JP2016124824A - Reductant and method for producing metal using the same - Google Patents

Reductant and method for producing metal using the same Download PDF

Info

Publication number
JP2016124824A
JP2016124824A JP2014266775A JP2014266775A JP2016124824A JP 2016124824 A JP2016124824 A JP 2016124824A JP 2014266775 A JP2014266775 A JP 2014266775A JP 2014266775 A JP2014266775 A JP 2014266775A JP 2016124824 A JP2016124824 A JP 2016124824A
Authority
JP
Japan
Prior art keywords
metal
group
reducing agent
dihydropyrazine
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014266775A
Other languages
Japanese (ja)
Other versions
JP6329067B2 (en
Inventor
直人 永田
Naoto Nagata
直人 永田
真島 和志
Kazuyuki Majima
和志 真島
隼人 劒
Hayato Tsurugi
隼人 劒
大雅 百合野
Hiromasa Yurino
大雅 百合野
輝彦 齊藤
Teruhiko Saito
輝彦 齊藤
宏将 棚橋
Hiromasa Tanahashi
宏将 棚橋
悠 西山
Yu Nishiyama
悠 西山
健人 川北
Kento Kawakita
健人 川北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Toyota Motor Corp
Original Assignee
Osaka University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Toyota Motor Corp filed Critical Osaka University NUC
Priority to JP2014266775A priority Critical patent/JP6329067B2/en
Publication of JP2016124824A publication Critical patent/JP2016124824A/en
Application granted granted Critical
Publication of JP6329067B2 publication Critical patent/JP6329067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel reductant that can reduce metal ions by a reduction reaction in solvent, and a method for producing metal using the reductant.SOLUTION: A reductant comprises a compound represented by the general formula (where Xand Xare the same or different to represent a nitrogen atom or a methine group, R, R, R, R, Rand Rare the same or different to represent a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group or a tert-butyl group). There is also provided a method for producing metal by bringing the reductant into contact with a metal ion source in solvent.SELECTED DRAWING: None

Description

本発明は、新規な還元剤およびそれを用いた金属の製造方法に関し、さらに詳しくは溶媒中での還元反応によって金属イオンを還元し得る還元剤およびそれを用いる金属の製造方法に関する。   The present invention relates to a novel reducing agent and a method for producing a metal using the same, and more particularly to a reducing agent capable of reducing metal ions by a reduction reaction in a solvent and a method for producing a metal using the same.

金属および金属ナノ粒子の製造方法としては、金属固体を加熱して発生させた蒸気に不活性ガス分子などを衝突させて急冷することによって微細化する蒸発法が知られている。 この方法によれば、高濃度で且つ高純度の金属ナノ粒子を得ることができる。しかし、原料である金属固体から蒸気を発生させるための設備が必要である。そこで、このような特別な設備を必要としない金属ナノ粒子の製造方法として、溶媒中で金属塩を還元して金属ナノ粒子を製造する技術が注目されている。   As a method for producing metal and metal nanoparticles, there is known an evaporation method in which a metal solid is heated and heated to make an inert gas molecule collide with an inert gas molecule and rapidly cooled. According to this method, high-concentration and high-purity metal nanoparticles can be obtained. However, equipment for generating steam from a metal solid as a raw material is necessary. Therefore, as a method for producing metal nanoparticles that do not require such special equipment, a technique for producing metal nanoparticles by reducing a metal salt in a solvent has attracted attention.

例えば、特許文献1には、金属イオンを含有する溶液、有機分子からなる保護剤を含有する溶液および還元剤を含有する溶液を溶媒に滴下して還元することにより、有機分子で保護した金属ナノ粒子集合体を沈降させて回収する金属ナノ粒子の製造方法が記載されており、具体例として水素化ホウ素ナトリウムを還元剤として用いて金属イオンを還元し、金属を含む沈殿物を得た例が示されている。   For example, Patent Document 1 discloses that a metal nanoparticle protected with an organic molecule by dropping a solution containing a metal ion, a solution containing a protective agent composed of organic molecules, and a solution containing a reducing agent by dropping them into a solvent. A method for producing metal nanoparticles for collecting and recovering particle aggregates is described. As a specific example, a metal ion is reduced using sodium borohydride as a reducing agent to obtain a precipitate containing metal. It is shown.

しかし、前記特許文献1に示されている還元剤である水素化ホウ素ナトリウムは、標準酸化還元電位が−0.48Vを示す(例えば、Brian L. Cushing、 Vladimir L. Kolesnichenko, and Charles J. O’Connor, Chem. Rev. 2004,104,3893−3946)ことから、標準酸化還元電位が−0.48V未満の金属イオン、例えばGa3+(Ga/Ga3+の標準酸化還元電位=−0.529V、化学便覧改訂4版 基礎編II II−466)の還元によって金属Gaを得ることは理論的に不可能である。また、水素化ホウ素ナトリウムを還元剤として用いて金属を形成すると、還元剤がNaを含むため還元して得られる夾雑物が塩となり得る。 However, sodium borohydride, which is a reducing agent disclosed in Patent Document 1, exhibits a standard oxidation-reduction potential of −0.48 V (for example, Brian L. Cushing, Vladimir L. Kolesnichenko, and Charles J. O). Rev. 2004, 104, 3893-3946), a metal ion having a standard redox potential of less than −0.48 V, for example, Ga 3+ (standard redox potential of Ga / Ga 3 + = − 0.529 V). It is theoretically impossible to obtain metallic Ga by the reduction of Chemical Handbook 4th edition, basic edition II II-466). Further, when sodium borohydride is used as a reducing agent to form a metal, since the reducing agent contains Na, impurities obtained by reduction can become a salt.

特開2005−220435号公報JP 2005-220435 A

従って、本発明の目的は、溶媒中での還元反応によって金属イオンを還元し得る新規な還元剤を提供することである。
また、本発明の他の目的は、溶媒中で前記還元剤を用いる金属の製造方法を提供することである。
Accordingly, an object of the present invention is to provide a novel reducing agent capable of reducing metal ions by a reduction reaction in a solvent.
Another object of the present invention is to provide a method for producing a metal using the reducing agent in a solvent.

第1の発明は、下記一般式で示される化合物からなる還元剤に関する。
The first invention relates to a reducing agent comprising a compound represented by the following general formula.

(前記式中、XおよびXはそれぞれ同一であるか又は異なって窒素原子あるいはメチン基であり、R、R、R、R、RおよびRはそれぞれ同一であるか又は異なって水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基又はtert−ブチル基である。) (In the above formulas, X 1 and X 2 are the same or different and are nitrogen atoms or methine groups, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same, respectively. Or a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group.

