0. It is preferable that it is the range of 40-100: 0. In the case where the component (a1) is composed only of the alkenyl group-containing chain organopolysiloxane which is the component (a1-2), at least a part of the component (a2) is a resinous organoorganism which is the component (a2-1). A hydrogen polysiloxane is preferable.

上記の(a2)成分は、(a2−1)成分と(a2−2)成分の質量比が100:0〜0:100の混合物であってよく、特に、(a2−1)成分であるレジン状または鎖状のオルガノハイドロジェンポリシロキサンを含むか、単独であることが好ましく、(a2−1)成分と(a2−2)成分の質量比が50:50〜100:0であってもよく、75:25〜100:0の範囲であることが好ましい。なお、(a2)成分が(a2−2)成分である鎖状のオルガノハイドロジェンポリシロキサンのみからなる場合、(a1)成分の少なくとも一部は、(a1−1)成分であるアルケニル基含有レジン状オルガノポリシロキサンであることが好ましい。 The component (a2) may be a mixture having a mass ratio of the component (a2-1) and the component (a2-2) of 100: 0 to 0: 100, in particular, the resin that is the component (a2-1). It is preferable that it contains a chain-like or chain-like organohydrogenpolysiloxane or is independent, and the mass ratio of the component (a2-1) to the component (a2-2) may be 50:50 to 100: 0. 75:25 to 100: 0. In addition, when (a2) component consists only of chain | strand-shaped organohydrogenpolysiloxane which is (a2-2) component, at least one part of (a1) component is an alkenyl group containing resin which is (a1-1) component. It is preferable that it is an organopolysiloxane.

さらに好適には、(A)成分は、以下の(A1−1)成分または(A1−2)成分と(A2)成分を(A3)ヒドロシリル化反応触媒の存在下で反応させることにより得ることができる。 More preferably, the component (A) is obtained by reacting the following component (A1-1) or component (A1-2) with the component (A2) in the presence of a catalyst (A3) hydrosilylation reaction. it can.

(A1−1)成分はアルケニル基を含有し、分岐単位の量が比較的多いポリシロキサンであり、
平均単位式:
(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)(R1/2)
で表される一分子中にアルケニル基を少なくとも2個有するオルガノポリシロキサンである。
The component (A1-1) is a polysiloxane containing an alkenyl group and having a relatively large amount of branch units.
Average unit formula:
(R 4 3 SiO 1/2 ) a (R 4 2 SiO 2/2 ) b (R 4 SiO 3/2 ) c (SiO 4/2 ) d (R 5 O 1/2 ) e
An organopolysiloxane having at least two alkenyl groups in one molecule.

式中、Rはハロゲン置換または非置換の炭素原子数1〜20の一価炭化水素基であり、前記と同様に炭素原子数2〜20のアルケニル基、炭素原子数1〜20のアルキル基、炭素原子数6〜20のアリール基、およびこれらの基に結合している水素原子の一部または全部を塩素原子、臭素原子等のハロゲン原子で置換した基、グリシドキシプロピル基等のエポキシ基または水酸基が例示される。好ましくは、メチル基、フェニル基、ビニル基、水酸基またはエポキシ基である。ただし、Rの少なくとも2個は炭素原子数2〜20のアルケニル基である。また、全てのRの10モル%以上、好適には20モル%以上がフェニル基にすることで得られる組成物にホットメルト性を付与する事ができる。また、式中のRは水素原子または炭素原子数1〜6のアルキル基である。 In the formula, R 4 is a halogen-substituted or unsubstituted monovalent hydrocarbon group having 1 to 20 carbon atoms, and similarly to the above, an alkenyl group having 2 to 20 carbon atoms and an alkyl group having 1 to 20 carbon atoms. An aryl group having 6 to 20 carbon atoms, a group in which some or all of the hydrogen atoms bonded to these groups are substituted with a halogen atom such as a chlorine atom or a bromine atom, or an epoxy such as a glycidoxypropyl group Examples are a group or a hydroxyl group. Preferably, they are a methyl group, a phenyl group, a vinyl group, a hydroxyl group or an epoxy group. However, at least two of R 4 are alkenyl groups having 2 to 20 carbon atoms. Moreover, hot-melt property can be provided to the composition obtained by making 10 mol% or more, preferably 20 mol% or more of all R 4 into phenyl groups. R 5 in the formula is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

式中、aは0〜0.7の範囲内の数、bは0〜0.7の範囲内の数、cは0〜0.9の範囲内の数、dは0〜0.7の範囲内の数、eは0〜0.1の範囲内の数、かつ、c+dは0.3〜0.9の範囲内の数、a+b+c+dは1であり、好ましくは、aは0〜0.6の範囲内の数、bは0〜0.6の範囲内の数、cは0〜0.9の範囲内の数、dは0〜0.5の範囲内の数、eは0〜0.05の範囲内の数、かつ、c+dは0.4〜0.9の範囲内の数である。これは、a、b、およびc+dがそれぞれ上記範囲内の数であると、得られる硬化物の硬度や機械的強度が優れたものとなるからである。 In the formula, a is a number in the range of 0 to 0.7, b is a number in the range of 0 to 0.7, c is a number in the range of 0 to 0.9, and d is 0 to 0.7. A number in the range, e is a number in the range of 0 to 0.1, c + d is a number in the range of 0.3 to 0.9, a + b + c + d is 1, and preferably a is 0 to 0.00. A number in the range of 6, b is a number in the range of 0 to 0.6, c is a number in the range of 0 to 0.9, d is a number in the range of 0 to 0.5, e is 0 to 0 A number in the range of 0.05, and c + d is a number in the range of 0.4 to 0.9. This is because the hardness and mechanical strength of the resulting cured product are excellent when a, b, and c + d are numbers within the above ranges.

このような(A1−1)成分として、具体的には、次のようなオルガノポリシロキサンが例示される。なお、式中、Me、Ph、Vi、Epはそれぞれメチル基、フェニル基、ビニル基、グリシドキシプロピル基を表す。
(ViMeSiO1/2)0.25(PhSiO3/2)0.75(HO1/2)0.02
(ViMeSiO1/2)0.25(PhSiO3/2)0.75
(ViMeSiO1/2)0.20(PhSiO3/2)0.80
(ViMeSiO1/2)0.15(MeSiO1/2)0.38(SiO4/2)0.47(HO1/2)0.01
(ViMeSiO1/2)0.13(MeSiO1/2)0.45(SiO4/2)0.42(HO1/2)0.01
(ViMeSiO1/2)0.15(PhSiO3/2)0.85(HO1/2)0.01
(MeSiO2/2)0.15(MeViSiO2/2)0.10(PhSiO3/2)0.75(HO1/2)0.04
(MeViPhSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.05
(ViMeSiO1/2)0.15(PhSiO3/2)0.75(SiO4/2)0.10(HO1/2)0.02
(PhSiO2/2)0.25(MeViSiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.04
(MeSiO1/2)0.20(ViMePhSiO1/2)0.40(SiO4/2)0.40(HO1/2)0.08
(MeViSiO1/2)0.2(MeEpSiO2/2)0.25(PhSiO3/2)0.55(HO1/2)0.005
Specific examples of such (A1-1) component include the following organopolysiloxanes. In the formula, Me, Ph, Vi, and Ep represent a methyl group, a phenyl group, a vinyl group, and a glycidoxypropyl group, respectively.
(ViMe 2 SiO 1/2 ) 0.25 (PhSiO 3/2 ) 0.75 (HO 1/2 ) 0.02
(ViMe 2 SiO 1/2 ) 0.25 (PhSiO 3/2 ) 0.75
(ViMe 2 SiO 1/2 ) 0.20 (PhSiO 3/2 ) 0.80
(ViMe 2 SiO 1/2 ) 0.15 (Me 3 SiO 1/2 ) 0.38 (SiO 4/2 ) 0.47 (HO 1/2 ) 0.01
(ViMe 2 SiO 1/2 ) 0.13 (Me 3 SiO 1/2 ) 0.45 (SiO 4/2 ) 0.42 (HO 1/2 ) 0.01
(ViMe 2 SiO 1/2 ) 0.15 (PhSiO 3/2 ) 0.85 (HO 1/2 ) 0.01
(Me 2 SiO 2/2) 0.15 ( MeViSiO 2/2) 0.10 (PhSiO 3/2) 0.75 (HO 1/2) 0.04
(MeViPhSiO 1/2 ) 0.20 (PhSiO 3/2 ) 0.80 (HO 1/2 ) 0.05
(ViMe 2 SiO 1/2 ) 0.15 (PhSiO 3/2 ) 0.75 (SiO 4/2 ) 0.10 (HO 1/2 ) 0.02
(Ph 2 SiO 2/2 ) 0.25 (MeViSiO 2/2 ) 0.30 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.04
(Me 3 SiO 1/2 ) 0.20 (ViMePhSiO 1/2 ) 0.40 (SiO 4/2 ) 0.40 (HO 1/2 ) 0.08
(Me 2 ViSiO 1/2 ) 0.2 (MeEpSiO 2/2 ) 0.25 (PhSiO 3/2 ) 0.55 (HO 1/2 ) 0.005

(A1−2)成分は炭素原子数2〜20のアルケニル基を含有し、鎖状シロキサン単位の量が比較的多いポリシロキサンであり、概ね3〜2000量体(例えば、両末端シロキサン単位のほか、ジシロキサン単位を1〜1998の範囲で含む構造等)の鎖状ポリシロキサンが例示される。具体的には、(A1−2)成分は
平均単位式:
(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)(R1/2)
で表される一分子中にアルケニル基を少なくとも2個有するオルガノポリシロキサンである。式中、RおよびRは前記同様の基である。
The component (A1-2) is a polysiloxane containing an alkenyl group having 2 to 20 carbon atoms and having a relatively large amount of chain siloxane units. And a chain polysiloxane having a structure containing disiloxane units in the range of 1 to 1998). Specifically, the component (A1-2) is an average unit formula:
(R 4 3 SiO 1/2 ) f (R 4 2 SiO 2/2 ) g (R 4 SiO 3/2 ) h (SiO 4/2 ) i (R 5 O 1/2 ) j
An organopolysiloxane having at least two alkenyl groups in one molecule. In the formula, R 4 and R 5 are the same groups as described above.

式中、fは0.001〜0.7の範囲内の数、gは0.3〜0.999の範囲内の数、hは0〜0.2の範囲内の数、iは0〜0.2の範囲内の数、jは0〜0.1の範囲内の数、かつ、h+iは0〜0.2の範囲内の数、f+g+h+iは1であり、好ましくは、fは0.002〜0.70の範囲内の数、gは0.3〜0.998の範囲内の数であり、より好適には、fは0.01〜0.70の範囲内の数、gは0.3〜0.99の範囲内の数であり、特に好適には、fは0.01〜0.30の範囲内の数、gは0.4〜0.99の範囲内の数である。また、好適には、hは0〜0.1の範囲内の数、iは0〜0.1の範囲内の数、jは0〜0.05の範囲内の数、かつ、h+iは0〜0.1の範囲内の数である。これは、f、g、h、iがそれぞれ上記範囲内の数であると、得られる硬化物に強靭性を付与できるからである。 In the formula, f is a number in the range of 0.001 to 0.7, g is a number in the range of 0.3 to 0.999, h is a number in the range of 0 to 0.2, and i is 0 to 0. A number in the range of 0.2, j is a number in the range of 0 to 0.1, h + i is a number in the range of 0 to 0.2, f + g + h + i is 1, and preferably f is 0. A number in the range of 002 to 0.70, g is a number in the range of 0.3 to 0.998, more preferably f is a number in the range of 0.01 to 0.70, g is A number in the range of 0.3 to 0.99, particularly preferably f is a number in the range of 0.01 to 0.30 and g is a number in the range of 0.4 to 0.99. is there. Preferably, h is a number in the range of 0 to 0.1, i is a number in the range of 0 to 0.1, j is a number in the range of 0 to 0.05, and h + i is 0. It is a number in the range of ~ 0.1. This is because toughness can be imparted to the resulting cured product when f, g, h, and i are numbers within the above ranges.

このような(A1−2)成分として、具体的には、次のようなオルガノポリシロキサンが例示される。なお、式中、Me、Ph、Viはそれぞれメチル基、フェニル基、ビニル基を表す。
ViMeSiO(SiMePhO)18SiMeVi、すなわち、(ViMeSiO1/2)0.10(MePhSiO2/2)0.90
ViMeSiO(SiMePhO)30SiMeVi、すなわち、(ViMeSiO1/2)0.063(MePhSiO2/2)0.937
ViMeSiO(SiMePhO)150SiMeVi、すなわち、(ViMeSiO1/2)0.013(MePhSiO2/2)0.987
ViMeSiO(SiMeO)18SiMeVi、すなわち、(ViMeSiO1/2)0.10(MeSiO2/2)0.90
ViMeSiO(SiMeO)30SiMeVi、すなわち、(ViMeSiO1/2)0.063(MeSiO2/2)0.937
ViMeSiO(SiMeO)35(SiMePhO)13SiMeVi、すなわち、(ViMeSiO1/2)0.04(MeSiO2/2)0.70(MePhSiO2/2)0.26
ViMeSiO(SiMeO)10SiMeVi、すなわち、(ViMeSiO1/2)0.17(MeSiO2/2)0.83
(ViMeSiO1/2)0.10(MePhSiO2/2)0.80(PhSiO3/2)0.10(HO1/2)0.02
(ViMeSiO1/2)0.20(MePhSiO2/2)0.70(SiO4/2)0.10(HO1/2)0.01
HOMeSiO(MeViSiO)20SiMeOH
MeViSiO(MePhSiO)30SiMeVi
MeViSiO(MeSiO)150SiMeVi
Specific examples of the component (A1-2) include the following organopolysiloxanes. In the formula, Me, Ph, and Vi represent a methyl group, a phenyl group, and a vinyl group, respectively.
ViMe 2 SiO (SiMePhO) 18 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.10 (MePhSiO 2/2 ) 0.90
ViMe 2 SiO (SiMePhO) 30 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.063 (MePhSiO 2/2 ) 0.937
ViMe 2 SiO (SiMePhO) 150 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.013 (MePhSiO 2/2 ) 0.987
ViMe 2 SiO (SiMe 2 O) 18 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.10 (Me 2 SiO 2/2 ) 0.90
ViMe 2 SiO (SiMe 2 O) 30 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.063 (Me 2 SiO 2/2 ) 0.937
ViMe 2 SiO (SiMe 2 O) 35 (SiMePhO) 13 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.04 (Me 2 SiO 2/2 ) 0.70 (MePhSiO 2/2 ) 0.26
ViMe 2 SiO (SiMe 2 O) 10 SiMe 2 Vi, ie, (ViMe 2 SiO 1/2 ) 0.17 (Me 2 SiO 2/2 ) 0.83
(ViMe 2 SiO 1/2 ) 0.10 (MePhSiO 2/2 ) 0.80 (PhSiO 3/2 ) 0.10 (HO 1/2 ) 0.02
(ViMe 2 SiO 1/2 ) 0.20 (MePhSiO 2/2 ) 0.70 (SiO 4/2 ) 0.10 (HO 1/2 ) 0.01
HOMe 2 SiO (MeViSiO) 20 SiMe 2 OH
Me 2 ViSiO (MePhSiO) 30 SiMe 2 Vi
Me 2 ViSiO (Me 2 SiO) 150 SiMe 2 Vi

(A1−1)成分は得られる硬化物に硬度と機械的強度を付与するという観点から必須である。(A1−2)成分は得られる硬化物に強靭性を付与できるという観点から任意成分をとして添加できるが、以下の(A2)成分で鎖状シロキサン単位を多く有する架橋剤を用いる場合はそちらで代用してもよい。いずれの場合いおいても、分岐状シロキサン単位を多く有する成分と鎖状シロキサン単位を多く有する成分の質量比としては、好ましくは、50:50〜100:0であり、さらに好ましくは、60:40〜100:0である。これは、分岐状シロキサン単位を多く有する成分と鎖状シロキサン単位を多く有する成分との質量比が上記範囲内の値であると、得られる硬化物の硬度並びに機械的強度が良好となるからである。 The component (A1-1) is essential from the viewpoint of imparting hardness and mechanical strength to the obtained cured product. The component (A1-2) can be added as an optional component from the viewpoint that toughness can be imparted to the resulting cured product, but when using a crosslinking agent having many chain siloxane units in the following component (A2) You may substitute. In any case, the mass ratio of the component having many branched siloxane units and the component having many chain siloxane units is preferably 50:50 to 100: 0, and more preferably 60: 40-100: 0. This is because the hardness and mechanical strength of the resulting cured product are improved when the mass ratio of the component having many branched siloxane units and the component having many chain siloxane units is within the above range. is there.

(A2)成分は、(A1−1)成分または(A1−2)成分を架橋するための成分であり、一分子中にケイ素原子結合水素原子を少なくとも2個含有するオルガノポリシロキサンである。(A2)成分中の水素原子以外のケイ素原子に結合する基としては、炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基または水酸基から選ばれる少なくとも1種の基が例示される。   The component (A2) is a component for crosslinking the component (A1-1) or the component (A1-2), and is an organopolysiloxane containing at least two silicon-bonded hydrogen atoms in one molecule. (A2) As a group couple | bonded with silicon atoms other than a hydrogen atom in a component, a C1-C20 alkyl group, a C1-C20 halogen substituted alkyl group, a C6-C20 aryl group And at least one group selected from a halogen-substituted aryl group having 6 to 20 carbon atoms or a hydroxyl group.

