JP2016122725A - Piezoelectric element - Google Patents

Piezoelectric element Download PDF

Info

Publication number
JP2016122725A
JP2016122725A JP2014261605A JP2014261605A JP2016122725A JP 2016122725 A JP2016122725 A JP 2016122725A JP 2014261605 A JP2014261605 A JP 2014261605A JP 2014261605 A JP2014261605 A JP 2014261605A JP 2016122725 A JP2016122725 A JP 2016122725A
Authority
JP
Japan
Prior art keywords
piezoelectric
pair
piezoelectric element
electrodes
main surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014261605A
Other languages
Japanese (ja)
Other versions
JP6354575B2 (en
Inventor
佳生 池田
Yoshio Ikeda
佳生 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2014261605A priority Critical patent/JP6354575B2/en
Publication of JP2016122725A publication Critical patent/JP2016122725A/en
Application granted granted Critical
Publication of JP6354575B2 publication Critical patent/JP6354575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moving Of The Head To Find And Align With The Track (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Supporting Of Heads In Record-Carrier Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a piezoelectric element capable of exhibiting excellent piezoelectric characteristics and improving the displacement magnitude.SOLUTION: A piezoelectric element 1 includes: a piezoelectric substrate 2 which has a pair of main surfaces 2a, 2b opposite to each other and is made of piezoelectric ceramics; and a pair of electrodes 3, 4 which is arranged on the pair of the main surfaces 2a, 2b. At least one surface 2a of the pair of main surfaces is a rough surface, and a rough curve element average length (RSm) in a first direction of the rough surface is different from the rough curve element average length (RSm) in a second direction intersecting with the first direction. The electrode 3 arranged in the rough surface out of the pair of electrodes is formed on the main surface 2a along the main surface 3a which is the rough surface.SELECTED DRAWING: Figure 1

Description

本発明は、圧電素子に関する。   The present invention relates to a piezoelectric element.

圧電素子として、互いに対向する一対の主面を有し且つ圧電セラミックからなる圧電基板と、一対の主面上に配置されている一対の電極と、を備えているものが知られている(たとえば、特許文献1参照)。圧電素子(圧電基板)は、圧電セラミックの各結晶粒が分極されることにより、圧電特性を発現している。     2. Description of the Related Art A piezoelectric element is known that includes a piezoelectric substrate having a pair of main surfaces facing each other and made of piezoelectric ceramic, and a pair of electrodes disposed on the pair of main surfaces (for example, , See Patent Document 1). Piezoelectric elements (piezoelectric substrates) exhibit piezoelectric characteristics when each crystal grain of piezoelectric ceramic is polarized.

特開2001−57449号公報JP 2001-57449 A

本発明は、優れた圧電特性を発現するとともに、変位量の向上及び変位量のばらつきの低減を図ることが可能な圧電素子を提供することを目的とする。   An object of the present invention is to provide a piezoelectric element that exhibits excellent piezoelectric characteristics, and that can improve the amount of displacement and reduce variation in the amount of displacement.

本発明者らは、優れた圧電特性を発現するとともに、変位量の向上を図り得る圧電素子について、調査研究を行った。その結果、本発明者らは、以下の事実を見出した。   The present inventors have conducted research on piezoelectric elements that exhibit excellent piezoelectric characteristics and can improve the amount of displacement. As a result, the present inventors have found the following facts.

圧電セラミックの各結晶粒は、形状の変化を伴い分極される。圧電基板上には、電極が配置されている。このため、圧電基板における電極との界面及び界面近傍に位置する結晶粒(以下、単に、「界面近傍に位置する結晶粒」と称する)は、電極により、形状の変化が抑制されることとなり、その分極が阻害されてしまう懼れがある。分極が阻害された結晶粒が存在していると、圧電素子(圧電基板)では、発現する圧電特性の低下は否めず、圧電基板内における分極が均一ではなく圧電素子の変位量にばらつきが生じてしまう。すなわち、界面近傍に位置する結晶粒の分極の阻害が軽減されれば、圧電素子は、優れた圧電特性を発現することとなる。   Each crystal grain of the piezoelectric ceramic is polarized with a change in shape. Electrodes are arranged on the piezoelectric substrate. For this reason, the crystal grains located in the vicinity of the interface with the electrode in the piezoelectric substrate and in the vicinity of the interface (hereinafter simply referred to as “crystal grains located in the vicinity of the interface”) are prevented from changing in shape by the electrode. There is a fear that the polarization is inhibited. If there are crystal grains whose polarization is hindered, the piezoelectric element (piezoelectric substrate) will inevitably deteriorate in the piezoelectric characteristics, and the polarization in the piezoelectric substrate will not be uniform, resulting in variations in the displacement of the piezoelectric element. End up. That is, if the inhibition of the polarization of the crystal grains located in the vicinity of the interface is reduced, the piezoelectric element will exhibit excellent piezoelectric characteristics.

一対の電極により圧電基板に電界を印加し、圧電素子を駆動する際に、圧電基板は変位しようとするものの、電極自体は変位しようとはしない。このため電極は、圧電基板の変位を阻害するように作用し、また圧電基板内においても分極が均一でないため、圧電素子の変位量が小さくなりばらつきが生じてしまう懼れがある。すなわち、圧電基板の変位の阻害が軽減されれば、圧電素子は、変位量の向上とばらつきの改善が図られることとなる。   When an electric field is applied to the piezoelectric substrate by a pair of electrodes to drive the piezoelectric element, the piezoelectric substrate attempts to displace, but the electrode itself does not attempt to displace. For this reason, the electrode acts so as to inhibit the displacement of the piezoelectric substrate, and the polarization is not uniform within the piezoelectric substrate, so that the displacement amount of the piezoelectric element may be reduced and variations may occur. That is, if the inhibition of displacement of the piezoelectric substrate is reduced, the piezoelectric element can be improved in displacement and variation.

そして、本発明者らは、更なる調査研究を行い、以下の事実を見出し、本発明を想到するに至った。   And the present inventors conducted further research and research, found the following facts, and came to conceive the present invention.

圧電基板の主面のうち少なくとも一面が粗面であり、粗面に沿って粗面上に形成されている電極は、結晶粒が分極される際に、界面近傍に位置する結晶粒の変形の阻害を軽減する。圧電素子が駆動される際に、粗面上に形成された上記電極は、圧電基板の変位の阻害を軽減する。   At least one of the main surfaces of the piezoelectric substrate is a rough surface, and the electrode formed on the rough surface along the rough surface is a deformed crystal grain located near the interface when the crystal grain is polarized. Reduce inhibition. When the piezoelectric element is driven, the electrode formed on the rough surface reduces the inhibition of displacement of the piezoelectric substrate.