第2の発明は、XおよびXがそれぞれ窒素原子である前記の還元剤に関する。
第3の発明は、金属イオンの還元に用いられる前記の還元剤に関する。
第4の発明は、前記のいずれかの還元剤と金属イオン源とを溶媒中で接触させる金属の製造方法に関する。
第5の発明は、前記金属が、粒子又は薄膜の形態である前記金属の製造方法に関する。
第6の発明は、前記接触が、室温で行われる前記金属の製造方法に関する。
第7の発明は、前記金属が、Gaである前記のいずれかに記載の金属の製造方法に関する。
第8の発明は、前記金属が、GaとGaイオンよりも高い標準酸化還元電位を有する少なくとも1種の金属との合金である前記金属の製造方法に関する。
The second invention relates to the above reducing agent wherein X 1 and X 2 are each a nitrogen atom.
3rd invention is related with the said reducing agent used for reduction | restoration of a metal ion.
4th invention is related with the manufacturing method of the metal which makes any one of said reducing agents and metal ion sources contact in a solvent.
5th invention is related with the manufacturing method of the said metal whose said metal is a form of a particle | grain or a thin film.
6th invention is related with the manufacturing method of the said metal with which the said contact is performed at room temperature.
7th invention is related with the manufacturing method of the metal in any one of the said that the said metal is Ga.
The eighth invention relates to a method for producing the metal, wherein the metal is an alloy of Ga and at least one metal having a higher standard oxidation-reduction potential than Ga ions.

本発明によれば、溶媒中での還元反応によって金属イオンを還元し得る新規な還元剤を提供し得る。
また、本発明によれば、溶媒中で前記還元剤を用いて金属を容易に得ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the novel reducing agent which can reduce | restore a metal ion by the reductive reaction in a solvent can be provided.
Moreover, according to the present invention, the metal can be easily obtained using the reducing agent in a solvent.

図1は、本発明の実施態様の金属の製造方法における還元反応を説明するための反応模式図である。FIG. 1 is a reaction schematic diagram for explaining a reduction reaction in a method for producing a metal according to an embodiment of the present invention. 図2は、実施例1における還元反応前と還元反応後の反応容器内の外観の変化を示す写真の写しである。FIG. 2 is a copy of a photograph showing a change in the external appearance of the reaction container before and after the reduction reaction in Example 1. 図3は、実施例1における反応後の酸化された還元剤のH NMRスペクトルである。FIG. 3 is a 1 H NMR spectrum of the oxidized reducing agent after the reaction in Example 1. 図4は、実施例2における還元反応時の反応液の外観変化を示す写真の写しである。4 is a copy of a photograph showing a change in the appearance of the reaction solution during the reduction reaction in Example 2. FIG. 図5は、実施例3における還元反応時の反応液の外観変化を示す写真の写しである。FIG. 5 is a copy of a photograph showing the change in the appearance of the reaction solution during the reduction reaction in Example 3. 図6は、実施例7における反応後の酸化された還元剤のH NMRスペクトルである。6 is a 1 H NMR spectrum of the oxidized reducing agent after the reaction in Example 7. FIG. 図7は、実施例9で得られたAgナノ粒子のSTEM観察結果を示す写真の写しである。FIG. 7 is a copy of a photograph showing the STEM observation results of the Ag nanoparticles obtained in Example 9. 図8は、実施例9で得られたAgナノ粒子のEDXスペクトルである。FIG. 8 is an EDX spectrum of the Ag nanoparticles obtained in Example 9. 図9は、実施例10で得られたCuナノ粒子のSTEM観察結果を示す写真の写しである。FIG. 9 is a copy of a photograph showing the STEM observation results of the Cu nanoparticles obtained in Example 10. 図10は、実施例10で得られたCuナノ粒子のEDXスペクトルである。FIG. 10 is an EDX spectrum of the Cu nanoparticles obtained in Example 10.

本発明の還元剤は、下記一般式で示される化合物からなる。
The reducing agent of the present invention comprises a compound represented by the following general formula.

(前記式中、XおよびXはそれぞれ同一であるか又は異なって窒素原子あるいはメチン基であり、R、R、R、R、RおよびRはそれぞれ同一であるか又は異なって水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基又はtert−ブチル基である。) (In the above formulas, X 1 and X 2 are the same or different and are nitrogen atoms or methine groups, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same, respectively. Or a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group.

前記一般式で示される化合物として、例えば、1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリエチルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリn−プロピルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリイソプロピルシリル)−1,4−ジヒドロピラジン、1,4−ビス(n−ブチルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリイソブチルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリsec−ブチルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリtert−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリエチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリn−プロピルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリイソプロピルシリル)−1,4−ジヒドロピラジン、1,4−ビス(トリn−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリイソブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリsec−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラメチル 1,4−ビス(トリtert−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリエチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリn−プロピルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリイソプロピルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリn−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリイソブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリsec−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラエチル 1,4−ビス(トリtert−ブチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラn−プロピル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトライソプロピル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラn−ブチル 1,4−ビス(トリn−プロピルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラsec−ブチル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン、2,3,5,6−テトラtert−ブチル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジンや、3,6−ビス(トリメチルシリル)シクロヘキサン−1,4−ジエン(BTCD)、(2−メチルシクロヘキサ−2,5−ジエン−1,4−ジイル)ビス(トリメチルシラン)(MBTCD)などのメチン系化合物が挙げられる。   Examples of the compound represented by the general formula include 1,4-bis (trimethylsilyl) -1,4-dihydropyrazine, 1,4-bis (triethylsilyl) -1,4-dihydropyrazine, 1,4-bis ( Tri-n-propylsilyl) -1,4-dihydropyrazine, 1,4-bis (triisopropylsilyl) -1,4-dihydropyrazine, 1,4-bis (n-butylsilyl) -1,4-dihydropyrazine, 1,4-bis (triisobutylsilyl) -1,4-dihydropyrazine, 1,4-bis (trisec-butylsilyl) -1,4-dihydropyrazine, 1,4-bis (tritert-butylsilyl) -1 , 4-dihydropyrazine, 2,3,5,6-tetramethyl 1,4-bis (trimethylsilyl) -1,4-dihydropyrazine, 2,3,5,6-teto Methyl 1,4-bis (triethylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetramethyl 1,4-bis (tri-n-propylsilyl) -1,4-dihydropyrazine, 2, 3,5,6-tetramethyl 1,4-bis (triisopropylsilyl) -1,4-dihydropyrazine, 1,4-bis (tri-n-butylsilyl) -1,4-dihydropyrazine, 2,3,5 , 6-Tetramethyl 1,4-bis (triisobutylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetramethyl 1,4-bis (trisec-butylsilyl) -1,4-dihydro Pyrazine, 2,3,5,6-tetramethyl 1,4-bis (tritert-butylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetraethyl 1,4-bis (trimethyl) Ryl) -1,4-dihydropyrazine, 2,3,5,6-tetraethyl 1,4-bis (triethylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetraethyl 1,4-bis (Tri-n-propylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetraethyl 1,4-bis (triisopropylsilyl) -1,4-dihydropyrazine, 2,3,5,6- Tetraethyl 1,4-bis (tri-n-butylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetraethyl 1,4-bis (triisobutylsilyl) -1,4-dihydropyrazine, 2,3 , 5,6-tetraethyl 1,4-bis (trisec-butylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetraethyl 1,4-bis (tri tert-butylsilyl) ) -1,4-dihydropyrazine, 2,3,5,6-tetra n-propyl 1,4-bis (trimethylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetraisopropyl 1, 4-bis (trimethylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetra n-butyl 1,4-bis (tri-n-propylsilyl) -1,4-dihydropyrazine, 2,3, 5,6-tetrasec-butyl 1,4-bis (trimethylsilyl) -1,4-dihydropyrazine, 2,3,5,6-tetratert-butyl 1,4-bis (trimethylsilyl) -1,4-dihydro Pyrazine, 3,6-bis (trimethylsilyl) cyclohexane-1,4-diene (BTCD), (2-methylcyclohexa-2,5-diene-1,4-diyl) bis (trime And methine compounds such as (tilsilane) (MBTCD).

前記一般式で示される化合物は、例えば下記一般式
The compound represented by the general formula is, for example, the following general formula

(前記式中、XおよびXはそれぞれ同一であるか又は異なって窒素原子あるいはメチン基であり、R、R、RおよびRはそれぞれ同一であるか又は異なって水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基又はtert−ブチル基である。)
で示される原料のジヒドロピラジン化合物と、一般式HSiY(但し、Yは水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基又はtert−ブチル基である。)で示されるケイ素化合物を触媒の存在下又は不存在下に反応させることによって得ることができる。
(In the above formula, X 1 and X 2 are the same or different and each is a nitrogen atom or a methine group; R 3 , R 4 , R 5 and R 6 are the same or different and each represents a hydrogen atom; (Methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group or tert-butyl group.)
And a dihydropyrazine compound of the general formula HSiY 3 (wherein Y is a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group or tert-butyl group) -Butyl group) can be obtained by reacting in the presence or absence of a catalyst.

前記原料のジヒドロピラジン化合物としては、1,4−ジヒドロピラジン、2,3,5,6−テトラメチル −1,4−ジヒドロピラジン、2,3,5,6−テトラエチル−1,4−ジヒドロピラジン、2,3,5,6−テトラn−プロピル−1,4−ジヒドロピラジン、2,3,5,6−テトライソプロピル−1,4−ジヒドロピラジン、2,3,5,6−テトラn−ブチル−1,4−ジヒドロピラジン、2,3,5,6−テトラsec−ブチル−1,4−ジヒドロピラジン、2,3,5,6−テトラtert−ブチル−1,4−ジヒドロピラジなどが挙げられる。   Examples of the raw material dihydropyrazine compound include 1,4-dihydropyrazine, 2,3,5,6-tetramethyl-1,4-dihydropyrazine, 2,3,5,6-tetraethyl-1,4-dihydropyrazine. 2,3,5,6-tetran-propyl-1,4-dihydropyrazine, 2,3,5,6-tetraisopropyl-1,4-dihydropyrazine, 2,3,5,6-tetran- Examples include butyl-1,4-dihydropyrazine, 2,3,5,6-tetrasec-butyl-1,4-dihydropyrazine, 2,3,5,6-tetratert-butyl-1,4-dihydropyrazine, and the like. It is done.

前記の触媒としては、白金、固体担体に支持された白金、塩化白金酸、塩化白金酸と、アルコール、アルデヒド又はケトンとの錯体、白金−オレフィン錯体、白金−ビニルシロキサン錯体、白金−フォスフィン錯体、白金−フォスファイト錯体、ジカルボニルジクロロ白金、白金−炭化水素錯体、白金−アルコラート触媒など、一般式A+〔HM-(式中、A+はアルカリ金属カチオン、アンモニウムカチオン又はホスホニウムカチオンで、Mは金属、例えばCr、Mo又はWで、Xは極性基、例えばCOであり、m、nは整数で、例えばm=2、n=10である。)で表される錯体、例えば前記カチオンがテトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラブチルアンモニウムカチオン、ベンジルトリメチルアンモニウムカチオン、セチルトリメチルアンモニウムカチオンなどの四級アンモニウムカチオン、テトラフェニルホスホニウムカチオンなどの四級ホスホニウムカチオンである錯体が挙げられる。 Examples of the catalyst include platinum, platinum supported on a solid support, chloroplatinic acid, a complex of chloroplatinic acid and an alcohol, an aldehyde or a ketone, a platinum-olefin complex, a platinum-vinylsiloxane complex, a platinum-phosphine complex, Platinum-phosphite complex, dicarbonyldichloroplatinum, platinum-hydrocarbon complex, platinum-alcolate catalyst, etc. General formula A + [HM m X n ] - (where A + is an alkali metal cation, ammonium cation or phosphonium cation) M is a metal such as Cr, Mo or W, X is a polar group such as CO, m and n are integers such as m = 2 and n = 10), for example, The cation is tetramethylammonium cation, tetraethylammonium cation, tetrabutylammonium cation, benzyl Trimethyl ammonium cation, quaternary ammonium cations, such as cetyl trimethyl ammonium cation, include complexes quaternary phosphonium cations such as tetraphenylphosphonium cation.

前記の反応は無溶媒で行ってもよくあるいは溶媒中で行ってもよい。前記溶媒としては、エチルエーテル、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、ジオキサン、ピリジン等の極性溶媒が挙げられる。
また、前記の反応は0〜150℃の範囲、例えば50〜150℃で実施し得る。
The above reaction may be carried out without solvent or in a solvent. Examples of the solvent include polar solvents such as ethyl ether, tetrahydrofuran (THF), dimethoxyethane (DME), dioxane, and pyridine.
Moreover, the said reaction may be implemented in the range of 0-150 degreeC, for example, 50-150 degreeC.

また、前記のメチン系化合物はベンゼン、トルエンを出発原料として合成し得る。
例えば、アルゴン雰囲気下、THF(100mL)中に塩化トリメチルシランの所定量、典型的には40.2mLとリチウム片所定量、典型的には2.20gとを加えて低温、典型的には5℃で撹拌を行って、ここにベンゼン又はトルエン、典型的には16.7mLのベンゼン又はトルエンをゆっくりと滴下し、長時間、典型的には1週間、低温、典型的には5℃で撹拌を行った後、上澄み液を分離・濃縮を行って、得られた残渣を減圧蒸留により精製して得ることができる。
The methine compounds can be synthesized using benzene and toluene as starting materials.
For example, a predetermined amount of trimethylsilane chloride, typically 40.2 mL, and a predetermined amount of lithium strip, typically 2.20 g, are added to THF (100 mL) under an argon atmosphere at a low temperature, typically 5 Stir at ℃, then slowly add benzene or toluene, typically 16.7 mL benzene or toluene, and stir for a long time, typically 1 week, at low temperature, typically 5 ° C. Then, the supernatant is separated and concentrated, and the resulting residue can be purified by distillation under reduced pressure.

本発明の前記一般式で示される化合物からなる還元剤は任意の還元反応に用い得るが、好適には金属イオンの還元に用い得る。
本発明の実施態様においては、本発明の還元剤を用いることによって、溶媒中で金属イオンを還元し得る。
The reducing agent comprising the compound represented by the general formula of the present invention can be used for any reduction reaction, but can be preferably used for reduction of metal ions.
In an embodiment of the present invention, metal ions can be reduced in a solvent by using the reducing agent of the present invention.

前記一般式で示される化合物を還元剤として適用し得る金属イオンとしては、様々な金属イオン、例えばFe2+(−0.440V)、Co2+(−0.277V)、Ni2+(−0.25V)、Cu2+(0.337V)、Ga3+(−0.529V)、Rh3+(0.758V)、Pd2+(0.915V)、Ag(0.799V)、Pt2+(1.19V)、Au3+(1.52V)などが挙げられる[括弧内の数値は金属イオンの標準酸化還元電位(V)を示す。]。
これらの金属イオンは、溶媒中、本発明の還元剤と接触させることにより金属を生成し得る。金属イオンの還元反応は金属イオンが1種の場合に限定されず、少なくとも2種の金属イオン、例えばGaイオンとGaイオンよりも高い標準酸化還元電位を有する少なくとも1種の金属イオンとを組み合わせて合金を形成し得る。
Examples of metal ions to which the compound represented by the general formula can be applied as a reducing agent include various metal ions such as Fe 2+ (−0.440 V), Co 2+ (−0.277 V), Ni 2+ (−0.25 V). ), Cu 2+ (0.337 V), Ga 3+ (−0.529 V), Rh 3+ (0.758 V), Pd 2+ (0.915 V), Ag + (0.799 V), Pt 2+ (1.19 V) , Au 3+ (1.52 V), etc. [The numerical values in parentheses indicate the standard oxidation-reduction potential (V) of metal ions. ].
These metal ions can produce a metal by contacting with the reducing agent of the present invention in a solvent. The reduction reaction of metal ions is not limited to the case where there is only one metal ion, but a combination of at least two metal ions, for example, Ga ions and at least one metal ion having a standard oxidation-reduction potential higher than Ga ions. Alloys can be formed.

本発明の実施態様の金属の製造方法は、少なくとも1種の金属イオン源となるそれぞれの金属錯体と、本発明の還元剤とを、溶媒、例えばエチルエーテル、テトラヒドロフラン(THF)、ジメトキシエタン(DME)、ジオキサン、ピリジン等の極性溶媒に溶解又は懸濁させて実施され得る。そのため、金属のイオン源となる金属錯体としては、溶媒に可溶性の種々の金属錯体が好適である。   In the method for producing a metal according to an embodiment of the present invention, each metal complex serving as at least one metal ion source and the reducing agent of the present invention are mixed with a solvent such as ethyl ether, tetrahydrofuran (THF), dimethoxyethane (DME). ), Dioxane, pyridine or the like in a polar solvent. Therefore, various metal complexes that are soluble in a solvent are suitable as a metal complex that serves as a metal ion source.

前記金属イオン源として好適な金属錯体としては、例えば前記金属イオンの塩化物、硝酸塩、硫酸塩、カルボン酸塩等、具体例として、例えば、塩化鉄(II)(FeCl)、銅の場合は塩化銅(II)(CuCl)、塩化銅(II)テトラヒドロフラン錯体、硝酸銅(II)(Cu(NO)、硫酸銅(II)五水和物(CuSO・5HO)、ピバル酸銅(II)(Cu(OCOBu))等、塩化銀(I)(AgCl)、硝酸銀(I)(AgNO)、メタンスルホン酸銀(CHSOAg)、トリフルオロメタンスルホン酸銀(CFSOAg)、硝酸パラジウム(II)(Pd(NO/HO)や塩化パラジウム(II)(PdCl)、塩化ガリウム(III)((GaCl)、金の場合はテトラクロロ金(III)酸四水和物(HAuCl・4HO)、ジニトロジアンミン白金(II)(Pt(NO(NH)やヘキサクロロ白金(IV)酸六水和物(H(PtCl)・6HO)、塩化ロジウム(III)(RhCl・3HO)などが挙げられる。 Examples of metal complexes suitable as the metal ion source include chlorides, nitrates, sulfates, carboxylates, and the like of the metal ions. Specific examples include, for example, iron (II) chloride (FeCl 2 ) and copper. Copper (II) chloride (CuCl 2 ), copper (II) chloride tetrahydrofuran complex, copper (II) nitrate (Cu (NO 3 ) 2 ), copper (II) sulfate pentahydrate (CuSO 4 .5H 2 O), Copper (II) pivalate (Cu (OCO t Bu) 2 ), silver chloride (I) (AgCl), silver nitrate (I) (AgNO 3 ), silver methanesulfonate (CH 3 SO 3 Ag), trifluoromethanesulfone Silver oxide (CF 3 SO 3 Ag), palladium nitrate (II) (Pd (NO 2 ) 2 / H 2 O), palladium chloride (II) (PdCl 2 ), gallium chloride (III) ((GaCl 3 ), For gold tetrachloroaurate (III) acid tetrahydrate (HAuCl 4 · 4H 2 O) , dinitro diammine platinum (II) (Pt (NO 2 ) 2 (NH 3) 2) and hexachloroplatinic (IV) acid Examples thereof include hexahydrate (H 2 (PtCl 6 ) · 6H 2 O), rhodium (III) chloride (RhCl 3 · 3H 2 O), and the like.

本発明の実施態様において、溶媒中の前記還元剤の濃度は特に限定されないが、還元剤の濃度が低いほど、金属イオンの還元、析出速度を遅くして、形成される個々の金属微粒子の一次粒子(例えばナノ粒子)径を小さくできる傾向があることから、金属粒子を得ようとする場合は目的とする一次粒子径の範囲等に応じて、好適な濃度の範囲を設定するのが好ましい。例えば、前記還元剤の金属錯体に対する割合(モル比)は、好適には0.1:1〜10:1の範囲、例えば0.5:1〜2:1の範囲、典型的には1:1である。
本発明の実施態様において、溶媒中で本発明の還元剤を用いることによって、任意の温度、好適には室温で還元反応を実施して金属、例えば金属ナノ粒子又は金属薄膜を製造し得る。
In the embodiment of the present invention, the concentration of the reducing agent in the solvent is not particularly limited. However, the lower the concentration of the reducing agent, the slower the reduction and deposition rate of the metal ions, and the primary metal fine particles formed. Since there is a tendency to reduce the particle (for example, nanoparticle) diameter, it is preferable to set a suitable concentration range according to the intended primary particle diameter range or the like when obtaining metal particles. For example, the ratio of the reducing agent to the metal complex (molar ratio) is preferably in the range of 0.1: 1 to 10: 1, such as in the range of 0.5: 1 to 2: 1, typically 1: 1.
In an embodiment of the present invention, by using the reducing agent of the present invention in a solvent, a reduction reaction can be carried out at any temperature, preferably at room temperature, to produce a metal, such as a metal nanoparticle or a metal thin film.

本発明の実施態様において前記一般式で示される化合物を還元剤として用いることにより、金属イオン源から金属、例えば金属ナノ粒子を製造し得る理論的な解明は十分にはなされていないが、図1に示すように、一例として金属イオン源としてMClを用いると、先ず還元剤として用いる前記一般式で示される化合物(前記式中、X、Xは窒素原子、RおよびRはメチル基)が電子の豊富なジエン配位子として金属イオン源に配位する。配位によって還元剤の窒素−ケイ素結合が伸長し、金属イオン源に結合していた配位子(例えば塩素配位子)と交換反応が進行して金属−窒素結合を持つ錯体が形成される。次に、金属−窒素結合が均一開裂を起こすことで、金属の還元反応が進行する。この際、生成したラジカル性の有機物は再度、金属イオン源と反応し、最終的に複素芳香族化合物と金属還元種を与える。本発明の実施態様における還元剤の特長は、ジエン配位子として金属中心に配位した後に、分子内反応として還元反応が進行する点であり、還元剤自体の標準酸化還元電位よりさらに負の標準酸化還元電位を持つ金属イオンの金属イオン源の還元が可能となることである。 In the embodiment of the present invention, the theoretical elucidation that a metal, for example, a metal nanoparticle can be produced from a metal ion source by using the compound represented by the above general formula as a reducing agent has not been sufficiently made. As shown in FIG. 1, when MCl 2 is used as a metal ion source as an example, a compound represented by the above general formula used as a reducing agent (wherein X 1 and X 2 are nitrogen atoms, R 1 and R 2 are methyl Group) coordinates to the metal ion source as a diene ligand rich in electrons. Coordination extends the nitrogen-silicon bond of the reducing agent, and the exchange reaction proceeds with a ligand (for example, a chlorine ligand) that has been bound to the metal ion source to form a complex having a metal-nitrogen bond. . Next, the metal-nitrogen bond undergoes uniform cleavage, whereby the metal reduction reaction proceeds. At this time, the generated radical organic substance reacts with the metal ion source again, and finally gives a heteroaromatic compound and a metal reducing species. The feature of the reducing agent in the embodiment of the present invention is that the reduction reaction proceeds as an intramolecular reaction after coordination to the metal center as a diene ligand, which is more negative than the standard redox potential of the reducing agent itself. It is possible to reduce a metal ion source of a metal ion having a standard redox potential.

本発明の実施態様によれば、本発明の還元剤と種々の金属イオン源を溶媒中で接触させて金属、例えば金属ナノ粒子又は金属薄膜を生成し得る。   According to an embodiment of the present invention, the reducing agent of the present invention and various metal ion sources can be contacted in a solvent to produce a metal, such as a metal nanoparticle or a metal thin film.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and are not intended to limit the invention.

参考例1
MeBTDPの合成
アルゴン雰囲気下、テトラヒドロフラン60mLを溶媒とし、2,3,5,6−テトラメチルピラジン5.09g(37.4mmol)とクロロトリメチルシラン14.3mL(112.3mmol)を0.5〜1.0cm角に切断した金属カリウム片(4.39g、112.3mmol)存在下で混合した。常温で48時間撹拌後、反応溶液の上澄み液を分取・濃縮し、得られた淡青色固体を減圧条件下で昇華精製を行うことで、7.41gの白色粉末を得た(収率71%)。
得られた生成物の1H NMRスペクトルから化学式C1430Siで示される2,3,5,6−テトラメチル 1,4−ビス(トリメチルシリル)−1,4−ジヒドロピラジン(以下、MeBTDPと略記する場合もある。)であることが確認された。
H NMRスペクトルの測定結果
1H NMR(400 MHz、d−THF):δ1.71(s、12H、MeBTDPのMe)、0.20(s、18H、MeBTDPのMe)
Reference example 1
Synthesis of Me 4 BTDP Under an argon atmosphere, tetrahydrofuran (60 mL) was used as a solvent, and 2,3,5,6-tetramethylpyrazine (5.09 g, 37.4 mmol) and chlorotrimethylsilane (14.3 mL, 112.3 mmol) were added to 0.5. It mixed in presence of the metal potassium piece (4.39g, 112.3mmol) cut | disconnected to the -1.0cm square. After stirring at room temperature for 48 hours, the supernatant of the reaction solution was collected and concentrated, and the resulting light blue solid was purified by sublimation under reduced pressure to obtain 7.41 g of a white powder (yield 71). %).
From the 1H NMR spectrum of the resulting product, 2,3,5,6-tetramethyl 1,4-bis (trimethylsilyl) -1,4-dihydropyrazine (hereinafter referred to as the chemical formula C 14 H 30 N 2 Si 2 ) It may be abbreviated as Me 4 BTDP).
Measurement result of 1 H NMR spectrum 1H NMR (400 MHz, d 8 -THF): δ 1.71 (s, 12H, Me 4 BTDP Me), 0.20 (s, 18H, Me 4 BTDP Me)

実施例1
室温で、J−young型NMR管中、19mg(0.10mmol)の塩化銅(II)テトラヒドロフラン錯体(CuCl(thf)0.8)のd−THF(0.50mL)懸濁液(図2(a))に対して57mg(0.20mmol)のMeBTDPを加えた。反応液はすぐに赤銅色の懸濁液に変化した(図2(b))。NMR測定結果から、0.10mmolのMeBTDPの消費と、0.10mmolのテトラメチルピラジン(Mepyrazine)および0.20mmolの塩化トリメチルシラン(TMSCl)の生成、従って2電子還元の進行が確認された(図3)。
H NMRスペクトルの測定結果
1H NMR(400 MHz、d−THF):δ2.41(s、12H、MepyrazineのMe)、1.71(s、12H、MeBTDPのMe)、0.45(s、18H、TMSCl)、0.20(s、18H、MeBTDPのTMS)
Example 1
At room temperature, a suspension of d 8 -THF (0.50 mL) of 19 mg (0.10 mmol) of copper (II) chloride tetrahydrofuran complex (CuCl 2 (thf) 0.8 ) in a J-young type NMR tube (Fig. 2 (a)) was added 57 mg (0.20 mmol) of Me 4 BTDP. The reaction liquid immediately changed to a bronze suspension (FIG. 2 (b)). From the NMR measurement results, it was confirmed that 0.10 mmol of Me 4 BTDP was consumed and 0.10 mmol of tetramethylpyrazine (Me 4 pyrazine) and 0.20 mmol of trimethylsilane chloride (TMSCl) were formed, and thus the progress of two-electron reduction was confirmed. (FIG. 3).
Measurement result of 1 H NMR spectrum 1H NMR (400 MHz, d 8 -THF): δ 2.41 (Me of s, 12H, Me 4 pyrazine), 1.71 (Me of s, 12H, Me 4 BTDP), 0 .45 (s, 18H, TMSCl), 0.20 (s, 18H, TMS of Me 4 BTDP)

実施例2
シュレンク管中、アルゴン雰囲気下で調製した、黄色の塩化銅(II)THF錯体(CuCl(thf)0.8)96mg(0.50mmol)のTHF懸濁液(5.0mL)に対し、MeBTDP141mg(0.50mmol)のTHF溶液(5.0mL)を室温で滴下した。滴下後すぐに反応混合物の色が黄色から焦げ茶色へと変化した(還元剤MeBTDP添加前:図4(a)、MeBTDP添加直後:図4(b))。30分後、撹拌を止めて静置して固体を沈降させた(MeBTDP添加して30分後:図4(c))。上澄み液を濾別した後、得られた沈殿を5.0mLのTHFで3回洗浄した。洗浄後の固体を乾燥させ、30mgの銅粉末(0.47mmol、収率95%)を得た。
Example 2
In a Schlenk tube prepared under an argon atmosphere, a suspension of yellow copper (II) THF complex (CuCl 2 (thf) 0.8 ) 96 mg (0.50 mmol) in THF (5.0 mL) was dissolved in Me. 4 A THF solution (5.0 mL) of BTDP 141 mg (0.50 mmol) was added dropwise at room temperature. Immediately after the dropwise addition, the color of the reaction mixture changed from yellow to dark brown (before addition of the reducing agent Me 4 BTDP: FIG. 4 (a), immediately after Me 4 BTDP addition: FIG. 4 (b)). After 30 minutes, stirring was stopped and the mixture was allowed to stand to precipitate the solid (30 minutes after adding Me 4 BTDP: FIG. 4 (c)). After the supernatant was filtered off, the resulting precipitate was washed 3 times with 5.0 mL of THF. The washed solid was dried to obtain 30 mg of copper powder (0.47 mmol, yield 95%).

実施例3
シュレンク管中、アルゴン雰囲気下で調製した、青色のピバル酸銅(II)96mg(0.50mmol)のTHF溶液(5.0mL)に対し、MeBTDP141mg(0.50mmol)のTHF溶液(5.0mL)を室温で滴下した。滴下後徐々に反応溶液の色が黄緑色へと変化した(図5(b)、図5(c))。さらに撹拌を続けると、反応液は徐々に赤茶色(図5(d))、さらに黒褐色(図5(e))へ変化した。シュレンク管内でこの溶液から48時間後に銅鏡が生成していることが確認された(還元剤MeBTDP添加前:図5(a)、MeBTDP添加直後:図5(b)、MeBTDP添加して15分後:図5(c)、MeBTDP添加して90分後:図5(d)、MeBTDP添加して13時間後:図5(e))。
Example 3
Schlenk, was prepared under argon, to a THF solution (5.0 mL) of blue pivalic copper (II) 96mg (0.50mmol), Me 4 THF solution (5 BTDP141mg (0.50mmol). 0 mL) was added dropwise at room temperature. After the dropwise addition, the color of the reaction solution gradually changed to yellowish green (FIGS. 5B and 5C). When stirring was further continued, the reaction solution gradually changed to reddish brown (FIG. 5 (d)) and further to blackish brown (FIG. 5 (e)). It was confirmed that a copper mirror was formed after 48 hours from this solution in the Schlenk tube (before addition of the reducing agent Me 4 BTDP: FIG. 5 (a), immediately after the addition of Me 4 BTDP: FIG. 5 (b), Me 4 BTDP. 15 minutes after the addition: FIG. 5 (c), 90 minutes after the addition of Me 4 BTDP: FIG. 5 (d), 13 hours after the addition of Me 4 BTDP: FIG. 5 (e)).

実施例4
シュレンク管中、アルゴン雰囲気下で調製した、白色の塩化銀(I)72mg(0.50mmol)のTHF懸濁液(5.0mL)に対し、MeBTDP71mg(0.25mmol)のTHF溶液(5.0mL)を遮光条件下、室温で滴下した。18時間後、撹拌を止めて静置し、固体を沈降させた。上澄み液を濾別した後、得られた沈殿を5.0mLのTHFで3回洗浄した。洗浄後の固体を乾燥させ、48mgの銀粉末(0.45mmol、収率90%)を得た。
Example 4
To a THF suspension (5.0 mL) of white silver chloride (I) 72 mg (0.50 mmol) prepared in a Schlenk tube under an argon atmosphere, Me 4 BTDP 71 mg (0.25 mmol) in a THF solution (5 0.0 mL) was added dropwise at room temperature under light-shielding conditions. After 18 hours, stirring was stopped and the mixture was allowed to stand to allow the solid to settle. After the supernatant was filtered off, the resulting precipitate was washed 3 times with 5.0 mL of THF. The washed solid was dried to obtain 48 mg of silver powder (0.45 mmol, yield 90%).

実施例5
シュレンク管中、アルゴン雰囲気下で調製した、黄土色の塩化鉄(II)63mg(0.50mmol)のTHF懸濁液(5.0mL)に対し、MeBTDP141mg(0.50mmol)のTHF溶液(5.0mL)を室温で滴下した。撹拌後すぐに反応溶液は黒色になった。6時間後、撹拌を止めて静置し、固体を沈降させた。上澄み液を濾別した後、得られた沈殿を5.0mLのTHFで3回洗浄した。洗浄後の固体を乾燥させ、28mgの鉄粉末(0.50mmol、収率100%)を得た。
Example 5
To a THF suspension (5.0 mL) of 63 mg (0.50 mmol) of ocherous iron (II) chloride prepared in a Schlenk tube under an argon atmosphere, a THF solution of 141 mg (0.50 mmol) of Me 4 BTDP ( 5.0 mL) was added dropwise at room temperature. Immediately after stirring, the reaction solution turned black. After 6 hours, stirring was stopped and the mixture was allowed to stand to precipitate the solid. After the supernatant was filtered off, the resulting precipitate was washed 3 times with 5.0 mL of THF. The washed solid was dried to obtain 28 mg of iron powder (0.50 mmol, yield 100%).

実施例6
シュレンク管中、アルゴン雰囲気下で調製した、茶色の塩化パラジウム(II)89mg(0.50mmol)のTHF懸濁液(5.0mL)に対し、MeBTDP141mg(0.50mmol)のTHF溶液(5.0mL)を室温で滴下した。速やかに黒色の懸濁液となった。12時間後、撹拌を止めて静置し、黒色固体を沈降させた。褐色の上澄み液を濾別した後、得られた沈殿を5.0mLのTHFで3回洗浄した。洗浄後の固体を乾燥させ、27mgの黒色のパラジウム粉末(0.25mmol、収率50%)を得た。
Example 6
To a THF suspension (5.0 mL) of 89 mg (0.50 mmol) of brown palladium (II) chloride prepared in a Schlenk tube under an argon atmosphere, 141 mg (0.50 mmol) of a THF solution of Me 4 BTDP (0.50 mmol) 0.0 mL) was added dropwise at room temperature. A black suspension was immediately obtained. After 12 hours, stirring was stopped and the mixture was allowed to stand to precipitate a black solid. After filtering off the brown supernatant, the resulting precipitate was washed three times with 5.0 mL of THF. The washed solid was dried to obtain 27 mg of black palladium powder (0.25 mmol, yield 50%).

実施例7
室温で、J−young型NMR管中、18mg(0.10mmol)の塩化ガリウムのd−THF(0.50mL)溶液に対して、57mg(0.20mmol)のMeBTDPを加えた。反応液はすぐに黄灰色の懸濁液に変化した。NMR測定の結果から、0.15mmolのMeBTDPの消費と、0.15mmolのテトラメチルピラジンおよび0.30mmolの塩化トリメチルシランの生成が確認され、3電子還元の進行が確認された(図6)。
H NMRスペクトルの測定結果
1H NMR(400 MHz、d−THF):δ2.41(s、12H、MepyrazineのMe)、1.71(s、12H、Me4BTDPのMe)、0.45(s、18H、TMSCl)、0.20(s、18H、MeBTDPのMe)
Example 7
At room temperature, 57 mg (0.20 mmol) of Me 4 BTDP was added to a solution of 18 mg (0.10 mmol) of gallium chloride in d 8 -THF (0.50 mL) in a J-young type NMR tube. The reaction immediately changed to a yellow-gray suspension. As a result of NMR measurement, consumption of 0.15 mmol of Me 4 BTDP and generation of 0.15 mmol of tetramethylpyrazine and 0.30 mmol of trimethylsilane chloride were confirmed, confirming the progress of 3-electron reduction (FIG. 6). ).
Measurement result of 1 H NMR spectrum 1H NMR (400 MHz, d 8 -THF): δ 2.41 (Me of s, 12H, Me 4 pyrazine), 1.71 (Me of s, 12H, Me4BTDP), 0.45 (S, 18H, TMSCl), 0.20 (s, 18H, Me 4 BTDP Me)

実施例8
シュレンク管中、アルゴン雰囲気下で調製した、無色の塩化ガリウム(II)88mg(0.50mmol)のTHF懸濁液(10mL)に対し、MeBTDP212mg(0.75mmol)のTHF溶液(10mL)を室温で滴下した。滴下後すぐに灰色の懸濁液となった。15時間後、撹拌を止めて静置し、固体を沈降させた。黄色で粘性の高い上澄み液を濾別した後、得られた沈殿を5.0mLのTHFで3回洗浄した。洗浄後の固体を乾燥させ、20mgの灰色のガリウム粉末(0.29mmol、収率59%)を得た。
Example 8
To a THF suspension (10 mL) of colorless gallium chloride (II) 88 mg (0.50 mmol) prepared in a Schlenk tube under an argon atmosphere, a THF solution (10 mL) of Me 4 BTDP 212 mg (0.75 mmol) was added. Added dropwise at room temperature. Immediately after the addition, a gray suspension was formed. After 15 hours, stirring was stopped and the mixture was allowed to stand to allow the solid to settle. After filtering off the yellow and highly viscous supernatant, the resulting precipitate was washed three times with 5.0 mL of THF. The washed solid was dried to obtain 20 mg of gray gallium powder (0.29 mmol, yield 59%).

実施例9
シュレンク管中、アルゴン雰囲気下で調製したトリフルオロメタンスルホン酸銀(I)(化学式:CFSOAg)(AgOTfと略記する場合もある。)5.1mg(0.02mmol)のピリジン溶液(2.5mL)に対し、MeBTDP2.8mg(0.01mmol)のピリジン溶液(2.5mL)を室温で滴下した。1時間後、撹拌を止めて静置し、銀ナノ粒子分散液を得た。得られた分散液をSTEM分析用グリッドに滴下させ、乾燥した後にSTEM観察を行ったEDXによるナノ粒子の組成分析を行った結果、生成した粒子が銀粒子であることを確認した。
Agナノ粒子のSTEM観察結果を図7に、EDXスペクトルを図8に示す。
Example 9
Silver (I) trifluoromethanesulfonate (chemical formula: CF 3 SO 3 Ag) (sometimes abbreviated as AgOTf) prepared in a Schlenk tube under an argon atmosphere 5.1 mg (0.02 mmol) of a pyridine solution (2 0.5 mL), a pyridine solution (2.5 mL) of Me 4 BTDP 2.8 mg (0.01 mmol) was added dropwise at room temperature. After 1 hour, stirring was stopped and the mixture was allowed to stand to obtain a silver nanoparticle dispersion. The obtained dispersion was dropped on a grid for STEM analysis, dried, and then subjected to STEM observation to analyze the composition of nanoparticles by EDX. As a result, it was confirmed that the generated particles were silver particles.
The STEM observation results of the Ag nanoparticles are shown in FIG. 7, and the EDX spectrum is shown in FIG.

実施例10
シュレンク管中、アルゴン雰囲気下で調製した塩化銅THF錯体(II)15.4mg(0.08mmol)のピリジン溶液(10mL)に対し、MeBTDP22.6mg(0.08mmol)のピリジン溶液(10mL)を室温で滴下した。1時間後、撹拌を止めて静置し、銅ナノ粒子分散液を得た。得られた分散液をSTEM分析用グリッドに滴下させ、乾燥した後にSTEM観察を行ったEDXによるナノ粒子の組成分析を行った結果、生成した粒子が銅ナノ粒子であることを確認した。
Cuナノ粒子のSTEM観察結果を図9に、EDXスペクトルを図10に示す。
Example 10
In a Schlenk tube, 15.4 mg (0.08 mmol) of a copper chloride THF complex (II) prepared in an argon atmosphere and a pyridine solution (10 mL), 22.6 mg of Me 4 BTDP (0.08 mmol) in a pyridine solution (10 mL) Was added dropwise at room temperature. After 1 hour, stirring was stopped and the mixture was allowed to stand to obtain a copper nanoparticle dispersion. The obtained dispersion was dropped on a grid for STEM analysis, dried, and then subjected to STEM observation to analyze the composition of nanoparticles by EDX. As a result, it was confirmed that the generated particles were copper nanoparticles.
The STEM observation results of the Cu nanoparticles are shown in FIG. 9, and the EDX spectrum is shown in FIG.

図2〜図10から、本発明の還元剤の一例であるMeBTDPと、標準酸化還元電位が−0.529V〜0.799Vの各種金属イオンの金属イオン源とを、室温で、溶媒中で接触させることによって金属ナノ粒子又は金属薄膜を生成させ得ることが確認された。 2 to 10, Me 4 BTDP, which is an example of the reducing agent of the present invention, and metal ion sources of various metal ions having a standard oxidation-reduction potential of −0.529 V to 0.799 V in a solvent at room temperature. It was confirmed that a metal nanoparticle or a metal thin film can be produced by contacting with.

本発明によって、溶媒中で金属イオンを還元し得る新規な還元剤を提供し得る。
また、本発明によって、溶媒中で前記還元剤を用いて金属を得ることができる。
According to the present invention, a novel reducing agent capable of reducing metal ions in a solvent can be provided.
Further, according to the present invention, a metal can be obtained using the reducing agent in a solvent.

Claims (8)

下記一般式で示される化合物からなる還元剤。
(前記式中、XおよびXはそれぞれ同一であるか又は異なって窒素原子あるいはメチン基であり、R、R、R、R、RおよびRはそれぞれ同一であるか又は異なって水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基又はtert−ブチル基である。)
A reducing agent comprising a compound represented by the following general formula.
(In the above formulas, X 1 and X 2 are the same or different and are nitrogen atoms or methine groups, and R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are the same, respectively. Or a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group.
およびXがそれぞれ窒素原子である請求項1に記載の還元剤。 The reducing agent according to claim 1, wherein X 1 and X 2 are each a nitrogen atom. 金属イオンの還元に用いられる請求項1又は2に記載の還元剤。   The reducing agent according to claim 1 or 2, which is used for reduction of metal ions. 請求項1〜3のいずれか1項に記載の還元剤と金属イオン源とを溶媒中で接触させる金属の製造方法。   The manufacturing method of the metal which makes the reducing agent and metal ion source of any one of Claims 1-3 contact in a solvent. 前記金属が、粒子又は薄膜の形態である請求項4に記載の製造方法。   The manufacturing method according to claim 4, wherein the metal is in the form of particles or a thin film. 前記接触が、室温で行われる請求項4又は5に記載の製造方法。   The manufacturing method according to claim 4 or 5, wherein the contact is performed at room temperature. 前記金属が、Gaである請求項4〜6のいずれか1項に記載の製造方法。   The manufacturing method according to claim 4, wherein the metal is Ga. 前記金属が、GaとGaイオンよりも高い標準酸化還元電位を有する少なくとも1種の金属との合金である請求項7に記載の製造方法。   The manufacturing method according to claim 7, wherein the metal is an alloy of Ga and at least one metal having a higher standard redox potential than Ga ions.
JP2014266775A 2014-12-26 2014-12-26 Reducing agent and method for producing metal using the same Expired - Fee Related JP6329067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014266775A JP6329067B2 (en) 2014-12-26 2014-12-26 Reducing agent and method for producing metal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014266775A JP6329067B2 (en) 2014-12-26 2014-12-26 Reducing agent and method for producing metal using the same

Publications (2)

Publication Number Publication Date
JP2016124824A true JP2016124824A (en) 2016-07-11
JP6329067B2 JP6329067B2 (en) 2018-05-23

Family

ID=56358963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014266775A Expired - Fee Related JP6329067B2 (en) 2014-12-26 2014-12-26 Reducing agent and method for producing metal using the same

Country Status (1)

Country Link
JP (1) JP6329067B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082759A1 (en) * 2018-06-22 2019-12-27 IFP Energies Nouvelles CATALYTIC COMPOSITION BASED ON NICKEL AND AN ORGANIC REDUCER

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781291A (en) * 1971-05-26 1973-12-25 R Sulzbach Silylated 1,4-dihydropyridines
JP2006051489A (en) * 2004-07-12 2006-02-23 Sumitomo Chemical Co Ltd Trimerization catalyst of olefin and trimerization method of olefin using this catalyst
JP2006232869A (en) * 2005-02-22 2006-09-07 Sumitomo Chemical Co Ltd Olefin oligomerization catalyst and manufacturing method of olefin oligomer
JP2013184925A (en) * 2012-03-08 2013-09-19 Osaka Univ Tungsten complex, catalyst for metathesis reaction and production method of cyclic olefin ring-opened polymer
WO2014210512A1 (en) * 2013-06-28 2014-12-31 Wayne State University Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781291A (en) * 1971-05-26 1973-12-25 R Sulzbach Silylated 1,4-dihydropyridines
JP2006051489A (en) * 2004-07-12 2006-02-23 Sumitomo Chemical Co Ltd Trimerization catalyst of olefin and trimerization method of olefin using this catalyst
JP2006232869A (en) * 2005-02-22 2006-09-07 Sumitomo Chemical Co Ltd Olefin oligomerization catalyst and manufacturing method of olefin oligomer
JP2013184925A (en) * 2012-03-08 2013-09-19 Osaka Univ Tungsten complex, catalyst for metathesis reaction and production method of cyclic olefin ring-opened polymer
WO2014210512A1 (en) * 2013-06-28 2014-12-31 Wayne State University Bis(trimethylsilyl) six-membered ring systems and related compounds as reducing agents for forming layers on a substrate

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANGEWANDTE CHEMIE, vol. 96(8), JPN6017043560, 1984, pages 609 - 610 *
CHEMISCHE BERICHTE, vol. 128(8), JPN6017043555, 1995, pages 745 - 50 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 105(4), JPN6017043558, 1983, pages 707 - 13 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 136(13), JPN6017043554, 5 March 2014 (2014-03-05), pages 5161 - 5170 *
ORGANOSILICON CHEM., JPN6017043556, 1994, pages 41 - 42 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082759A1 (en) * 2018-06-22 2019-12-27 IFP Energies Nouvelles CATALYTIC COMPOSITION BASED ON NICKEL AND AN ORGANIC REDUCER

Also Published As

Publication number Publication date
JP6329067B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
Schmidbaur Is gold chemistry a topical field of study?
Wilson et al. Recent developments in Zintl cluster chemistry
Konishi Phosphine-coordinated pure-gold clusters: diverse geometrical structures and unique optical properties/responses
Weinert et al. (Multi‐) Metallic Cluster Growth
Kishore et al. Ferrocene-functionalized Cu (I)/Ag (I) dithiocarbamate clusters
Thurston et al. Nanostructured bimetallic oxide ion-conducting ceramics from single-source molecular precursors
Pillay et al. Aqueous route to stable luminescent tetranuclear copper (I) dithiophosphonate clusters
Hakimi et al. Crystal structure and characterization of a new eight coordinated cadmium complex
Kou et al. Bismuth aryloxides
Eilrich et al. Cyclooligophosphanes and their coordination chemistry
JP6329067B2 (en) Reducing agent and method for producing metal using the same
Izod et al. Synthesis, structures and stabilities of thioanisole-functionalised phosphido-borane complexes of the alkali metals
Perez et al. Synthesis and characterisation of palladium (II) and platinum (II) compounds containing pyrazole-derived ligands: crystal structure of [PdCl2 (HL1)](HL1= 3-phenyl-5-(2-pyridyl) pyrazole)
Zopes et al. Hydrolytic Decomposition of Tetramethylammonium Bis (trifluoromethyl) aurate (I),[NMe4][Au (CF3) 2]: A Route for the Synthesis of Gold Nanoparticles in Aqueous Medium
US20150005156A1 (en) Processes for the Preparation of Silicon Containing Intermetallic Compounds and Intermetallic Compounds Prepared Thereby
Lozada-Rodríguez et al. From metallic gold to [Au (NHC) 2]+ complexes: an easy, one-pot method
Zopes et al. Single-source precursors for alloyed gold–silver nanocrystals-a molecular metallurgy approach
Sevillano et al. Chelate ring-opening of Pd (II) triphos complexes:: Ligand exchange, selective phosphine oxidation, and X-ray crystal structure of [Pd (Ph2P (CH2) 2PPh (CH2) 2P (O) Ph2) 2Br] Br
Pannell et al. Organometalloidal derivatives of the transition metals: III. σ-and π-silylallyl complexes
Kilpin et al. Cycloaurated triphenylphosphine-sulfide and-selenide
Ahmar et al. A ferrocenylmethylselenolate complex of Ag (i): preparation of the polyferrocenyl cluster [Ag 8 (SeCH 2 Fc) 8 (PPh 3) 4] from the new silylated reagent FcCH 2 SeSiMe 3
Nakajima et al. Synthesis of three-component high nuclearity cluster complexes with ruthenium carbido carbonyl clusters as a building block
Choe et al. New silyl-nickel complexes prepared by η6-arene substitution in (η6-toluene) bis (trihalosilyl) nickel. Preparation of L3Ni (SiX3) 2 and L2Ni (SiX3) 2 (X= Cl, F; L= phosphine, phosphites, and pyridines. X-Ray structure of cis-(collidine) 2Ni (SiCl3) 2
Karakus et al. Heterobimetallic Nickel (II) Complexes of Ferrocenyldithiophosphonates. Molecular Structures of [{FcP (OR) S2} 2Ni][Fc= Fe (η5‐C5H4)(η5‐C5H5), R= Et, Pri, Bus, Bui]
El-khateeb et al. Thio-and selenosulfonato complexes of iron bearing aromatic and heterocyclic groups

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R151 Written notification of patent or utility model registration

Ref document number: 6329067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees