JP2016122668A - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
JP2016122668A
JP2016122668A JP2016076264A JP2016076264A JP2016122668A JP 2016122668 A JP2016122668 A JP 2016122668A JP 2016076264 A JP2016076264 A JP 2016076264A JP 2016076264 A JP2016076264 A JP 2016076264A JP 2016122668 A JP2016122668 A JP 2016122668A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
sample
space
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076264A
Other languages
Japanese (ja)
Other versions
JP6272384B2 (en
Inventor
祐介 大南
Yusuke Ominami
祐介 大南
祐博 伊東
Sukehiro Ito
祐博 伊東
智久 大瀧
Tomohisa Otaki
智久 大瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2016076264A priority Critical patent/JP6272384B2/en
Publication of JP2016122668A publication Critical patent/JP2016122668A/en
Application granted granted Critical
Publication of JP6272384B2 publication Critical patent/JP6272384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a charged particle beam device or a charged particle microscope which allows a user to observe an observation sample in an air atmosphere or a gas atmosphere, without significantly changing a configuration of a conventional high-vacuum charged particle microscope.SOLUTION: A charged particle beam device adopts a thin film for separating a vacuum atmosphere from an air atmosphere (or a gas atmosphere). An attachment capable of holding the thin film and keeping the interior in the air atmosphere or the gas atmosphere is inserted into and used in a vacuum sample chamber of a high-vacuum charged particle microscope. The attachment is vacuum-sealed and fixed to a vacuum partition wall of the vacuum sample chamber. Image quality is further improved by replacing the interior of the attachment with light-element gas, such as helium, nitrogen or water vapor, which has a mass lighter than that of atmospheric gas.SELECTED DRAWING: Figure 2

Description

本発明は、被観察試料を大気圧あるいは所定のガス雰囲気中で観察可能な顕微鏡技術、特に卓上型の荷電粒子顕微鏡に関する。   The present invention relates to a microscope technique capable of observing a sample to be observed in atmospheric pressure or a predetermined gas atmosphere, and more particularly to a desktop charged particle microscope.

物体の微小な領域を観察するために、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などが用いられる。一般的に、これらの装置では試料を配置するための第2の筐体を真空排気し、試料雰囲気を真空状態にして試料を撮像する。一方、生物化学試料や液体試料など真空によってダメージを受ける、あるいは状態が変わる試料を電子顕微鏡で観察したいというニーズは大きく、近年、観察対象試料を大気圧下で観察可能なSEM装置や試料保持装置などが開発されている。   In order to observe a minute region of an object, a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like is used. Generally, in these apparatuses, the second casing for placing the sample is evacuated, and the sample atmosphere is evacuated to image the sample. On the other hand, there is a great need for observing a sample such as a biochemical sample or a liquid sample that is damaged by a vacuum or whose state changes with an electron microscope. In recent years, an SEM device or a sample holding device that can observe an observation target sample at atmospheric pressure Etc. are being developed.

これらの装置は、原理的には電子光学系と試料の間に電子線が透過可能な薄膜あるいは微小な貫通孔を設けて真空状態と大気状態を仕切るもので、いずれも試料と電子光学系との間に薄膜を設ける点で共通する。   In principle, these devices provide a thin film or minute through-hole that can transmit an electron beam between the electron optical system and the sample to partition the vacuum state from the atmospheric state. This is common in that a thin film is provided between the two.

例えば、特許文献1には、電子光学鏡筒の電子源側を下向きに、また対物レンズ側を上向きに配置し、電子光学鏡筒末端の電子線の出射孔上にOリングを介して電子線が透過できる薄膜を設けた大気圧SEMが開示されている。当該文献に記載された発明では、観察対象試料を薄膜上に直接載置し、試料の下面から一次電子線を照射して、反射電子あるいは二次電子を検出してSEM観察を行う。試料は、薄膜の周囲に設置された環状部材と薄膜により構成される空間内に保持され、さらにこの空間内には水などの液体が満たされている。特許文献1に開示された発明により、特に生体試料の観察に好適な大気圧SEMが実現される。   For example, in Patent Document 1, an electron source side of an electron optical column is disposed downward and an objective lens side is disposed upward, and an electron beam is placed on an electron beam exit hole at the end of the electron optical column via an O-ring. An atmospheric pressure SEM provided with a thin film capable of transmitting is disclosed. In the invention described in the document, an observation target sample is placed directly on a thin film, and a primary electron beam is irradiated from the lower surface of the sample to detect reflected electrons or secondary electrons and perform SEM observation. The sample is held in a space constituted by an annular member and a thin film installed around the thin film, and the space is filled with a liquid such as water. By the invention disclosed in Patent Document 1, an atmospheric pressure SEM particularly suitable for observation of a biological sample is realized.

また、特許文献2には、電子線を通過させるアパーチャを上面側に設けたシャーレ状の円筒容器内に観察試料を格納し、この円筒容器をSEMの真空試料室内に設け、更に当該円筒容器に真空試料室の外部からホースを接続することにより容器内部を擬似的に大気雰囲気に維持できる環境セルの発明が開示されている。ここで「擬似的」とは、真空試料室を真空排気するとアパーチャから気体が流出するため、厳密には大気圧の環境下で観察を行っているわけではないという意味である。   In Patent Document 2, an observation sample is stored in a petri dish-like cylindrical container provided with an aperture on the upper surface side through which an electron beam passes, and this cylindrical container is provided in a vacuum sample chamber of an SEM, and further, An invention of an environmental cell is disclosed in which a hose is connected from the outside of the vacuum sample chamber so that the interior of the container can be maintained in a pseudo atmosphere. Here, “pseudo” means that, when the vacuum sample chamber is evacuated, gas flows out from the aperture, so strictly speaking, observation is not performed under an atmospheric pressure environment.

特開2009−158222号公報(米国特許公開公報2009/0166536号)JP 2009-158222 A (US Patent Publication No. 2009/0166536) 特開2009−245944号公報(米国特許公開公報2009/0242763号)JP 2009-245944 A (US Patent Publication No. 2009/0242763)

ガス雰囲気での観察機能を備えた従来の荷電粒子顕微鏡あるいは荷電粒子線装置は、いずれもガス雰囲気下での観察専用に製造された装置であり、通常の高真空荷電粒子顕微鏡を使用して大気圧/ガス雰囲気下の観察を簡便に行える装置は存在しなかった。   Conventional charged particle microscopes or charged particle beam devices equipped with an observation function in a gas atmosphere are all devices specially manufactured for observation in a gas atmosphere. There has been no apparatus that can easily perform observation under the atmospheric pressure / gas atmosphere.

例えば、特許文献1に記載の大気圧SEMは構造的に非常に特殊な装置であり、通常の高真空雰囲気でのSEM観察は実行不可能である。また、観察対象物は液体を満たした薄膜内部に保持されており、一度大気圧観察を行うと試料が濡れてしまうため、同じ状態の試料を大気雰囲気/高真空雰囲気の両方で観察することは非常に困難である。また、液体が薄膜に常に接触しているために、薄膜が破損する可能性が非常に高いという問題もある。   For example, the atmospheric pressure SEM described in Patent Document 1 is a structurally very special device, and SEM observation in a normal high vacuum atmosphere cannot be performed. In addition, the observation object is held inside a thin film filled with liquid, and once the atmospheric pressure observation is performed, the sample gets wet, so it is not possible to observe the sample in the same state in both an air atmosphere and a high vacuum atmosphere. It is very difficult. Moreover, since the liquid is always in contact with the thin film, there is also a problem that the possibility that the thin film is damaged is very high.

特許文献2に記載された環境セルは、大気圧/ガス雰囲気での観察を行うことは可能であるが、セルに挿入可能なサイズの試料しか観察できず、大型試料の大気圧/ガス雰囲気での観察ができないという問題がある。また環境セルの場合、異なる試料を観察するには、SEMの真空試料室から環境セルを取り出し、試料を取り替えて再度真空試料室内に搬入しなければならず、試料交換が煩雑であるという問題もある。   Although the environmental cell described in Patent Document 2 can be observed in an atmospheric pressure / gas atmosphere, only a sample of a size that can be inserted into the cell can be observed, and in an atmospheric pressure / gas atmosphere of a large sample. There is a problem that it cannot be observed. In the case of an environmental cell, in order to observe a different sample, the environmental cell must be taken out from the vacuum sample chamber of the SEM, the sample must be replaced, and loaded again into the vacuum sample chamber. is there.

本発明は、かかる問題に鑑みてなされたもので、従来の高真空型荷電粒子顕微鏡の構成を大きく変更することなく、被観察試料を大気雰囲気あるいはガス雰囲気で観察することが可能な荷電粒子線装置ないし荷電粒子顕微鏡を提供することを目的とする。   The present invention has been made in view of such problems, and a charged particle beam capable of observing a sample to be observed in an air atmosphere or a gas atmosphere without greatly changing the configuration of a conventional high-vacuum charged particle microscope. An object is to provide an apparatus or a charged particle microscope.

本発明では、荷電粒子顕微鏡に備えられた真空室に対して、内部の圧力を前記真空室の圧力よりも高い状態に維持しつつ前記試料を格納できるアタッチメントを、上記真空室の開口部から挿入し真空室に固定して使用することにより、上記課題を解決する。真空室の開口部は、例えば上記真空室の側面あるいは底面に設けられる。また、上記のアタッチメントは、一次荷電粒子線をアタッチメント内部に透過あるいは通過させる薄膜を保持する機能を備えており、これにより真空室とアタッチメント内部の圧力差を確保する。上記真空室を第1の筐体、上記アタッチメントを上記真空室に対する第2の筐体と呼んでもよい。   In the present invention, an attachment capable of storing the sample is inserted into the vacuum chamber provided in the charged particle microscope from the opening of the vacuum chamber while maintaining an internal pressure higher than the pressure in the vacuum chamber. However, the above-mentioned problem is solved by fixing the vacuum chamber to use. The opening part of a vacuum chamber is provided in the side surface or bottom face of the said vacuum chamber, for example. Further, the above attachment has a function of holding a thin film that allows the primary charged particle beam to pass through or pass through the inside of the attachment, thereby ensuring a pressure difference between the vacuum chamber and the inside of the attachment. The vacuum chamber may be called a first casing, and the attachment may be called a second casing for the vacuum chamber.