そこで、本発明に係る圧電素子は、互いに対向する一対の主面を有し且つ圧電セラミックからなる圧電基板と、一対の主面上に配置されている一対の電極と、を備え、一対の主面のうち少なくとも一面は粗面であり、粗面が形成された主面上の粗さ曲線要素の平均長さ(RSm)は、第1の方向と前記第1の方向と交差する第2の方向で異なり、一対の電極のうち粗面に配置される電極は、粗面である主面に沿って主面上に形成されていることを特徴とする。   Therefore, a piezoelectric element according to the present invention includes a piezoelectric substrate having a pair of main surfaces facing each other and made of piezoelectric ceramic, and a pair of electrodes disposed on the pair of main surfaces. At least one of the surfaces is a rough surface, and an average length (RSm) of the roughness curve element on the main surface on which the rough surface is formed is a second direction intersecting the first direction and the first direction. The electrodes arranged on the rough surface of the pair of electrodes are formed on the main surface along the rough main surface.

本発明に係る圧電素子では、粗面に配置される電極は、粗面であり、粗面である主面に沿って主面上に形成されているので、電極自体が、粗面に沿った山谷を有する形状を呈する。このため、粗面に配置される電極は、主面に平行な方向での電極自体の変形を許容しやすく、粗面に配置される電極は、界面近傍に位置する結晶粒の変形の阻害を軽減するとともに、圧電基板の変位の阻害を軽減する。   In the piezoelectric element according to the present invention, the electrode disposed on the rough surface is a rough surface, and is formed on the main surface along the main surface which is the rough surface. Therefore, the electrode itself is along the rough surface. It has a shape with a mountain valley. For this reason, the electrode arranged on the rough surface easily allows the deformation of the electrode itself in a direction parallel to the main surface, and the electrode arranged on the rough surface inhibits the deformation of the crystal grains located near the interface. In addition to reducing, the inhibition of displacement of the piezoelectric substrate is reduced.

更に、粗面を粗さ曲線要素の平均長さ(RSm)が、第1の方向と、第1の方向と交差する第2の方向において異なるように形成すると、結晶粒の変形の程度を方向により変化させ変位量をコントロールすることができる。 Further, when the rough surface is formed so that the average length (RSm) of the roughness curve elements is different in the first direction and the second direction intersecting the first direction, the degree of deformation of the crystal grains is determined in the direction. The amount of displacement can be controlled by changing.

上記一対の主面は長方形であり、前記長方形の長辺に平行な方向が第1の方向であっても良い。また、第1の方向の粗さ曲線要素の平均長さ(RSm)が第2の方向の粗さ曲線要素の平均長さ(RSm)に比べて小さくても良い。この場合、用途に応じて長辺に平行な方向と短辺に平行な方向とで変位量を異ならせることが出来る。 The pair of main surfaces may be rectangular, and the direction parallel to the long side of the rectangle may be the first direction. Further, the average length (RSm) of the roughness curve element in the first direction may be smaller than the average length (RSm) of the roughness curve element in the second direction. In this case, the amount of displacement can be made different between the direction parallel to the long side and the direction parallel to the short side depending on the application.

一対の主面は両面とも粗面であっても良い。この場合、主面のうち少なくとも一面のみを粗面にした場合に比べ、圧電基板の変位の阻害をより軽減することが出来る。 The pair of main surfaces may be rough on both surfaces. In this case, the inhibition of displacement of the piezoelectric substrate can be further reduced as compared with the case where at least one of the main surfaces is roughened.

前記主面は焼成後に表面処理をしていない面であっても良い。この場合、圧電基板の脱粒が生じにくくパーティクルの発生が抑制できる。   The main surface may be a surface that is not subjected to surface treatment after firing. In this case, the detachment of the piezoelectric substrate is unlikely to occur and the generation of particles can be suppressed.

本発明によれば、優れた圧電特性を発現するとともに、変位量の向上を図ることが可能な圧電素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while exhibiting the outstanding piezoelectric characteristic, the piezoelectric element which can aim at the improvement of a displacement amount can be provided.

本実施形態に係る圧電素子を模式的に示す斜視図及びその一部拡大図である。It is the perspective view which shows typically the piezoelectric element which concerns on this embodiment, and its partially enlarged view. 自然面、本実施形態に係る圧電素子のA−A断面、及びB−B断面を模式的に示す図である。It is a figure which shows typically the AA cross section of the piezoelectric element which concerns on a natural surface, and this embodiment, and a BB cross section. 自然面、本実施形態の粗面の写真図である。It is a photograph figure of the natural surface and the rough surface of this embodiment. 圧電素子の分極前後の変形を説明する模式図である。It is a schematic diagram explaining the deformation | transformation before and behind polarization of a piezoelectric element. 実施例における第1の方向と第2の方向の粗さ曲線要素の平均長さ(RSm)の測定結果を示すグラフである。It is a graph which shows the measurement result of the average length (RSm) of the roughness curve element of the 1st direction in an Example, and a 2nd direction. 本実施例及び比較例に係る圧電素子における圧電歪定数と標準偏差の測定結果を示すグラフである。It is a graph which shows the measurement result of the piezoelectric-strain constant and standard deviation in the piezoelectric element which concerns on a present Example and a comparative example. 本実施形態に係る圧電素子の変形例を示す斜視図及びその一部拡大図であるIt is the perspective view which shows the modification of the piezoelectric element which concerns on this embodiment, and its partially expanded view

まず、図1〜図3を参照して、本実施形態に係る圧電素子1の構成を説明する。図1は、本実施形態に係る圧電素子を模式的に示す斜視図及びその一部拡大図である。図2(a)は、自然面、図2(b)は、本実施形態に係る圧電素子のA−A断面、図2(c)は、本実施形態に係る圧電素子のB−B断面それぞれの粗面を模式的に示す図である。図3(a)は、自然面、図3(b)は、本実施形態の粗面の写真図である。   First, the configuration of the piezoelectric element 1 according to this embodiment will be described with reference to FIGS. FIG. 1 is a perspective view schematically showing a piezoelectric element according to this embodiment and a partially enlarged view thereof. 2A is a natural surface, FIG. 2B is an AA cross section of the piezoelectric element according to the present embodiment, and FIG. 2C is a BB cross section of the piezoelectric element according to the present embodiment. It is a figure which shows typically a rough surface. 3A is a photograph of the natural surface, and FIG. 3B is a photograph of the rough surface of the present embodiment.

圧電素子1は、図1に示されるように、圧電基板2と、一対の電極3,4と、を備えている。圧電素子1は、たとえば、磁気ディスクを備えたディスク装置などに適用される。すなわち、デュアル・アクチュエータ方式のディスク装置において、ボイスコイルモータ以外の第二のアクチュエータとして、圧電素子1が用いられる。圧電素子1は、矩形板状を呈している。圧電素子1の厚さは、たとえば、30μm〜200μmに設定される。   As illustrated in FIG. 1, the piezoelectric element 1 includes a piezoelectric substrate 2 and a pair of electrodes 3 and 4. The piezoelectric element 1 is applied to, for example, a disk device provided with a magnetic disk. That is, in the dual actuator type disk device, the piezoelectric element 1 is used as the second actuator other than the voice coil motor. The piezoelectric element 1 has a rectangular plate shape. The thickness of the piezoelectric element 1 is set to 30 μm to 200 μm, for example.

圧電基板2は、互いに対向する一対の主面2a,2bと、一対の主面2a,2bを連結するように一対の主面2a,2bの対向方向に延びる側面2cを有している。一対の主面2a,2bは、図1に示されるような山谷が異方性を有する粗面である。本実施形態では、圧電基板2は、矩形板状を呈している。したがって、一対の主面2a,2bは長方形である。任意の第1の方向Sに対して第2の方向Tは第1の方向Sと交差する。第1の方向Sの粗さ曲線要素の平均長さ(RSm)は、第2の方向Tの粗さ曲線要素の平均長さ(RSm)より小さい。本実施例では第1の方向Sは長辺の方向であり、第2の方向Tとは短辺の方向である。第1の方向Sは第2の方向Tと直交する。圧電基板2の厚さは、たとえば、30μm〜200μmに設定される。   The piezoelectric substrate 2 has a pair of main surfaces 2a and 2b facing each other and a side surface 2c extending in the facing direction of the pair of main surfaces 2a and 2b so as to connect the pair of main surfaces 2a and 2b. The pair of main surfaces 2a and 2b are rough surfaces in which peaks and valleys have anisotropy as shown in FIG. In the present embodiment, the piezoelectric substrate 2 has a rectangular plate shape. Therefore, the pair of main surfaces 2a and 2b are rectangular. The second direction T intersects the first direction S with respect to the arbitrary first direction S. The average length (RSm) of the roughness curve elements in the first direction S is smaller than the average length (RSm) of the roughness curve elements in the second direction T. In the present embodiment, the first direction S is a long side direction, and the second direction T is a short side direction. The first direction S is orthogonal to the second direction T. The thickness of the piezoelectric substrate 2 is set to 30 μm to 200 μm, for example.

圧電基板2は、圧電セラミックからなる。圧電セラミックとしては、PZT[Pb(Zr、Ti)O]、PT(PbTiO)、PLZT[(Pb、La)(Zr、Ti)O]、又はチタン酸バリウム(BaTiO)などが挙げられる。 The piezoelectric substrate 2 is made of a piezoelectric ceramic. Examples of the piezoelectric ceramic include PZT [Pb (Zr, Ti) O 3 ], PT (PbTiO 3 ), PLZT [(Pb, La) (Zr, Ti) O 3 ], or barium titanate (BaTiO 3 ). It is done.

一対の電極3,4は、一対の主面2a,2b上に配置されている。一対の電極3,4は、粗面である一対の主面2a,2bに沿って一対の主面2a,2b上に形成されているので、粗面に沿った山谷を有する形状を呈する。一対の電極3,4は、たとえば、スパッタリング法又は蒸着法などにより一対の主面2a,2b上に形成されている。一対の電極3,4は、一対の主面2a,2b全体を覆っている。側面2cは、一対の電極3,4で覆われていない。一対の電極3,4は、圧電基板2に電界を印加するための電極として機能する。一対の電極3,4は、たとえば、Au、Ni、Cr、Cu、又はPtからなる。一対の電極3,4の厚さは、たとえば、20nm〜1μmに設定される。   The pair of electrodes 3 and 4 are disposed on the pair of main surfaces 2a and 2b. Since the pair of electrodes 3 and 4 is formed on the pair of main surfaces 2a and 2b along the pair of main surfaces 2a and 2b which are rough surfaces, the pair of electrodes 3 and 4 has a shape having a mountain and valley along the rough surface. The pair of electrodes 3 and 4 are formed on the pair of main surfaces 2a and 2b by, for example, a sputtering method or a vapor deposition method. The pair of electrodes 3 and 4 covers the entire pair of main surfaces 2a and 2b. The side surface 2 c is not covered with the pair of electrodes 3 and 4. The pair of electrodes 3 and 4 function as electrodes for applying an electric field to the piezoelectric substrate 2. The pair of electrodes 3 and 4 is made of, for example, Au, Ni, Cr, Cu, or Pt. The thickness of the pair of electrodes 3 and 4 is set to 20 nm to 1 μm, for example.

一対の主面2a,2bに形成された粗面の第1の方向Sの算術平均粗さ(Ra)は、例えば0.5μm〜1.5μmであり、粗さ曲線要素の平均長さ(RSm)は例えば20μm〜50μmとなる。また、一対の主面2a,2bに形成された粗面の第2の方向Tの算術平均粗さ(Ra)は、例えば0.3μm〜1.0μmであり、粗さ曲線要素の平均長さ(RSm)は例えば50μm〜80μmとなる。   The arithmetic average roughness (Ra) in the first direction S of the rough surfaces formed on the pair of main surfaces 2a and 2b is, for example, 0.5 μm to 1.5 μm, and the average length (RSm) of the roughness curve elements. ) Is, for example, 20 μm to 50 μm. The arithmetic average roughness (Ra) in the second direction T of the rough surfaces formed on the pair of main surfaces 2a and 2b is, for example, 0.3 μm to 1.0 μm, and the average length of the roughness curve elements (RSm) is, for example, 50 μm to 80 μm.

圧電基板2の側面2cは、樹脂(不図示)で覆われていてもよい。この場合、樹脂は、側面2cの全体を覆うように配置されていてもよい。樹脂の材料には、エポキシ樹脂などが用いられる。   The side surface 2c of the piezoelectric substrate 2 may be covered with a resin (not shown). In this case, the resin may be arranged so as to cover the entire side surface 2c. An epoxy resin or the like is used as the resin material.

次に、上述した圧電素子1の製造過程について説明する。   Next, the manufacturing process of the piezoelectric element 1 described above will be described.

まず、圧電基板2を構成する圧電セラミック粉(原料粒子)にバインダや有機溶剤などの成分を加え、圧電セラミック粉のペーストを得る。次に、ペーストから所定厚さのグリーンシートを作成する。グリーンシートは、たとえば、ドクターブレード法により作成される。所定厚さは、たとえば、50μm〜500μmに設定される。   First, components such as a binder and an organic solvent are added to the piezoelectric ceramic powder (raw material particles) constituting the piezoelectric substrate 2 to obtain a paste of the piezoelectric ceramic powder. Next, a green sheet having a predetermined thickness is created from the paste. The green sheet is produced by, for example, a doctor blade method. The predetermined thickness is set to 50 μm to 500 μm, for example.

次に、作成したグリーンシートを重ね合わせて積層体とする。その後、積層体を積層方向にプレス処理することにより、圧電体グリーンを得る。プレス処理は、たとえば、一軸プレス機などを用い、金型を50℃〜100℃ほどの温度に保持した状態で、圧力を約100MPaとして行われる。   Next, the produced green sheets are overlapped to form a laminated body. Thereafter, the laminate is pressed in the lamination direction to obtain piezoelectric green. The press treatment is performed, for example, using a uniaxial press machine or the like and maintaining the mold at a temperature of about 50 ° C. to 100 ° C. and a pressure of about 100 MPa.

次に、得られた圧電体グリーンの各主面を、第2の方向Tに沿って研磨処理する。研磨処理に使用される研磨材は、たとえば、アルミナ、炭化ケイ素、ダイヤモンドなどである。研磨材の中心径は、例えば5μm〜50μmとし、研磨処理後には十分に洗浄を行い、研磨剤の残差を洗い流すのがより好ましい。研磨処理を行うことにより、圧電体グリーンの主面は粗面となる。   Next, each main surface of the obtained piezoelectric green is polished along the second direction T. The abrasive used for the polishing treatment is, for example, alumina, silicon carbide, diamond or the like. The center diameter of the abrasive is, for example, 5 μm to 50 μm, and it is more preferable that the abrasive is sufficiently washed after the polishing treatment to wash away the residual of the abrasive. By performing the polishing treatment, the main surface of the piezoelectric green becomes a rough surface.

次に、研磨処理を施した圧電体グリーンに脱バインダ処理を施す。脱バインダ処理は、たとえば、圧電体グリーンを安定化ジルコニアで構成されたセッターに載置した状態で施される。続いて、圧電体グリーンを焼成し、圧電体を得る。焼成は、たとえば、圧電体グリーンを載置した状態でセッターをマグネシア質の匣鉢に入れ、1100℃にて行われる。   Next, a binder removal process is performed on the piezoelectric green subjected to the polishing process. The binder removal treatment is performed, for example, in a state where the piezoelectric green is placed on a setter made of stabilized zirconia. Subsequently, the piezoelectric body green is fired to obtain a piezoelectric body. Firing is performed at 1100 ° C., for example, by placing the setter in a magnesia mortar with the piezoelectric green placed thereon.

図2に示される一部断面図は、(a)が自然面、(b)が本実施形態に係る圧電素子のA−A断面の粗面、(c)が本実施形態に係る圧電素子のB−B断面の粗面に対応する。なお、自然面とは焼成前及び焼成後に研磨処理などの表面処理がされていない面である。図2(a)に示されるように、自然面は、平滑な表面状態を有する。図2(b)に示されるように、A−A断面の粗面は、自然面よりも粗い形状を呈する。図2(c)に示されるように、B−B断面の粗面は、自然面よりも粗くA−A断面よりも山谷の間隔が広い形状を呈する。   In the partial cross-sectional view shown in FIG. 2, (a) is a natural surface, (b) is a rough surface of the AA cross section of the piezoelectric element according to the present embodiment, and (c) is a piezoelectric element according to the present embodiment. It corresponds to the rough surface of the BB cross section. The natural surface is a surface that has not been subjected to surface treatment such as polishing before and after firing. As shown in FIG. 2A, the natural surface has a smooth surface state. As shown in FIG. 2B, the rough surface of the AA cross section has a rougher shape than the natural surface. As shown in FIG. 2C, the rough surface of the BB cross section has a shape that is rougher than the natural surface and has a wider interval between the peaks and valleys than the AA cross section.

図3に示される写真図は、(a)が自然面、(b)が本実施形態における粗面に対応する。図3(b)は、粗面であり、研磨材としてアルミナを用いて研磨処理を行うことにより得られた主面である。図3に示されるように、本実施形態における粗面は、自然面とは相違し、表面の山谷が強調されている。   In the photograph shown in FIG. 3, (a) corresponds to the natural surface, and (b) corresponds to the rough surface in the present embodiment. FIG. 3B is a rough surface, which is a main surface obtained by performing polishing using alumina as an abrasive. As shown in FIG. 3, the rough surface in the present embodiment is different from the natural surface, and the surface valleys are emphasized.

研磨処理後、圧電体の各主面に対して、それぞれ電極膜を形成する。各電極膜は、たとえば、Au、Ni、Cr、Cu、又はPtからなる。各電極膜は、スパッタリング法又は蒸着法などにより形成される。各電極膜は、圧電体の粗面である各主面に沿って各主面上に形成され、粗面に沿った山谷を有する形状を呈する。圧電体は、個片化された状態の複数の圧電基板2が繋がった状態であり、各電極膜は、個片化された状態の複数の各電極3,4が繋がった状態である。   After the polishing process, an electrode film is formed on each main surface of the piezoelectric body. Each electrode film is made of, for example, Au, Ni, Cr, Cu, or Pt. Each electrode film is formed by sputtering or vapor deposition. Each electrode film is formed on each main surface along each main surface, which is a rough surface of the piezoelectric body, and has a shape having peaks and valleys along the rough surface. The piezoelectric body is in a state in which a plurality of piezoelectric substrates 2 in an individualized state are connected, and each electrode film is in a state in which a plurality of electrodes 3 and 4 in an individualized state are connected.

以上の過程により、圧電体及び電極膜を備える圧電素子基板が得られる。次に、圧電素子基板に分極処理を行う。分極処理では、たとえば、100℃の温度下で、電界強度3kV/mmの電圧を3分間印加する。続いて、分極処理後の圧電素子基板をダイサーなどの切断機で製品形状に加工する。これにより、個片化された圧電基板2及び各電極3,4を備える圧電素子1が得られる。   Through the above process, a piezoelectric element substrate having a piezoelectric body and an electrode film is obtained. Next, polarization processing is performed on the piezoelectric element substrate. In the polarization treatment, for example, a voltage with an electric field strength of 3 kV / mm is applied at a temperature of 100 ° C. for 3 minutes. Subsequently, the piezoelectric element substrate after the polarization treatment is processed into a product shape by a cutting machine such as a dicer. Thereby, the piezoelectric element 1 provided with the piezoelectric substrate 2 and the electrodes 3 and 4 which are separated into pieces is obtained.

次に、上述のように構成された圧電素子1の作用及び効果について説明する。ここでは、図4を参照して、圧電素子1と従来の圧電素子11とを比較しながら、圧電素子1の各電極3,4が、粗面である各主面2a,2bに沿って各主面2a,2b上に形成されていることによる作用及び効果について説明する。   Next, the operation and effect of the piezoelectric element 1 configured as described above will be described. Here, referring to FIG. 4, while comparing the piezoelectric element 1 and the conventional piezoelectric element 11, the electrodes 3 and 4 of the piezoelectric element 1 are arranged along the main surfaces 2 a and 2 b which are rough surfaces. The operation and effect of being formed on the main surfaces 2a and 2b will be described.

図4は、本実施形態に係る圧電素子1の分極状態を分極処理前の圧電素子1及び従来の圧電素子11と比較して説明する図であり、具体的には、図4(a)は、図1の圧電素子の分極処理前における自発分極の状態を説明する図であり、図4(b)は、従来の圧電素子の分極処理後における分極状態を説明する図であり、図4(c)は、図1の圧電素子の分極処理後における分極状態を説明する図である。 FIG. 4 is a diagram for explaining the polarization state of the piezoelectric element 1 according to the present embodiment in comparison with the piezoelectric element 1 before the polarization treatment and the conventional piezoelectric element 11, and specifically, FIG. FIG. 4 is a diagram for explaining a state of spontaneous polarization before the polarization process of the piezoelectric element of FIG. 1, and FIG. 4B is a diagram for explaining a polarization state after a polarization process of a conventional piezoelectric element. FIG. 2C is a diagram illustrating a polarization state after the polarization process of the piezoelectric element in FIG. 1.

図4(a)に示されるように、圧電基板2は、圧電セラミックの多結晶体であり、複数の結晶粒8を含んでいる。分極処理前の圧電素子1は、各結晶粒8の自発分極の方向がランダムである。すなわち、結晶粒8ごとに自発分極の方向が、自然発生的にあらゆる方向を向いて揃っていないため、この状態で電圧を印加しても、各結晶粒8は自身の自発分極の向きに変位しようとして変位が相互に打ち消し合い、全体として変位が生じ難い。分極処理前の圧電素子1は、厚さD、長辺の長さLである。 As shown in FIG. 4A, the piezoelectric substrate 2 is a piezoelectric ceramic polycrystal and includes a plurality of crystal grains 8. In the piezoelectric element 1 before the polarization treatment, the direction of spontaneous polarization of each crystal grain 8 is random. That is, since the direction of spontaneous polarization is not aligned in every direction spontaneously for each crystal grain 8, even if a voltage is applied in this state, each crystal grain 8 is displaced in the direction of its own spontaneous polarization. Attempts to cancel each other cancel each other out, and it is difficult for the displacement to occur as a whole. The piezoelectric element 1 before polarization treatment has a thickness D 0 and a long side length L 0 .

図4(b)に示されるように、従来の圧電素子11は、互いに対向する一対の主面12a,12b及び、4つの側面12cを有し且つ圧電セラミックからなる圧電基板12と、各主面12a,12b上に配置されている一対の電極13,14と、を備えている。各主面12a,12bは、自然面である。一対の電極13,14は、自然面である各主面12a,12bに沿って各主面12a,12b上に形成されている。圧電基板12は、圧電セラミックの多結晶体であり、複数の結晶粒18を含んでいる。圧電素子11は、圧電基板12の各主面12a,12bが粗面ではなく、自然面である点で、本実施形態の圧電素子1と主に相違し、それ以外の点で共通する。   As shown in FIG. 4B, the conventional piezoelectric element 11 includes a piezoelectric substrate 12 having a pair of main surfaces 12a and 12b and four side surfaces 12c facing each other and made of piezoelectric ceramic, and each main surface. And a pair of electrodes 13 and 14 disposed on 12a and 12b. Each main surface 12a, 12b is a natural surface. The pair of electrodes 13 and 14 are formed on the main surfaces 12a and 12b along the main surfaces 12a and 12b which are natural surfaces. The piezoelectric substrate 12 is a piezoelectric ceramic polycrystal and includes a plurality of crystal grains 18. The piezoelectric element 11 is mainly different from the piezoelectric element 1 of the present embodiment in that each main surface 12a, 12b of the piezoelectric substrate 12 is not a rough surface but a natural surface, and is common in other points.

圧電素子11では、図示しないが、分極処理前は、圧電素子1と同様に、圧電セラミックの各結晶粒18の自発分極の方向がランダムで、全体として変位が生じ難い状態である。分極処理前の圧電素子11は、厚さD、長辺の長さLである。分極処理は、一対の電極13,14間に電圧を印加し、圧電基板12に電界を印加することにより行われる。その結果、各結晶粒18の変形を伴いながら、図4(b)に示されるような分極状態が得られる。分極処理後の圧電素子11は、厚さD(>D)、長辺の長さL(<L)である。 In the piezoelectric element 11, although not shown, like the piezoelectric element 1, the direction of the spontaneous polarization of each crystal grain 18 of the piezoelectric ceramic is random and is not easily displaced as a whole before the polarization process. The piezoelectric element 11 before the polarization treatment has a thickness D 0 and a long side length L 0 . The polarization process is performed by applying a voltage between the pair of electrodes 13 and 14 and applying an electric field to the piezoelectric substrate 12. As a result, a polarization state as shown in FIG. 4B is obtained with deformation of each crystal grain 18. The piezoelectric element 11 after the polarization treatment has a thickness D 1 (> D 0 ) and a long side length L 1 (<L 0 ).

分極処理後の圧電素子11では、各結晶粒18の自発分極の方向が、各主面12a,12bの対向方向に平行な方向に概ね揃っている。しかしながら、界面近傍に位置する結晶粒18は、各電極13,14により形状の変形が抑制されることとなり、分極が阻害される。したがって、界面近傍に位置する結晶粒18では、他の各結晶粒18に比べて、自発分極の方向が揃い難い。このように分極が阻害され、自発分極の方向が揃っていない結晶粒18が存在していると、圧電素子11(圧電基板13)では、発現する圧電特性の低下は否めない。   In the piezoelectric element 11 after the polarization treatment, the direction of spontaneous polarization of each crystal grain 18 is generally aligned in a direction parallel to the opposing direction of the main surfaces 12a and 12b. However, the crystal grains 18 located in the vicinity of the interface are prevented from being deformed by the electrodes 13 and 14, and the polarization is inhibited. Therefore, in the crystal grains 18 located in the vicinity of the interface, the direction of spontaneous polarization is difficult to be aligned as compared with the other crystal grains 18. Thus, if the crystal grains 18 in which the polarization is inhibited and the direction of spontaneous polarization is not uniform, the piezoelectric element 11 (piezoelectric substrate 13) cannot deny the deterioration of the piezoelectric characteristics.

一対の電極13,14間に電圧を印加し、圧電基板12に電界を印加することにより、圧電素子11を駆動する際に、圧電基板12は変位しようとするものの、電極13,14自体は変位しようとはしない。このため電極13,14は、圧電基板12の変位を阻害するように作用し、圧電素子1の変位量が小さくなってしまう懼れがある。   By driving the piezoelectric element 11 by applying a voltage between the pair of electrodes 13 and 14 and applying an electric field to the piezoelectric substrate 12, the piezoelectric substrate 12 tends to be displaced, but the electrodes 13 and 14 themselves are displaced. I will not try. For this reason, the electrodes 13 and 14 act so as to inhibit the displacement of the piezoelectric substrate 12, and the displacement amount of the piezoelectric element 1 may be reduced.

これに対して、図4(c)に示されるように、分極処理後の圧電素子1では、各結晶粒8の自発分極の方向が、界面近傍に位置する結晶粒8も含めて、各主面2a,2bの対向方向に平行な方向に概ね揃っている。これは、各電極3,4が、粗面である各主面2a,2bに沿って各主面2a,2b上に形成されているためである。各電極3,4は、各主面2a,2bに平行な方向での各電極3,4自体の変形を許容しやすく、圧電素子1では、界面近傍に位置する結晶粒8の変形の阻害が軽減される。したがって、界面近傍に位置する結晶粒8においても、自発分極の方向が揃いやすい。分極処理後の圧電素子1は、厚さD(>D>D)、長辺の長さL(<L<L)である。 On the other hand, as shown in FIG. 4C, in the piezoelectric element 1 after the polarization treatment, the direction of the spontaneous polarization of each crystal grain 8 includes each crystal grain 8 located in the vicinity of the interface. They are generally aligned in a direction parallel to the opposing direction of the surfaces 2a, 2b. This is because the electrodes 3 and 4 are formed on the main surfaces 2a and 2b along the main surfaces 2a and 2b which are rough surfaces. Each electrode 3, 4 is easy to allow deformation of each electrode 3, 4 itself in a direction parallel to each main surface 2 a, 2 b, and in the piezoelectric element 1, the deformation of the crystal grains 8 located in the vicinity of the interface is inhibited. It is reduced. Therefore, even in the crystal grains 8 located in the vicinity of the interface, the direction of spontaneous polarization is easily aligned. The piezoelectric element 1 after the polarization treatment has a thickness D 2 (> D 1 > D 0 ) and a long side length L 2 (<L 1 <L 0 ).

このように、本実施形態に係る圧電素子1は、各電極3,4が、粗面である各主面2a,2bに沿って各主面2a,2b上に形成されているため、従来の圧電素子11よりも優れた圧電特性を発現するとともに、変位量の向上を図ることができる。   Thus, in the piezoelectric element 1 according to this embodiment, the electrodes 3 and 4 are formed on the main surfaces 2a and 2b along the main surfaces 2a and 2b which are rough surfaces. The piezoelectric characteristics superior to those of the piezoelectric element 11 can be exhibited, and the amount of displacement can be improved.

更に、本実施形態に係る圧電素子1の各主面2a,2bに形成される粗面は、第1の方向Sと第2の方向Tにおいて粗さ曲線要素の平均長さ(RSm)が異なり、第1の方向Sの粗さ曲線要素の平均長さ(RSm)は、第2の方向Tの粗さ曲線要素の平均長さ(RSm)より小さい。そのため各主面2a,2b上に沿って形成される各電極3,4は、各主面2a,2bの第1の方向Sに平行な方向での各電極3,4自体の変形を許容しやすく、第2の方向Tに平行な方向での各電極3,4自体の変形は第1の方向Sに比べて許容し難い。圧電素子1では、第1の方向Sにおいて界面近傍に位置する結晶粒8の変形の阻害が軽減され、第2の方向Tにおいて界面近傍に位置する結晶粒8の変形の阻害が第1の方向Sに比べて軽減され難い。 Further, the rough surfaces formed on the main surfaces 2a and 2b of the piezoelectric element 1 according to the present embodiment have different average lengths (RSm) of the roughness curve elements in the first direction S and the second direction T. The average length (RSm) of the roughness curve elements in the first direction S is smaller than the average length (RSm) of the roughness curve elements in the second direction T. Therefore, each electrode 3, 4 formed along each main surface 2 a, 2 b allows deformation of each electrode 3, 4 itself in a direction parallel to the first direction S of each main surface 2 a, 2 b. It is easy to deform the electrodes 3 and 4 themselves in a direction parallel to the second direction T, and it is difficult to tolerate as compared to the first direction S. In the piezoelectric element 1, the inhibition of deformation of the crystal grains 8 located near the interface in the first direction S is reduced, and the inhibition of deformation of the crystal grains 8 located near the interface in the second direction T is reduced in the first direction. Less likely to be reduced than S

すなわち、粗さ曲線要素の平均長さ(RSm)の小さな方向ほど、分極時の各電極3,4による界面近傍に位置する結晶粒8の変形の阻害が小さくなる。このため圧電基板はいずれか一方の方向を指定して変位量をコントロールすることができることにより、図4(b)に示される様な従来の形態よりも分極を一定にしやすい。そのため、図4(b)に示された圧電基板12よりも分極が安定するため変位量のばらつきが改善する。 That is, the smaller the average length (RSm) of the roughness curve element, the smaller the inhibition of deformation of the crystal grains 8 located near the interface by the electrodes 3 and 4 during polarization. For this reason, the piezoelectric substrate can control the amount of displacement by designating one of the directions, so that the polarization can be made more constant than in the conventional configuration as shown in FIG. Therefore, the polarization is more stable than that of the piezoelectric substrate 12 shown in FIG.

ここで、本実施形態によれば、優れた圧電特性を発現するとともに、変位量の向上とばらつきの改善を図ることが可能であることを、実施例と比較例とによって、具体的に示す。   Here, according to the present embodiment, it is specifically shown by an example and a comparative example that excellent piezoelectric characteristics can be exhibited and an improvement in displacement and variation can be achieved.

実施例では、図1に対応する圧電素子を用いた。実施例に係る圧電素子では、サンプルサイズは1.5mm×1mm、厚さ0.10mmとした。圧電基板は、PZTを主成分とする圧電セラミック粉(Pb[Zr0.53Ti0.47]O3+0.5wt%WO3)を用い、厚さ100μmとした。各電極膜は、Cr/Ni−Cu/Au積層構造(圧電基板側から順にCr層、Ni−Cu合金層、Au層が積層された構造)とし、スパッタリング法により、厚さ500nmで形成した。圧電基板の各主面は、長方形であり、長方形の長辺の方向を第1の方向とした時、第1の方向の粗さ曲線要素の平均長さ(RSm)が、第1の方向に交差して直交する第2の方向の粗さ曲線要素の平均長さ(RSm)より小さくなるような研磨処理により粗面とした。なお、研磨処理は圧電体グリーンの時点で乾式研磨処理により研磨方向に留意し、第2の方向に沿って研磨を行い粗面とした。研磨材として#1000の研磨紙を使用し、研磨方向に留意し研磨処理を行った。   In the embodiment, a piezoelectric element corresponding to FIG. 1 was used. In the piezoelectric element according to the example, the sample size was 1.5 mm × 1 mm and the thickness was 0.10 mm. The piezoelectric substrate was made of piezoelectric ceramic powder (Pb [Zr0.53Ti0.47] O3 + 0.5 wt% WO3) mainly composed of PZT and had a thickness of 100 μm. Each electrode film has a Cr / Ni—Cu / Au laminated structure (a structure in which a Cr layer, a Ni—Cu alloy layer, and an Au layer are laminated in this order from the piezoelectric substrate side) and is formed with a thickness of 500 nm by a sputtering method. Each main surface of the piezoelectric substrate is a rectangle, and when the long side direction of the rectangle is the first direction, the average length (RSm) of the roughness curve elements in the first direction is the first direction. The surface was roughened by polishing so as to be smaller than the average length (RSm) of the roughness curve elements in the second direction intersecting and orthogonal to each other. Note that the polishing process was performed by dry polishing at the time of the piezoelectric green, and the polishing was performed along the second direction to obtain a rough surface. A polishing paper of # 1000 was used as an abrasive, and the polishing process was performed while paying attention to the polishing direction.

なお、算術平均粗さ(Ra)、及び粗さ曲線要素の平均長さ(RSm)の測定は、JIS−B0601(2001)に従い、三次元測定機(東京精密社製 SURECOM 1500SD2)を用いて測定した。測定条件は、カットオフ波長0.8mm、測定長さ2mm、測定レンジ±32μm、測定速度0.15mm/sの条件で一対の主面の山谷が形成された粗面を第1の方向及び第2の方向に沿って測定した。 The arithmetic average roughness (Ra) and the average length of the roughness curve element (RSm) are measured using a three-dimensional measuring machine (SURECOM 1500SD2 manufactured by Tokyo Seimitsu Co., Ltd.) according to JIS-B0601 (2001). did. The measurement conditions were a cut-off wavelength of 0.8 mm, a measurement length of 2 mm, a measurement range of ± 32 μm, and a rough surface formed with a pair of main surface peaks and valleys under the conditions of a measurement speed of 0.15 mm / s. Measured along 2 directions.

図5は、実施例における第1の方向と第2の方向の粗さ曲線要素の平均長さ(RSm)の測定結果を示すグラフであり、具体的には図5(a)は本実施例における第1の方向の粗さ曲線要素の平均長さ(RSm)の測定結果を示すグラフであり、図5(b)は本実施例における第2の方向の粗さ曲線要素の平均長さ(RSm)の測定結果を示すグラフである。粗さ曲線要素の平均長さ(RSm)とは、ある基準長さ における粗さ曲線に含まれる1周期分の凹凸が生じている長さを平均した値である。なお、図5に示されるように、第1の方向Sに沿った方向の粗さ曲線要素の平均長さ(RSm)は約37μmであったのに対して、第2の方向Tに沿った方向の粗さ曲線要素の平均長さ(RSm)は約79μmであった。 FIG. 5 is a graph showing the measurement results of the average length (RSm) of the roughness curve elements in the first direction and the second direction in the example. Specifically, FIG. 5A shows the present example. FIG. 5B is a graph showing the measurement result of the average length (RSm) of the roughness curve elements in the first direction in FIG. 5, and FIG. 5B shows the average length of the roughness curve elements in the second direction in this example ( It is a graph which shows the measurement result of RSm). The average length (RSm) of the roughness curve element is a value obtained by averaging the lengths in which the irregularities for one cycle included in the roughness curve at a certain reference length are generated. As shown in FIG. 5, the average length (RSm) of the roughness curve element in the direction along the first direction S was about 37 μm, but along the second direction T. The average length (RSm) of the directional roughness curve element was about 79 μm.

比較例では、上述した従来の圧電素子11に対応する圧電素子を用いた。比較例に係る圧電素子では、圧電基板の各主面は、研磨処理などの表面処理がされていない自然面のままとした以外は、実施例と同じ条件とした。実施例と比較例とでは、長辺方向伸び振動の圧電歪定数d31を測定した。 In the comparative example, a piezoelectric element corresponding to the above-described conventional piezoelectric element 11 was used. In the piezoelectric element according to the comparative example, the main surface of the piezoelectric substrate was set to the same conditions as in the example except that the surface was a natural surface that was not subjected to surface treatment such as polishing treatment. In the example and the comparative example, the piezoelectric strain constant d 31 of the long side direction extension vibration was measured.

図6は、実施例及び比較例に係る圧電素子における圧電歪定数の測定結果を示すグラフである。圧電歪定数とは、圧電体の圧電特性を示す定数である。すなわち、圧電歪定数とは、圧電体に電界を印加したときにどれだけ変位するかを表す定数である。図6に示されるように、比較例に係る圧電素子における圧電歪定数d31の平均値は約294(10−12mV)標準偏差δは4(10−12mV)であったのに対して、実施例に係る圧電素子における圧電歪定数d31の平均値は約299(10−12mV)標準偏差δは2(10−12mV)であった。 FIG. 6 is a graph showing the measurement results of the piezoelectric strain constant in the piezoelectric elements according to the example and the comparative example. The piezoelectric strain constant is a constant indicating the piezoelectric characteristics of the piezoelectric body. That is, the piezoelectric strain constant is a constant representing how much the piezoelectric body is displaced when an electric field is applied to the piezoelectric body. As shown in FIG. 6, the average value of the piezoelectric strain constant d 31 in the piezoelectric element according to the comparative example was about 294 (10 −12 mV) and the standard deviation δ was 4 (10 −12 mV). The average value of the piezoelectric strain constant d 31 in the piezoelectric element according to the example was about 299 (10 −12 mV) and the standard deviation δ was 2 (10 −12 mV).

したがって、実施例に係る圧電素子は、比較例に係る圧電素子よりも圧電特性が優れ、変位量のばらつきが低減することが確認された。   Therefore, it was confirmed that the piezoelectric element according to the example was superior in piezoelectric characteristics to the piezoelectric element according to the comparative example, and the variation in displacement was reduced.

以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されず、その要旨を逸脱しない範囲で様々な変更が可能である。     The preferred embodiments of the present invention have been described above. However, the present invention is not necessarily limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

各主面2a,2bの粗面は、研磨処理で形成されているとしたが、研磨処理以外の方法で形成されていてもよい。たとえば、グリーンシートを重ね合わせた積層体に対してプレス処理を行う際に、トタン状の圧痕が残るような粗面を有したプレス金型を使用してもよい。   The rough surfaces of the main surfaces 2a and 2b are formed by the polishing process, but may be formed by a method other than the polishing process. For example, when a press treatment is performed on a laminated body in which green sheets are stacked, a press die having a rough surface such that a tin-like impression remains may be used.

各主面2a,2bには粗面が形成されているが、図7に示すような各主面2a,2bの内どちらか一方に形成されていてもよい。この場合も従来に比べ同様の効果が見込める。   Each main surface 2a, 2b is formed with a rough surface, but may be formed on either one of the main surfaces 2a, 2b as shown in FIG. In this case, the same effect can be expected compared to the conventional case.

各電極3,4は、スパッタリング法又は蒸着法などにより形成されているとしたが、これに限られない。各電極3,4は、スパッタリング法のように膜の内部応力を大きくする成膜方法により形成された場合であっても、粗面である各主面2a,2bに沿って各主面2a,2b上に形成されていることにより、各主面2a,2bに平行な方向での電極自体の変形を許容しやすい。したがって、界面近傍に位置する結晶粒の変形の阻害を軽減するとともに、圧電基板2の変位の阻害を軽減する。この結果、圧電素子1では、優れた圧電特性を発現するとともに、変位量の向上を図ることができる。   The electrodes 3 and 4 are formed by sputtering or vapor deposition, but are not limited thereto. Even when each electrode 3, 4 is formed by a film forming method that increases the internal stress of the film, such as a sputtering method, each main surface 2 a, 4 b is formed along each main surface 2 a, 2 b that is a rough surface. By being formed on 2b, it is easy to allow the deformation of the electrode itself in a direction parallel to the main surfaces 2a and 2b. Therefore, inhibition of deformation of crystal grains located in the vicinity of the interface is reduced, and inhibition of displacement of the piezoelectric substrate 2 is reduced. As a result, the piezoelectric element 1 can exhibit excellent piezoelectric characteristics and can improve the amount of displacement.

圧電素子1(圧電基板2)は、矩形板状を呈しているとしたが、これに限られない。円板状や、円柱状、直方体状であってもよい。圧電基板2の厚さは、特に制限されないが、厚さが薄い方が、圧電基板2における界面近傍に位置する結晶粒の占める割合が高まるため、圧電素子1では、優れた圧電特性を発現するとともに、変位量の向上を図ることができるという効果が顕著となりやすい。圧電素子1の厚さが0.5mm以下であって、圧電基板2の厚さが0.2mm以下のときにこの果がより顕著となる。 The piezoelectric element 1 (piezoelectric substrate 2) has a rectangular plate shape, but is not limited thereto. It may be a disk shape, a columnar shape, or a rectangular parallelepiped shape. The thickness of the piezoelectric substrate 2 is not particularly limited, but the thinner the thickness, the higher the proportion of crystal grains located in the vicinity of the interface in the piezoelectric substrate 2. Therefore, the piezoelectric element 1 exhibits excellent piezoelectric characteristics. At the same time, the effect that the amount of displacement can be improved tends to be remarkable. A is is 0.5mm or less in thickness of the piezoelectric elements 1, this effect becomes more remarkable when the thickness of the piezoelectric substrate 2 is 0.2mm or less.

1…圧電素子、2…圧電基板、2a,2b…主面、3,4…電極、S…第1の方向、T…第2の方向。   DESCRIPTION OF SYMBOLS 1 ... Piezoelectric element, 2 ... Piezoelectric substrate, 2a, 2b ... Main surface, 3, 4 ... Electrode, S ... 1st direction, T ... 2nd direction.

Claims (6)

互いに対向する一対の主面を有し且つ圧電セラミックからなる圧電基板と、
前記一対の主面上に配置されている一対の電極と、を備え、
前記一対の主面のうち少なくとも一面は粗面であり、
前記粗面が形成された前記主面上の粗さ曲線要素の平均長さ(RSm)は、
第1の方向と前記第1の方向と交差する第2の方向で異なり、
前記一対の電極のうち前記粗面に配置される電極は、前記粗面である前記主面に沿って前記主面上に形成されていることを特徴とする圧電素子。
A piezoelectric substrate having a pair of main surfaces facing each other and made of piezoelectric ceramic;
A pair of electrodes disposed on the pair of main surfaces,
At least one of the pair of main surfaces is a rough surface,
The average length (RSm) of the roughness curve elements on the main surface on which the rough surface is formed is
Different in a first direction and a second direction intersecting the first direction,
The electrode arranged on the rough surface of the pair of electrodes is formed on the main surface along the main surface which is the rough surface.
前記一対の主面は長方形であり、
前記長方形の長辺と平行な方向が第1の方向である請求項1に記載の圧電素子。
The pair of main surfaces are rectangular,
The piezoelectric element according to claim 1, wherein a direction parallel to the long side of the rectangle is a first direction.
前記第1の方向の粗さ曲線要素の平均長さ(RSm)が、前記第2の方向の粗さ曲線要素の平均長さ(RSm)より小さい請求項2に記載の圧電素子。 3. The piezoelectric element according to claim 2, wherein an average length (RSm) of the roughness curve element in the first direction is smaller than an average length (RSm) of the roughness curve element in the second direction. 前記一対の主面は、両面とも粗面である請求項1〜3に記載の圧電素子。 The piezoelectric element according to claim 1, wherein both of the pair of main surfaces are rough surfaces. 前記一対の主面は、焼成後に表面処理をしていない面である請求項1〜4に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the pair of main surfaces are surfaces that are not subjected to surface treatment after firing. 前記一対の電極は、主面の全面上に配置されている請求項1〜4に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the pair of electrodes are disposed on the entire main surface.
JP2014261605A 2014-12-25 2014-12-25 Piezoelectric element Active JP6354575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261605A JP6354575B2 (en) 2014-12-25 2014-12-25 Piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261605A JP6354575B2 (en) 2014-12-25 2014-12-25 Piezoelectric element

Publications (2)

Publication Number Publication Date
JP2016122725A true JP2016122725A (en) 2016-07-07
JP6354575B2 JP6354575B2 (en) 2018-07-11

Family

ID=56329207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261605A Active JP6354575B2 (en) 2014-12-25 2014-12-25 Piezoelectric element

Country Status (1)

Country Link
JP (1) JP6354575B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254610A (en) * 1988-08-19 1990-02-23 Murata Mfg Co Ltd Piezoelectric resonator and its manufacture
WO2014017635A1 (en) * 2012-07-26 2014-01-30 株式会社村田製作所 Ceramic electronic component and method for producing ceramic electronic component
JP2014078625A (en) * 2012-10-11 2014-05-01 Tdk Corp Piezoelectric element
JP2014114419A (en) * 2012-12-12 2014-06-26 Oji Holdings Corp Biaxially stretched polyolefin film, method for manufacturing the film, metal-deposited polyolefin film, and film capacitor
JP2014231462A (en) * 2013-05-29 2014-12-11 株式会社富士セラミックス Piezoelectric ceramic composition and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254610A (en) * 1988-08-19 1990-02-23 Murata Mfg Co Ltd Piezoelectric resonator and its manufacture
WO2014017635A1 (en) * 2012-07-26 2014-01-30 株式会社村田製作所 Ceramic electronic component and method for producing ceramic electronic component
JP2014078625A (en) * 2012-10-11 2014-05-01 Tdk Corp Piezoelectric element
JP2014114419A (en) * 2012-12-12 2014-06-26 Oji Holdings Corp Biaxially stretched polyolefin film, method for manufacturing the film, metal-deposited polyolefin film, and film capacitor
JP2014231462A (en) * 2013-05-29 2014-12-11 株式会社富士セラミックス Piezoelectric ceramic composition and method for manufacturing the same

Also Published As

Publication number Publication date
JP6354575B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
US9673374B2 (en) Cost-effective single crystal multi-stake actuator and method of manufacture
US5252883A (en) Laminated type piezoelectric actuator
EP2024294B1 (en) Processing piezoelectric material
EP3789628A1 (en) A vehicle brake pad and a production process thereof
JP5021452B2 (en) Piezoelectric / electrostrictive porcelain composition and piezoelectric / electrostrictive element
JP4147954B2 (en) Method for manufacturing piezoelectric element
JP2000082852A (en) Multilayered piezoelectric actuator and manufacture thereof
JP2010161286A (en) Laminated piezoelectric element and method of manufacturing the same
JP5644925B1 (en) Piezoelectric element
JP2013171981A5 (en)
JP6354575B2 (en) Piezoelectric element
JP6265012B2 (en) Piezoelectric element
JP2003277143A (en) Piezoelectric ceramics
JP6265013B2 (en) Piezoelectric element
JP2008260674A (en) Method for producing piezoelectric/electrostrictive ceramic composition
JP2019522381A (en) Method for manufacturing a plurality of laminated piezoelectric elements
JP2010527143A5 (en)
JP4605879B2 (en) Piezoelectric vibrator
JP5328750B2 (en) Multilayer piezoelectric element and jetting apparatus using the same
JP2827299B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JP6673090B2 (en) Piezoelectric element
JP6428133B2 (en) Piezoelectric actuator
JP2855709B2 (en) Manufacturing method of laminated piezoelectric ceramic element
JP2005243677A (en) Stacked electronic component and its manufacturing method, and injection apparatus using the same
JP2005191050A (en) Laminated piezoelectric element, manufacturing method thereof, and ejector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171002

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150