このような(A2)成分は限定されないが、好ましくは、平均組成式:
SiO(4−k−m)/2
で表されるオルガノハイドロジェンポリシロキサンである。
Such component (A2) is not limited, but preferably the average composition formula:
R 6 k H m SiO (4-km) / 2
It is the organohydrogen polysiloxane represented by these.

式中、Rは脂肪族不飽和結合を有さないハロゲン置換または非置換の一価炭化水素基であり、前記と同様の炭素数1〜12のアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基、およびこれらの基に結合している水素原子の一部または全部を塩素原子、臭素原子等のハロゲン原子で置換した基または水酸基が例示され、好ましくは、メチル基、フェニル基または水酸基である。 In the formula, R 6 is a halogen-substituted or unsubstituted monovalent hydrocarbon group having no aliphatic unsaturated bond, and the same alkyl group having 1 to 12 carbon atoms and aryl group having 6 to 20 carbon atoms as described above. , Aralkyl groups having 7 to 20 carbon atoms, and groups or hydroxyl groups in which some or all of the hydrogen atoms bonded to these groups are substituted with halogen atoms such as chlorine atoms and bromine atoms, preferably methyl. Group, phenyl group or hydroxyl group.

また、式中、kは1.0〜2.5の範囲の数、好ましくは、1.2〜2.3の範囲の数であり、mは0.01〜0.9の範囲の数、好ましくは、0.05〜0.8の範囲の数であり、かつ、k+mは1.5〜3.0の範囲の数、好ましくは、2.0〜2.7の範囲の数である。   In the formula, k is a number in the range of 1.0 to 2.5, preferably a number in the range of 1.2 to 2.3, and m is a number in the range of 0.01 to 0.9. Preferably, it is a number in the range of 0.05 to 0.8, and k + m is a number in the range of 1.5 to 3.0, preferably in the range of 2.0 to 2.7.

(A2)成分は、分岐状シロキサン単位を多く有するレジン状のオルガノハイドロジェンポリシロキサンであってもよく、鎖状シロキサン単位を多く有する鎖状のオルガノハイドロジェンポリシロキサンであってもよい。具体的には、(A2)成分は、下記(A2−1)または(A2−2)で示されるオルガノハイドロジェンポリシロキサンまたはこれらの混合物が例示される。 The component (A2) may be a resinous organohydrogenpolysiloxane having many branched siloxane units, or may be a chain organohydrogenpolysiloxane having many chain siloxane units. Specifically, the component (A2) is exemplified by organohydrogenpolysiloxane represented by the following (A2-1) or (A2-2) or a mixture thereof.

(A2−1) 下記構造式で示される分子構造の末端にケイ素原子結合水素原子を有するレジン状のオルガノハイドロジェンポリシロキサン
[HR SiO0.5[R SiO1.0[RSiO1.5[SiO2.0(R1/2)
式中、炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基または水酸基から選ばれる少なくとも1種の基であり、Rは水素原子または炭素原子数1〜6のアルキル基であり、u+v+w+x=1.0であり、u:(v+w+x)=0.01〜0.75:0.99〜0.25であり、eは0〜0.05の範囲内の数である。
(A2-1) Resin-like organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom at the end of the molecular structure represented by the following structural formula [HR 2 2 SiO 0.5 ] u [R 2 2 SiO 1.0 ] v [R 2 SiO 1.5 ] w [SiO 2.0 ] x (R 5 O 1/2 ) e
In the formula, from an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a halogen-substituted aryl group having 6 to 20 carbon atoms or a hydroxyl group At least one group selected, R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, u + v + w + x = 1.0, and u: (v + w + x) = 0.01 to 0.75: 0.99 to 0.25, and e is a number in the range of 0 to 0.05.

(A2−2) 下記構造式で示される側鎖にケイ素原子結合水素原子を有する鎖状のオルガノハイドロジェンポリシロキサン
[R SiO0.5[HRSiO1.0
式中、Rは前記同様の基であり、yは2〜1000の範囲の数である。
(A2-2) Chain organohydrogenpolysiloxane having a silicon atom-bonded hydrogen atom in the side chain represented by the following structural formula [R 2 3 SiO 0.5 ] 2 [HR 2 SiO 1.0 ] y
In the formula, R 2 is the same group as described above, and y is a number in the range of 2 to 1,000.

上記のとおり、本発明組成物において、分岐状シロキサン単位を多く有するレジン状のオルガノポリシロキサンは、硬化物に硬度と機械的強度を付与し、鎖状シロキサン単位を多く有する得られるオルガノポリシロキサンは、硬化物に強靭性を付与するものであるので、前記の(A)成分の種類に応じて、(A2)成分として上記の(A2−1)成分と(A2−2)成分を適宜決定しうる。具体的には、(A1)成分中に分岐状シロキサン単位が少ない場合には、(A2)成分として上記の(A2−1)成分であるレジン状のオルガノハイドロジェンポリシロキサンを主とする架橋剤を用いることが好ましく、(A1)成分中に鎖状シロキサン単位が少ない場合には、上記の(A2−2)成分である鎖状のオルガノハイドロジェンポリシロキサンを主とする架橋剤を用いることが好ましい。上記の(A1)成分に対応する、(A2)成分は、好適には、(A2−1)成分、(A2−2)成分、またはこれらの混合物であり、好ましくは、(A2−1)成分と(A2−2)成分の質量比が50:50〜100:0であり、さらに好ましくは、60:40〜100:0である。 As described above, in the composition of the present invention, the resinous organopolysiloxane having many branched siloxane units gives the cured product hardness and mechanical strength, and the resulting organopolysiloxane having many chain siloxane units is Since the toughness is imparted to the cured product, the (A2-1) component and the (A2-2) component are appropriately determined as the (A2) component according to the type of the (A) component. sell. Specifically, when there are few branched siloxane units in the component (A1), the crosslinking agent mainly comprises the resinous organohydrogenpolysiloxane as the component (A2-1) as the component (A2). In the case where there are few chain siloxane units in the component (A1), it is preferable to use a crosslinking agent mainly composed of the chain organohydrogenpolysiloxane as the component (A2-2). preferable. The component (A2) corresponding to the component (A1) is preferably the component (A2-1), the component (A2-2), or a mixture thereof, preferably the component (A2-1) And the mass ratio of the component (A2-2) is 50:50 to 100: 0, and more preferably 60:40 to 100: 0.

このような(A2)成分として、具体的には、次のようなオルガノポリシロキサンが例示される。なお、式中、Me、Phはそれぞれメチル基、フェニル基を表す。
PhSi(OSiMeH)、すなわち、Ph0.67Me1.330.67SiO0.67
HMeSiO(MeSiO)20SiMeH、すなわち、Me2.000.09SiO0.95
HMeSiO(MeSiO)55SiMeH、
PhSi(OSiMeH)、すなわち、Ph0.25Me1.500.75SiO0.75
(HMeSiO1/2)0.6(PhSiO3/2)0.4、すなわち、Ph0.40Me1.200.60SiO0.90
Specific examples of such component (A2) include the following organopolysiloxanes. In the formula, Me and Ph represent a methyl group and a phenyl group, respectively.
Ph 2 Si (OSiMe 2 H) 2 , ie, Ph 0.67 Me 1.33 H 0.67 SiO 0.67
HMe 2 SiO (Me 2 SiO) 20 SiMe 2 H, ie, Me 2.00 H 0.09 SiO 0.95
HMe 2 SiO (Me 2 SiO) 55 SiMe 2 H,
PhSi (OSiMe 2 H) 3 , ie, Ph 0.25 Me 1.50 H 0.75 SiO 0.75
(HMe 2 SiO 1/2 ) 0.6 (PhSiO 3/2 ) 0.4 , ie Ph 0.40 Me 1.20 H 0.60 SiO 0.90

(A2)成分の添加量は、(A1−1)成分および(A1−2)成分(以下、(「A1)成分」という)中の炭素原子数2〜20のアルケニル基1モルに対して、(A2)成分中のケイ素原子結合水素原子が0.2〜0.7モルとなる量であり、好ましくは、0.3〜0.6モルとなる量である。これは、(A2)成分の添加量が上記範囲内であると、得られる硬化物の初期の硬度及び機械的強度が良好となるためである。   The amount of the component (A2) added is 1 mol of the alkenyl group having 2 to 20 carbon atoms in the components (A1-1) and (A1-2) (hereinafter referred to as “(A1) component”). (A2) The amount of silicon-bonded hydrogen atoms in the component is 0.2 to 0.7 mol, and preferably 0.3 to 0.6 mol. This is because the initial hardness and mechanical strength of the resulting cured product are good when the amount of component (A2) added is within the above range.

(A3)成分は、(A1−1)成分または(A1−2)成分と(A2)成分のヒドロシリル化反応を促進するためのヒドロシリル化反応用触媒である。このような(A3)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金−アルケニルシロキサン錯体、白金−オレフィン錯体、白金−カルボニル錯体が例示され、特に、白金−アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金−アルケニルシロキサン錯体の安定性が良好であることから、1,3−ジビニル−1,1,3,3−トテラメチルジシロキサンであることが好ましい。   The component (A3) is a hydrosilylation reaction catalyst for promoting the hydrosilylation reaction of the component (A1-1) or the components (A1-2) and (A2). Examples of such component (A3) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the composition. Examples of the platinum-based catalyst include platinum fine powder, chloroplatinic acid, chloroplatinic acid alcohol solution, platinum-alkenylsiloxane complex, platinum-olefin complex, and platinum-carbonyl complex, and platinum-alkenylsiloxane complex is particularly preferable. . As this alkenylsiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like. In particular, since the stability of this platinum-alkenylsiloxane complex is good, 1,3-divinyl-1,1,3,3-teramethyldisiloxane is preferable.

(A3)成分の添加量は(A1−1)成分または(A1−2)成分と(A2)成分のヒドロシリル化反応を促進する量であり、具体的には、(A1−1)成分または(A1−2)成分と(A2)成分の合計量に対して、本成分中の金属原子が質量単位で0.01〜500ppmの範囲内となる量であることが好ましく、さらには、0.01〜100ppmの範囲内となる量であることが好ましく、特には、0.01〜50ppmの範囲内となる量であることが好ましい。これは、(A3)成分の添加量が上記範囲の下限以上であると、これらの成分のヒドロシリル化反応を十分に促進できるからであり、一方、上記範囲の上限以下であると、得られる硬化物に着色等の問題を生じにくくなるからである。   The addition amount of the component (A3) is an amount that promotes the hydrosilylation reaction of the component (A1-1) or the component (A1-2) and the component (A2), specifically, the component (A1-1) or ( It is preferable that the amount of metal atoms in this component is in the range of 0.01 to 500 ppm in terms of mass unit with respect to the total amount of component A1-2) and component (A2). The amount is preferably in the range of -100 ppm, and particularly preferably in the range of 0.01-50 ppm. This is because when the amount of the component (A3) is at least the lower limit of the above range, the hydrosilylation reaction of these components can be sufficiently promoted. This is because problems such as coloring are less likely to occur in objects.

上記の(A1)〜(A3)成分を配合および反応させる際、配合物や反応後のA成分を液状又はペースト状として取り扱える場合はデンタルミキサーやロスミキサー等の混練機を用いて混合した後に、熱を加えて反応を行っても良いが、配合物そのものや反応後の(A)成分が固体である場合、有機溶剤存在下で配合並びに反応を行ってもよい。ただし、この溶剤は、ヒドロシリル化反応を阻害しない必要があり、アルコール系溶剤や炭素―酸素二重結合を有する溶剤は溶剤が反応し、副生成物を生じる可能性があるので、それら以外の溶剤が好ましい。溶剤として、具体的には、n−ヘキサン、シクロヘキサン、n−ヘプタン等の脂肪族炭化水素;トルエン、キシレン、メシチレン等の芳香族炭化水素;テトラヒドロフラン、ジプロピルエーテル等のエーテル類;ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン等のシリコーン類;酢酸エチル、酢酸ブチル、酢酸プロピレングリコールモノメチルエーテル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類が例示される。なお、この溶剤は、ヒドロシリル化反応後、蒸発させることにより、除去することができる。   When mixing and reacting the above components (A1) to (A3), if the compound and the component A after the reaction can be handled as a liquid or paste, after mixing using a kneader such as a dental mixer or a loss mixer, The reaction may be carried out by applying heat, but when the blend itself or the component (A) after the reaction is solid, the blending and reaction may be carried out in the presence of an organic solvent. However, this solvent must not inhibit the hydrosilylation reaction. Alcohol solvents and solvents having a carbon-oxygen double bond may react with each other to produce by-products. Is preferred. Specific examples of the solvent include aliphatic hydrocarbons such as n-hexane, cyclohexane, and n-heptane; aromatic hydrocarbons such as toluene, xylene, and mesitylene; ethers such as tetrahydrofuran and dipropyl ether; hexamethyldisiloxane And silicones such as octamethyltrisiloxane and decamethyltetrasiloxane; esters such as ethyl acetate, butyl acetate and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone. This solvent can be removed by evaporation after the hydrosilylation reaction.

本発明の(A)成分は、前記の方法で合成することができるが、後述する(B)過酸化物の存在下において、ヒドロシリル化反応を行って系中で(A)成分を調製してもよく、(A)成分を予め合成した後に、後述する(B)過酸化物を添加してもよい。ただし、(B)成分存在下で(A)成分の合成を行う場合、反応温度は(B)成分が活性化しない程度の低温で行う必要がある。その様な反応条件としては、例えば、80〜100℃で1〜3時間程度が挙げられる。 (A) component of this invention can be synthesize | combined by the said method, However, (B) In the presence of the peroxide mentioned later, hydrosilylation reaction is performed and (A) component is prepared in a system. Alternatively, after synthesizing the component (A) in advance, a peroxide (B) described later may be added. However, when synthesizing the component (A) in the presence of the component (B), the reaction temperature needs to be low enough not to activate the component (B). Examples of such reaction conditions include, for example, about 1 to 3 hours at 80 to 100 ° C.

[過酸化物((B)成分)]
本発明に係る硬化性シリコーン組成物は、前記の(A)成分と(B)過酸化物を含有することを特徴とする。(B)成分は、液状又はホットメルト性の(A)成分中のアルケニル基を高温で架橋反応させ、硬化物を与える成分であり、かつ、250℃以上の高温下でも物理的強度が大きく低下しないという特徴を付与する。このような過酸化物は特に限定されるものではないが、多段階硬化反応のコントロールおよび250℃以上の高温下における耐久性の改善の見地から、10時間半減期温度が90℃以上である有機過酸化物であることが特に好ましい。10時間半減期温度が前記下限未満では、ヒドロシリル化反応中や(A)成分に過酸化物を練り込む際に過酸化物による熱硬化反応が進行してしまい、取り扱い可能な硬化性シリコーン組成物が得られなかったり、250℃以上の高温下における耐久性の改善が不十分となる場合がある。
[Peroxide (component (B))]
The curable silicone composition according to the present invention comprises the component (A) and a peroxide (B). The component (B) is a component that gives a cured product by cross-linking the alkenyl group in the liquid or hot melt component (A) at a high temperature, and the physical strength is greatly reduced even at a high temperature of 250 ° C. or higher. Gives the feature of not. Such a peroxide is not particularly limited, but an organic compound having a 10-hour half-life temperature of 90 ° C. or higher from the viewpoint of controlling the multistage curing reaction and improving durability at a high temperature of 250 ° C. or higher. A peroxide is particularly preferred. When the 10-hour half-life temperature is less than the lower limit, the thermosetting reaction by the peroxide proceeds during the hydrosilylation reaction or when the peroxide is kneaded into the component (A), and the curable silicone composition that can be handled. May not be obtained, or improvement in durability at a high temperature of 250 ° C. or higher may be insufficient.

(B)成分である過酸化物としては、例えば、過酸化アルキル類、過酸化ジアシル類、過酸化エステル類及び過酸化カーボネート類が挙げられる。 Examples of the peroxide as component (B) include alkyl peroxides, diacyl peroxides, peroxide esters and peroxide carbonates.

過酸化アルキル類としては、例えば、ジクミルパーオキサイド、ジ−tert−ブチルパーオキサイド、ジ−tert−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキシン−3、tert−ブチルクミル、1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、3,6,9−トリエチル−3,6,9−トリメチル−1,4,7−トリパーオキソナン等が挙げられる。 Examples of alkyl peroxides include dicumyl peroxide, di-tert-butyl peroxide, di-tert-butylcumyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane. 2,5-dimethyl-2,5-di (tert-butylperoxy) hexyne-3, tert-butylcumyl, 1,3-bis (tert-butylperoxyisopropyl) benzene, 3,6,9-triethyl- 3,6,9-trimethyl-1,4,7-triperoxonane and the like can be mentioned.

過酸化ジアシル類としては、例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、デカノイルパーオキサイド等が挙げられる。過酸化エステル類としては、例えば、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、α−クミルパーオキシネオデカノエート、tert−ブチルパーオキシネオデカノエート、tert−ブチルパーオキシネオヘプタノエート、tert−ブチルパーオキシピバレート、tert−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、tert−アミルパーオキシル−2−エチルヘキサノエート、tert−ブチルパーオキシ−2−エチルヘキサノエート、tert−ブチルパーオキシイソブチレート、ジ−tert−ブチルパーオキシヘキサヒドロテレフタレート、tert−アミルパーオキシ3,5,5―トリメチルヘキサノエート、tert−ブチルパーオキシ3,5,5―トリメチルヘキサノエート、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシベンゾエート、ジ−ブチルパーオキシトリメチルアディペート等が挙げられる。 Examples of the diacyl peroxides include benzoyl peroxide, lauroyl peroxide, decanoyl peroxide, and the like. Examples of peroxide esters include 1,1,3,3-tetramethylbutylperoxyneodecanoate, α-cumylperoxyneodecanoate, tert-butylperoxyneodecanoate, and tert-butyl. Peroxyneoheptanoate, tert-butyl peroxypivalate, tert-hexyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, tert-amyl peroxyl- 2-ethylhexanoate, tert-butylperoxy-2-ethylhexanoate, tert-butylperoxyisobutyrate, di-tert-butylperoxyhexahydroterephthalate, tert-amylperoxy3,5,5 -Trimethylhexanoate, tert-butyl Oxy 3,5,5-trimethyl hexanoate, tert- butylperoxy acetate, tert- butyl peroxybenzoate, di - butylperoxy trimethyl Adi adipate, and the like.

過酸化カーボネート類としては、例えば、ジ−3−メトキシブチルパーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、ジイソプロピルパーオキシカーボネート、tert−ブチルパーオキシイソプロピルカーボネート、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート、ジセチルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート等が挙げられる。 Examples of the peroxide carbonates include di-3-methoxybutyl peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, diisopropyl peroxycarbonate, tert-butylperoxyisopropyl carbonate, and di (4-tert- Butylcyclohexyl) peroxydicarbonate, dicetylperoxydicarbonate, dimyristylperoxydicarbonate and the like.

このうち、過酸化アルキル類を用いることが好ましく、その半減期が10時間である温度が90℃以上、より好ましくは95℃以上のものが好適に使用される。このような過酸化物としては、ジクミルパーオキサイド、ジ−t−ブチルパーオキサイド、ジ−t−ヘキシルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(tert−ブチルパーオキシ)ヘキサン、1,3−ビス(tert−ブチルパーオキシイソプロピル)ベンゼン、ジ−(2−t−ブチルペルオキシイソプロピル)ベンゼン、3,6,9−トリエチル−3,6,9−トリメチル−1,4,7−トリパーオキソナンが挙げられる。 Of these, alkyl peroxides are preferably used, and those having a half-life of 10 hours are preferably 90 ° C or higher, more preferably 95 ° C or higher. Such peroxides include dicumyl peroxide, di-t-butyl peroxide, di-t-hexyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (tert -Butylperoxy) hexane, 1,3-bis (tert-butylperoxyisopropyl) benzene, di- (2-tert-butylperoxyisopropyl) benzene, 3,6,9-triethyl-3,6,9-trimethyl -1,4,7-triperoxonan.

(B)成分の添加量は、特に制限されるものではないが、(A)成分100質量部に対して、0.05〜10質量部の範囲であってよく、0.10〜5.0質量部の範囲が好ましい。 The amount of the component (B) added is not particularly limited, but may be in the range of 0.05 to 10 parts by mass with respect to 100 parts by mass of the component (A). A range of parts by mass is preferred.

(B)成分は、事前に調製した(A)成分に添加してもよく、前記のように、(A)成分の各原料と共存した状態で(A)成分のみをヒドロシリル化反応により合成してもよい。 The component (B) may be added to the component (A) prepared in advance, and as described above, only the component (A) is synthesized by a hydrosilylation reaction in the state of coexisting with each raw material of the component (A). May be.

[無機フィラー((C)成分)]
本発明組成物は、機械的強度、機能性および取り扱い作業性の見地から、無機フィラーを含有することが好ましい。当該無機フィラーは補強性フィラー、白色顔料、熱伝導性フィラー、導電性フィラーおよび蛍光体から選ばれる1種類以上であることが好ましく、特に、本発明組成物を封止剤、保護剤または接着剤用途で使用する場合には、補強性フィラーを含有することが好ましい。また、LEDの波長変換材料に用いる場合には、蛍光体の使用が好ましい。また、LED用の光反射材として用いる場合は白色顔料の使用が好ましい。
[Inorganic filler (component (C))]
The composition of the present invention preferably contains an inorganic filler from the viewpoint of mechanical strength, functionality and handling workability. The inorganic filler is preferably at least one selected from reinforcing fillers, white pigments, thermally conductive fillers, conductive fillers and phosphors. In particular, the composition of the present invention is used as a sealant, protective agent or adhesive. When used in applications, it is preferable to contain a reinforcing filler. Moreover, when using for the wavelength conversion material of LED, use of a fluorescent substance is preferable. Moreover, when using as a light reflection material for LED, use of a white pigment is preferable.

無機フィラーの含有量は、特に制限されるものではないが、(A)成分100質量部に対して10〜2000質量部の範囲で含むことが好ましく、100〜1500質量部の範囲であることが、硬化物の硬度及び機械的強度の見地から特に好ましい。 Although content in particular of an inorganic filler is not restrict | limited, It is preferable to contain in the range of 10-2000 mass parts with respect to 100 mass parts of (A) component, and it is the range of 100-1500 mass parts. Particularly preferred from the viewpoint of the hardness and mechanical strength of the cured product.

補強性フィラーは、本組成物を硬化して得られる硬化物に機械的強度を付与し、保護剤または接着剤としての性能を向上させるための成分である。このような補強性フィラーとしては、例えば、ヒュームドシリカ微粉末、沈降性シリカ微粉末、溶融シリカ(fused silica)微粉末、焼成シリカ微粉末、ヒュームド二酸化チタン微粉末、石英微粉末、炭酸カルシウム微粉末、ケイ藻土微粉末、酸化アルミニウム微粉末、水酸化アルミニウム微粉末、酸化亜鉛微粉末、炭酸亜鉛微粉末、ガラス繊維、炭素繊維等の無機質充填剤を挙げることができ、これらの無機質充填剤をメチルトリメトキシシラン等のオルガノアルコキシシラン、トリメチルクロロシラン等のオルガノハロシラン、ヘキサメチルジシラザン等のオルガノシラザン、α,ω−シラノール基封鎖ジメチルシロキサンオリゴマー、α,ω−シラノール基封鎖メチルフェニルシロキサンオリゴマー、α,ω−シラノール基封鎖メチルビニルシロキサンオリゴマー等のシロキサンオリゴマー等の処理剤により表面処理した無機質充填剤を含有してもよい。特に、分子鎖両末端にシラノール基を有する低重合度のオルガノポリシロキサン、好適には、分子中に当該末端シラノール基以外の反応性官能基を有しないα,ω−シラノール基封鎖ジメチルポリシロキサンにより無機フィラーの表面を予め処理してもよい。 The reinforcing filler is a component for imparting mechanical strength to a cured product obtained by curing the present composition and improving the performance as a protective agent or an adhesive. Examples of such reinforcing fillers include fumed silica fine powder, precipitated silica fine powder, fused silica fine powder, calcined silica fine powder, fumed titanium dioxide fine powder, quartz fine powder, calcium carbonate fine powder. Examples include inorganic fillers such as powder, diatomaceous earth fine powder, aluminum oxide fine powder, aluminum hydroxide fine powder, zinc oxide fine powder, zinc carbonate fine powder, glass fiber, and carbon fiber. These inorganic fillers An organoalkoxysilane such as methyltrimethoxysilane, an organohalosilane such as trimethylchlorosilane, an organosilazane such as hexamethyldisilazane, an α, ω-silanol-blocked dimethylsiloxane oligomer, an α, ω-silanol-blocked methylphenylsiloxane oligomer , Α, ω-silanol group-blocked methylvinylsiloxa The inorganic filler surface treated by a treatment agent such as a siloxane oligomer such as an oligomer may contain. In particular, organopolysiloxane having a low polymerization degree having silanol groups at both ends of the molecular chain, preferably α, ω-silanol group-capped dimethylpolysiloxane having no reactive functional group other than the terminal silanol group in the molecule. The surface of the inorganic filler may be treated in advance.

補強性フィラーの微粉末の粒子径は、特に限定されないが、例えばレーザー回折散乱式粒度分布測定によるメジアン径で0.01μm〜1000μmの範囲内であり得る。 The particle size of the fine powder of the reinforcing filler is not particularly limited, but may be, for example, in the range of 0.01 μm to 1000 μm in median diameter by laser diffraction scattering type particle size distribution measurement.

白色顔料は、本組成物の白色度を高め、その硬化物を光半導体装置用の光反射材として使用する際に添加する成分である。このような白色顔料としては、例えば、酸化チタン、アルミナ、酸化亜鉛、酸化ジルコン、酸化マグネシウムなどの金属酸化物、硫酸バリウム、硫酸亜鉛、チタン酸バリウム、窒化アルミニウム、ボロンナイトライド、酸化アンチモンが挙げられ、光反射率と隠蔽性が高いことから、酸化チタンが好ましく、UV領域の光反射率が高いことから、アルミナ、酸化亜鉛、チタン酸バリウムが好ましい。この白色顔料の平均粒径や形状は限定されないが、平均粒径は0.05〜10.0μmの範囲内であることが好ましく、特に、0.1〜5.0μmの範囲内であることが好ましい。また、この白色顔料は、補強性フィラー同様にシランカップリング剤、シリカ、アルミナ等で表面処理してもよい。   The white pigment is a component that is added when the whiteness of the composition is increased and the cured product is used as a light reflecting material for an optical semiconductor device. Examples of such white pigments include metal oxides such as titanium oxide, alumina, zinc oxide, zircon oxide, and magnesium oxide, barium sulfate, zinc sulfate, barium titanate, aluminum nitride, boron nitride, and antimony oxide. Titanium oxide is preferable because of its high light reflectivity and concealability, and alumina, zinc oxide, and barium titanate are preferable because of its high light reflectivity in the UV region. The average particle diameter and shape of the white pigment are not limited, but the average particle diameter is preferably in the range of 0.05 to 10.0 μm, and particularly in the range of 0.1 to 5.0 μm. preferable. Further, this white pigment may be surface-treated with a silane coupling agent, silica, alumina or the like in the same manner as the reinforcing filler.

熱伝導性フィラーまたは導電性フィラーは、所望により、本組成物を硬化して得られるシリコーンゴム硬化物に熱伝導性または電気伝導性を付与する成分であり、金、銀、ニッケル、銅等の金属微粉末;セラミック、ガラス、石英、有機樹脂等の微粉末表面に金、銀、ニッケル、銅等の金属を蒸着またはメッキした微粉末;酸化アルミニウム、窒化アルミニウム、酸化亜鉛等の金属化合物、およびこれらの2種以上の混合物が例示される。特に好適には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、窒化アルミニウム粉末またはグラファイトである。また、本組成物に、電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末であることが好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、または窒化アルミニウム粉末であることが好ましい。 Thermally conductive filler or conductive filler is a component that imparts thermal conductivity or electrical conductivity to a cured silicone rubber obtained by curing the present composition, if desired, such as gold, silver, nickel, copper, etc. Metal fine powder: Fine powder obtained by depositing or plating a metal such as gold, silver, nickel, copper or the like on the surface of fine powder such as ceramic, glass, quartz, organic resin; metal compound such as aluminum oxide, aluminum nitride, zinc oxide, and the like A mixture of two or more of these is exemplified. Particularly preferred are silver powder, aluminum powder, aluminum oxide powder, zinc oxide powder, aluminum nitride powder or graphite. When the composition is required to have electrical insulation, it is preferably a metal oxide powder or a metal nitride powder, particularly an aluminum oxide powder, a zinc oxide powder, or an aluminum nitride powder. Preferably there is.

[蛍光体]
さらに、本組成物には、光半導体素子からの発光波長を変換するために、蛍光体を含有してもよい。この蛍光体としては、例えば、発光ダイオード(LED)に広く利用されている、酸化物系蛍光体、酸窒化物系蛍光体、窒化物系蛍光体、硫化物系蛍光体、酸硫化物系蛍光体等からなる黄色、赤色、緑色、および青色発光蛍光体が挙げられる。酸化物系蛍光体としては、セリウムイオンを包含するイットリウム、アルミニウム、ガーネット系のYAG系緑色〜黄色発光蛍光体、セリウムイオンを包含するテルビウム、アルミニウム、ガーネット系のTAG系黄色発光蛍光体、および、セリウムやユーロピウムイオンを包含するシリケート系緑色〜黄色発光蛍光体が例示される。酸窒化物系蛍光体としては、ユーロピウムイオンを包含するケイ素、アルミニウム、酸素、窒素系のサイアロン系赤色〜緑色発光蛍光体が例示される。窒化物系蛍光体としては、ユーロピウムイオンを包含するカルシウム、ストロンチウム、アルミニウム、ケイ素、窒素系のカズン系赤色発光蛍光体が例示される。硫化物系蛍光体としては、銅イオンやアルミニウムイオンを包含するZnS系緑色発色蛍光体が例示される。酸硫化物系蛍光体としては、ユーロピウムイオンを包含するYS系赤色発光蛍光体が例示される。これらの蛍光体を2種以上組み合わせて用いてもよい。
[Phosphor]
Furthermore, the present composition may contain a phosphor in order to convert the emission wavelength from the optical semiconductor element. Examples of the phosphor include oxide phosphors, oxynitride phosphors, nitride phosphors, sulfide phosphors, and oxysulfide phosphors that are widely used in light emitting diodes (LEDs). And yellow, red, green, and blue light emitting phosphors. Examples of oxide phosphors include yttrium, aluminum, and garnet-based YAG green to yellow light-emitting phosphors containing cerium ions, terbium, aluminum, garnet-based TAG yellow light-emitting phosphors including cerium ions, and Examples include silicate green to yellow light emitting phosphors containing cerium and europium ions. Examples of the oxynitride phosphor include silicon, aluminum, oxygen, and nitrogen-based sialon-based red to green light-emitting phosphors containing europium ions. Examples of nitride-based phosphors include calcium, strontium, aluminum, silicon, and nitrogen-based casoon-based red light-emitting phosphors containing europium ions. Examples of sulfide-based phosphors include ZnS-based green color phosphors including copper ions and aluminum ions. Examples of oxysulfide phosphors include Y 2 O 2 S red light-emitting phosphors containing europium ions. Two or more of these phosphors may be used in combination.

[反応抑制剤、接着付与剤および耐熱性付与剤から選ばれる1種以上((D)成分)]
本組成物には、その他任意の成分として、2−メチル−3−ブチン−2−オール、3,5−ジメチル−1−ヘキシン−3−オール、2−フェニル−3−ブチン−2−オール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。
[One or more selected from a reaction inhibitor, an adhesion-imparting agent, and a heat-resistance imparting agent (component (D))]
In this composition, as other optional components, 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, 2-phenyl-3-butyn-2-ol, etc. Alkyne alcohols; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; 1,3,5,7-tetramethyl-1,3,5 , 7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetrahexenylcyclotetrasiloxane, and a reaction inhibitor such as benzotriazole.

本組成物には、その他任意の成分として、その接着性を向上させるための接着付与剤を含有してもよい。この接着付与剤としては、ケイ素原子に結合したアルコキシ基を一分子中に少なくとも1個有する有機ケイ素化合物であってもよく、先に(A)成分の原料として例示した、レジン状オルガノポリシロキサンであって、エポキシ基等を有するものであってもよい。このアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基が例示され、特に、メトキシ基が好ましい。また、この有機ケイ素化合物のケイ素原子に結合するアルコキシ基以外の基としては、アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基等のハロゲン置換もしくは非置換の一価炭化水素基;3−グリシドキシプロピル基、4−グリシドキシブチル基等のグリシドキシアルキル基;2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基;3,4−エポキシブチル基、7,8−エポキシオクチル基等のエポキシアルキル基;3−メタクリロキシプロピル基等のアクリル基含有一価有機基;水素原子が例示される。この有機ケイ素化合物は本組成物中のアルケニル基またはケイ素原子結合水素原子と反応し得る基を有することが好ましく、具体的には、ケイ素原子結合水素原子またはアルケニル基を有することが好ましい。また、各種の基材に対して良好な接着性を付与できることから、この有機ケイ素化合物は一分子中に少なくとも1個のエポキシ基含有一価有機基を有するものであることが好ましい。このような有機ケイ素化合物としては、オルガノシラン化合物、オルガノシロキサンオリゴマー、アルキルシリケートが例示される。このオルガノシロキサンオリゴマーあるいはアルキルシリケートの分子構造としては、直鎖状、一部分枝を有する直鎖状、分枝鎖状、環状、網状が例示され、特に、直鎖状、分枝鎖状、網状であることが好ましい。このような有機ケイ素化合物としては、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン等のシラン化合物;一分子中にケイ素原子結合アルケニル基もしくはケイ素原子結合水素原子、およびケイ素原子結合アルコキシ基をそれぞれ少なくとも1個ずつ有するシロキサン化合物、ケイ素原子結合アルコキシ基を少なくとも1個有するシラン化合物またはシロキサン化合物と一分子中にケイ素原子結合ヒドロキシ基とケイ素原子結合アルケニル基をそれぞれ少なくとも1個ずつ有するシロキサン化合物との混合物、メチルポリシリケート、エチルポリシリケート、エポキシ基含有エチルポリシリケート、特開平10−195085号公報に記載の方法により、アミノ基含有有機基を有するアルコキシシランとエポキシ基含有有機基を有するアルコキシシランとを反応させる際、アルコール交換反応により環化させてなるカルバシラトラン誘導体等が例示される。この接着付与剤は低粘度液状であることが好ましく、その粘度は限定されないが、25℃において1〜500mPa・sの範囲内であることが好ましい。また、本組成物において、この接着付与剤の含有量は限定されないが、本組成物の合計100質量部に対して0.01〜10質量部の範囲内であることが好ましい。   The composition may contain an adhesion-imparting agent for improving its adhesiveness as other optional components. This adhesion-imparting agent may be an organosilicon compound having at least one alkoxy group bonded to a silicon atom in one molecule, and is a resinous organopolysiloxane exemplified as a raw material for the component (A). It may have an epoxy group or the like. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a methoxyethoxy group, and a methoxy group is particularly preferable. Examples of the group other than the alkoxy group bonded to the silicon atom of the organosilicon compound include halogen-substituted or unsubstituted monovalent hydrocarbon groups such as an alkyl group, an alkenyl group, an aryl group, an aralkyl group, and a halogenated alkyl group; Glycidoxyalkyl groups such as 3-glycidoxypropyl group and 4-glycidoxybutyl group; 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group and the like Examples include epoxycyclohexylalkyl groups; epoxyalkyl groups such as 3,4-epoxybutyl groups and 7,8-epoxyoctyl groups; acrylic group-containing monovalent organic groups such as 3-methacryloxypropyl groups; and hydrogen atoms. This organosilicon compound preferably has an alkenyl group or a group capable of reacting with a silicon atom-bonded hydrogen atom in the composition, and specifically, preferably has a silicon atom-bonded hydrogen atom or an alkenyl group. Moreover, since it can provide favorable adhesiveness to various types of substrates, the organosilicon compound preferably has at least one epoxy group-containing monovalent organic group in one molecule. Examples of such organosilicon compounds include organosilane compounds, organosiloxane oligomers, and alkyl silicates. Examples of the molecular structure of the organosiloxane oligomer or alkyl silicate include linear, partially branched linear, branched, cyclic, and network, particularly linear, branched, and network. Preferably there is. Examples of such organosilicon compounds include silane compounds such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane; A siloxane compound having at least one silicon atom-bonded alkenyl group or silicon atom-bonded hydrogen atom and silicon atom-bonded alkoxy group, and a silane compound or siloxane compound having at least one silicon atom-bonded alkoxy group and silicon in one molecule. Mixtures of siloxane compounds having at least one atom-bonded hydroxy group and at least one silicon-bonded alkenyl group, methyl polysilicate, ethyl polysilicate, epoxy group-containing ethyl polysilicate, JP-A-10-19508 The carbacyltolane derivative formed by cyclization by an alcohol exchange reaction when reacting an alkoxysilane having an amino group-containing organic group and an alkoxysilane having an epoxy group-containing organic group is exemplified by The The adhesion-imparting agent is preferably a low-viscosity liquid, and the viscosity is not limited, but is preferably in the range of 1 to 500 mPa · s at 25 ° C. Moreover, in this composition, although content of this adhesion | attachment imparting agent is not limited, It is preferable to exist in the range of 0.01-10 mass parts with respect to a total of 100 mass parts of this composition.

本組成物は、酸化鉄(ベンガラ)、酸化セリウム、セリウムジメチルシラノレート、脂肪酸セリウム塩、水酸化セリウム、ジルコニウム化合物等の耐熱性付与剤を含有してもよい。 The composition may contain a heat resistance imparting agent such as iron oxide (Bengara), cerium oxide, cerium dimethylsilanolate, fatty acid cerium salt, cerium hydroxide, zirconium compound and the like.

また、本組成物には、本発明の目的を損なわない限り、その他任意の成分として、ケイ素原子結合水素原子を有さないシリコーン成分;ポリメタクリレート樹脂等の有機樹脂微粉末;耐熱剤、染料、白色以外の顔料、難燃性付与剤を含有してもよい。 In addition, as long as the object of the present invention is not impaired, the present composition includes, as other optional components, a silicone component having no silicon atom-bonded hydrogen atom; fine organic resin powder such as polymethacrylate resin; heat-resistant agent, dye, You may contain pigments other than white and a flame-retarding imparting agent.

特に、本組成物には、成形時における金型との良好な離型性を得る観点から、離型剤を含有してもよい。離型剤としては特に制限はなく、従来公知のものを用いることができる。具体的には、カルナバワックス、モンタン酸、ステアリン酸等の高級脂肪酸、高級脂肪酸金属塩、脂肪酸エステル系ワックス、酸化ポリエチレン、非酸化ポリエチレン等のポリオレフィン系ワックスなどが挙げられる。これらの離型剤は、1種を単独で用いても2種以上を組み合わせて用いてもよい。これらの中でも、高級脂肪酸金属塩や脂肪酸エステル系ワックスが好ましい。市販品としては、ステアリン酸やモンタン酸のカルシウム塩、マグネシウム塩、亜鉛塩や理研ビタミン製のEW―440Wなどが挙げられる。 In particular, the present composition may contain a release agent from the viewpoint of obtaining good releasability from the mold during molding. There is no restriction | limiting in particular as a mold release agent, A conventionally well-known thing can be used. Specific examples include higher fatty acids such as carnauba wax, montanic acid, stearic acid, higher fatty acid metal salts, fatty acid ester waxes, polyolefin waxes such as oxidized polyethylene and non-oxidized polyethylene. These release agents may be used alone or in combination of two or more. Among these, higher fatty acid metal salts and fatty acid ester waxes are preferable. Examples of commercially available products include calcium salt, magnesium salt, zinc salt of stearic acid and montanic acid, and EW-440W manufactured by Riken Vitamin.

本発明の硬化性シリコーン組成物は、前記の(A)、(B)、(C)、(D)成分、およびその他の任意成分を、均一に混合することにより製造することができるが、(A)成分の各原料および(B)成分および(C)、(D)成分その他の任意成分を、均一に混合した後、加熱等により系中で(A)成分を合成することによっても製造することができる。前述の通り、(A)成分合成時の反応条件は(B)成分が活性化されない、80〜100℃程度である事が好ましい。各成分の混合方法は、従来公知の方法でよく特に限定されないが、通常、単純な攪拌により均一な混合物となる。また、任意成分として無機質充填剤等の固体成分を含む場合は、混合装置を用いた混合がより好ましい。こうした混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、およびヘンシェルミキサー等が例示される。 The curable silicone composition of the present invention can be produced by uniformly mixing the components (A), (B), (C), (D) and other optional components. It is also produced by uniformly mixing the raw materials of component A) and components (B) and (C), (D) and other optional components, and then synthesizing component (A) in the system by heating or the like. be able to. As described above, the reaction condition during the synthesis of the component (A) is preferably about 80 to 100 ° C. so that the component (B) is not activated. The mixing method of each component may be a conventionally known method and is not particularly limited, but usually a simple mixture is obtained by simple stirring. Moreover, when solid components, such as an inorganic filler, are included as arbitrary components, mixing using a mixing apparatus is more preferable. Such a mixing device is not particularly limited, and examples thereof include a single-screw or twin-screw continuous mixer, a two-roll, a loss mixer, a Hobart mixer, a dental mixer, a planetary mixer, a kneader mixer, and a Henschel mixer.

本発明の硬化性シリコーン組成物は、25℃において固体でも液体でもどちらでも良いが、固体である場合、高温では溶融する「ホットメルト性」を有することが好ましい。好適なホットメルト性としては室温においてべたつきがない固体であるが、より具体的には、当該硬化反応性オルガノポリシロキサン組成物は、25℃において非流動性であり、100℃の溶融粘度が8000Pa・s以下である。 The curable silicone composition of the present invention may be either solid or liquid at 25 ° C., but when it is solid, it preferably has “hot melt property” that melts at a high temperature. A suitable hot-melt property is a solid that does not stick at room temperature, but more specifically, the curing reactive organopolysiloxane composition is non-flowable at 25 ° C. and has a melt viscosity of 8000 Pa at 100 ° C. -S or less.

ここで、非流動性とは、無負荷の状態で変形・流動しないことを意味し、好適には、タブレット等に成型した場合に、25℃かつ無負荷の状態で変形・流動しないものである。このような非流動性は、例えば、25℃のホットプレート上に成型した硬化性シリコーン組成物を置き、無負荷または一定の加重をかけても、実質的に変形・流動しないことにより評価可能である。25℃において非流動性であると、該温度での形状保持性が良好で、表面粘着性の低いホットメルト性の硬化性シリコーン組成物が得られるからである。 Here, the non-fluidity means that it does not deform or flow in an unloaded state, and preferably, when it is molded into a tablet or the like, it does not deform or flow in an unloaded state at 25 ° C. . Such non-flowability can be evaluated by, for example, placing a curable silicone composition molded on a hot plate at 25 ° C. and substantially not deforming or flowing even when no load or a constant load is applied. is there. This is because if it is non-flowable at 25 ° C., a hot-melt curable silicone composition having good shape retention at the temperature and low surface tackiness can be obtained.

本発明の硬化性シリコーン組成物はホットメルト性を有するものである場合、好適には、25℃〜100℃の範囲内に軟化点を有し、25℃では無負荷または一定加重の状態で変形・流動しないことが好ましい。このような軟化点は、25℃〜100℃の範囲で設定したホットプレート上で、100グラム重の荷重で上から10秒間押し続け、荷重を取り除いた後、組成物の変形量を測定した場合、高さ方向の変形量が1mm以上となる温度が、25℃(ただし、25℃を含まない)〜100℃の範囲内であることを意味するものである。 When the curable silicone composition of the present invention has hot melt properties, it preferably has a softening point in the range of 25 ° C. to 100 ° C. and deforms at 25 ° C. under no load or constant load. -Preferably it does not flow. Such a softening point is when the amount of deformation of the composition is measured after removing the load on a hot plate set in a range of 25 ° C. to 100 ° C. with a load of 100 grams for 10 seconds from the top. It means that the temperature at which the deformation in the height direction is 1 mm or more is in the range of 25 ° C. (however, not including 25 ° C.) to 100 ° C.

本発明の硬化性シリコーン組成物は、ホットメルト性を有するものである場合、100℃の溶融粘度が8000Pa・s以下、5000Pa・s以下、4,000Pa・s以下、より好ましくは3,750Pa・s以下であり、最も好ましくは、10〜3,750Pa・sの範囲内である。上記の範囲内であると、ホットメルト時の流動性が良好であり、型流れ性が改善される。さらに、ホットメルト後、25℃に冷却した後の基材への密着性が良好なホットメルト性硬化反応性オルガノポリシロキサン組成物が得られる。ここで、溶融粘度は、レオメーターAR2000EX(ティー・エイ・インスツルメント・ジャパン株式会社製)等により測定可能である。 When the curable silicone composition of the present invention has hot melt properties, the melt viscosity at 100 ° C. is 8000 Pa · s or less, 5000 Pa · s or less, 4,000 Pa · s or less, more preferably 3,750 Pa · s. s or less, and most preferably in the range of 10 to 3,750 Pa · s. Within the above range, the fluidity at the time of hot melt is good and the mold flowability is improved. Furthermore, after hot-melting, a hot-melt curing-reactive organopolysiloxane composition having good adhesion to the substrate after cooling to 25 ° C. is obtained. Here, the melt viscosity can be measured with a rheometer AR2000EX (manufactured by TA Instruments Japan Co., Ltd.) or the like.

さらに好適には、当該硬化性シリコーン組成物は、130℃の溶融粘度が4000Pa・s以下であることが好ましく、3000Pa・s以下,2000Pa・s以下または1750Pa・s以下であることが特に好ましい。100℃における上記の溶融特性に加えて、130℃の溶融粘度が上記範囲であると、高温流動性に優れ、ホットメルト後、25℃に冷却した後の基材への密着性が良好なホットメルト性の硬化性シリコーン組成物が得られるためである。 More preferably, the curable silicone composition preferably has a melt viscosity at 130 ° C. of 4000 Pa · s or less, particularly preferably 3000 Pa · s or less, 2000 Pa · s or less, or 1750 Pa · s or less. When the melt viscosity at 130 ° C. is in the above range in addition to the above melt characteristics at 100 ° C., the hot fluidity is excellent, and the hot adhesion is good after hot-melting and cooling to 25 ° C. This is because a meltable curable silicone composition is obtained.

なお、本発明の硬化性シリコーン組成物の非流動性およびホットメルト性については、例えば、JIS K 6863−1994「ホットメルト接着剤の軟化点試験方法」で規定されるホットメルト接着剤の環球法による軟化点試験方法で測定される軟化点未満での状態を示し、つまり、25℃において非流動性であるためには、軟化点が25℃よりも高い必要があることも好ましい。25℃において非流動性であると、該温度での形状保持性が良好で、表面粘着性の低いホットメルト性の硬化性シリコーン組成物が得られるからである。また、本発明の硬化性シリコーン組成物は、50℃で3,000Pa・s以上の溶融粘度を有することが好ましく、さらに、50℃の溶融粘度が100℃の溶融粘度の20倍以上であることが好ましく、さらには、25倍以上であることが好ましい。これは、50℃の溶融粘度が上記の下限以上であったり、50℃の溶融粘度が100℃の溶融粘度に対して、上記の下限以上であると、25℃において非流動性で、表面粘着性が低く、良好なホットメルト性を示すからである。 Regarding the non-flowability and hot-melt property of the curable silicone composition of the present invention, for example, the ring-and-ball method of a hot-melt adhesive specified in JIS K 6863-1994 “Testing method for softening point of hot-melt adhesive” It is also preferred that the softening point needs to be higher than 25 ° C. in order to show a state below the softening point measured by the softening point test method according to, ie, to be non-flowable at 25 ° C. This is because if it is non-flowable at 25 ° C., a hot-melt curable silicone composition having good shape retention at the temperature and low surface tackiness can be obtained. The curable silicone composition of the present invention preferably has a melt viscosity of 3,000 Pa · s or higher at 50 ° C., and the melt viscosity at 50 ° C. is 20 times or more the melt viscosity at 100 ° C. It is preferable that it is 25 times or more. This is because the melt viscosity at 50 ° C. is not less than the above lower limit, or the melt viscosity at 50 ° C. is not less than the above lower limit with respect to the melt viscosity at 100 ° C. This is because the properties are low and good hot melt properties are exhibited.

本組成物は、硬化して、25℃におけるタイプDデュロメータ硬さが60以上である硬化物を形成することが好ましい。これは、硬化物の25℃におけるタイプDデュロメータ硬さが上記の下限以上であると、半導体等などの封止剤として十分な硬さを示すからである。なお、このタイプDデュロメータ硬さは、JIS K 6253−1997「加硫ゴム及び熱可塑性ゴムの硬さ試験方法」に準じてタイプDデュロメータによって求められる。 The composition is preferably cured to form a cured product having a Type D durometer hardness of 60 or more at 25 ° C. This is because when the type D durometer hardness at 25 ° C. of the cured product is equal to or higher than the above lower limit, the cured product exhibits sufficient hardness as a sealing agent for semiconductors and the like. The type D durometer hardness is determined by a type D durometer according to JIS K 6253-1997 “Hardness test method for vulcanized rubber and thermoplastic rubber”.

[半導体封止剤]
本発明の硬化性シリコーン組成物は、半導体用封止剤として有用であり、ペースト状又は、半硬化(Bステージ化)した成型用タブレットとして用いることができる。一般的な成型手法としてはトランスファー成型、インジェクション成型、コンプレッション成型が挙げられる。例えば、トランスファー成型においては、該ペースト状又は成型用タブレットを成型機のプランジャーに充填し、自動成型を行うことで成型物を得ることができる。成型機としては、補助ラム式成型機、スライド式成型機、二重ラム式成型機、低圧封入用成型機のいずれをも用いることができる。
[Semiconductor sealant]
The curable silicone composition of the present invention is useful as a sealing agent for semiconductors and can be used as a paste tablet or a semi-cured (B-stage) molding tablet. Common molding techniques include transfer molding, injection molding, and compression molding. For example, in transfer molding, the paste can be obtained by filling the paste or molding tablet into a plunger of a molding machine and performing automatic molding. As the molding machine, any of an auxiliary ram type molding machine, a slide type molding machine, a double ram type molding machine, and a low pressure sealing molding machine can be used.

特に、本発明の組成物は半導体素子(光半導体素子を含む)を封止するのに好適に用いることができる。半導体素子は、該組成物を該半導体素子上に塗布し、該組成物または該タブレットを硬化させることにより、封止することができる。半導体素子としては、例えば、SiC,GaN等のパワー半導体用の素子が挙げられる。光半導体素子としては、発光ダイオード、フォトダイオード、フォトトランジスタ、レーザーダイオード等に代表される素子がが挙げられる。 In particular, the composition of the present invention can be suitably used for sealing semiconductor elements (including optical semiconductor elements). The semiconductor element can be sealed by applying the composition onto the semiconductor element and curing the composition or the tablet. Examples of the semiconductor element include elements for power semiconductors such as SiC and GaN. Examples of the optical semiconductor element include elements typified by light-emitting diodes, photodiodes, phototransistors, and laser diodes.

その他、本発明にかかる硬化性シリコーン組成物は、光半導体装置用の光反射材、電気・電子用の接着剤、ポッティング剤、保護剤、コーティング剤、アンダーフィル剤として使用することができる。 In addition, the curable silicone composition according to the present invention can be used as a light reflecting material for optical semiconductor devices, an electrical / electronic adhesive, a potting agent, a protective agent, a coating agent, and an underfill agent.

次に、本発明の硬化物について詳細に説明する。本発明の硬化物は、上記の硬化性シリコーン組成物を硬化してなることを特徴とする。このような本発明の硬化物の形状は特に限定されず、使用する成型機によって様々な形状になりうる。本発明の硬化物は、これを単体で取り扱うこともできるが、半導体素子や光半導体素子等を被覆もしくは封止した状態で取り扱うことも可能である。 Next, the cured product of the present invention will be described in detail. The cured product of the present invention is obtained by curing the above curable silicone composition. The shape of the cured product of the present invention is not particularly limited, and can be various shapes depending on the molding machine used. The cured product of the present invention can be handled alone, but can also be handled in a state of covering or sealing a semiconductor element, an optical semiconductor element or the like.

本発明の硬化性シリコーン組成物を実施例と比較例により詳細に説明する。なお、該組成物がホットメルト性を示すかどうかは室温で固体状か液体状かと確認した後に固体状である場合、100℃において溶融するか否かで確認し、可能な場合にはその粘度を測定した。また、式中、Me、Ph、Viはそれぞれメチル基、フェニル基、ビニル基を表す。   The curable silicone composition of this invention is demonstrated in detail by an Example and a comparative example. Whether or not the composition exhibits hot-melt properties is confirmed by whether it melts at 100 ° C. when it is solid after confirming whether it is solid or liquid at room temperature, and if possible, its viscosity Was measured. In the formula, Me, Ph, and Vi represent a methyl group, a phenyl group, and a vinyl group, respectively.

<測定方法および評価基準>
以下の実施例または比較例にかかる各組成物において、硬化物の硬さ、曲げ強さ、および、耐熱試験後の曲げ強さは次のようにして測定し、結果を表1および表2に示した。

[硬化物の硬さ]
硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物の硬さを、JIS K 7215-1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプDデュロメータにより測定した。

[硬化物の曲げ破壊強度]
硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物の曲げ強度を、JIS K 6911-1995「熱硬化性プラスチック一般試験方法」に規定の方法により測定した。

[耐熱試験後の硬化物の曲げ破壊強度]
硬化性シリコーン組成物を150℃で2時間加熱して硬化物を作製した。この硬化物を300℃のオーブンに投入し、1週間エージングを行った。次いで、エージング後の硬化物の曲げ強度を、JIS K 6911-1995「熱硬化性プラスチック一般試験方法」に規定の方法により測定した。

[軟化点]
組成物をφ13mm×18mmの円柱状のタブレット状に成型した。このタブレットを25℃〜100℃に設定したホットプレート上に置き、100グラム重の荷重で上から10秒間押し続け、荷重を取り除いた後、組成物の変形量を測定した。高さ方向の変形量が1mm以上となった温度を軟化点とした。

[溶融粘度]
ホットメルト性を有する組成物に関して、100℃における溶融粘度をレオメーターAR2000EX(ティー・エイ・インスツルメント・ジャパン株式会社製)を用いて、せん断速度1(1/s)で測定した。
<Measurement method and evaluation criteria>
In each composition according to the following examples or comparative examples, the hardness, bending strength, and bending strength after the heat resistance test of the cured product were measured as follows, and the results are shown in Table 1 and Table 2. Indicated.

[Hardness of cured product]
The curable silicone composition was heated at 150 ° C. for 2 hours to prepare a cured product. The hardness of the cured product was measured with a type D durometer specified in JIS K 7215-1986 “Method for testing the durometer hardness of plastics”.

[Bending fracture strength of cured product]
The curable silicone composition was heated at 150 ° C. for 2 hours to prepare a cured product. The bending strength of the cured product was measured by the method specified in JIS K 6911-1995 “General Test Method for Thermosetting Plastics”.

[Bending fracture strength of cured product after heat test]
The curable silicone composition was heated at 150 ° C. for 2 hours to prepare a cured product. This cured product was put into an oven at 300 ° C. and aged for 1 week. Next, the bending strength of the cured product after aging was measured by the method specified in JIS K 6911-1995 “General Test Method for Thermosetting Plastics”.

[Softening point]
The composition was molded into a cylindrical tablet of φ13 mm × 18 mm. This tablet was placed on a hot plate set at 25 ° C. to 100 ° C., and continuously pressed for 10 seconds from the top with a load of 100 gram weight. After removing the load, the amount of deformation of the composition was measured. The temperature at which the amount of deformation in the height direction was 1 mm or more was taken as the softening point.

[Melt viscosity]
Regarding the composition having hot melt properties, the melt viscosity at 100 ° C. was measured at a shear rate of 1 (1 / s) using a rheometer AR2000EX (manufactured by TA Instruments Japan Co., Ltd.).

<実施例/比較例に用いた原料成分>
以下の実施例および比較例において、以下の原料成分を用いた。

[(A1):ビニル基含有レジン状シロキサン]
(A1−1)成分:25℃において白色固体状で、トルエン可溶性の平均単位式:
(PhSiO3/2)0.75(MeViSiO1/2)0.25
で表される、一分子中に2個以上のビニル基を有するオルガノポリシロキサン(ビニル基の含有量=5.6質量%)
(A1−2)成分:25℃において白色固体状で、トルエン可溶性の平均単位式:
(PhSiO3/2)0.80(MeViSiO1/2)0.20
で表される、一分子中に2個以上のビニル基を有するオルガノポリシロキサン(ビニル基の含有量=4.4質量%)
(A1−3)成分:25℃において白色固体状で、トルエン可溶性である、平均単位式:
(MeViSiO1/2)0.15(MeSiO1/2)0.38(SiO4/2)0.47(HO1/2)0.01
で表される、一分子中に2個以上のビニル基を有するオルガノポリシロキサン(ビニル基の含有量=4.2質量%)
(A1−4)成分:25℃において白色固体状で、トルエン可溶性である、平均単位式:
(MeViSiO1/2)0.13(MeSiO1/2)0.45(SiO4/2)0.42(HO1/2)0.01
で表される、一分子中に2個以上のビニル基を有するオルガノポリシロキサンレジン(ビニル基の含有量=3.4質量%)

[(A1):ビニル基含有直鎖状シロキサン]
(A1−1)成分:
粘度1,000mPa・sであり、
平均式 MeViSiO(MePhSiO)30SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖メチルフェニルポリシロキサン(ビニル基の含有量=1.27質量%)
(A1−2)成分:
粘度300mPa・sであり、
平均式 MeViSiO(MeSiO)150SiMeVi
で表される分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(ビニル基の含有量=0.48質量%)

[(A2):オルガノハイロジェンポリシロキサン]
(A2−1)成分:
平均式 HMeSiO(PhSiO)SiMe
で表される、粘度5mPa・sの分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサン(ケイ素原子結合水素原子の含有量=0.6重量%)
(A2−2)成分:
平均単位式 (PhSiO3/2)0.4(HMeSiO1/2)0.6
で表される、一分子中に2個以上のケイ素原子結合水素原子を有する、粘度25mPa・sの分岐鎖状オルガノポリシロキサン(ケイ素原子結合水素原子の含有量=0.65質量%)
(A2−3)成分:
平均式 MeSiO(MeHSiO)55SiMe
で表される、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖ポリメチルハイドロジェンシロキサン(ケイ素原子結合水素原子含有量=1.6質量%)
(A2−4)成分:
平均式 MeSiO(MeHSiO)15SiMe
で表される、粘度5mPa・sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン−メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子の含有量=1.42質量%)

[(A3):ヒドロシリル化反応触媒]
(A3)成分: 白金の1,3−ジビニルテトラメチルジシロキサン錯体の1,3−ジビニルテトラメチルジシロキサン溶液(白金金属の含有量=約4000ppm)

[(B):過酸化物]
(B1)成分: 2,5-ジメチル-2,5-ジ(t-ブチルパ-オキシ)ヘキサン
*半減期が10時間である温度が118℃である。
(B2)成分:3,6,9−トリエチル−3,6,9−トリメチル−1,4,7−トリパーオキソナン
*半減期が10時間である温度が125℃である。

[(C):無機フィラー]
(C1)成分:平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS−202)
(C2)成分:平均粒子径50μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS−104)
(C3)成分:平均粒子径2.5μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のSP−60)を用いた。
(C4)成分:平均粒子径0.5μmの酸化チタン(堺化学社製のSX−3103)
<Raw material components used in Examples / Comparative Examples>
In the following examples and comparative examples, the following raw material components were used.

[(A1 R ): Vinyl group-containing resinous siloxane]
(A1 R- 1) component: white solid at 25 ° C., toluene-soluble average unit formula:
(PhSiO 3/2 ) 0.75 (Me 2 ViSiO 1/2 ) 0.25
An organopolysiloxane having two or more vinyl groups in one molecule (vinyl group content = 5.6% by mass)
(A1 R- 2) Component: Average unit formula that is white solid at 25 ° C. and is soluble in toluene:
(PhSiO 3/2 ) 0.80 (Me 2 ViSiO 1/2 ) 0.20
An organopolysiloxane having two or more vinyl groups in one molecule (vinyl group content = 4.4% by mass)
(A1 R- 3) Component: A white solid at 25 ° C. and soluble in toluene. Average unit formula:
(Me 2 ViSiO 1/2 ) 0.15 (Me 3 SiO 1/2 ) 0.38 (SiO 4/2 ) 0.47 (HO 1/2 ) 0.01
An organopolysiloxane having two or more vinyl groups in one molecule (vinyl group content = 4.2 mass%)
(A1 R- 4) component: white solid at 25 ° C., toluene soluble, average unit formula:
(Me 2 ViSiO 1/2 ) 0.13 (Me 3 SiO 1/2 ) 0.45 (SiO 4/2 ) 0.42 (HO 1/2 ) 0.01
An organopolysiloxane resin having two or more vinyl groups in one molecule represented by (content of vinyl group = 3.4% by mass)

[(A1 L ): Vinyl group-containing linear siloxane]
(A1 L- 1) component:
The viscosity is 1,000 mPa · s,
Average formula Me 2 ViSiO (MePhSiO) 30 SiMe 2 Vi
Dimethylvinylsiloxy group-blocked methylphenylpolysiloxane (both vinyl group content = 1.27% by mass)
(A1 L- 2) component:
The viscosity is 300 mPa · s,
Average formula Me 2 ViSiO (Me 2 SiO) 150 SiMe 2 Vi
Dimethylpolysiloxane blocked with dimethylvinylsiloxy group at both ends of the molecular chain represented by the formula (vinyl group content = 0.48 mass%)

[(A2 H): organo Jairo polysiloxane]
(A2 H -1 L) component:
Average formula HMe 2 SiO (Ph 2 SiO) SiMe 2 H
Dimethylhydrogensiloxy group-blocked diphenylpolysiloxane having a viscosity of 5 mPa · s and having a viscosity of 5 mPa · s (content of silicon-bonded hydrogen atoms = 0.6 wt%)
(A2 H -2 R) component:
Average unit formula (PhSiO 3/2 ) 0.4 (HMe 2 SiO1 / 2) 0.6
A branched organopolysiloxane having a viscosity of 25 mPa · s and having two or more silicon-bonded hydrogen atoms in one molecule (content of silicon-bonded hydrogen atoms = 0.65% by mass)
(A2 H -3 L) component:
Average formula Me 3 SiO (MeHSiO) 55 SiMe 3
Polymethylhydrogensiloxane blocked with trimethylsiloxy group-blocked polymethylhydrogensiloxane having a viscosity of 20 mPa · s and having a viscosity of 20 mPa · s (content of silicon-bonded hydrogen atoms = 1.6% by mass)
(A2 H -4 L) component:
Average formula Me 3 SiO (MeHSIO) 15 SiMe 3
A dimethylsiloxane-methylhydrogensiloxane copolymer blocked with a trimethylsiloxy group at both ends of a molecular chain having a viscosity of 5 mPa · s (content of silicon atom-bonded hydrogen atom = 1.42% by mass)

[(A3): Hydrosilylation reaction catalyst]
(A3) component: 1,3-divinyltetramethyldisiloxane solution of platinum, 1,3-divinyltetramethyldisiloxane complex (platinum metal content = about 4000 ppm)

[(B): Peroxide]
Component (B1): 2,5-dimethyl-2,5-di (t-butylperoxy) hexane * The temperature at which the half-life is 10 hours is 118 ° C.
Component (B2): 3,6,9-triethyl-3,6,9-trimethyl-1,4,7-triperoxonane * The temperature at which the half-life is 10 hours is 125 ° C.

[(C): Inorganic filler]
Component (C1): spherical silica having an average particle diameter of 15 μm (HS-202 manufactured by Nippon Steel Materials Micron)
Component (C2): spherical silica having an average particle size of 50 μm (HS-104 manufactured by Nippon Steel Materials Micron)
Component (C3): Spherical silica (SP-60 manufactured by Nippon Steel Materials Micron) having an average particle size of 2.5 μm was used.
Component (C4): titanium oxide having an average particle size of 0.5 μm (SX-3103 manufactured by Sakai Chemical Co., Ltd.)

[実施例1〜8の概略]
実施例1,2,4,6,8は、(A)成分をプレ合成した後に(B)成分および(C)成分と混合して本発明の組成物を得る実施例である。
実施例3,5は、(A)成分の原料と(C)成分とを混合し、(B)成分の不存在下で、ヒドロシリル化反応により(A)成分を系中で合成し、さらに(B)成分を添加することによって本発明の組成物を得る実施例である。
実施例7は、(A)成分の原料、(B)成分および(C)成分を混合し、(B)成分が実質的に反応しない温度条件で、ヒドロシリル化反応により(A)成分を系中で合成し、本発明の組成物を得る実施例である。
[Outline of Examples 1 to 8]
Examples 1, 2, 4, 6, and 8 are examples in which the composition of the present invention is obtained by pre-synthesizing the component (A) and then mixing with the component (B) and the component (C).
In Examples 3 and 5, the raw material of component (A) and component (C) are mixed, and component (A) is synthesized in the system by hydrosilylation reaction in the absence of component (B). This is an example of obtaining the composition of the present invention by adding the component B).
In Example 7, the raw material of the component (A), the component (B) and the component (C) are mixed, and the component (A) is added to the system by hydrosilylation reaction under a temperature condition in which the component (B) does not substantially react. This is an example in which the composition of the present invention is obtained.

[実施例1:組成物P1]
(A1−1)成分の濃度50質量%のトルエン溶液 150質量部、
(A1−1)成分 10.0質量部、
(A2−1)成分 15.0質量部、および
(A3)成分(A成分合計に対して白金金属が質量単位で1ppmとなる量)を混合した後、攪拌させながら100℃で2時間の条件で反応を行った後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で固体状のフェニル基含有量が45.5モル%である(AP1)成分を得た。得られた(AP1)成分を、100℃に温めたところ、液状化した。
[Example 1: Composition P1]
150 parts by mass of a toluene solution having a concentration of 50% by weight of the component (A1 R- 1),
(A1 L -1) component 10.0 parts by mass,
(A2 H -1 L) component 15.0 parts by weight, and component (A3) were mixed (platinum metal relative to component A total amount corresponding to 1ppm in mass units), 2 hours at 100 ° C. while stirring After performing the reaction under the above conditions, stripping under reduced pressure was performed at 90 ° C. to remove toluene, and a component (A P1 ) having a solid phenyl group content of 45.5 mol% at room temperature was obtained. When the obtained (A P1 ) component was heated to 100 ° C., it liquefied.

前記(AP1)成分100質量部、
(B1)成分である有機過酸化物 0.5質量部、
(C1)成分である充填材 400質量部を100℃に加熱したロスミキサー内で混合し、室温で表面粘着性の低い乳白色の固形組成物P1が得られた。
100 parts by mass of the (A P1 ) component,
(B1) 0.5 parts by weight of an organic peroxide component
400 parts by mass of filler as component (C1) were mixed in a loss mixer heated to 100 ° C. to obtain a milky white solid composition P1 having low surface tackiness at room temperature.

[実施例2:組成物P2]
(A1−2)成分の濃度50質量%のトルエン溶液 155.4質量部、
(A1−1)成分 10.4質量部、
(A2−1)成分 11.9質量部、および
(A3)成分(A成分合計に対して白金金属が質量単位で2ppmとなる量)を混合した後、攪拌させながら100℃で2時間の条件で反応を行った後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で固体状のフェニル基含有量が51.8モル%である(AP2)成分を得た。得られた(AP2)成分を、100℃に温めたところ、液状化した。
[Example 2: Composition P2]
(A1 R -2) 155.4 parts by mass of a toluene solution having a concentration of 50% by mass,
(A1 L −1) component 10.4 parts by mass,
(A2 H −1 L ) Component 11.9 parts by mass and (A3) component (amount in which platinum metal is 2 ppm by mass with respect to the total component A) were mixed and then stirred at 100 ° C. for 2 hours. After performing the reaction under the above conditions, stripping under reduced pressure was performed at 90 ° C., and toluene was removed to obtain an ( AP 2 ) component having a phenyl group content of 51.8 mol% solid at room temperature. When the obtained (A P2 ) component was heated to 100 ° C., it liquefied.

前記(AP2)成分100質量部、
(B1)成分である有機過酸化物 1.0質量部、
(C2)成分である充填材 262質量部、
(C4)成分である充填材 155質量部を100℃に加熱したロスミキサー内で混合し、室温で表面粘着性の低い白色の固形組成物P2が得られた。
100 parts by mass of the (A P2 ) component,
(B1) 1.0 part by mass of organic peroxide as component
(C2) 262 parts by mass of filler as component,
(C4) 155 parts by mass of a filler as a component were mixed in a loss mixer heated to 100 ° C. to obtain a white solid composition P2 having low surface tackiness at room temperature.

[実施例3:組成物P3]
(A1−1)成分の濃度50質量%のトルエン溶液 174.8質量部、
(A2−1)成分 12.6質量部を混合し、90℃で減圧ストリッピングを行い、トルエンを除去し室温でガム状の組成物を得た。
[Example 3: Composition P3]
174.8 parts by weight of a toluene solution having a concentration of 50% by weight of the component (A1 R- 1),
(A2 H -1 L) component 12.6 parts by mass were mixed and subjected to vacuum stripping at 90 ° C., to obtain a gum composition at room temperature to remove the toluene.

上記のガム状の組成物 100質量部、
(A3)成分(上記ガム状組成物の合計に対して白金金属が質量単位で1.5ppmとなる量)、
(C2)成分である充填材 226質量部、および
(C3)成分である充填材 218質量部を100℃に加熱したロスミキサー内で混合し、そのまま攪拌させながら100℃で2時間の条件で反応を行い、充填材存在下でフェニル基含有量が46.9モル%である(AP3)成分を合成した後、ミキサーを自然冷却させながら、(B2)成分である有機過酸化物 1.6質量を添加し、室温で表面粘着性の低い乳白色の固形組成物P3が得られた。
また、該固形組成物P3を100℃に熱したところ、溶融しペースト化した。
100 parts by weight of the above gum-like composition,
(A3) component (amount in which platinum metal is 1.5 ppm by mass with respect to the total of the above-mentioned gum-like composition),
226 parts by mass of the filler as component (C2) and 218 parts by mass of the filler as component (C3) are mixed in a loss mixer heated to 100 ° C., and reacted at 100 ° C. for 2 hours while stirring as it is. (A P3 ) component having a phenyl group content of 46.9 mol% in the presence of a filler was synthesized, and then the organic peroxide 1.6 (B2) component was allowed to cool while the mixer was naturally cooled. Mass was added and milky white solid composition P3 with low surface tackiness at room temperature was obtained.
Moreover, when this solid composition P3 was heated to 100 ° C., it melted and formed into a paste.

[実施例4:組成物P4]
(A1−3)成分の濃度50質量%のトルエン溶液 134.7質量部、
(A1−2)成分 31.1質量部、
(A2−3)成分 1.6質量部、および
(A3)成分(A成分合計に対して白金金属が質量単位で1.0ppmとなる量)を混合した後、攪拌させながら100℃で2時間の条件で反応を行った後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状のフェニル基含有量が0モル%である(AP4)成分を得た。
[Example 4: Composition P4]
(A1 R- 3) 134.7 parts by mass of a toluene solution having a component concentration of 50% by mass,
(A1 L -2) component 31.1 parts by mass,
(A2 H -3 L) component 1.6 parts by weight, and (A3) after components were mixed (platinum metal relative to component A total amount corresponding to 1.0ppm in mass units), at 100 ° C. while stirring After performing the reaction under conditions of 2 hours, vacuum stripping was performed at 90 ° C. to remove toluene, and an (A P4 ) component having a phenyl group content of 0 mol% which was liquid at room temperature was obtained.

前記(AP4)成分100質量部、
(B1)成分である有機過酸化物 0.8質量部、
(C2)成分である充填材 417質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物P4が得られた。
100 parts by mass of the (A P4 ) component,
0.8 parts by weight of organic peroxide as component (B1)
(C2) 417 parts by mass of a filler as a component was mixed in a loss mixer at room temperature to obtain a milky white paste-like composition P4.

[実施例5:組成物P5]
(A1−4)成分の濃度50質量%のトルエン溶液 134.0質量部、
(A1−2)成分 31.0質量部、および
(A2−4)成分 2.1質量部を混合し、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状の組成物を得た。
[Example 5: Composition P5]
(A1 R- 4) 134.0 parts by mass of a toluene solution having a concentration of 50% by mass of the component,
(A1 L- 2) component 31.0 parts by mass and (A2 H -4 L ) component 2.1 parts by mass are mixed, vacuum stripping is performed at 90 ° C., toluene is removed, and the composition is liquid at room temperature. Got.

前記の液状組成物 100質量部、
(A3)成分(前記液状組成物に対して白金金属が質量単位で3.0ppmとなる量)、
(C1)成分である充填材 312質量部、
(C4)成分である充填材 103質量部を100℃に加熱したロスミキサー内で混合し、そのまま攪拌させながら100℃で2時間の条件で反応を行い、充填材存在下でフェニル基含有量が0モル%である(AP5)成分を合成した後、ミキサーを自然冷却させながら(B2)成分である有機過酸化物 0.6質量部を添加し、室温で乳白色のペースト状の組成物P5が得られた。
100 parts by weight of the liquid composition,
(A3) component (amount in which platinum metal is 3.0 ppm by mass with respect to the liquid composition),
(C1) 312 parts by weight of filler as component,
(C4) Component filler 103 parts by mass in a loss mixer heated to 100 ° C., and stirred for 2 hours at 100 ° C. with stirring, the phenyl group content in the presence of the filler After synthesizing the component (A P5 ) of 0 mol%, 0.6 parts by mass of the organic peroxide as component (B2) was added while allowing the mixer to cool naturally, and a milky white paste-like composition P5 was added at room temperature. was gotten.

[実施例6:組成物P6]
(A1−3)成分の濃度50質量%のトルエン溶液 133.3質量部、
(A1−2)成分 30.8質量部、
(A2−3)成分 2.6質量部、および
(A3)成分(A成分合計に対して白金金属が質量単位で2.0ppmとなる量)を混合した後、攪拌させながら100℃で2時間の条件で反応を行った後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状のフェニル基含有量が0モル%である(AP6)成分を得た。
[Example 6: Composition P6]
(A1 R- 3) 133.3 parts by mass of a toluene solution having a concentration of 50% by mass of the component,
(A1 L -2) component 30.8 parts by mass,
(A2 H -3 L) component 2.6 parts by weight, and (A3) after components were mixed (platinum metal relative to component A total amount corresponding to 2.0ppm in mass units), at 100 ° C. while stirring After carrying out the reaction under the conditions for 2 hours, vacuum stripping was performed at 90 ° C. to remove toluene, and an (A P6 ) component having a phenyl group content of 0 mol% which was liquid at room temperature was obtained.

前記(AP6)成分100質量部、
(B1)成分である有機過酸化物 0.6質量部、
(C2)成分である充填材 207質量部、
(C3)成分である充填材 205質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物が得られた。
100 parts by mass of the (A P6 ) component,
(B1) component organic peroxide 0.6 parts by mass,
(C2) 207 parts by mass of filler as component,
205 parts by mass of a filler as component (C3) was mixed in a loss mixer at room temperature to obtain a milky white paste-like composition.

[実施例7:組成物P7]
(A1−1)成分の濃度50質量%のトルエン溶液 150.0質量部、
(A1−1)成分 10.0質量部、
(A2−1)成分15.0質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温でガム状の組成物を得た。
[Example 7: Composition P7]
(A1 R- 1) 150.0 parts by mass of a toluene solution having a concentration of 50% by mass of the component,
(A1 L -1) component 10.0 parts by mass,
After mixing 15.0 parts by mass of (A2 H -1 L ) component, vacuum stripping was performed at 90 ° C to remove toluene and obtain a gum-like composition at room temperature.

前記のガム状の組成物 100質量部、(A3)成分(ガム状の組成物合計に対して白金金属が質量単位で1ppmとなる量)、
(B1)成分である有機過酸化物 0.5質量部、
(C1)成分である充填材 400質量部を100℃に加熱したロスミキサー内で混合し、そのまま攪拌させながら1時間反応を行い、充填材及び過酸化物存在下でフェニル基含有量が45.5モル%である(AP7)成分を合成した後、室温で表面粘着性の低い乳白色の固形組成物P7が得られた。
100 parts by weight of the above-mentioned gum-like composition, (A3) component (amount in which platinum metal is 1 ppm by mass with respect to the total gum-like composition),
(B1) 0.5 parts by weight of an organic peroxide component
(C1) Component filler 400 parts by weight are mixed in a loss mixer heated to 100 ° C. and reacted for 1 hour while stirring as it is, and the phenyl group content in the presence of the filler and peroxide is 45. After synthesizing the 5 mol% (A P7 ) component, a milky white solid composition P7 having low surface tack at room temperature was obtained.

[実施例8:組成物P8]
(A1−2)成分の濃度50質量%のトルエン溶液 170.5質量部、
(A1−1)成分 11.4質量部、
(A2−1)成分 3.41質量部、
(A3)成分(A’成分合計に対して白金金属が質量単位で3ppmとなる量)を混合した後、攪拌させながら100℃で2時間の条件で反応を行った後、90℃で減圧ストリッピングを行い、トルエンを除去し室温でべたつきのある固体状のフェニル基含有量が54.4モル%である(AP8)成分を得た。
[Example 8: Composition P8]
170.5 parts by mass of a toluene solution having a concentration of (A1 R- 2) component of 50% by mass,
(A1 L -1) component 11.4 parts by mass,
(A2 H -1 L) component 3.41 parts by weight,
After mixing component (A3) (amount in which platinum metal is 3 ppm by mass with respect to the total amount of component A ′), the reaction was conducted at 100 ° C. for 2 hours with stirring, and then the vacuum was reduced at 90 ° C. Ripping was performed to remove toluene, and a solid ( P 8 ) component having a sticky solid phenyl group content at room temperature was obtained.

得られたべたつきのある固体状の(AP8)成分 100質量部、
(B1)成分である有機過酸化物 1.1質量部、
(C1)成分である充填材 297質量部、
(C4)成分である充填材 171質量部を100℃に加熱したロスミキサー内で混合し、室温で表面粘着性の低い白色の固形組成物P8が得られた。
100 parts by weight of solid (A P8 ) component obtained,
1.1 parts by mass of (B1) component organic peroxide,
(C1) 297 parts by mass of filler as component,
(C4) 171 parts by weight of filler as a component were mixed in a loss mixer heated to 100 ° C. to obtain a white solid composition P8 having low surface tackiness at room temperature.

[比較例1〜6の概略]
比較例1,2,4:(A),(B)成分を含まない、ヒドロシリル化硬化性組成物である。
比較例3,5:(A)成分を含まない、過酸化物硬化性組成物である。
比較例6:(A)成分を含まない、ヒドロシリル化/過酸化物のデュアル硬化性組成物である。
[Outline of Comparative Examples 1 to 6]
Comparative Examples 1, 2 and 4: Hydrosilylation curable compositions not containing components (A) and (B).
Comparative Examples 3 and 5: A peroxide curable composition containing no component (A).
Comparative Example 6: A hydrosilylation / peroxide dual curable composition containing no component (A).

[比較例1:組成物C1]
(A1−1)成分の濃度50質量%のトルエン溶液 134.5質量部、
(A1−1)成分 9.0質量部、
(A2−1)成分 23.8質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状の組成物を得た。
[Comparative Example 1: Composition C1]
134.5 parts by mass of a toluene solution having a concentration of the component (A1 R- 1) of 50% by mass,
9.0 parts by mass of (A1 L- 1) component,
After mixing 23.8 parts by mass of (A2 H −1 L ) component, vacuum stripping was performed at 90 ° C. to remove toluene and obtain a liquid composition at room temperature.

得られた液状の組成物 100質量部、
(A3)成分(前記の液状組成物に対して白金金属が質量単位で3ppmとなる量)、
(C2)成分である充填材 348質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物C1が得られた。
100 parts by mass of the obtained liquid composition,
Component (A3) (the amount by which platinum metal is 3 ppm by mass with respect to the liquid composition),
(C2) 348 parts by mass of the filler as the component was mixed in a loss mixer at room temperature to obtain a milky white paste-like composition C1.

[比較例2:組成物C2]
(A1−2)成分の濃度50質量%のトルエン溶液 140.2質量部、
(A1−1)成分 9.3質量部、
(A2−1)成分 10.3質量部、
(A2−2)成分 10.3質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状の組成物を得た。
[Comparative Example 2: Composition C2]
140.2 parts by mass of a toluene solution having a concentration of (A1 R- 2) component of 50% by mass,
(A1 L -1) component 9.3 parts by mass,
(A2 H -1 L) component 10.3 parts by weight,
(A2 H -2 R) after mixing the components 10.3 parts by mass, subjected to vacuum stripping at 90 ° C., to obtain a composition liquid at room temperature to remove the toluene.

得られた液状の組成物 100質量部、
(A3)成分(前記の液状組成物に対して白金金属が質量単位で3ppmとなる量)、
(C1)成分である充填材 367質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物C2が得られた。
100 parts by mass of the obtained liquid composition,
Component (A3) (the amount by which platinum metal is 3 ppm by mass with respect to the liquid composition),
(C1) 367 parts by mass of a filler as a component was mixed in a loss mixer at room temperature to obtain a milky white paste-like composition C2.

[比較例3:組成物C3]
(A1−2)成分の濃度50質量%のトルエン溶液 142.9質量部、
(A1−1)成分 9.5質量部、
(A2−1)成分 19.0質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状の組成物を得た。
[Comparative Example 3: Composition C3]
(A1 R -2) 142.9 parts by mass of a toluene solution having a concentration of 50% by mass,
(A1 L -1) component 9.5 parts by mass,
After mixing 19.0 parts by mass of (A2 H −1 L ) component, vacuum stripping was performed at 90 ° C. to remove toluene and obtain a liquid composition at room temperature.

得られた液状の組成物 100質量部、
(B1)成分である有機過酸化物 0.95質量部、
(C1)成分である充填材 233質量部、
(C4)成分である充填材 143質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物C3が得られた。
100 parts by mass of the obtained liquid composition,
0.95 parts by mass of the organic peroxide as component (B1)
(C1) 233 parts by mass of filler as component
(C4) 143 parts by mass of a filler as a component was mixed in a loss mixer at room temperature to obtain a milky white paste composition C3.

[比較例4:組成物C4]
(A1−3)成分の濃度50質量%のトルエン溶液 125.6質量部、
(A1−2)成分 29.0質量部、
(A2−4)成分 8.2質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状の組成物を得た。
[Comparative Example 4: Composition C4]
(A1 R- 3) 125.6 parts by mass of a toluene solution having a component concentration of 50% by mass,
(A1 L -2) component 29.0 parts by mass,
After mixing 8.2 parts by mass of (A2 H -4 L ) component, vacuum stripping was performed at 90 ° C. to remove toluene and obtain a liquid composition at room temperature.

得られた液状の組成物 100質量部、
(A3)成分(前記の液状組成物に対して白金金属が質量単位で2ppmとなる量)、
(C2)成分である充填材 383質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物C4が得られた。
100 parts by mass of the obtained liquid composition,
(A3) component (amount in which platinum metal is 2 ppm by mass with respect to the liquid composition),
(C2) 383 parts by mass of a filler as a component was mixed in a loss mixer at room temperature to obtain a milky white paste composition C4.

[比較例5:組成物C5]
(A1−4)成分の濃度50質量%のトルエン溶液 125.6質量部、
(A1−2)成分 29.0質量部、
(A2−4)成分 8.2質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温で液状の組成物を得た。
[Comparative Example 5: Composition C5]
(A1 R -4) 125.6 parts by mass of a toluene solution having a concentration of 50% by mass,
(A1 L -2) component 29.0 parts by mass,
After mixing 8.2 parts by mass of (A2 H -4 L ) component, vacuum stripping was performed at 90 ° C. to remove toluene and obtain a liquid composition at room temperature.

得られた液状の組成物 100質量部、
(B2)成分である有機過酸化物 1.0質量部、
(C1)成分である充填材 391質量部を室温にてロスミキサー内で混合し、乳白色のペースト状の組成物C5が得られた。
100 parts by mass of the obtained liquid composition,
(B2) 1.0 part by weight of organic peroxide as component
(C1) 391 parts by mass of a filler as a component was mixed in a loss mixer at room temperature to obtain a milky white paste-like composition C5.

[比較例6:組成物C6]
(A1−1)成分の濃度50質量%のトルエン溶液 150.0質量部、
(A1−1)成分 10.0質量部、
(A2−1)成分 15.0質量部を混合した後、90℃で減圧ストリッピングを行い、トルエンを除去し室温でガム状の組成物を得た。
[Comparative Example 6: Composition C6]
(A1 R- 1) 150.0 parts by mass of a toluene solution having a concentration of 50% by mass of the component,
(A1 L -1) component 10.0 parts by mass,
After mixing 15.0 parts by mass of (A2 H -1 L ) component, vacuum stripping was performed at 90 ° C to remove toluene and obtain a gum-like composition at room temperature.

得られたガム状の組成物 100質量部、
(A3)成分(前記のガム状の組成物に対して白金金属が質量単位で1ppmとなる量)、
(B1)成分である有機過酸化物 0.5質量部、
(C1)成分である充填材 400質量部を室温にてロスミキサー内で混合し、乳白色のペースト状組成物C6が得られた。
100 parts by mass of the obtained gum-like composition,
(A3) component (amount in which platinum metal is 1 ppm by mass with respect to the gum-like composition),
(B1) 0.5 parts by weight of an organic peroxide component
400 parts by mass of the filler as component (C1) were mixed in a loss mixer at room temperature to obtain a milky white paste-like composition C6.

以下、表1に実施例1〜8,表2に比較例1〜6の組成物について硬化前及び硬化後の物性等を評価した結果を示す。表1に示す通り、実施例1〜8の各組成物は、初期の硬化物の物理的強度に優れ、かつ、250℃以上の高温に暴露した場合にも高い物理的強度を維持するものであった。一方、表2に示す通り、比較例にかかる組成物は、特に250℃以上の高温に暴露した場合における曲げ破壊強度等の強靭性(破断応力)が不十分であった。 Table 1 shows the results of evaluating the physical properties before and after curing of Examples 1 to 8 in Table 1 and Comparative Examples 1 to 6 in Table 2. As shown in Table 1, each of the compositions of Examples 1 to 8 is excellent in the physical strength of the initial cured product, and maintains high physical strength even when exposed to a high temperature of 250 ° C. or higher. there were. On the other hand, as shown in Table 2, the composition according to the comparative example was insufficient in toughness (breaking stress) such as bending fracture strength particularly when exposed to a high temperature of 250 ° C. or higher.

Figure 2016124967
Figure 2016124967

Figure 2016124967
Figure 2016124967

Claims (17)

(A)分子内に炭素原子数2〜20のアルキレン基と、ケイ素原子に結合した炭素原子数2〜20のアルケニル基とを有する有機ケイ素化合物および(B)過酸化物を含有してなる硬化性シリコーン組成物。 (A) Curing comprising an organosilicon compound having an alkylene group having 2 to 20 carbon atoms and an alkenyl group having 2 to 20 carbon atoms bonded to a silicon atom in the molecule, and (B) a peroxide. Silicone composition. (A)成分中の[アルキレン基の含有量(モル%)]/[アルケニル基の含有量(モル%)]の比が0.20〜5.00の範囲である、請求項1に記載の硬化性シリコーン組成物。 The ratio of [content of alkylene group (mol%)] / [content of alkenyl group (mol%)] in component (A) is in the range of 0.20 to 5.00. Curable silicone composition. (A)成分中のアルケニル基の含有量が、0.20〜5.00モル%の範囲である、請求項1または請求項2に記載の硬化性シリコーン組成物。 The curable silicone composition according to claim 1 or 2, wherein the content of the alkenyl group in component (A) is in the range of 0.20 to 5.00 mol%. (A)成分が、
M単位:R SiO0.5で表されるシロキサン単位、
D単位:RSiO1.0で表されるシロキサン単位、
M/RD単位:R 0.5 SiO0.5で表されるシルアルキレン基含有シロキサン単位及びR 0.5SiO1.0で表されるシルアルキレン基含有シロキサン単位から選ばれる少なくとも1種のシロキサン単位、並びに
T/Q単位:RSiO1.5で表されるシロキサン単位およびSiO2.0で表されるシロキサン単位から選ばれる少なくとも1種のシロキサン単位
を含有してなる有機ケイ素化合物であって、
式中、Rは各々独立に炭素原子数1〜20の一価炭化水素基であり、全てのシロキサン単位のうち、少なくとも1以上のRは炭素原子数2〜20のアルケニル基であり、
は炭素原子数1〜20のアルキル基、炭素原子数1〜20のハロゲン置換アルキル基、炭素原子数6〜20のアリール基、および炭素原子数6〜20のハロゲン置換アリール基、水酸基またはエポキシ基含有基から選ばれる少なくとも1種の基であり、
は他のシロキサン単位中のケイ素原子に結合した、直鎖状または分岐鎖状の炭素原子数2〜20のシルアルキレン基である、請求項1〜請求項3のいずれかに記載の硬化性シリコーン組成物。
(A) component is
M unit: siloxane unit represented by R 1 R 2 2 SiO 0.5 ,
D unit: siloxane unit represented by R 1 R 2 SiO 1.0 ,
R 3 M / R 3 D unit: Silalkylene group-containing siloxane unit represented by R 3 0.5 R 2 2 SiO 0.5 and a silalkylene group represented by R 3 0.5 R 2 SiO 1.0 At least one siloxane unit selected from contained siloxane units, and T / Q unit: at least one siloxane selected from siloxane units represented by R 2 SiO 1.5 and siloxane units represented by SiO 2.0 An organosilicon compound containing a unit,
In the formula, each R 1 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, and among all siloxane units, at least one R 1 is an alkenyl group having 2 to 20 carbon atoms,
R 2 represents an alkyl group having 1 to 20 carbon atoms, a halogen-substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a halogen-substituted aryl group having 6 to 20 carbon atoms, a hydroxyl group or Is at least one group selected from epoxy group-containing groups,
The curing according to any one of claims 1 to 3, wherein R 3 is a linear or branched silalkylene group having 2 to 20 carbon atoms bonded to a silicon atom in another siloxane unit. Silicone composition.
(A)成分が、
(a1)分子中にRSiO1.5で表されるシロキサン単位およびSiO2.0で表されるシロキサン単位から選ばれる少なくとも1種のシロキサン単位(式中、Rは、前記同様の基である)を含有し、かつ、炭素原子数2〜20のアルケニル基およびケイ素原子結合水素原子から選ばれるヒドロシリル化反応性の官能基を有する、少なくとも1種のレジン状オルガノポリシロキサン、および
(a2)分子中にR SiO1.0で表されるシロキサン単位(式中、Rは、前記同様の基である)を含有し、かつ、前記の(a1)成分とヒドロシリル化反応可能な官能基であって、炭素原子数2〜20のアルケニル基およびケイ素原子結合水素原子から選ばれる反応性官能基を有する、少なくとも1種の鎖状オルガノポリシロキサンを、
(a1)成分または(a2)成分中の炭素原子数2〜20のアルケニル基がヒドロシリル化反応後に残存するように設計された比率で反応させて得た有機ケイ素化合物である、請求項1〜請求項4のいずれかに記載の硬化性シリコーン組成物。
(A) component is
(A1) At least one siloxane unit selected from a siloxane unit represented by R 2 SiO 1.5 and a siloxane unit represented by SiO 2.0 in the molecule (wherein R 2 represents the same group as described above) And at least one resinous organopolysiloxane having a hydrosilylation-reactive functional group selected from an alkenyl group having 2 to 20 carbon atoms and a silicon-bonded hydrogen atom, and (a2) ) Containing a siloxane unit represented by R 2 2 SiO 1.0 in the molecule (wherein R 2 is the same group as described above) and capable of hydrosilylation reaction with the component (a1) At least one linear organopolysiloxane having a functional group and a reactive functional group selected from an alkenyl group having 2 to 20 carbon atoms and a silicon-bonded hydrogen atom The
The organosilicon compound obtained by reacting the alkenyl group having 2 to 20 carbon atoms in the component (a1) or the component (a2) at a ratio designed to remain after the hydrosilylation reaction. Item 5. The curable silicone composition according to any one of Items 4 to 5.
(A)成分が、
(A1):以下の(A1−1)成分または(A1−2)成分を50:50〜100:0の質量比で混合した一分子中に炭素原子数2〜20のアルケニル基を少なくとも2個有するオルガノポリシロキサン
(A1−1)平均単位式:
(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)(R1/2)
(式中、Rはハロゲン置換または非置換の炭素原子数1〜20の一価炭化水素基または水酸基であり、Rの少なくとも2個は炭素原子数2〜20のアルケニル基である;Rは水素原子または炭素原子数1〜6のアルキル基である;aは0〜0.7の範囲内の数、bは0〜0.7の範囲内の数、cは0〜0.9の範囲内の数、dは0〜0.7の範囲内の数、eは0〜0.1の範囲内の数、かつ、c+dは0.3〜0.9の範囲内の数、a+b+c+dは1である)
で表されるオルガノポリシロキサン
(A1−2)平均単位式:
(R SiO1/2)(R SiO2/2)(RSiO3/2)(SiO4/2)(R1/2)
(式中、R、Rは前記同様の基であり、かつ、Rの少なくとも2個はアルケニル基である;fは0.001〜0.7の範囲内の数、gは0.3〜0.999範囲内の数、hは0〜0.2の範囲内の数、iは0〜0.2の範囲内の数、jは0〜0.1の範囲内の数、かつ、h+iは0〜0.2の範囲内の数、f+g+h+iは1である)
で表されるオルガノポリシロキサン
(A2):平均組成式:
SiO(4−k−m)/2
(式中、Rは脂肪族不飽和結合を有さないハロゲン置換または非置換の一価炭化水素基または水酸基であり、kは1.0〜2.5の範囲の数であり、mは0.01〜0.9の範囲の数であり、k+mは1.5〜3.0の範囲の数である。)
で表されるオルガノハイドロジェンポリシロキサン
{(A1)成分中の炭素原子数2〜20のアルケニル基 1モルに対して、本成分中のケイ素原子結合水素原子が0.2〜0.7モルとなる量}
を、(A3) ヒドロシリル化反応用触媒の存在下でヒドロシリル化反応させて得た有機ケイ素化合物である、請求項1〜請求項5のいずれかに記載の硬化性シリコーン組成物。
(A) component is
(A1): At least two alkenyl groups having 2 to 20 carbon atoms in one molecule obtained by mixing the following components (A1-1) or (A1-2) at a mass ratio of 50:50 to 100: 0. Organopolysiloxane (A1-1) Average unit formula:
(R 4 3 SiO 1/2 ) a (R 4 2 SiO 2/2 ) b (R 4 SiO 3/2 ) c (SiO 4/2 ) d (R 5 O 1/2 ) e
Wherein R 4 is a halogen-substituted or unsubstituted monovalent hydrocarbon group or hydroxyl group having 1 to 20 carbon atoms, and at least two of R 4 are alkenyl groups having 2 to 20 carbon atoms; R 5 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; a is a number in the range of 0 to 0.7, b is a number in the range of 0 to 0.7, and c is 0 to 0.9. D is a number in the range of 0 to 0.7, e is a number in the range of 0 to 0.1, and c + d is a number in the range of 0.3 to 0.9, a + b + c + d Is 1)
Organopolysiloxane (A1-2) average unit formula represented by:
(R 4 3 SiO 1/2 ) f (R 4 2 SiO 2/2 ) g (R 4 SiO 3/2 ) h (SiO 4/2 ) i (R 5 O 1/2 ) j
Wherein R 4 and R 5 are the same groups as described above, and at least two of R 4 are alkenyl groups; f is a number within the range of 0.001 to 0.7, and g is 0.00. A number in the range of 3 to 0.999, h is a number in the range of 0 to 0.2, i is a number in the range of 0 to 0.2, j is a number in the range of 0 to 0.1, and H + i is a number in the range of 0 to 0.2, and f + g + h + i is 1.)
Organopolysiloxane (A2): Average composition formula:
R 6 k H m SiO (4-km) / 2
Wherein R 6 is a halogen-substituted or unsubstituted monovalent hydrocarbon group or hydroxyl group having no aliphatic unsaturated bond, k is a number in the range of 1.0 to 2.5, and m is (The number is in the range of 0.01 to 0.9, and k + m is the number in the range of 1.5 to 3.0.)
In relation to 1 mol of an alkenyl group having 2 to 20 carbon atoms in the component (A1), 0.2 to 0.7 mol of silicon-bonded hydrogen atoms in this component Amount}
(A3) The curable silicone composition according to any one of claims 1 to 5, which is an organosilicon compound obtained by hydrosilylation reaction in the presence of a catalyst for hydrosilylation reaction.
(A)成分において、アルケニル基がビニル基であり、アルキレン基がエチレン基である、請求項1〜請求項6のいずれかに記載の硬化性シリコーン組成物。 The curable silicone composition according to any one of claims 1 to 6, wherein in the component (A), the alkenyl group is a vinyl group and the alkylene group is an ethylene group. (A)成分において、ケイ素原子に結合した一価の有機基10モル%以上がアリール基である、請求項1〜請求項7のいずれかに記載の硬化性シリコーン組成物。 The curable silicone composition according to any one of claims 1 to 7, wherein in the component (A), 10 mol% or more of the monovalent organic group bonded to the silicon atom is an aryl group. 前記の成分(B)が、10時間半減期温度が90℃以上である過酸化物である、請求項1〜請求項8のいずれかに記載の硬化性シリコーン組成物。 The curable silicone composition according to any one of claims 1 to 8, wherein the component (B) is a peroxide having a 10-hour half-life temperature of 90 ° C or higher. さらに、(C)無機フィラーを(A)成分100質量部に対して10〜2000質量部の範囲で含む、請求項1〜請求項9のいずれかに記載の硬化性シリコーン組成物。 Furthermore, the curable silicone composition in any one of Claims 1-9 which contains (C) inorganic filler in the range of 10-2000 mass parts with respect to 100 mass parts of (A) component. 25℃〜100℃の範囲内に、軟化点を有し、ホットメルト性を有する、請求項1〜請求項10のいずれかに記載の硬化性シリコーン組成物。 The curable silicone composition in any one of Claims 1-10 which has a softening point in the range of 25 to 100 degreeC, and has hot-melt property. 硬化性シリコーン組成物を硬化して得られる硬化物の25℃でのタイプDデュロメータ硬さが60以上である、請求項1〜11のいずれかに記載の硬化性シリコーン組成物。 The curable silicone composition in any one of Claims 1-11 whose type D durometer hardness in 25 degreeC of the hardened | cured material obtained by hardening | curing a curable silicone composition is 60 or more. 請求項1〜12のいずれかに記載の硬化性シリコーン組成物からなる、半導体用封止剤。 The semiconductor sealing agent which consists of a curable silicone composition in any one of Claims 1-12. 請求項1〜12のいずれかに記載の硬化性シリコーン組成物からなる、光半導体用光反射材。 The light reflection material for optical semiconductors which consists of a curable silicone composition in any one of Claims 1-12. 請求項1〜12のいずれかに記載の硬化性シリコーン組成物を硬化させてなる硬化物。 Hardened | cured material formed by hardening | curing the curable silicone composition in any one of Claims 1-12. 請求項15の硬化物を有する半導体。 A semiconductor having the cured product according to claim 15. 請求項1〜12のいずれかに記載の硬化性シリコーン組成物を用いることを特徴とする、半導体封止方法。 A semiconductor sealing method using the curable silicone composition according to claim 1.
JP2014266534A 2014-12-26 2014-12-26 Curable silicone composition, semiconductor sealant and semiconductor device comprising the same Active JP6586555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266534A JP6586555B2 (en) 2014-12-26 2014-12-26 Curable silicone composition, semiconductor sealant and semiconductor device comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266534A JP6586555B2 (en) 2014-12-26 2014-12-26 Curable silicone composition, semiconductor sealant and semiconductor device comprising the same

Publications (2)

Publication Number Publication Date
JP2016124967A true JP2016124967A (en) 2016-07-11
JP6586555B2 JP6586555B2 (en) 2019-10-09

Family

ID=56357621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266534A Active JP6586555B2 (en) 2014-12-26 2014-12-26 Curable silicone composition, semiconductor sealant and semiconductor device comprising the same

Country Status (1)

Country Link
JP (1) JP6586555B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030286A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, optically reflective material comprising curable particulate silicone composition, and production method for optically reflective material comprising curable particulate silicone composition
WO2018030288A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2018030287A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2018056298A1 (en) 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 Laminate, manufacturing method thereof, and manufacturing method of electronic component
WO2018056297A1 (en) 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 Curing reactive silicone gel and use thereof
WO2018062009A1 (en) * 2016-09-29 2018-04-05 東レ・ダウコーニング株式会社 Curable silicone composition, cured product of same and optical semiconductor device
WO2018079678A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 Layered body and method for manufacturing electronic component
WO2018084012A1 (en) * 2016-11-02 2018-05-11 東レ・ダウコーニング株式会社 Reactive hot-melt silicone filling container and method for manufacturing reactive hot-melt silicone
WO2018235491A1 (en) * 2017-06-19 2018-12-27 東レ・ダウコーニング株式会社 Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
WO2019049950A1 (en) 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 Cured silicone elastomer having radical reactivity and use of same
CN109661435A (en) * 2016-09-07 2019-04-19 株式会社大赛璐 Hardening resin composition, its solidfied material and semiconductor device
WO2019078140A1 (en) * 2017-10-20 2019-04-25 ダウ・東レ株式会社 Curable granular silicone composition, cured object obtained therefrom, and production method therefor
KR20190131100A (en) 2017-04-06 2019-11-25 다우 도레이 캄파니 리미티드 Liquid curable silicone adhesive composition, the cured product thereof and use thereof
WO2020138410A1 (en) * 2018-12-27 2020-07-02 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same
CN112251190A (en) * 2020-09-10 2021-01-22 烟台德邦科技有限公司 LED packaging adhesive composition
JP2021088678A (en) * 2019-12-05 2021-06-10 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable white silicone composition, reflective material for optical semiconductor device, and optical semiconductor device
CN113025055A (en) * 2019-12-25 2021-06-25 杜邦东丽特殊材料株式会社 Curable white silicone composition, reflective material for optical semiconductor device, and optical semiconductor device
CN113166546A (en) * 2018-10-30 2021-07-23 陶氏东丽株式会社 Curing reactive silicone composition, cured product thereof, and use thereof
CN113396188A (en) * 2018-12-27 2021-09-14 陶氏东丽株式会社 Curable silicone composition for transfer molding, cured product thereof, and method for producing same
WO2021229940A1 (en) * 2020-05-15 2021-11-18 信越化学工業株式会社 Thermosetting silicone composition, sheet, and cured silicone product
CN114127194A (en) * 2019-09-25 2022-03-01 住友理工株式会社 Silicone rubber composition, crosslinked silicone rubber, and sealing material
CN115023471A (en) * 2019-12-27 2022-09-06 陶氏东丽株式会社 Curable hot-melt silicone composition, cured product thereof, and laminate comprising same or cured product
CN115052742A (en) * 2019-12-27 2022-09-13 陶氏东丽株式会社 Laminate and electronic component comprising same
CN115335459A (en) * 2020-03-30 2022-11-11 陶氏东丽株式会社 Curable hot-melt silicone composition, cured product thereof, and laminate comprising same or cured product
WO2023042743A1 (en) * 2021-09-14 2023-03-23 ダウ・東レ株式会社 Curable hot melt organopolysiloxane composition, cured product thereof and method for producing film, etc. comprising same
WO2023042744A1 (en) * 2021-09-14 2023-03-23 ダウ・東レ株式会社 Curable organopolysiloxane composition, organopolysiloxane adhesive layer obtained by curing same, and laminate
CN116134093A (en) * 2020-06-30 2023-05-16 陶氏东丽株式会社 Curable silicone composition and cured product thereof
WO2023084885A1 (en) * 2021-11-09 2023-05-19 富士高分子工業株式会社 Fire-resistant silicone rubber composition, method for producing same, molded body and battery
KR102717266B1 (en) * 2017-10-20 2024-10-16 다우 도레이 캄파니 리미티드 Curable particulate silicone composition, cured product thereof, and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247349A (en) * 1992-03-06 1993-09-24 Shin Etsu Chem Co Ltd Silicone rubber composition and cured material
JPH07316301A (en) * 1994-05-30 1995-12-05 Toray Dow Corning Silicone Co Ltd Organosilicon polymer and production thereof
JP2007084766A (en) * 2005-09-26 2007-04-05 Shin Etsu Chem Co Ltd Addition-curable silicone composition excellent in crack resistance
JP2007191629A (en) * 2006-01-20 2007-08-02 Shin Etsu Chem Co Ltd Thermosetting composition
JP2009242627A (en) * 2008-03-31 2009-10-22 Dow Corning Toray Co Ltd Curable organopolysiloxane composition and its cured material
WO2013138089A1 (en) * 2012-03-12 2013-09-19 Dow Corning Corporation Compositions of resin-linear organosiloxane block copolymers
WO2014100656A1 (en) * 2012-12-21 2014-06-26 Dow Corning Corporation Hot-melt type curable silicone composition for compression molding or laminating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247349A (en) * 1992-03-06 1993-09-24 Shin Etsu Chem Co Ltd Silicone rubber composition and cured material
JPH07316301A (en) * 1994-05-30 1995-12-05 Toray Dow Corning Silicone Co Ltd Organosilicon polymer and production thereof
JP2007084766A (en) * 2005-09-26 2007-04-05 Shin Etsu Chem Co Ltd Addition-curable silicone composition excellent in crack resistance
JP2007191629A (en) * 2006-01-20 2007-08-02 Shin Etsu Chem Co Ltd Thermosetting composition
JP2009242627A (en) * 2008-03-31 2009-10-22 Dow Corning Toray Co Ltd Curable organopolysiloxane composition and its cured material
WO2013138089A1 (en) * 2012-03-12 2013-09-19 Dow Corning Corporation Compositions of resin-linear organosiloxane block copolymers
WO2014100656A1 (en) * 2012-12-21 2014-06-26 Dow Corning Corporation Hot-melt type curable silicone composition for compression molding or laminating

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689791B (en) * 2016-08-08 2022-09-16 道康宁东丽株式会社 Curable particulate silicon composition, semiconductor member comprising same, and method for molding same
WO2018030288A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2018030287A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2018030286A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, optically reflective material comprising curable particulate silicone composition, and production method for optically reflective material comprising curable particulate silicone composition
US11136437B2 (en) 2016-08-08 2021-10-05 Dow Toray Co., Ltd. Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and method for molding semiconductor member
JPWO2018030286A1 (en) * 2016-08-08 2019-06-13 東レ・ダウコーニング株式会社 Curable particulate silicone composition, light reflecting material comprising the same, and method for producing the same
JPWO2018030288A1 (en) * 2016-08-08 2019-06-13 東レ・ダウコーニング株式会社 Curable particulate silicone composition, member for semiconductor comprising the same, and method for molding the same
CN109790384A (en) * 2016-08-08 2019-05-21 道康宁东丽株式会社 Curability granulated silicone composition, the semiconductor component being made of it and its forming method
CN109661435A (en) * 2016-09-07 2019-04-19 株式会社大赛璐 Hardening resin composition, its solidfied material and semiconductor device
CN109661435B (en) * 2016-09-07 2022-04-12 日亚化学工业株式会社 Curable resin composition, cured product thereof, and semiconductor device
US11279827B2 (en) 2016-09-26 2022-03-22 Dow Toray Co., Ltd. Curing reactive silicone gel and use thereof
KR20190046997A (en) 2016-09-26 2019-05-07 다우 코닝 도레이 캄파니 리미티드 LAMINATE, METHOD OF MANUFACTURING THE SAME,
KR20190051022A (en) 2016-09-26 2019-05-14 다우 코닝 도레이 캄파니 리미티드 Curing reactive silicone gel and uses thereof
WO2018056297A1 (en) 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 Curing reactive silicone gel and use thereof
WO2018056298A1 (en) 2016-09-26 2018-03-29 東レ・ダウコーニング株式会社 Laminate, manufacturing method thereof, and manufacturing method of electronic component
US11248091B2 (en) 2016-09-29 2022-02-15 Dow Toray Co., Ltd. Curable silicone composition, cured product thereof, and optical semiconductor device
WO2018062009A1 (en) * 2016-09-29 2018-04-05 東レ・ダウコーニング株式会社 Curable silicone composition, cured product of same and optical semiconductor device
CN109890899A (en) * 2016-09-29 2019-06-14 陶氏东丽株式会社 Curable silicone composition, its solidfied material and optical semiconductor device
US10961419B2 (en) 2016-10-31 2021-03-30 Dow Toray Co., Ltd. Layered body and method for manufacturing electronic component
WO2018079678A1 (en) 2016-10-31 2018-05-03 東レ・ダウコーニング株式会社 Layered body and method for manufacturing electronic component
KR20190080912A (en) 2016-10-31 2019-07-08 다우 도레이 캄파니 리미티드 Laminate and electronic component manufacturing method
JPWO2018084012A1 (en) * 2016-11-02 2019-09-19 ダウ・東レ株式会社 Reactive hot melt silicone filled container and method for producing reactive hot melt silicone
JP7009381B2 (en) 2016-11-02 2022-01-25 ダウ・東レ株式会社 Reactive hot melt silicone filled container and method for manufacturing reactive hot melt silicone
WO2018084012A1 (en) * 2016-11-02 2018-05-11 東レ・ダウコーニング株式会社 Reactive hot-melt silicone filling container and method for manufacturing reactive hot-melt silicone
CN109963911A (en) * 2016-11-02 2019-07-02 陶氏东丽株式会社 Reactive hot-melt silicone fills container and the method for manufacturing reactive hot-melt silicone
EP3536747A4 (en) * 2016-11-02 2020-07-01 Dow Toray Co., Ltd. Reactive hot-melt silicone filling container and method for manufacturing reactive hot-melt silicone
US11396616B2 (en) 2017-04-06 2022-07-26 Dow Toray Co., Ltd. Liquid curable silicone adhesive composition, cured product thereof, and use thereof
KR20190131100A (en) 2017-04-06 2019-11-25 다우 도레이 캄파니 리미티드 Liquid curable silicone adhesive composition, the cured product thereof and use thereof
WO2018235491A1 (en) * 2017-06-19 2018-12-27 東レ・ダウコーニング株式会社 Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
JPWO2018235491A1 (en) * 2017-06-19 2020-04-16 ダウ・東レ株式会社 Curable granular silicone composition, semiconductor member made of the same, and molding method thereof
JP7100636B2 (en) 2017-06-19 2022-07-13 ダウ・東レ株式会社 A curable granular silicone composition, a semiconductor member comprising the same, and a molding method thereof.
US11555119B2 (en) 2017-06-19 2023-01-17 Dow Toray Co., Ltd. Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
US11981814B2 (en) 2017-09-11 2024-05-14 Dow Toray Co., Ltd. Cured silicone elastomer having radical reactivity and use of same
WO2019049950A1 (en) 2017-09-11 2019-03-14 東レ・ダウコーニング株式会社 Cured silicone elastomer having radical reactivity and use of same
KR20200051665A (en) 2017-09-11 2020-05-13 다우 도레이 캄파니 리미티드 Cured silicone elastomer having radical reactivity and uses thereof
WO2019078140A1 (en) * 2017-10-20 2019-04-25 ダウ・東レ株式会社 Curable granular silicone composition, cured object obtained therefrom, and production method therefor
US11479668B2 (en) 2017-10-20 2022-10-25 Dow Toray Co., Ltd. Curable granular silicone composition, cured object obtained therefrom, and production method therefor
JP7424734B2 (en) 2017-10-20 2024-01-30 ダウ・東レ株式会社 Curable granular silicone composition, cured product thereof, and manufacturing method thereof
JPWO2019078140A1 (en) * 2017-10-20 2020-11-19 ダウ・東レ株式会社 A curable granular silicone composition, a cured product thereof, and a method for producing the same.
KR102717266B1 (en) * 2017-10-20 2024-10-16 다우 도레이 캄파니 리미티드 Curable particulate silicone composition, cured product thereof, and method for producing same
CN111148796A (en) * 2017-10-20 2020-05-12 陶氏东丽株式会社 Curable particulate silicone composition, cured product thereof, and method for producing same
CN113166546A (en) * 2018-10-30 2021-07-23 陶氏东丽株式会社 Curing reactive silicone composition, cured product thereof, and use thereof
CN113166546B (en) * 2018-10-30 2023-02-21 陶氏东丽株式会社 Curing reactive silicone composition, cured product thereof, and use thereof
CN113348210A (en) * 2018-12-27 2021-09-03 陶氏东丽株式会社 Curable silicone composition, cured product thereof, and method for producing same
CN113396188B (en) * 2018-12-27 2023-01-17 陶氏东丽株式会社 Curable silicone composition for transfer molding, cured product thereof, and method for producing same
TWI843786B (en) * 2018-12-27 2024-06-01 日商陶氏東麗股份有限公司 Curable silicone composition, its cured body and manufacturing process thereof
WO2020138410A1 (en) * 2018-12-27 2020-07-02 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same
JP7513365B2 (en) 2018-12-27 2024-07-09 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same
CN113348210B (en) * 2018-12-27 2023-01-03 陶氏东丽株式会社 Curable silicone composition, cured product thereof, and method for producing same
CN113396188A (en) * 2018-12-27 2021-09-14 陶氏东丽株式会社 Curable silicone composition for transfer molding, cured product thereof, and method for producing same
CN114127194A (en) * 2019-09-25 2022-03-01 住友理工株式会社 Silicone rubber composition, crosslinked silicone rubber, and sealing material
CN114127194B (en) * 2019-09-25 2023-02-28 住友理工株式会社 Silicone rubber composition, crosslinked silicone rubber, and sealing material
JP7486874B2 (en) 2019-12-05 2024-05-20 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable white silicone composition, reflector for optical semiconductor device, and optical semiconductor device
JP2021088678A (en) * 2019-12-05 2021-06-10 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable white silicone composition, reflective material for optical semiconductor device, and optical semiconductor device
CN113025055A (en) * 2019-12-25 2021-06-25 杜邦东丽特殊材料株式会社 Curable white silicone composition, reflective material for optical semiconductor device, and optical semiconductor device
CN113025055B (en) * 2019-12-25 2024-01-23 杜邦东丽特殊材料株式会社 Curable white silicone composition, reflective material for optical semiconductor device, and optical semiconductor device
JP7560231B2 (en) 2019-12-27 2024-10-02 ダウ・東レ株式会社 Laminate and electronic component made of same
CN115052742A (en) * 2019-12-27 2022-09-13 陶氏东丽株式会社 Laminate and electronic component comprising same
CN115023471B (en) * 2019-12-27 2023-11-07 陶氏东丽株式会社 Curable hot-melt silicone composition, cured product thereof, and laminate comprising the composition or cured product
CN115023471A (en) * 2019-12-27 2022-09-06 陶氏东丽株式会社 Curable hot-melt silicone composition, cured product thereof, and laminate comprising same or cured product
CN115335459B (en) * 2020-03-30 2024-01-02 陶氏东丽株式会社 Curable hot-melt silicone composition, cured product thereof, and laminate comprising the composition or cured product
CN115335459A (en) * 2020-03-30 2022-11-11 陶氏东丽株式会社 Curable hot-melt silicone composition, cured product thereof, and laminate comprising same or cured product
JP7325375B2 (en) 2020-05-15 2023-08-14 信越化学工業株式会社 Thermosetting silicone composition, sheet, and silicone cured product
WO2021229940A1 (en) * 2020-05-15 2021-11-18 信越化学工業株式会社 Thermosetting silicone composition, sheet, and cured silicone product
JP2021178936A (en) * 2020-05-15 2021-11-18 信越化学工業株式会社 Thermosetting silicone composition, sheet, and cured silicone product
CN116134093A (en) * 2020-06-30 2023-05-16 陶氏东丽株式会社 Curable silicone composition and cured product thereof
CN112251190A (en) * 2020-09-10 2021-01-22 烟台德邦科技有限公司 LED packaging adhesive composition
WO2023042744A1 (en) * 2021-09-14 2023-03-23 ダウ・東レ株式会社 Curable organopolysiloxane composition, organopolysiloxane adhesive layer obtained by curing same, and laminate
WO2023042743A1 (en) * 2021-09-14 2023-03-23 ダウ・東レ株式会社 Curable hot melt organopolysiloxane composition, cured product thereof and method for producing film, etc. comprising same
JP7281022B1 (en) * 2021-11-09 2023-05-24 富士高分子工業株式会社 Fire-resistant silicone rubber composition, method for producing the same, molding and battery
WO2023084885A1 (en) * 2021-11-09 2023-05-19 富士高分子工業株式会社 Fire-resistant silicone rubber composition, method for producing same, molded body and battery

Also Published As

Publication number Publication date
JP6586555B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6586555B2 (en) Curable silicone composition, semiconductor sealant and semiconductor device comprising the same
JP6666625B2 (en) Curable organopolysiloxane composition, semiconductor encapsulant comprising the same, and semiconductor device
CN109689791B (en) Curable particulate silicon composition, semiconductor member comprising same, and method for molding same
JP6707516B2 (en) Curable granular silicone composition and method for producing the same
TWI786207B (en) Granulated curable silicone composition, cured body and manufacturing process thereof
TWI831733B (en) Curable granulated silicone composition, semiconductor article thereof, and molding process thereof
WO2018030286A1 (en) Curable particulate silicone composition, optically reflective material comprising curable particulate silicone composition, and production method for optically reflective material comprising curable particulate silicone composition
CN113631660B (en) Curable silicone composition, cured product thereof, and method for producing same
US20220169894A1 (en) Curable silicone composition, cured product of same, and method for manufacturing same
CN113330071A (en) Curable silicone composition, cured product thereof, and method for producing same
JPWO2018235491A1 (en) Curable granular silicone composition, semiconductor member made of the same, and molding method thereof
CN113614174B (en) Curable silicone composition, cured product thereof, and method for producing same
CN113348210A (en) Curable silicone composition, cured product thereof, and method for producing same
TWI786120B (en) Curable silicone composition, light-reflecting material composed thereof, and manufacturing method thereof
US20220186099A1 (en) Curable silicone composition, cured product of same and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181030

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R150 Certificate of patent or registration of utility model

Ref document number: 6586555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250