上記薄膜により上記真空室が高真空に維持される一方、上記アタッチメントの内部は大気圧/ガス雰囲気に維持される。また、観察試料はアタッチメント内部と外部の間で搬入・搬出が可能である。すなわち、本発明により、大気圧/ガス雰囲気での観察が、従来よりも簡便に実現できる荷電粒子顕微鏡を実現できる。   While the vacuum chamber is maintained at a high vacuum by the thin film, the interior of the attachment is maintained at an atmospheric pressure / gas atmosphere. In addition, the observation sample can be carried in and out between the inside and outside of the attachment. That is, according to the present invention, it is possible to realize a charged particle microscope in which observation in an atmospheric pressure / gas atmosphere can be realized more simply than before.

また、本発明のアタッチメントは、試料室の側面から挿入する方式のため大型化が容易であり、従って環境セルには封入できないような大型の試料であっても観察が可能となる。   Further, since the attachment of the present invention is inserted from the side of the sample chamber, it can be easily increased in size, so that even a large sample that cannot be enclosed in an environmental cell can be observed.

実施例1の荷電粒子顕微鏡の全体構成図。1 is an overall configuration diagram of a charged particle microscope according to Embodiment 1. FIG. 実施例2の荷電粒子顕微鏡の全体構成図。FIG. 3 is an overall configuration diagram of a charged particle microscope according to a second embodiment. 板部材を引出した状態の実施例2の荷電粒子顕微鏡を示す図。The figure which shows the charged particle microscope of Example 2 of the state which pulled out the board member. 高真空SEMとして使用する状態の実施例2の荷電粒子顕微鏡を示す図。The figure which shows the charged particle microscope of Example 2 of the state used as a high vacuum SEM. 実施例2の荷電粒子顕微鏡の動作説明図。FIG. 9 is an operation explanatory diagram of the charged particle microscope according to the second embodiment. 実施例2の荷電粒子顕微鏡の構成例。4 is a configuration example of a charged particle microscope of Example 2. FIG. 実施例2の荷電粒子顕微鏡の構成例。4 is a configuration example of a charged particle microscope of Example 2. FIG. 実施例2の荷電粒子顕微鏡の構成例。4 is a configuration example of a charged particle microscope of Example 2. FIG. 実施例3の荷電粒子顕微鏡の全体構成図。FIG. 5 is an overall configuration diagram of a charged particle microscope according to a third embodiment. 実施例4の荷電粒子顕微鏡の全体構成図。FIG. 6 is an overall configuration diagram of a charged particle microscope according to a fourth embodiment. 実施例5の荷電粒子顕微鏡の全体構成図。FIG. 6 is an overall configuration diagram of a charged particle microscope of Example 5.

以下、図面を用いて各実施形態について説明する。   Each embodiment will be described below with reference to the drawings.

本実施例では、最も基本的な実施形態について説明する。図1には、本実施例の荷電粒子顕微鏡の全体構成図を示す。図1に示される荷電粒子顕微鏡は、主として、荷電粒子光学鏡筒2、荷電粒子光学鏡筒を装置設置面に対して支持する第1筐体(真空室)7、第1筐体7に挿入して使用される第2筐体(アタッチメント)121およびこれらを制御する制御系によって構成される。荷電粒子顕微鏡の使用時には荷電粒子光学鏡筒2と第1筐体の内部は真空ポンプ4により真空排気される。真空ポンプ4の起動・停止動作も制御系により制御される。図中、真空ポンプ4は一つのみ示されているが、二つ以上あってもよい。   In this example, the most basic embodiment will be described. FIG. 1 shows an overall configuration diagram of the charged particle microscope of the present embodiment. The charged particle microscope shown in FIG. 1 is mainly inserted into a charged particle optical column 2, a first casing (vacuum chamber) 7 that supports the charged particle optical column with respect to the apparatus installation surface, and the first casing 7. The second housing (attachment) 121 used in this manner and a control system for controlling them. When the charged particle microscope is used, the charged particle optical column 2 and the inside of the first housing are evacuated by the vacuum pump 4. The start / stop operation of the vacuum pump 4 is also controlled by the control system. Although only one vacuum pump 4 is shown in the figure, two or more vacuum pumps may be provided.

荷電粒子光学鏡筒2は、荷電粒子線を発生する荷電粒子源0、発生した荷電粒子線を集束して鏡筒下部へ導き、一次荷電粒子線として試料6を走査する光学レンズ1などの要素により構成される。荷電粒子光学鏡筒2は第1の筐体7内部に突き出すように設置されており、真空封止部材123を介して第1の筐体7に固定されている。荷電粒子光学鏡筒2の端部には、上記一次荷電粒子線の照射により得られる二次荷電粒子(二次電子あるいは反射電子)を検出する検出器3が配置される。図1に示す構成例では、検出器3は第1の筐体7の内部に設けられているが、荷電粒子光学鏡筒2内あるいは第2の筐体121の内部に配置してもよい。   The charged particle optical column 2 is an element such as a charged particle source 0 that generates a charged particle beam, an optical lens 1 that focuses the generated charged particle beam and guides it to the lower part of the column and scans the sample 6 as a primary charged particle beam. Consists of. The charged particle optical column 2 is installed so as to protrude into the first housing 7, and is fixed to the first housing 7 via a vacuum sealing member 123. A detector 3 for detecting secondary charged particles (secondary electrons or reflected electrons) obtained by irradiation with the primary charged particle beam is disposed at the end of the charged particle optical column 2. In the configuration example shown in FIG. 1, the detector 3 is provided in the first housing 7, but may be disposed in the charged particle optical column 2 or in the second housing 121.

本実施例の荷電粒子顕微鏡は、制御系として、装置使用者が使用するパソコン35、パソコン35と接続され通信を行う上位制御部36、上位制御部36から送信される命令に従って真空排気系や荷電粒子光学系などの制御を行う下位制御部37を備える。パソコン35は、装置の操作画面(GUI)が表示されるモニタと、キーボードやマウスなどの操作画面への入力手段を備える。上位制御部36,下位制御部37およびパソコン35は、各々通信線43,44により接続される。   The charged particle microscope of the present embodiment has a control system such as a personal computer 35 used by a user of the apparatus, a host controller 36 connected to the personal computer 35 for communication, and a vacuum exhaust system and a charge according to a command transmitted from the host controller 36. A lower control unit 37 that controls the particle optical system and the like is provided. The personal computer 35 includes a monitor on which an operation screen (GUI) of the apparatus is displayed, and input means for an operation screen such as a keyboard and a mouse. The upper control unit 36, the lower control unit 37, and the personal computer 35 are connected by communication lines 43 and 44, respectively.

下位制御部37は真空ポンプ4,ガス制御用バルブ101,荷電粒子源0や光学レンズ1などを制御するための制御信号を送受信する部位であり、さらには検出器3の出力信号をディジタル画像信号に変換して上位制御部36へ送信する。図では検出器3からの出力信号を下位制御部37に接続しているが、プリアンプなどの増幅器を間にいれてもよい。   The lower control unit 37 is a part that transmits and receives control signals for controlling the vacuum pump 4, the gas control valve 101, the charged particle source 0, the optical lens 1, and the like, and further outputs the output signal of the detector 3 as a digital image signal. And is transmitted to the upper control unit 36. Although the output signal from the detector 3 is connected to the lower control unit 37 in the figure, an amplifier such as a preamplifier may be interposed.

上位制御部36と下位制御部37ではアナログ回路やディジタル回路などが混在していてもよく、また上位制御部36と下位制御部37が一つに統一されていてもよい。なお、図1に示す制御系の構成は一例に過ぎず、制御ユニットやバルブ,真空ポンプあるいは通信用の配線などの変形例は、本実施例で意図する機能を満たす限り、本実施例のSEMないし荷電粒子線装置の範疇に属する。   The upper control unit 36 and the lower control unit 37 may include a mixture of analog circuits, digital circuits, etc., and the upper control unit 36 and the lower control unit 37 may be unified. Note that the configuration of the control system shown in FIG. 1 is merely an example, and modifications of the control unit, valves, vacuum pumps, communication wiring, and the like can be applied to the SEM of this embodiment as long as the functions intended in this embodiment are satisfied. It belongs to the category of charged particle beam equipment.

第1筐体7には、一端が真空ポンプ4に接続された真空配管16が接続され、内部を真空状態に維持できる。同時に、筐体内部を大気開放するためのリークバルブ14を備え、メンテナンス時などに、第1筐体7の内部を大気開放することができる。リークバルブ14は、なくてもよいし、二つ以上あってもよい。また、第1筐体7での配置箇所は、図1に示された場所に限られず、第1筐体7上の別の位置に配置されていてもよい。更に、第1筐体7は、側面に開口部を備えており、この開口部を通って上記第2筐体121が挿入される。   A vacuum pipe 16 having one end connected to the vacuum pump 4 is connected to the first housing 7 so that the inside can be maintained in a vacuum state. At the same time, a leak valve 14 for releasing the inside of the housing to the atmosphere is provided, and the inside of the first housing 7 can be opened to the atmosphere during maintenance. The leak valve 14 may not be provided, and may be two or more. Moreover, the arrangement location in the 1st housing | casing 7 is not restricted to the location shown by FIG. 1, You may arrange | position in the other position on the 1st housing | casing 7. FIG. Furthermore, the first housing 7 has an opening on the side surface, and the second housing 121 is inserted through the opening.

第2筐体121は、直方体形状の本体部131と合わせ部132とにより構成される。本体部131は、観察対象である試料6を格納する機能を持ち、上記の開口部を通って第1筐体7内部に挿入される。合わせ部132は、第1筐体7の開口部が設けられた側面側の外壁面との合わせ面を構成し、真空封止部材126を介して上記側面側の外壁面に固定される。これによって、第2筐体121全体が第1筐体7に嵌合される。上記の開口部は、荷電粒子顕微鏡の真空試料室にもともと備わっている試料の搬入・搬出用の開口を利用して製造することが最も簡便である。つまり、もともと開いている穴の大きさに合わせて第2筐体121を製造し、穴の周囲に真空封止部材126を取り付ければ、装置の改造が必要最小限ですむ。   The second casing 121 includes a rectangular parallelepiped body portion 131 and a mating portion 132. The main body 131 has a function of storing the sample 6 to be observed, and is inserted into the first housing 7 through the opening. The mating portion 132 forms a mating surface with the outer wall surface on the side surface side where the opening of the first housing 7 is provided, and is fixed to the outer wall surface on the side surface side via the vacuum sealing member 126. As a result, the entire second housing 121 is fitted into the first housing 7. The opening is most easily manufactured using the opening for loading and unloading the sample originally provided in the vacuum sample chamber of the charged particle microscope. That is, if the second casing 121 is manufactured according to the size of the hole that is originally open and the vacuum sealing member 126 is attached around the hole, the modification of the apparatus is minimized.

本体部131の上面側には、第2筐体121全体が第1筐体7に嵌合された場合に上記荷電粒子光学鏡筒2の直下になる位置に薄膜10を備える。この薄膜10は、荷電粒子光学鏡筒2の下端から放出される一次荷電粒子線を透過ないし通過させることが可能であり、一次荷電粒子線は、薄膜10を通って最終的に試料6に到達する。   On the upper surface side of the main body 131, the thin film 10 is provided at a position immediately below the charged particle optical column 2 when the entire second housing 121 is fitted into the first housing 7. The thin film 10 can transmit or pass the primary charged particle beam emitted from the lower end of the charged particle optical column 2, and the primary charged particle beam finally reaches the sample 6 through the thin film 10. To do.

荷電粒子線が電子線の場合には、薄膜10の厚さは電子線が透過できる程度の厚さ、典型的には20μm程度以下である必要がある。薄膜に替えて、一次荷電粒子線の通過孔を備えるアパーチャ部材を用いてもよく、その場合の孔径は、現実的な真空ポンプで差動排気可能という要請から、面積1mm2程度以下であることが望ましい。荷電粒子線がイオン
の場合は、薄膜を破損させる事なしに貫通させることが困難であるため、面積1mm2程度
以下のアパーチャを用いる。図中の一点鎖線は、一次荷電粒子線の光軸を示しており、荷電粒子光学鏡筒2と第1の筐体7および薄膜10は、一次荷電粒子線光軸と同軸に配置されている。試料6と薄膜10との距離は、適当な高さの試料台17を置いて調整する。
When the charged particle beam is an electron beam, the thickness of the thin film 10 needs to be a thickness that can transmit the electron beam, typically about 20 μm or less. In place of the thin film, an aperture member having a primary charged particle beam passage hole may be used. In this case, the hole diameter should be about 1 mm 2 or less because of the requirement that a differential vacuum pumping is possible with a realistic vacuum pump. Is desirable. When the charged particle beam is an ion, it is difficult to penetrate without damaging the thin film, so an aperture having an area of about 1 mm 2 or less is used. A one-dot chain line in the figure indicates the optical axis of the primary charged particle beam, and the charged particle optical column 2, the first casing 7 and the thin film 10 are arranged coaxially with the primary charged particle beam optical axis. . The distance between the sample 6 and the thin film 10 is adjusted by placing a sample table 17 having an appropriate height.

図1に示すように第2筐体121の側面は開放面であり、第2筐体121の内部(図の点線より右側;以降、第2の空間とする)に格納される試料6は、観察中、大気圧状態に置かれる。一方、第1筐体7には真空ポンプ4が接続されており、第1筐体7の内壁面と第2筐体の外壁面および薄膜10によって構成される閉空間(以下、第1の空間とする)を真空排気可能である。よって、本実施例では、装置の動作中、荷電粒子光学鏡筒2や検出器3を真空状態に維持でき、かつ試料6を大気圧に維持することができる。また、第2筐体121が開放面を有するので、観察中、試料6を自由に交換できる。   As shown in FIG. 1, the side surface of the second housing 121 is an open surface, and the sample 6 stored inside the second housing 121 (right side of the dotted line in the figure; hereinafter referred to as a second space) During observation, it is placed at atmospheric pressure. On the other hand, a vacuum pump 4 is connected to the first housing 7, and a closed space (hereinafter referred to as a first space) constituted by the inner wall surface of the first housing 7, the outer wall surface of the second housing and the thin film 10. Can be evacuated. Therefore, in this embodiment, the charged particle optical column 2 and the detector 3 can be maintained in a vacuum state and the sample 6 can be maintained at atmospheric pressure during the operation of the apparatus. Further, since the second casing 121 has an open surface, the sample 6 can be freely exchanged during observation.

以上、本実施例により、比較的大きなサイズの試料であっても大気圧で観察可能な荷電粒子顕微鏡が実現される。   As described above, according to the present embodiment, a charged particle microscope capable of observing even a relatively large sample size at atmospheric pressure is realized.

本実施例では、卓上型走査電子顕微鏡への適用例について説明する。なお、走査電子顕微鏡への適用例ではあるが、本実施例が、イオン顕微鏡など一般の荷電粒子顕微鏡に適用できることは言うまでも無い。   In this embodiment, an application example to a desktop scanning electron microscope will be described. In addition, although it is an application example to a scanning electron microscope, it cannot be overemphasized that a present Example is applicable to general charged particle microscopes, such as an ion microscope.

図2には、本実施例の走査電子顕微鏡の全体構成図を示す。実施例1と同様、本実施例の走査電子顕微鏡も、電子光学鏡筒2、該電子光学鏡筒を装置設置面に対して支持する第1筐体(真空室)7、第1筐体7に挿入して使用される第2筐体(アタッチメント)121制御系などによって構成される。これらの各要素の動作・機能あるいは各要素に付加される付加要素は、実施例1とほぼ同様であるので、詳細な説明は省略する。   FIG. 2 shows an overall configuration diagram of the scanning electron microscope of the present embodiment. Similar to the first embodiment, the scanning electron microscope of the present embodiment also includes the electron optical column 2, the first casing (vacuum chamber) 7 that supports the electron optical column with respect to the apparatus installation surface, and the first casing 7. It is comprised by the 2nd housing | casing (attachment) 121 control system etc. which are inserted and used for. Since the operations and functions of these elements or additional elements added to the elements are substantially the same as those in the first embodiment, detailed description thereof is omitted.

さて、本実施例の走査電子顕微鏡の場合、薄膜10は、実施例1とは異なり、第2筐体の本体部131の上面に対して薄膜保持部材47を介して脱着可能に固定されている。薄膜10は、薄膜保持部材47に対して真空シールするように固着されているが、Oリングなどの真空封止部材を使用しても良いし、接着剤等の有機材料あるいはテープなどで固着してもよい。   In the scanning electron microscope of this embodiment, unlike the first embodiment, the thin film 10 is detachably fixed to the upper surface of the main body 131 of the second housing via the thin film holding member 47. . The thin film 10 is fixed to the thin film holding member 47 so as to be vacuum-sealed, but a vacuum sealing member such as an O-ring may be used, or may be fixed with an organic material such as an adhesive or a tape. May be.

薄膜保持部材47は、第2筐体121の天井板の下面側に真空封止部材を介して脱着可能に固定される。薄膜10は、電子線が透過する要請上、厚さ20μm程度以下と非常に薄いため、経時劣化あるいは観察準備の際に破損する可能性がある。一方、薄膜10は薄いため直接ハンドリングすることが非常に困難である。本実施例のように、薄膜10を直接ではなく薄膜保持部材47を介してハンドリングできることで、薄膜10の取扱い(特に交換)が非常に容易となる。つまり、薄膜10が破損した場合には、薄膜保持部材47ごと交換すればよく、万が一薄膜10を直接交換しなければならない場合でも、薄膜保持部材47を装置外部に取り出し、薄膜10の交換を装置外部で行うことができる。なお、薄膜に替えて、面積1mm2以下程度の穴を有するアパーチャ部材を使用できる点は、実施例1と同様である。 The thin film holding member 47 is detachably fixed to the lower surface side of the ceiling plate of the second housing 121 via a vacuum sealing member. The thin film 10 is very thin with a thickness of about 20 μm or less because of the requirement for transmission of the electron beam, and therefore there is a possibility that it deteriorates with time or breaks during observation preparation. On the other hand, since the thin film 10 is thin, it is very difficult to handle it directly. Since the thin film 10 can be handled through the thin film holding member 47 instead of directly as in the present embodiment, handling (particularly replacement) of the thin film 10 becomes very easy. That is, when the thin film 10 is damaged, the thin film holding member 47 may be replaced. Even if the thin film 10 must be replaced directly, the thin film holding member 47 is taken out of the apparatus and the thin film 10 is replaced. Can be done externally. The aperture member having a hole with an area of about 1 mm 2 or less can be used in place of the thin film, as in the first embodiment.

更に、本実施例の薄膜保持部材47は、試料6との対向面側に薄膜と試料の接触を防止する制限部材105を備える。制限部材105としては、試料と薄膜間の距離を制限できるものなら何を使用してもよいが、簡便には、接着剤やテープを貼り付けて制限部材105として使用することもできる。ただし、薄膜10を通過した一次電子線の平均自由工程を考えれば、制限部材105は厚みが正確にわかっている薄膜材料で作製することが好ましい。また、図2では制限部材105は薄膜保持部材47に取り付けられているが、薄膜10自体や試料ステージ5に取り付けてもよく、あるいは試料6の上に載せてもよい。更に、制限部材105を着脱可能としてもよい。   Furthermore, the thin film holding member 47 of this embodiment includes a limiting member 105 that prevents the thin film and the sample from contacting each other on the side facing the sample 6. Any member can be used as the restricting member 105 as long as it can restrict the distance between the sample and the thin film, but for convenience, an adhesive or a tape can be attached to the restricting member 105. However, considering the mean free path of the primary electron beam that has passed through the thin film 10, the limiting member 105 is preferably made of a thin film material whose thickness is accurately known. In FIG. 2, the limiting member 105 is attached to the thin film holding member 47, but it may be attached to the thin film 10 itself, the sample stage 5, or placed on the sample 6. Furthermore, the limiting member 105 may be detachable.

また本実施例の走査電子顕微鏡の場合、第2筐体121の開放面を蓋部材122で蓋うことができるようになっており、種々の機能が実現できる。以下ではそれについて説明する。   In the case of the scanning electron microscope of the present embodiment, the open surface of the second housing 121 can be covered with the lid member 122, and various functions can be realized. This will be described below.

本実施例の走査電子顕微鏡においては、第2筐体内に置換ガスを供給する機能を備えている。電子光学鏡筒2の下端から放出された電子線は、高真空に維持された第1の空間を通過して、図2に示す薄膜10(あるいはアパーチャ部材)を通過し、更に、大気圧あるいは(第1の空間よりも)低真空度に維持された第2の空間に侵入する。ところが、真空度の低い空間では電子線は気体分子によって散乱されるため、平均自由行程は短くなる。つまり、薄膜10と試料6の距離が大きいと電子線あるいは電子線照射により発生する二次電子または反射電子が試料まで届かなくなる。一方、電子線の散乱確率は、気体分子の質量数に比例する。従って、大気よりも質量数の軽いガス分子で第2の空間を置換すれば、電子線の散乱確率が低下し、電子線が試料に到達できるようになる。置換ガスの種類としては、窒素や水蒸気など、大気よりも軽いガスであれば画像S/Nの改善効果が見られるが、質量のより軽いヘリウムガスや水素ガスの方が、画像S/Nの改善効果が大きい。   The scanning electron microscope of this embodiment has a function of supplying a replacement gas into the second housing. The electron beam emitted from the lower end of the electron optical column 2 passes through the first space maintained at a high vacuum, passes through the thin film 10 (or aperture member) shown in FIG. It penetrates into the second space maintained at a low vacuum (rather than the first space). However, since the electron beam is scattered by gas molecules in a low vacuum space, the mean free path is shortened. That is, when the distance between the thin film 10 and the sample 6 is large, secondary electrons or reflected electrons generated by electron beam or electron beam irradiation do not reach the sample. On the other hand, the scattering probability of electron beams is proportional to the mass number of gas molecules. Therefore, if the second space is replaced with gas molecules having a lighter mass number than the atmosphere, the scattering probability of the electron beam decreases and the electron beam can reach the sample. As the type of the replacement gas, if the gas is lighter than the atmosphere, such as nitrogen or water vapor, the effect of improving the image S / N can be seen, but helium gas or hydrogen gas having a lighter mass has a better image S / N. Great improvement effect.

以上の理由から、本実施例の走査電子顕微鏡では、蓋部材122にガス供給管100の取り付け部(ガス導入部)を設けている。ガス供給管100は連結部102によりガスボンベ103と連結されており、これにより第2の空間12内に置換ガスが導入される。ガス供給管100の途中には、ガス制御用バルブ101が配置されており、管内を流れる置換ガスの流量を制御できる。このため、ガス制御用バルブ101から下位制御部37に信号線が伸びており、装置ユーザは、パソコン35のモニタ上に表示される操作画面で、置換ガスの流量を制御できる。   For the above reasons, in the scanning electron microscope of the present embodiment, the lid member 122 is provided with an attachment portion (gas introduction portion) for the gas supply pipe 100. The gas supply pipe 100 is connected to the gas cylinder 103 by the connecting portion 102, whereby the replacement gas is introduced into the second space 12. A gas control valve 101 is arranged in the middle of the gas supply pipe 100, and the flow rate of the replacement gas flowing through the pipe can be controlled. For this reason, a signal line extends from the gas control valve 101 to the lower control unit 37, and the apparatus user can control the flow rate of the replacement gas on the operation screen displayed on the monitor of the personal computer 35.

置換ガスは軽元素ガスであるため、第2の空間12の上部に溜まりやすく、下側は置換しにくい。そこで、蓋部材122でガス供給管100の取り付け位置よりも下側(図2では圧力調整弁104の取り付け位置)に開口を設ける。これにより、ガス導入部から導入された軽元素ガスに押されて大気ガスが下側の開口から排出されるため、第2筐体121内を効率的に置換できる。なお、この開口を後述する粗排気ポートと兼用しても良い。   Since the replacement gas is a light element gas, it tends to accumulate in the upper part of the second space 12, and the lower side is difficult to replace. Therefore, an opening is provided in the lid member 122 below the attachment position of the gas supply pipe 100 (the attachment position of the pressure regulating valve 104 in FIG. 2). Thereby, since it pushes by the light element gas introduced from the gas introduction part and atmospheric gas is discharged | emitted from lower opening, the inside of the 2nd housing | casing 121 can be substituted efficiently. Note that this opening may also be used as a rough exhaust port described later.

第2筐体121あるいは蓋部材122に真空排気ポートを設け、第2筐体121内を一度真空排気してから置換ガスを導入してもよい。この場合の真空排気は、第2筐体121内部に残留する大気ガス成分を一定量以下に減らせればよいので高真空排気を行う必要はなく、粗排気で十分である。ただし、生体試料など水分を含む試料などを観察する場合、一度真空状態に置かれた試料は、水分が蒸発して状態が変化する。従って、上述のように、大気雰囲気から直接置換ガスを導入する方が好ましい。上記の開口は、置換ガスの導入後、蓋部材で閉じることにより、置換ガスを効果的に第2の空間12内に閉じ込めることができる。   The second casing 121 or the lid member 122 may be provided with a vacuum exhaust port, and the replacement gas may be introduced after the second casing 121 is evacuated once. The vacuum evacuation in this case does not require high vacuum evacuation because the atmospheric gas component remaining in the second housing 121 may be reduced to a certain amount or less, and rough evacuation is sufficient. However, when observing a sample containing moisture such as a biological sample, the sample once placed in a vacuum state changes its state due to evaporation of moisture. Therefore, as described above, it is preferable to introduce the replacement gas directly from the air atmosphere. The opening can be closed in the second space 12 by closing the opening with a lid member after the introduction of the replacement gas.

上記開口の位置に三方弁を取り付ければ、この開口を粗排気ポートおよび大気リーク用排気口と兼用することができる。すなわち、三方弁の一方を蓋部材122に取り付け、一方を粗排気用真空ポンプに接続し、残り一つにリークバルブを取り付ければ、上記の兼用排気口が実現できる。   If a three-way valve is attached to the position of the opening, this opening can be used also as a rough exhaust port and an air leak exhaust port. That is, if one of the three-way valves is attached to the lid member 122, one is connected to the rough exhaust vacuum pump, and the leak valve is attached to the other one, the above-described dual exhaust port can be realized.

上述の開口の変わりに圧力調整弁104を設けても良い。当該圧力調整弁104は、第2筐体121の内部圧力が1気圧以上になると自動的にバルブが開く機能を有する。このような機能を有する圧力調整弁を備えることで、軽元素ガスの導入時、内部圧力が1気圧以上になると自動的に開いて窒素や酸素などの大気ガス成分を装置外部に排出し、軽元素ガスを装置内部に充満させることが可能となる。なお、図示したガスボンベ103は、走査電子顕微鏡に備え付けられる場合もあれば、装置ユーザが事後的に取り付ける場合もある。   A pressure regulating valve 104 may be provided instead of the opening described above. The pressure regulating valve 104 has a function of automatically opening the valve when the internal pressure of the second housing 121 becomes 1 atm or more. By providing a pressure regulating valve with such a function, when light element gas is introduced, it automatically opens when the internal pressure reaches 1 atm or more and discharges atmospheric gas components such as nitrogen and oxygen to the outside of the device. The element gas can be filled in the apparatus. Note that the illustrated gas cylinder 103 may be provided in a scanning electron microscope or may be attached later by an apparatus user.

次に、試料6の位置調整方法について説明する。本実施例の走査電子顕微鏡は、観察視野の移動手段として試料ステージ5を備えている。試料ステージ5には、面内方向へのXY駆動機構および高さ方向へのZ軸駆動機構を備えている。蓋部材122には試料ステージ5を支持する底板となる支持板107が取り付けられており、試料ステージ5は支持板107に固定されている。支持板107は、蓋部材122の第2筐体121への対向面に対し第2筐体121の内部に向かって延伸するよう取り付けられている。Z軸駆動機構およびXY駆動機構からはそれぞれ支軸が伸びており、各々操作つまみ108および操作つまみ109と繋がっている。装置ユーザは、これらの操作つまみ108および109を操作することにより、試料6の第2筐体121内での位置を調整する。   Next, a method for adjusting the position of the sample 6 will be described. The scanning electron microscope of the present embodiment includes a sample stage 5 as means for moving the observation field. The sample stage 5 includes an XY drive mechanism in the in-plane direction and a Z-axis drive mechanism in the height direction. A support plate 107 serving as a bottom plate for supporting the sample stage 5 is attached to the lid member 122, and the sample stage 5 is fixed to the support plate 107. The support plate 107 is attached to the surface of the lid member 122 facing the second housing 121 so as to extend toward the inside of the second housing 121. Support shafts extend from the Z-axis drive mechanism and the XY drive mechanism, respectively, and are connected to the operation knob 108 and the operation knob 109, respectively. The apparatus user adjusts the position of the sample 6 in the second housing 121 by operating these operation knobs 108 and 109.

試料位置を調整する際には、通常、面内方向の位置を決めてから高さ方向の位置を調整するが、薄膜10の破損を防止するため、試料6の高さ方向の位置は薄膜10に近づき過ぎないように調整する必要がある。そこで、本実施例の走査電子顕微鏡は、カメラ106などの観察手段を備える。これにより、薄膜10と試料6の距離や試料6を高さ方向に動かしている様子などを遠隔状態で観察することが可能となる。カメラ106の代わりに撮像分解能の高い光学顕微鏡を用いてもよい。また図示しないが、赤外線など電磁波の反射を使って試料と薄膜の距離を測定してもよい。観察手段の取り付け位置は、特に図2の配置に限定されるものではなく、試料と薄膜との距離が明瞭に計測できる位置であればどこでも構わない。   When adjusting the position of the sample, the position in the height direction is usually adjusted after determining the position in the in-plane direction. However, in order to prevent the thin film 10 from being damaged, the position of the sample 6 in the height direction is adjusted. It is necessary to adjust so that it does not get too close. Therefore, the scanning electron microscope of this embodiment includes observation means such as a camera 106. This makes it possible to remotely observe the distance between the thin film 10 and the sample 6 and how the sample 6 is moved in the height direction. Instead of the camera 106, an optical microscope with high imaging resolution may be used. Although not shown, the distance between the sample and the thin film may be measured using reflection of electromagnetic waves such as infrared rays. The attachment position of the observation means is not particularly limited to the arrangement shown in FIG. 2 and may be any position as long as the distance between the sample and the thin film can be clearly measured.

次に、試料6の交換機構について説明する。本実施例の走査電子顕微鏡は、第1筐体7の底面および蓋部材122の下端部に、板部材用支持部材19,底板20をそれぞれ備える。蓋部材122は第2筐体121に真空封止部材125を介して取り外し可能に固定される。一方、板部材用支持部材19も底板20に対して取り外し可能に固定されており、図3に示すように、蓋部材122および板部材用支持部材19を丸ごと第2筐体121から取り外すことが可能である。   Next, the exchange mechanism of the sample 6 will be described. The scanning electron microscope of the present embodiment includes a plate member support member 19 and a bottom plate 20 on the bottom surface of the first housing 7 and the lower end portion of the lid member 122, respectively. The lid member 122 is detachably fixed to the second housing 121 via a vacuum sealing member 125. On the other hand, the plate member support member 19 is also detachably fixed to the bottom plate 20, and the lid member 122 and the plate member support member 19 can be completely removed from the second housing 121 as shown in FIG. 3. Is possible.

底板20には、取り外しの際にガイドとして使用される支柱18を備える。通常の状態では、支柱18は底板20に設けられた格納部に格納されており、取り外しの際に蓋部材122の引出し方向に延伸するように構成される。同時に、支柱18は板部材用支持部材19に固定されており、蓋部材122を第2筐体121から取り外した際に、蓋部材122と走査電子顕微鏡本体とが完全には分離しないようになっている。これにより、試料ステージ5あるいは試料6の落下を防止することができる。   The bottom plate 20 includes a column 18 that is used as a guide during removal. In a normal state, the support column 18 is stored in a storage unit provided on the bottom plate 20, and is configured to extend in the pull-out direction of the lid member 122 when being removed. At the same time, the column 18 is fixed to the plate member support member 19, and the lid member 122 and the scanning electron microscope main body are not completely separated when the lid member 122 is removed from the second housing 121. ing. Thereby, the sample stage 5 or the sample 6 can be prevented from dropping.

第2筐体121内に試料を搬入する場合には、まず試料ステージ5のZ軸操作つまみを回して試料6を薄膜10から遠ざける。次に、圧力調整弁104を開放し、第2筐体内部を大気開放する。その後、第2筐体内部が減圧状態あるいは極端な与圧状態になっていないことを確認後、蓋部材122を装置本体とは反対側に引出す。これにより試料6を交換可能な状態となる。試料交換後は、蓋部材122を第2筐体121内に押し込み、図示しない締結部材にて蓋部材122を合わせ部132に固定後、置換ガスを導入する。以上の操作は、電子光学鏡筒2の動作を継続したまま実行することができ、従って本実施例の走査電子顕微鏡は、試料交換後、迅速に観察を開始することができる。   When the sample is carried into the second housing 121, first, the sample 6 is moved away from the thin film 10 by turning the Z-axis operation knob of the sample stage 5. Next, the pressure regulating valve 104 is opened, and the inside of the second housing is opened to the atmosphere. Thereafter, after confirming that the inside of the second housing is not in a reduced pressure state or an extremely pressurized state, the lid member 122 is pulled out to the side opposite to the apparatus main body. As a result, the sample 6 can be exchanged. After the sample replacement, the lid member 122 is pushed into the second housing 121, and the lid member 122 is fixed to the mating portion 132 with a fastening member (not shown), and then a replacement gas is introduced. The above operation can be executed while the operation of the electron optical column 2 is continued. Therefore, the scanning electron microscope of this embodiment can start observation quickly after exchanging the sample.

本実施例の走査電子顕微鏡は、通常の高真空SEMとして使用することも可能である。図4には、高真空SEMとして使用した状態での、本実施例の走査電子顕微鏡の全体構成図を示す。図4において、制御系は図2と同様であるので図示は省略している。図4は、蓋部材122を第2筐体121に固定した状態で、ガス供給管100と圧力調整弁104を蓋部材122から取り外した後、ガス供給管100と圧力調整弁104の取り付け位置を蓋部材130で塞いだ状態の走査電子顕微鏡を示している。この前後の操作で、薄膜保持部材47を第2筐体121から取り外しておけば、第1の空間11と第2の空間12をつなげることができ、第2筐体内部を真空ポンプ4で真空排気することが可能となる。これにより、第2筐体121を取り付けた状態で、高真空SEM観察が可能となる。   The scanning electron microscope of this embodiment can also be used as a normal high vacuum SEM. FIG. 4 shows an overall configuration diagram of the scanning electron microscope of the present example in a state where it is used as a high vacuum SEM. In FIG. 4, the control system is the same as in FIG. FIG. 4 shows a state where the gas supply pipe 100 and the pressure adjustment valve 104 are attached after the gas supply pipe 100 and the pressure adjustment valve 104 are removed from the lid member 122 in a state where the lid member 122 is fixed to the second housing 121. A scanning electron microscope in a state of being covered with a lid member 130 is shown. If the thin film holding member 47 is removed from the second housing 121 by the operation before and after this operation, the first space 11 and the second space 12 can be connected, and the inside of the second housing is vacuumed by the vacuum pump 4. It becomes possible to exhaust. As a result, high vacuum SEM observation is possible with the second housing 121 attached.

なお、図4の構成の変形例として、薄膜保持部材47が取り付けてある状態の第2筐体121を丸ごと取り外し、蓋部材122を第1筐体7の合わせ面に直接固定してもよい。本構成によっても第1の空間11と第2の空間12をつなげることができ、第2筐体内部を真空ポンプ4で真空排気することが可能となる。なお、この構成は一般的なSEM装置の構成と同じである。   As a modification of the configuration of FIG. 4, the entire second housing 121 with the thin film holding member 47 attached may be removed and the lid member 122 may be directly fixed to the mating surface of the first housing 7. Also with this configuration, the first space 11 and the second space 12 can be connected, and the inside of the second housing can be evacuated by the vacuum pump 4. This configuration is the same as that of a general SEM apparatus.

以上説明したように、本実施例では、試料ステージ5およびその操作つまみ108,109,ガス供給管100,圧力調整弁104が全て蓋部材122に集約して取り付けられている。従って装置ユーザは、上記操作つまみ108,109の操作,試料の交換作業、あるいはガス供給管100,圧力調整弁104の脱着作業を第1筐体の同じ面に対して行うことができる。よって、上記構成物が試料室の他の面にバラバラに取り付けられている構成の走査電子顕微鏡に比べて操作性が非常に向上している。   As described above, in this embodiment, the sample stage 5 and its operation knobs 108 and 109, the gas supply pipe 100, and the pressure adjustment valve 104 are all attached to the lid member 122. Therefore, the apparatus user can perform the operation of the operation knobs 108 and 109, the sample replacement work, or the detachment work of the gas supply pipe 100 and the pressure regulating valve 104 on the same surface of the first housing. Therefore, the operability is greatly improved as compared with a scanning electron microscope having a configuration in which the above-described components are separately attached to the other surfaces of the sample chamber.

図5には、本実施例の走査電子顕微鏡の操作の流れを示すフローチャートを示した。   FIG. 5 shows a flowchart showing the operation flow of the scanning electron microscope of the present embodiment.

第一のステップ70では、第1の空間の真空排気を行う。予め真空排気されていてもよい。第二のステップ71では、試料6を試料ステージ5上の試料台にのせ、試料ステージ5に搭載する。第三のステップ72では、蓋部材122を第2筐体内部に導入し、装置本体(第2筐体)に締結する。第四のステップ73では、ガス制御用バルブ101を一定時間開けた後、閉じることによって、第2の空間にヘリウムガスなどの置換ガスを導入する。第五のステップ74では、電子光学鏡筒の動作条件を調整し電子ビームを放出させる。第六のステップ75では、画像取得を開始する。第七のステップ76では、蓋部材122を取り外す。第2の空間に閉じ込められた置換ガスが装置外部に放出されるが、圧力調整弁を開放して置換ガスを排出したあとで蓋部材122を取り外してもよい。第八のステップ77では、試料を取り出す。別試料を観察したい場合には、第二のステップ71に戻る
In the first step 70, the first space is evacuated. It may be evacuated in advance. In the second step 71, the sample 6 is placed on the sample stage on the sample stage 5 and mounted on the sample stage 5. In the third step 72, the lid member 122 is introduced into the second housing and fastened to the apparatus main body (second housing). In the fourth step 73, the gas control valve 101 is opened for a certain time and then closed to introduce a replacement gas such as helium gas into the second space. In the fifth step 74, the operating condition of the electron optical column is adjusted to emit an electron beam. In the sixth step 75, image acquisition is started. In the seventh step 76, the lid member 122 is removed. Although the replacement gas confined in the second space is released to the outside of the apparatus, the lid member 122 may be removed after the pressure adjustment valve is opened and the replacement gas is discharged. In an eighth step 77, the sample is removed. When it is desired to observe another sample, the process returns to the second step 71.

なお、第2の空間は、置換ガスを大気圧状態まで導入するだけでなく、少しだけ導入する低真空状態、あるいは真空状態などにすることができるが、この場合には、第四のステップ73で置換ガスの流量調整あるいは真空排気を行えばよい。なおまた、図5に示すフローは操作の一例であり、順序は適宜変えてもよい。   Note that the second space can be not only introduced with the replacement gas up to the atmospheric pressure state but also in a low vacuum state or a vacuum state in which the replacement gas is introduced a little. In this case, the fourth step 73 is performed. Then, the flow rate of the replacement gas or vacuum evacuation may be performed. The flow shown in FIG. 5 is an example of the operation, and the order may be changed as appropriate.

図6には、パソコン35のモニタ上に表示される操作画面の一例を示す。図6に示した操作画面では、例えば、操作用ウィンドウ50と、画像表示部51と、電子線の放出を開始し画像表示を開始させる画像観察開始ボタン52と、電子線の放出を停止し画像表示を停止させる画像観察停止ボタン53と、偏向レンズや対物レンズなどの光学レンズを調整してオートフォーカスを実行させる焦点調整ボタン54と、画像の明るさを調整する明るさ調整ボタン55やコントラストを調整するコントラスト調整ボタン56と、荷電粒子光学鏡筒2や第1の筐体7の内部の真空排気を開始させる真空排気ボタン57および第1の筐体7の内部を大気リークさせるための大気リークボタン58がある。真空排気ボタン57を画面上でクリックすると真空排気が開始され、再度クリックすると真空排気が停止される。大気リークボタン58の操作も同様である。上記のボタン操作により実行される処理は、装置本体についた機械的なボタンやつまみを操作して、マニュアル操作で実行することもできる。   FIG. 6 shows an example of an operation screen displayed on the monitor of the personal computer 35. In the operation screen shown in FIG. 6, for example, the operation window 50, the image display unit 51, the image observation start button 52 for starting the emission of the electron beam and starting the image display, and the emission of the electron beam are stopped and the image is displayed. An image observation stop button 53 for stopping display, a focus adjustment button 54 for adjusting an optical lens such as a deflection lens and an objective lens, and executing a focus, a brightness adjustment button 55 for adjusting the brightness of an image, and a contrast. Contrast adjustment button 56 to be adjusted, evacuation button 57 for starting evacuation inside charged particle optical column 2 and first casing 7 and atmospheric leak for causing the inside of first casing 7 to leak to the atmosphere There is a button 58. When the evacuation button 57 is clicked on the screen, evacuation is started, and when it is clicked again, evacuation is stopped. The operation of the air leak button 58 is the same. The processing executed by the above button operation can also be executed manually by operating a mechanical button or knob on the apparatus main body.

操作用ウィンドウ50には、ガス制御用バルブ101を開けてガスノズルからガスを放出させるガス放出開始ボタン112と、ガス制御用バルブ101を閉じてガス放出を停止させるガス放出停止ボタン113、走査電子顕微鏡で撮像した画像を画像表示部51に表示させるSEM画像表示ボタン114、カメラ106の取得画像を表示させるカメラボタン115が表示される。同時表示ボタン116をクリックすれば、SEM画像とカメラ画像の両方を画像表示部51に表示させることも可能であり、試料6の高さ調整の際には特に有効である。   In the operation window 50, a gas release start button 112 for opening the gas control valve 101 to release gas from the gas nozzle, a gas release stop button 113 for closing the gas control valve 101 and stopping gas release, a scanning electron microscope The SEM image display button 114 for displaying the image captured in step S1 on the image display unit 51 and the camera button 115 for displaying the acquired image of the camera 106 are displayed. If the simultaneous display button 116 is clicked, both the SEM image and the camera image can be displayed on the image display unit 51, which is particularly effective when adjusting the height of the sample 6.

本実施例の場合、ガス放出開始ボタン112を押してガス制御用バルブ101が開放され、その後ガス放出停止ボタン113を押し忘れると、ガスボンベ103のガスがなくなってしまう可能性がある。そのため、図7に示すように、ガス放出を開始してから停止するまでのガス放出の継続時間を設定するガス放出時間設定画面117を、子ウィンドウ118に表示してもよい。また、ガス放出してからガスを停止するまでの時間は装置使用者が設定するのではなく、装置にプリセットされた時間を使用してもよい。   In the case of the present embodiment, if the gas discharge start button 112 is pressed to open the gas control valve 101 and then the gas discharge stop button 113 is forgotten to be pressed, the gas in the gas cylinder 103 may be exhausted. Therefore, as shown in FIG. 7, a gas discharge time setting screen 117 for setting a gas discharge duration from when gas discharge is started to when it is stopped may be displayed on the child window 118. Further, the time from when the gas is released to when the gas is stopped is not set by the user of the apparatus, but a time preset in the apparatus may be used.

また、SEM画像を観察する時だけに必ずガス放出を行いたい場合がある。その場合は、図7に示す別ウィンドウ118内を表示させ、予めチェックボックス119にチェックマークを入れておく。チェックマークが入った状態で画像観察開始ボタン52がクリックされると、ガス制御用バルブ101が自動的に開き、置換ガスの導入が開始される。その後、ガス放出時間設定画面117で設定された時間が経過すると、ガス制御用バルブ101が自動的に閉じられる。置換ガスの導入途中で画像観察停止ボタン53がクリックされた場合も、やはりガス制御用バルブ101が自動的に閉じられる。なお、置換ガスの導入途中でSEM画像表示ボタン114,カメラボタン115あるいは同時表示ボタン116をクリックすると、選択された画像の種別に応じて、画像表示部51に表示される画像が切り替えることができる。以上説明したガス制御用バルブ101の開閉制御は、上位制御部が伝達するパソコン35での設定情報にもとづき下位制御部37により実行される。   In some cases, it is desired to release gas only when observing an SEM image. In that case, the other window 118 shown in FIG. 7 is displayed, and a check mark is put in the check box 119 in advance. When the image observation start button 52 is clicked with the check mark on, the gas control valve 101 is automatically opened and the introduction of the replacement gas is started. Thereafter, when the time set on the gas discharge time setting screen 117 has elapsed, the gas control valve 101 is automatically closed. Even when the image observation stop button 53 is clicked during the introduction of the replacement gas, the gas control valve 101 is also automatically closed. Note that when the SEM image display button 114, the camera button 115, or the simultaneous display button 116 is clicked during the introduction of the replacement gas, the image displayed on the image display unit 51 can be switched according to the type of the selected image. . The opening / closing control of the gas control valve 101 described above is executed by the lower control unit 37 based on the setting information in the personal computer 35 transmitted from the upper control unit.

図8には、蓋部材122あるいは第2筐体121に粗排気ポートあるいは三方弁を設けた場合の操作画面の一例を示す。この場合の操作画面には、第1の空間と第2の空間の真空排気の開始/停止ボタンが別々に表示される。第2の空間用の真空排気ボタン59をクリックすれば、粗排気ポートに設けられた真空バルブが開き、第2の空間の真空排気が開始される。再度クリックすれば、粗排気ポートの真空バルブが閉じ真空排気が停止する。同様に、第2の空間用の大気リークボタン60をクリックすれば、三方弁に取り付けられたリークバルブが開き、第2の空間が大気開放される。再度クリックすれば、リークバルブが閉じ、2の空間の大気開放が停止する。   FIG. 8 shows an example of an operation screen when a rough exhaust port or a three-way valve is provided in the lid member 122 or the second housing 121. On the operation screen in this case, the evacuation start / stop buttons for the first space and the second space are displayed separately. When the vacuum exhaust button 59 for the second space is clicked, the vacuum valve provided in the rough exhaust port is opened, and the vacuum exhaust of the second space is started. If clicked again, the vacuum valve of the rough exhaust port closes and the vacuum exhaust stops. Similarly, when the atmospheric leak button 60 for the second space is clicked, the leak valve attached to the three-way valve is opened and the second space is opened to the atmosphere. If clicked again, the leak valve closes and the release of the space 2 into the atmosphere stops.

以上説明した構成に加え、第2筐体121と蓋部材122との接触状態を検知する接触モニタを設けて、第2の空間が閉じているあるいは開いていることを監視してもよい。   In addition to the configuration described above, a contact monitor that detects the contact state between the second housing 121 and the lid member 122 may be provided to monitor whether the second space is closed or open.

また、二次電子検出器や反射電子検出器に加えて、X線検出器や光検出器を設けて、EDS分析や蛍光線の検出ができるようにしてもよい。X線検出器や光検出器の配置としては、第1の空間11あるいは第2の空間12のいずれでもよい。   Further, in addition to the secondary electron detector and the backscattered electron detector, an X-ray detector and a photodetector may be provided so that EDS analysis and fluorescent ray detection can be performed. The arrangement of the X-ray detector and the photodetector may be either the first space 11 or the second space 12.

また、電子線が試料6に照射されると、試料に吸収電流が流れる。そのため、電流計を設けて、試料6または試料台に流れる電流を計測できるようにしてもよい。これにより、吸収電流像(または吸収電子を利用した画像)を取得することが可能となる。また、試料台の下側に透過電子検出器を配置し、走査透過(STEM)画像を取得できるようにしてもよい。試料台それ自体を検出器にしてもよい。   Further, when the sample 6 is irradiated with the electron beam, an absorption current flows through the sample. Therefore, an ammeter may be provided so that the current flowing through the sample 6 or the sample stage can be measured. Thereby, an absorption current image (or an image using absorption electrons) can be acquired. Further, a transmission electron detector may be disposed below the sample stage so that a scanning transmission (STEM) image can be acquired. The sample stage itself may be a detector.

また、試料ステージ5に高電圧を印加してもよい。試料6に高電圧を印加すると試料6からの放出電子に高エネルギーを持たせることができ、信号量を増加させることが可能となり、画像S/Nが改善される。   Further, a high voltage may be applied to the sample stage 5. When a high voltage is applied to the sample 6, the electrons emitted from the sample 6 can have high energy, the signal amount can be increased, and the image S / N is improved.

また、本実施例の構成を小型の電子線描画装置に適用することも可能である。この場合には、検出器3は必ずしも必要ではない。   In addition, the configuration of this embodiment can be applied to a small electron beam drawing apparatus. In this case, the detector 3 is not always necessary.

以上、本実施例により、実施例1の効果に加え、高真空SEMとしても使用可能な大気圧SEMが実現される。また、置換ガスを導入して観察が実行できるため、本実施例の走査電子顕微鏡は、実施例1の荷電粒子顕微鏡よりもS/Nの良い画像取得が可能である。   As described above, according to this embodiment, an atmospheric pressure SEM that can be used as a high vacuum SEM is realized in addition to the effects of the first embodiment. In addition, since the observation can be performed by introducing a replacement gas, the scanning electron microscope of the present embodiment can acquire an image having a better S / N than the charged particle microscope of the first embodiment.

なお、本実施例では卓上型電子顕微鏡を意図した構成例について説明したが、本実施例を大型の走査電子顕微鏡に適用することも可能である。卓上型電子顕微鏡の場合は、装置全体あるいは荷電粒子光学鏡筒が筐体によって装置設置面に支持されるが、大型の走査電子顕微鏡の場合は、装置全体を架台に載置すればよく、従って、第1筐体7を架台に載置すれば、本実施例で説明した構成をそのまま大型の走査電子顕微鏡に転用できる。   In addition, although the present Example demonstrated the structural example which intended the desktop electron microscope, this Example can also be applied to a large sized scanning electron microscope. In the case of a desktop electron microscope, the entire apparatus or charged particle optical column is supported on the apparatus installation surface by a housing. However, in the case of a large scanning electron microscope, the entire apparatus may be placed on a pedestal. If the first casing 7 is placed on a gantry, the configuration described in this embodiment can be used as it is for a large scanning electron microscope.

本実施例では、図2の装置構成から蓋部材122を外した構成例について説明する。図9には、本実施例の荷電粒子顕微鏡の全体構成を示す。制御系については、実施例2と同様であるので図示を省略し、装置の要部のみ示している。   In this embodiment, a configuration example in which the lid member 122 is removed from the device configuration in FIG. 2 will be described. In FIG. 9, the whole structure of the charged particle microscope of a present Example is shown. Since the control system is the same as that of the second embodiment, the illustration is omitted, and only the main part of the apparatus is shown.

図9に示す構成では、試料ステージ5が第2筐体121の底面に直接固定される。ガス供給管100は第2筐体121に固定されていてもよいし、されていなくてもよい。本構成によれば、試料が装置外部にはみ出すことが許容されるため、蓋部材122を備える実施例2の構成よりもサイズの大きな試料を観察することが可能である。   In the configuration shown in FIG. 9, the sample stage 5 is directly fixed to the bottom surface of the second housing 121. The gas supply pipe 100 may or may not be fixed to the second casing 121. According to this configuration, since the sample is allowed to protrude outside the apparatus, it is possible to observe a sample having a size larger than that of the configuration of the second embodiment including the lid member 122.

本実施例では、図2の装置構成において、第2筐体121と蓋部材122の位置関係を変えた変形例について説明する。図10には、本実施例の荷電粒子顕微鏡の全体構成を示す。実施例3と同様、図10では装置の要部のみ示す。本構成においては、第1の空間11と第2の空間12を真空シールするための真空封止部材128が必要である。この構成の場合、第二筐体の合わせ部132が装置の内側にあるために、装置全体の大きさを実施例1〜3の構成よりも小さくすることができる。   In the present embodiment, a modification in which the positional relationship between the second casing 121 and the lid member 122 is changed in the apparatus configuration of FIG. 2 will be described. In FIG. 10, the whole structure of the charged particle microscope of a present Example is shown. As in the third embodiment, only the main part of the apparatus is shown in FIG. In this configuration, a vacuum sealing member 128 for vacuum-sealing the first space 11 and the second space 12 is necessary. In the case of this configuration, since the mating portion 132 of the second housing is inside the device, the size of the entire device can be made smaller than the configurations of the first to third embodiments.

本実施例では、図2の装置構成において、第2筐体121が第1筐体の上側で真空シールされている変形例について説明する。図11に本実施例の荷電粒子顕微鏡の全体構成を示す。実施例4と同様、図11では装置の要部のみ示す。本構成では、鍋型のアタッチメント(第2筐体121)を用いて、第1筐体7に上からアタッチメントをはめ込み、更にその上から電子光学鏡筒2をはめ込んだ構成を備える。第2筐体121は電子光学鏡筒2に対して真空封止部材123で真空シールされ、更に、第2筐体121は第1筐体7に対して真空封止部材129で真空シールされる。この構成の場合、図2と比較すると第2の空間11の容積を大きくすることができ、実施例2の構成よりも大きな試料の配置をすることが可能となる。   In the present embodiment, a modification in which the second housing 121 is vacuum-sealed on the upper side of the first housing in the apparatus configuration of FIG. 2 will be described. FIG. 11 shows the overall configuration of the charged particle microscope of this example. As in the fourth embodiment, only the main part of the apparatus is shown in FIG. In this configuration, a pan-type attachment (second housing 121) is used to fit the attachment into the first housing 7 from above, and the electro-optic lens barrel 2 from above. The second casing 121 is vacuum-sealed with respect to the electron optical column 2 by a vacuum sealing member 123, and the second casing 121 is vacuum-sealed with respect to the first casing 7 with a vacuum sealing member 129. . In the case of this configuration, the volume of the second space 11 can be increased as compared with FIG. 2, and a larger sample can be arranged than the configuration of the second embodiment.

0 電子源(荷電粒子源)
1 光学レンズ
2 電子光学(荷電粒子光学)鏡筒
3 検出器
4 真空ポンプ
5 試料ステージ
6 試料
7 第1の筐体
10 薄膜
11 第1の空間
12 第2の空間
14 リークバルブ
16 真空配管
18 支柱
19 板部材用支持部材
20 底板
35 パソコン
36 上位制御部
37 下位制御部
43,44 通信線
47 薄膜保持部材
50 操作用ウィンドウ
51 画像表示部
52 画像観察開始ボタン
53 画像観察停止ボタン
54 焦点調整ボタン
55 明るさ調整ボタン
56 コントラスト調整ボタン
57,59 真空排気ボタン
58,60 大気リークボタン
100 ガス供給管
101 ガス制御用バルブ
102 連結部
103 ガスボンベ
104 圧力調整弁
105 制限部材
106 カメラ
107 支持板
108,109 操作つまみ
112 ガス放出開始ボタン
113 ガス放出停止ボタン
114 SEM画像表示ボタン
115 カメラボタン
116 同時表示ボタン
117 ガス放出時間設定画面
118 子ウィンドウ
119 ガス放出実行チェックボックス
120 OKボタン
121 第2筐体
122,130 蓋部材
123,124,125,126,128,129 真空封止部材
131 本体部
132 合わせ部
0 electron source (charged particle source)
DESCRIPTION OF SYMBOLS 1 Optical lens 2 Electron optics (charged particle optics) lens barrel 3 Detector 4 Vacuum pump 5 Sample stage 6 Sample 7 1st housing | casing 10 Thin film 11 1st space 12 2nd space 14 Leak valve 16 Vacuum piping 18 Support | pillar 19 plate member support member 20 bottom plate 35 personal computer 36 upper control unit 37 lower control units 43 and 44 communication line 47 thin film holding member 50 operation window 51 image display unit 52 image observation start button 53 image observation stop button 54 focus adjustment button 55 Brightness adjustment button 56 Contrast adjustment button 57, 59 Vacuum exhaust button 58, 60 Atmospheric leak button 100 Gas supply pipe 101 Gas control valve 102 Connecting portion 103 Gas cylinder 104 Pressure adjustment valve 105 Restriction member 106 Camera 107 Support plate 108, 109 Operation Knob 112 Gas release start button 113 Gas release Stop button 114 SEM image display button 115 Camera button 116 Simultaneous display button 117 Gas release time setting screen 118 Child window 119 Gas release execution check box 120 OK button 121 Second casing 122, 130 Lid members 123, 124, 125, 126, 128, 129 Vacuum sealing member 131 Body portion 132 Matching portion

本発明では、荷電粒子顕微鏡に備えられた真空室に対して、内部の圧力を前記真空室の圧力よりも高い状態に維持しつつ前記試料を格納できるアタッチメントを、上記真空室の開口部から挿入し真空室に固定して使用することにより、上記課題を解決する。真空室の開口部は、例えば上記真空室の側面あるいは底面に設けられる。また、上記のアタッチメントは、一次荷電粒子線をアタッチメント内部に透過あるいは通過させる薄膜を保持する機能を備えており、これにより真空室とアタッチメント内部の圧力差を確保する。上記真空室を第1の筐体、上記アタッチメントを上記真空室に対する第2の筐体と呼んでもよい。また、一次荷電粒子線を試料上に走査する荷電粒子光学鏡筒と、前記走査により得られる反射電子あるいは二次電子を検出する検出器と、真空ポンプとを備える荷電粒子線装置において、前記真空ポンプにより真空状態に維持される第1の空間を形成する第1の筐体と、試料が配置される第2の空間を形成する第2の筐体と、前記一次荷電粒子線が透過する薄膜が保持され、前記第1の空間と前記第2の空間を仕切るように着脱可能に固定される薄膜保持部材と、を有し、前記薄膜保持部材が前記荷電粒子線装置に固定されている場合には、前記第1の空間と前記第2の空間が前記薄膜により仕切られることで前記第2の空間を前記第1の空間より圧力が高い状態に維持可能であり、前記薄膜保持部材を前記荷電粒子線装置から取り外した場合には、前記第1の空間と前記第2の空間が連通し、前記第2の空間を真空排気することが可能である構成とする。

In the present invention, an attachment capable of storing the sample is inserted into the vacuum chamber provided in the charged particle microscope from the opening of the vacuum chamber while maintaining an internal pressure higher than the pressure in the vacuum chamber. However, the above-mentioned problem is solved by fixing the vacuum chamber to use. The opening part of a vacuum chamber is provided in the side surface or bottom face of the said vacuum chamber, for example. Further, the above attachment has a function of holding a thin film that allows the primary charged particle beam to pass through or pass through the inside of the attachment, thereby ensuring a pressure difference between the vacuum chamber and the inside of the attachment. The vacuum chamber may be called a first casing, and the attachment may be called a second casing for the vacuum chamber. In the charged particle beam apparatus comprising: a charged particle optical column that scans a sample with a primary charged particle beam; a detector that detects reflected electrons or secondary electrons obtained by the scanning; and a vacuum pump. A first casing that forms a first space maintained in a vacuum state by a pump; a second casing that forms a second space in which a sample is placed; and a thin film through which the primary charged particle beam passes A thin film holding member that is detachably fixed so as to partition the first space and the second space, and the thin film holding member is fixed to the charged particle beam device The first space and the second space are partitioned by the thin film so that the second space can be maintained at a higher pressure than the first space, and the thin film holding member is Field removed from charged particle beam equipment The communicates said first space and the second space, a configuration is possible to evacuate the second space.

Claims (17)

一次荷電粒子線を試料上に走査する荷電粒子光学鏡筒と、前記走査により得られる反射電子あるいは二次電子を検出する検出器と、真空ポンプとを備える荷電粒子線装置において、
前記真空ポンプにより真空状態に維持される第1の空間を形成する第1の筐体と、
試料が配置される第2の空間を形成する第2の筐体と、
前記一次荷電粒子線が透過する薄膜が保持され、前記第1の空間と前記第2の空間を仕切るように着脱可能に固定される薄膜保持部材と、を有し、
前記薄膜保持部材が前記荷電粒子線装置に固定されている場合には、前記第1の空間と前記第2の空間が前記薄膜により仕切られることで前記第2の空間を前記第1の空間より圧力が高い状態に維持可能であり、
前記薄膜保持部材を前記荷電粒子線装置から取り外した場合には、前記第1の空間と前記第2の空間が連通し、前記第2の空間を真空排気することが可能である荷電粒子線装置。
In a charged particle beam apparatus comprising a charged particle optical column that scans a sample with a primary charged particle beam, a detector that detects reflected electrons or secondary electrons obtained by the scanning, and a vacuum pump,
A first housing forming a first space maintained in a vacuum state by the vacuum pump;
A second housing forming a second space in which the sample is placed;
A thin film holding member that holds the thin film through which the primary charged particle beam is transmitted and is detachably fixed so as to partition the first space and the second space;
When the thin film holding member is fixed to the charged particle beam device, the first space and the second space are partitioned by the thin film, so that the second space is separated from the first space. The pressure can be kept high,
When the thin film holding member is removed from the charged particle beam device, the charged particle beam device can communicate the first space with the second space and evacuate the second space. .
請求項1に記載の荷電粒子線装置において、
前記第1の筺体は、前記荷電粒子線装置全体を装置設置面に対して支持し、内部が前記真空ポンプにより真空排気される荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The first casing is a charged particle beam apparatus that supports the entire charged particle beam apparatus with respect to the apparatus installation surface, and the inside is evacuated by the vacuum pump.
請求項1に記載の荷電粒子線装置において、
前記薄膜保持部材は、前記第2の筐体の上面側に設けられる荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The thin film holding member is a charged particle beam device provided on an upper surface side of the second casing.
請求項1に記載の荷電粒子線装置において、
前記第2の筐体の形状が一つの側面が開放された直方体形状であり、前記開放された一つの側面を蓋う蓋部材を備える荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
A charged particle beam apparatus comprising: a lid member that covers the one opened side surface, wherein the second casing has a rectangular parallelepiped shape with one side surface opened.
請求項4に記載の荷電粒子線装置において、
前記蓋部材は、前記第2の筐体の側面に対して脱着可能に固定される荷電粒子線装置。
The charged particle beam device according to claim 4,
The charged particle beam apparatus, wherein the lid member is detachably fixed to a side surface of the second casing.
請求項1に記載の荷電粒子線装置において、
前記第2の筺体は、前記第1の筺体の内部に挿入される本体部と、前記第1の筐体の外壁面に真空封止部材を介して位置が固定される合わせ部とにより構成される荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The second housing includes a main body portion inserted into the first housing and a mating portion whose position is fixed to the outer wall surface of the first housing via a vacuum sealing member. Charged particle beam equipment.
請求項1に記載の荷電粒子線装置において、
前記第1の筺体は、前記第2の筺体の上面の外壁に取り付けられることを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus according to claim 1, wherein the first casing is attached to an outer wall of an upper surface of the second casing.
請求項7に記載の荷電粒子線装置において、
前記第2の筐体の側面に対して脱着可能に固定される蓋部材をさらに備える荷電粒子線装置。
The charged particle beam device according to claim 7,
A charged particle beam apparatus further comprising a lid member that is detachably fixed to a side surface of the second casing.
請求項1に記載の荷電粒子線装置において、
前記第2の筐体は前記第1の筐体内部の真空状態を維持したまま当該第2の筐体の内部に格納された前記試料の交換が可能な開放面を有することを特徴とする荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The second casing has an open surface on which the sample stored in the second casing can be exchanged while maintaining a vacuum state in the first casing. Particle beam device.
請求項1に記載の荷電粒子線装置において、
前記薄膜保持部が、前記試料と薄膜間の距離を制限する制限部材を備える荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the thin film holding unit includes a limiting member that limits a distance between the sample and the thin film.
請求項1に記載の荷電粒子線装置において、
前記薄膜と前記試料の間隔を観察または測定可能な観察装置を備える荷電粒子線装置。
The charged particle beam apparatus according to claim 1,
A charged particle beam apparatus comprising an observation device capable of observing or measuring a distance between the thin film and the sample.
一次荷電粒子線を試料上に走査する荷電粒子光学鏡筒と、前記走査により得られる反射電子あるいは二次電子を検出する検出器と、真空ポンプとを備える荷電粒子線装置を用いた試料観察方法において、
前記一次荷電粒子線が透過する薄膜が保持された薄膜保持部材を前記真空ポンプにより真空状態に維持される第1の空間と試料が配置される第2の空間を仕切るように前記荷電粒子線装置に固定した状態で、前記第1の空間と前記第2の空間が前記薄膜により仕切られることで前記第2の空間を前記第1の空間より圧力が高い状態に維持して、前記試料の画像を取得するステップと、
前記薄膜保持部材を前記荷電粒子線装置から取り外した状態で、前記第1の空間と前記第2の空間とを連通させ、前記第2の空間を真空排気して前記試料の画像を取得するステップと、を有する試料観察方法。
A sample observation method using a charged particle beam apparatus comprising: a charged particle optical column that scans a sample with a primary charged particle beam; a detector that detects reflected electrons or secondary electrons obtained by the scanning; and a vacuum pump. In
The charged particle beam apparatus partitions a thin film holding member holding a thin film through which the primary charged particle beam is transmitted into a first space where the vacuum pump is maintained and a second space where a sample is placed. The first space and the second space are partitioned by the thin film in a state of being fixed to the first space, so that the second space is maintained at a higher pressure than the first space, and an image of the sample is obtained. Step to get the
With the thin film holding member removed from the charged particle beam device, the first space and the second space are communicated, and the second space is evacuated to obtain an image of the sample. And a sample observation method.
請求項12に記載の試料観察方法において、
前記第2の空間の一つの側面を蓋部材を蓋う試料観察方法。
The sample observation method according to claim 12,
A sample observation method of covering one side surface of the second space with a lid member.
請求項13に記載の試料観察方法において、
前記蓋部材は、前記第2の空間を形成する第2の筐体の側面に対して脱着可能に固定される試料観察方法。
The sample observation method according to claim 13,
The sample observing method, wherein the lid member is detachably fixed to a side surface of a second housing forming the second space.
請求項12に記載の試料観察方法において、
前記第1の空間の真空状態を維持したまま前記第2の空間に配置された前記試料を交換する試料観察方法。
The sample observation method according to claim 12,
A sample observation method of exchanging the sample arranged in the second space while maintaining the vacuum state of the first space.
請求項12に記載の試料観察方法において、
前記試料と前記薄膜間の距離を制限する試料観察方法。
The sample observation method according to claim 12,
A sample observation method for limiting a distance between the sample and the thin film.
請求項12に記載の試料観察方法において、
前記薄膜と前記試料の間隔を観察または測定する試料観察方法。
The sample observation method according to claim 12,
A sample observation method for observing or measuring an interval between the thin film and the sample.
JP2016076264A 2016-04-06 2016-04-06 Charged particle beam equipment Expired - Fee Related JP6272384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076264A JP6272384B2 (en) 2016-04-06 2016-04-06 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076264A JP6272384B2 (en) 2016-04-06 2016-04-06 Charged particle beam equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015021710A Division JP5923632B2 (en) 2015-02-06 2015-02-06 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2016122668A true JP2016122668A (en) 2016-07-07
JP6272384B2 JP6272384B2 (en) 2018-01-31

Family

ID=56327513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076264A Expired - Fee Related JP6272384B2 (en) 2016-04-06 2016-04-06 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP6272384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680305A (en) * 2016-11-23 2017-05-17 聚束科技(北京)有限公司 Vacuum atmosphere processing device as well as sample observing system and sample observing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451373A (en) * 1977-09-30 1979-04-23 Hitachi Ltd Sample processor of scanning electron micro-scope and similar unit
JP2006318903A (en) * 2005-05-09 2006-11-24 Lee Bing Huan Device enabling operation and observation of gas under vacuum or low pressure environment
JP2008262886A (en) * 2007-04-12 2008-10-30 Beam Seiko:Kk Scanning electron microscope device
JP2015092513A (en) * 2015-02-06 2015-05-14 株式会社日立ハイテクノロジーズ Charged particle beam device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451373A (en) * 1977-09-30 1979-04-23 Hitachi Ltd Sample processor of scanning electron micro-scope and similar unit
JP2006318903A (en) * 2005-05-09 2006-11-24 Lee Bing Huan Device enabling operation and observation of gas under vacuum or low pressure environment
JP2008262886A (en) * 2007-04-12 2008-10-30 Beam Seiko:Kk Scanning electron microscope device
JP2015092513A (en) * 2015-02-06 2015-05-14 株式会社日立ハイテクノロジーズ Charged particle beam device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106680305A (en) * 2016-11-23 2017-05-17 聚束科技(北京)有限公司 Vacuum atmosphere processing device as well as sample observing system and sample observing method
CN106680305B (en) * 2016-11-23 2023-08-04 聚束科技(北京)有限公司 Vacuum atmosphere treatment device, sample observation system and method

Also Published As

Publication number Publication date
JP6272384B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP5699023B2 (en) Charged particle beam equipment
JP5825964B2 (en) Inspection or observation device and sample inspection or observation method
KR101514190B1 (en) Charged particle beam apparatus
JP5936484B2 (en) Charged particle beam apparatus and sample observation method
JP6207824B2 (en) Charged particle beam apparatus, diaphragm position adjustment method, and diaphragm position adjustment jig
JP6302702B2 (en) Scanning electron microscope and image generation method
WO2014050242A1 (en) Charged particle radiation device
JP5923412B2 (en) Observation apparatus and optical axis adjustment method
WO2014041876A1 (en) Charged particle beam device and sample observation method
JP6272384B2 (en) Charged particle beam equipment
JP5923632B2 (en) Charged particle beam equipment
JP6118870B2 (en) Sample observation method
JP2015079765A (en) Charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170303

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171228

R150 Certificate of patent or registration of utility model

Ref document number: 6272384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees