JP2016121478A - Evaluation device for compactor - Google Patents

Evaluation device for compactor Download PDF

Info

Publication number
JP2016121478A
JP2016121478A JP2014261680A JP2014261680A JP2016121478A JP 2016121478 A JP2016121478 A JP 2016121478A JP 2014261680 A JP2014261680 A JP 2014261680A JP 2014261680 A JP2014261680 A JP 2014261680A JP 2016121478 A JP2016121478 A JP 2016121478A
Authority
JP
Japan
Prior art keywords
compaction
evaluation device
machine
vibration
compacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014261680A
Other languages
Japanese (ja)
Other versions
JP6297968B2 (en
Inventor
小倉 弘
Hiroshi Ogura
弘 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2014261680A priority Critical patent/JP6297968B2/en
Publication of JP2016121478A publication Critical patent/JP2016121478A/en
Application granted granted Critical
Publication of JP6297968B2 publication Critical patent/JP6297968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation device for a compactor, which can reduce initial costs by using a single evaluation device shared between a plurality of compactors, eliminate complex input work and prevent a problem from occurring due to an input error by automatically configuring corresponding information of a compactor to be used.SOLUTION: By providing a mounting base 10 for an evaluation device 1 on each of a vibratory roller vehicle 2 and a rammer 3, the single valuation device 1 can be shared between the compactors. The device stores in advance in a memory 4a a calculation formula configured for each compactor to calculate the basic vibration frequency of the compactor and a turbulence factor that correlates with the compaction degree of a road surface during compaction work, and when using a compactor, automatically measures a basic vibration to identify which compactor the evaluation device 1 is currently mounted, reads out the calculation formula corresponding to the compactor from the memory 4a to apply it to the calculation of a turbulence factor.SELECTED DRAWING: Figure 1

Description

本発明は、締固め機械の評価装置に係り、詳しくは締固め作業中に路面の締め固め度を評価する締固め評価装置に関する。   The present invention relates to a compaction machine evaluation apparatus, and more particularly to a compaction evaluation apparatus that evaluates the degree of compaction of a road surface during compaction work.

この種の締固め機械、例えばオペレータが搭乗する搭乗型の振動ローラ車両や非搭乗型のランマ等は、道路工事等での路面の締固め作業に広く使用されている。締固め作業は路面が規定の締固め度に達するまで実施する必要があるため、従来は締固め作業を適宜中断して、作業員が密度測定(例えば、砂置換法、平板載荷法、RI密度計による計測等)を行って規定の締固め度に達したか否かを確認していた。しかしながら、このような手作業的な管理方法は多大な労力と時間を要して締固め施工を遅延させる原因になるため、締固め作業の実施中にリアルタイムで締固め度を評価・表示する評価装置が実用化されている。   This type of compacting machine, for example, a boarding type vibration roller vehicle on which an operator is boarded or a non-boarding type runner is widely used for road compaction work in road construction or the like. Since the compaction work must be performed until the road surface reaches the specified compaction degree, conventionally, the compaction work is interrupted as appropriate, and the operator measures the density (for example, sand replacement method, plate loading method, RI density) Etc.) to check whether or not the specified degree of compaction has been reached. However, such a manual management method requires a great amount of labor and time, and causes a delay in the compacting operation. Therefore, an evaluation that evaluates and displays the degree of compaction in real time during the compacting operation is performed. The device has been put into practical use.

例えば特許文献1に記載された評価装置は、振動ローラ車両による締固め作業中に、転圧輪の振動加速度に含まれる振動数成分と締固め度との間に相関関係が成立する点に着目し、転圧輪の振動加速度から周波数スペクトル解析により定量的な乱れ率を算出し、予め実験により取得した乱れ率と締固め度との関係に基づき、算出した乱れ率から路面の締固め度を評価・表示している。   For example, the evaluation apparatus described in Patent Document 1 focuses on the fact that a correlation is established between the frequency component included in the vibration acceleration of the rolling wheel and the degree of compaction during the compacting operation by the vibration roller vehicle. Then, a quantitative turbulence rate is calculated from the vibration acceleration of the rolling wheel by frequency spectrum analysis, and based on the relationship between the turbulence rate and the degree of compaction obtained in advance, the road surface compaction degree is calculated from the calculated turbulence rate. It is evaluated and displayed.

特許3908031号明細書Japanese Patent No. 3908031

特許文献1に記載された評価装置によれば、労力や時間を要することなく且つ締固め作業を中断せずにリアルタイムで締固め度を把握できることから、締固め作業を効率的に推し進めることができる。しかし、多数の締固め機械に個別に評価装置を装備すると、膨大な初期費用を要するという新たな問題が発生する。   According to the evaluation apparatus described in Patent Document 1, since the degree of compaction can be grasped in real time without requiring labor and time and without interrupting the compaction work, the compaction work can be efficiently promoted. . However, if a large number of compacting machines are individually equipped with an evaluation device, a new problem of enormous initial costs arises.

その解決策として、単一の評価装置を複数の締固め機械に対し任意に脱着し得るように構成し、その評価装置を各締固め機械の間で流用(いわゆる使い回し)することが考えられる。ところが、評価装置により乱れ率を算出するには、それぞれの締固め機械が有する固有の情報が必要となる。具体的には、乱れ率の算出処理は予め設定された計算式が適用され(実施形態に記載の式(1)に相当)、その計算式には、締固め機械の基本振動数及び基本振動数の何次成分までかを代入する必要があり、これらの基本振動数や代入すべき振動数成分の次数は個々の締固め機械によって相違する。このため締固め機械を使用する際には、その都度これらの情報を入力する必要が生じ、入力作業が煩雑な上に、誤入力により誤った締固め度の評価がなされると路面品質を低下させてしまう可能性もある。   As a solution, it is conceivable that a single evaluation device can be arbitrarily attached to and detached from a plurality of compaction machines, and the evaluation device is reused (so-called reuse) between the compaction machines. . However, in order to calculate the disturbance rate by the evaluation device, specific information possessed by each compaction machine is required. Specifically, a calculation formula set in advance is applied to the calculation process of the turbulence rate (corresponding to the formula (1) described in the embodiment), and the calculation formula includes the basic frequency and the basic vibration of the compacting machine. It is necessary to substitute the order component of the number, and the fundamental frequency and the order of the frequency component to be substituted differ depending on the individual compaction machine. For this reason, when using a compacting machine, it is necessary to input these information each time, and the input work is complicated, and if the wrong compaction is evaluated due to erroneous input, the road surface quality deteriorates. There is also the possibility of letting you.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、単一の評価装置を複数の締固め機械の間で流用して初期費用を低減可能とした上で、使用する締固め機械に対応する情報を自動的に設定して煩雑な入力作業を不要とすると共に、誤入力に起因するトラブルを未然に回避することできる締固め機械の評価装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to reduce the initial cost by diverting a single evaluation device among a plurality of compaction machines. The present invention provides an evaluation device for a compacting machine that automatically sets information corresponding to the compacting machine to be used, eliminates the need for complicated input work, and avoids problems caused by erroneous input. There is.

上記の目的を達成するため、本発明の締固め機械の評価装置は、路面の締固め度を評価する締固め機械の評価装置であって、振動体を加振して路面を締め固める複数の異なる機種の締固め機械に対して脱着可能に取り付ける取付手段と、各締固め機械の基本振動数、及び路面の締固めに伴う振動体の振動加速度を周波数スペクトル解析により定量的な乱れ率として算出するために締固め機械毎に設定された計算式をそれぞれ記憶する記憶手段と、取付手段により取り付けられている締固め機械の作動中において、締固め機械の振動体の振動加速度に基づき基本振動数を算出する基本振動数算出手段と、基本振動数算出手段により算出された基本振動数を記憶手段に記憶されている各締固め機械の基本振動数と比較し、比較結果に基づき取付手段により取り付けられている締固め機械の機種を特定する機種特定手段と、機種特定手段により特定された締固め機械の機種に対応する乱れ率の計算式を記憶手段から読み出し、計算式を用いて締固め機械による締固め作業中に振動体の振動加速度に基づき乱れ率を算出し、乱れ率に基づき路面の締固め度を評価する締固め度評価手段とを具備していることを特徴とする。   In order to achieve the above object, a compaction machine evaluation apparatus according to the present invention is a compaction machine evaluation apparatus that evaluates the degree of compaction of a road surface, and includes a plurality of devices that vibrate a vibrating body and compact a road surface. Quantitative turbulence rate is calculated by frequency spectrum analysis based on the frequency spectrum analysis of the mounting means that can be detachably attached to different types of compaction machines, the basic frequency of each compaction machine, and the vibration acceleration of the vibrating body accompanying compaction of the road surface. Storage means for storing each calculation formula set for each compaction machine, and during operation of the compaction machine attached by the attachment means, the basic frequency based on the vibration acceleration of the vibration body of the compaction machine And the basic frequency calculated by the basic frequency calculating means are compared with the basic frequency of each compaction machine stored in the storage means. The model identification means for identifying the type of the compacting machine attached by the above-mentioned method, and the calculation formula for the turbulence rate corresponding to the model of the compaction machine identified by the model identification means are read from the storage means and tightened using the calculation formula. A compaction degree evaluation means for calculating a disturbance rate based on the vibration acceleration of the vibrating body during the compacting operation by the compacting machine and evaluating the degree of compaction of the road surface based on the disturbance rate is provided.

本発明の締固め機械の評価装置によれば、単一の評価装置を複数の締固め機械の間で流用して初期費用を低減可能とした上で、使用する締固め機械に対応する情報を自動的に設定して煩雑な入力作業を不要とすると共に、誤入力に起因するトラブルを未然に回避することできる。   According to the compaction machine evaluation apparatus of the present invention, it is possible to reduce the initial cost by diverting a single evaluation apparatus among a plurality of compaction machines, and to provide information corresponding to the compaction machine to be used. It is possible to automatically set and eliminate complicated input work, and to avoid troubles caused by erroneous input.

実施形態の評価装置と評価装置が流用される複数の締固め機械との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the evaluation apparatus of embodiment and the some compaction machine where the evaluation apparatus is diverted. 評価装置の構成を示すブロック図である。It is a block diagram which shows the structure of an evaluation apparatus. 振動ローラ車両の運転席に設けられたインストルメントパネル及び取付ベースを示す斜視図である。It is a perspective view which shows the instrument panel and attachment base which were provided in the driver's seat of the vibration roller vehicle. ランマの操作ハンドルに設けられた取付ベースを示す斜視図である。It is a perspective view which shows the attachment base provided in the operation handle of the rammer. 振動ローラ車両の場合の加速度センサにより検出される振動加速度を示すグラフである。It is a graph which shows the vibration acceleration detected by the acceleration sensor in the case of a vibration roller vehicle. 同じく振動加速度を周波数スペクトル解析して振動数域毎の分布として表したグラフである。It is the graph which similarly represented the vibration acceleration as a distribution for every frequency range by frequency spectrum analysis. ランマの場合の加速度センサにより検出される振動加速度を示すグラフである。It is a graph which shows the vibration acceleration detected by the acceleration sensor in the case of a rammer. 同じく振動加速度を周波数スペクトル解析して振動数域毎の分布として表したグラフである。It is the graph which similarly represented the vibration acceleration as a distribution for every frequency range by frequency spectrum analysis. マイコンが実行する機種特定ルーチンを示すフローチャートである。It is a flowchart which shows the model specific routine which a microcomputer performs.

以下、本発明を具体化した締固め機械の評価装置の一実施形態を説明する。
図1は本実施形態の評価装置と評価装置が流用される複数の締固め機械との関係を模式的に示す説明図、図2は評価装置の構成を示すブロック図である。
図1に示すように本実施形態では、単一の評価装置1が締固め機械としての振動ローラ車両2とランマ3との間で流用される。評価装置1はボックス形状をなし、その内部にはマイクロコンピュータ4(以下、マイコンと称する)及びバッテリ5が収容されている。マイコン4は、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供されるROMやRAM等のメモリ4a(記憶手段)、中央処理装置(CPU)、タイマカウンタなどを備えている。
Hereinafter, an embodiment of a compacting machine evaluation apparatus embodying the present invention will be described.
FIG. 1 is an explanatory view schematically showing the relationship between the evaluation apparatus of the present embodiment and a plurality of compacting machines to which the evaluation apparatus is diverted, and FIG. 2 is a block diagram showing the configuration of the evaluation apparatus.
As shown in FIG. 1, in this embodiment, the single evaluation apparatus 1 is diverted between the vibration roller vehicle 2 and the rammer 3 as a compacting machine. The evaluation device 1 has a box shape, and a microcomputer 4 (hereinafter referred to as a microcomputer) and a battery 5 are accommodated therein. The microcomputer 4 includes an input / output device (not shown), a memory 4a (storage means) such as a ROM and a RAM for storing control programs and control maps, a central processing unit (CPU), a timer counter, and the like.

後述するようにマイコン4はバッテリ5からの電力供給を受けて、評価装置1が取り付けられている締固め機械の機種の特定処理、及び締固め作業での路面の締固め度の評価処理を実行する。そのためにメモリ4aには、評価装置1が取り付けられる可能性がある締固め機械(ここでは振動ローラ車両2及びランマ3)の基本振動数、及び各締固め機械による路面の締固めに伴う振動体(後述のように振動ローラ車両2の前部転圧輪15、ランマ3のシュー28)の振動加速度から路面の締固め度と相関する乱れ率を算出するために締固め機械毎に設定された計算式がそれぞれ記憶されている。   As will be described later, the microcomputer 4 receives power supplied from the battery 5 and executes a process for specifying the type of the compacting machine to which the evaluation device 1 is attached and a process for evaluating the degree of compaction of the road surface during the compacting operation. To do. Therefore, in the memory 4a, the basic frequency of the compaction machine (here, the vibration roller vehicle 2 and the rammer 3) to which the evaluation device 1 may be attached, and the vibration body accompanying the compaction of the road surface by each compaction machine. It was set for each compaction machine to calculate the turbulence rate that correlates with the degree of compaction of the road surface from the vibration acceleration of the front roller wheel 15 of the vibration roller vehicle 2 and the shoe 28 of the ramper 3 as will be described later. Each calculation formula is stored.

なお、評価装置1の電源は上記に限るものではなく、例えば評価装置1内のバッテリ5を省略して、代わりに評価装置1が現在取り付けられている締固め機械から電力供給を受けるようにしてもよい。   The power supply of the evaluation apparatus 1 is not limited to the above. For example, the battery 5 in the evaluation apparatus 1 is omitted, and instead, the evaluation apparatus 1 is supplied with power from a compacting machine to which the evaluation apparatus 1 is currently attached. Also good.

評価装置1の前面には、3種のスイッチ6〜8と共に多数のLED9がグラフを模した曲線を描くように配列されており、これらのスイッチ6〜8及びLED9はマイコン4に電気的に接続されている。電源スイッチ6は評価装置1の電源のON-OFFを指令し、機種特定スイッチ7は評価装置1が取り付けられた締固め機械の機種の特定処理を指令し、評価スイッチ8は路面の締固め度の評価処理を指令する機能を奏する。また、各LED9は締固め作業中に路面の締固め度を表示する機能を奏し、締固め度の向上に伴って左側から順にLED9が点灯するようになっている。   On the front surface of the evaluation device 1, a large number of LEDs 9 are arranged together with three types of switches 6 to 8 so as to draw a curve simulating a graph, and these switches 6 to 8 and the LEDs 9 are electrically connected to the microcomputer 4. Has been. The power switch 6 commands ON / OFF of the power supply of the evaluation device 1, the model specifying switch 7 commands specific processing of the type of the compacting machine to which the evaluation device 1 is attached, and the evaluation switch 8 is the degree of compaction of the road surface. The function of instructing the evaluation process is provided. Each LED 9 has a function of displaying the degree of compaction of the road surface during the compacting operation, and the LEDs 9 are sequentially lit from the left side as the compaction degree is improved.

そして、以上のような評価装置1が振動ローラ車両2とランマ3とに任意に脱着可能となっている。そのために振動ローラ車両2のインストルメントパネル19及びランマ3の操作ハンドル26には、それぞれ同一構造の取付ベース10(取付手段)が設けられている。以下、各締固め機械の概要と取付ベース10による評価装置1の脱着について説明する。   The evaluation device 1 as described above can be freely attached to and detached from the vibration roller vehicle 2 and the ramp 3. For this purpose, the instrument panel 19 of the vibration roller vehicle 2 and the operation handle 26 of the rammer 3 are each provided with an attachment base 10 (attachment means) having the same structure. Hereinafter, the outline of each compacting machine and the detachment of the evaluation apparatus 1 by the mounting base 10 will be described.

振動ローラ車両2は、オペレータが搭乗して運転操作する搭乗型の締固め機械であり、前部車体12及び後部車体13をアーティキュレート機構14により水平方向に屈曲可能に連結して構成されている。前部車体12には鉄輪からなる前部転圧輪15(振動体)が設けられ、後部車体13にはゴムタイヤからなる後部転圧輪16が設けられている。振動ローラ車両2に搭乗したオペレータは、ステアリング17や前後進レバー18等を操作し、それに応じて振動ローラ車両2は前部及び後部転圧輪15,16を回転させて走行しながら路面を締め固めると共に、アーティキュレート機構14により屈曲して適宜進路を変更する。図示はしないが前部転圧輪15には、偏心位置にウエイトを備えた起振体及びそれを回転駆動する油圧モータが内蔵されており、締固め作業中には、起振体の回転に伴って前部転圧輪15が加振されて路面の締固めが効率良く行われる。   The vibration roller vehicle 2 is a boarding type compacting machine on which an operator rides and operates, and is configured by connecting a front vehicle body 12 and a rear vehicle body 13 so as to be bent in the horizontal direction by an articulating mechanism 14. . The front vehicle body 12 is provided with a front roller wheel 15 (vibrating body) made of an iron wheel, and the rear vehicle body 13 is provided with a rear roller wheel 16 made of a rubber tire. An operator who has boarded the vibration roller vehicle 2 operates the steering wheel 17 and the forward / reverse lever 18 and the vibration roller vehicle 2 rotates the front and rear rolling wheels 15 and 16 accordingly to tighten the road surface while traveling. At the same time, it is bent by the articulate mechanism 14 and the course is changed appropriately. Although not shown, the front rolling wheel 15 includes a vibration generator having a weight at an eccentric position and a hydraulic motor that rotationally drives the vibration element. Accordingly, the front rolling wheel 15 is vibrated and the road surface is compacted efficiently.

図3は振動ローラ車両の運転席に設けられたインストルメントパネル19及び取付ベース10を示す斜視図である。
インストルメントパネル19には、ステアリング17やメータ20、スイッチ21等の振動ローラ車両2の運転操作に必要な機器類が備えられると共に、インストルメントパネル19の左側には、四角状をなす取付ベース10が後方(オペレータ側)に向けて開口するように一体的に形成されている。評価装置1は取付ベース10内に嵌込み可能であり、取付ベース10の底面に設けられたマグネット22(取付手段)の磁力により取付ベース10内からの脱落を防止されると共に、評価装置1を把持して取付ベース10内から引抜き可能になっている。なお、評価装置1を取り付ける手段については、マグネット22に限るものではなく任意に変更可能であり、例えば蝶ネジ等により評価装置1を取り付けてもよい。
FIG. 3 is a perspective view showing the instrument panel 19 and the mounting base 10 provided in the driver seat of the vibration roller vehicle.
The instrument panel 19 includes equipment necessary for driving the vibration roller vehicle 2 such as a steering wheel 17, a meter 20, and a switch 21, and a square mounting base 10 is provided on the left side of the instrument panel 19. Are integrally formed so as to open toward the rear (operator side). The evaluation device 1 can be fitted into the mounting base 10 and is prevented from falling out of the mounting base 10 by the magnetic force of the magnet 22 (mounting means) provided on the bottom surface of the mounting base 10. It can be gripped and pulled out from the mounting base 10. The means for attaching the evaluation apparatus 1 is not limited to the magnet 22 and can be arbitrarily changed. For example, the evaluation apparatus 1 may be attached by a thumbscrew or the like.

一方、図1に示すようにランマ3は、本体フレーム25の操作ハンドル26をオペレータが把持して操作する非搭乗型の締固め機械であり、本体フレーム25から下方にガイディング部27を延設して下端にシュー28(振動体)を固定して構成されている。本体フレーム25内には原動機29が搭載され、本体フレーム25上に配置された燃料タンク30からの燃料供給により運転される。原動機29の回転は図示しないクランク機構により上下方向の往復運動に変換され、この往復運動がガイディング部27に内蔵された図示しないコイルスプリングを介してシュー28に伝達されて加振する。オペレータはランマ3の操作ハンドル26を把持し、アクセルレバーにより原動機29の回転を調整しながら路面上でランマ3を適宜移動させて締固めを行う。   On the other hand, as shown in FIG. 1, the rammer 3 is a non-boarding type compacting machine in which an operator grips and operates the operation handle 26 of the main body frame 25, and a guiding portion 27 is extended downward from the main body frame 25. The shoe 28 (vibrating body) is fixed to the lower end. A prime mover 29 is mounted in the main body frame 25 and is operated by supplying fuel from a fuel tank 30 disposed on the main body frame 25. The rotation of the prime mover 29 is converted into a reciprocating motion in the vertical direction by a crank mechanism (not shown), and this reciprocating motion is transmitted to the shoe 28 via a coil spring (not shown) built in the guiding portion 27 and vibrates. The operator grips the operation handle 26 of the ramper 3 and adjusts the rotation of the prime mover 29 with the accelerator lever to move the ramper 3 appropriately on the road surface for compaction.

図4はランマ3の操作ハンドル26に設けられた取付ベース10を示す斜視図である。
操作ハンドル26はオペレータ側(図中の左方)に延設された四角枠状をなし、枠内の右側には、四角状をなして上方に向けて開口する取付ベース10が配設されている。重複する説明はしないが、上記した振動ローラ車両2と同じく、この取付ベース10内にマグネット22を利用して評価装置1を任意に脱着可能となっている。
FIG. 4 is a perspective view showing the mounting base 10 provided on the operation handle 26 of the rammer 3.
The operation handle 26 has a rectangular frame shape extending on the operator side (left side in the figure), and a mounting base 10 that is formed in a square shape and opens upward is disposed on the right side of the frame. Yes. Although not redundantly described, the evaluation device 1 can be arbitrarily attached to and detached from the mounting base 10 by using the magnet 22 in the same manner as the vibration roller vehicle 2 described above.

一方、評価装置1による締固め機械の機種の特定処理や締固め度の評価処理は、加速度センサ32からの検出情報に基づき行われる。このため、図2に示すように評価装置1には加速度センサ32が付属し、両者1,32は常に一緒に取り扱われる。また、振動ローラ車両2の前部転圧輪15及びランマ3のシュー28には、加速度センサ32を脱着可能に固定する機構、例えば加速度センサ32をボルトにより固定するための雌ネジ部等が設けられており、それぞれの締固め機械による締固め作業の際には、図1に示すように前部転圧輪15やシュー28に加速度センサ32が固定される。   On the other hand, the process of specifying the compaction machine type and the process of evaluating the degree of compaction by the evaluation apparatus 1 are performed based on detection information from the acceleration sensor 32. For this reason, as shown in FIG. 2, the evaluation apparatus 1 is provided with an acceleration sensor 32, and both 1 and 32 are always handled together. Further, the front roller wheel 15 of the vibration roller vehicle 2 and the shoe 28 of the rammer 3 are provided with a mechanism for detachably fixing the acceleration sensor 32, for example, a female screw portion for fixing the acceleration sensor 32 with a bolt. In the compaction operation by each compaction machine, the acceleration sensor 32 is fixed to the front rolling wheel 15 and the shoe 28 as shown in FIG.

図2に示すように、評価装置1にはケーブル接続部1a(接続部位)が設けられ、このケーブル接続部1aには電力線33及び信号線34を介して加速度センサ32が脱着可能に接続されるようになっている。これにより評価装置1内のマイコン4と加速度センサ32とが有線接続され、評価装置1から電力線33を経た電力供給により加速度センサ32が作動して前部転圧輪15やシュー28の振動加速度を検出する。また、加速度センサ32から出力された検出信号は信号線34を経て評価装置1のマイコン4に入力される。振動ローラ車両2による締固め作業中には前部転圧輪15が回転しているため、電力線33及び信号線34はスリップリング等を介して加速度センサ32に接続される。
なお、評価装置1と加速度センサ32との接続は無線を利用してもよく、その場合には加速度センサ32に電力供給のためのバッテリを備え付け、その検出情報を電波や赤外線で評価装置1に送信すればよい。
As shown in FIG. 2, the evaluation apparatus 1 is provided with a cable connection portion 1a (connection portion), and an acceleration sensor 32 is detachably connected to the cable connection portion 1a via a power line 33 and a signal line 34. It is like that. As a result, the microcomputer 4 and the acceleration sensor 32 in the evaluation device 1 are connected by wire, and the acceleration sensor 32 is activated by the power supply from the evaluation device 1 through the power line 33, and the vibration acceleration of the front rolling wheel 15 and the shoe 28 is reduced. To detect. The detection signal output from the acceleration sensor 32 is input to the microcomputer 4 of the evaluation apparatus 1 through the signal line 34. Since the front rolling wheel 15 is rotating during the compacting operation by the vibration roller vehicle 2, the power line 33 and the signal line 34 are connected to the acceleration sensor 32 via a slip ring or the like.
The evaluation device 1 and the acceleration sensor 32 may be connected wirelessly. In this case, the acceleration sensor 32 is provided with a battery for supplying power, and the detection information is transmitted to the evaluation device 1 by radio waves or infrared rays. Just send it.

以上のように構成された評価装置1は、以下に述べるような形態で使用される。
この種の締固め機械のエンドユーザーは、例えば工事業者やレンタル業者であり、その何れでも振動ローラ車両2及びランマ3に対して単一の評価装置1(加速度センサ32も含む)を用意しておく。工事業者の場合には、実際に締固め機械を使用する社員や下請け業者等が、振動ローラ車両2とランマ3との間で評価装置1を流用すればよい。
The evaluation apparatus 1 configured as described above is used in the form described below.
The end user of this type of compacting machine is, for example, a construction contractor or a rental contractor, and any one of them prepares a single evaluation device 1 (including an acceleration sensor 32) for the vibration roller vehicle 2 and the runner 3. deep. In the case of a construction contractor, an employee who actually uses a compacting machine, a subcontractor, or the like may use the evaluation device 1 between the vibration roller vehicle 2 and the ramp 3.

また、レンタル業者の場合には、例えば評価装置1が付属しないレンタルプランと評価装置1が付属するレンタルプランとを用意し、顧客に選択させる。評価装置1無しのレンタルプランの選択時には締固め機械のみを貸し出し、評価装置1有りのレンタルプランの選択時には締固め機械と共に評価装置1及び加速度センサ32を貸し出せばよい。   In the case of a rental company, for example, a rental plan that does not include the evaluation device 1 and a rental plan that includes the evaluation device 1 are prepared and are selected by the customer. When a rental plan without the evaluation device 1 is selected, only the compacting machine is lent, and when a rental plan with the evaluation device 1 is selected, the evaluation device 1 and the acceleration sensor 32 may be lent together with the compaction machine.

実際の締固め作業の手順は以下のとおりである。まず、振動ローラ車両2やランマ3の取付ベース10に評価装置1を取り付けると共に、その前部転圧輪15やシュー28に加速度センサ32を固定して評価装置1に対して有線接続する。評価装置1の電源スイッチ6をON操作した上で、締固め作業の開始と共に評価スイッチ8を操作する。加速度センサ32により検出された前部転圧輪15やシュー28の振動加速度が評価装置1に入力され、マイコンにより路面の締固め度が逐次評価されて(締固め度評価手段)、その評価結果に応じてLED9が点灯表示される。   The actual compaction procedure is as follows. First, the evaluation device 1 is attached to the mounting base 10 of the vibration roller vehicle 2 or the runner 3, and the acceleration sensor 32 is fixed to the front rolling wheel 15 or the shoe 28 and connected to the evaluation device 1 by wire. After the power switch 6 of the evaluation apparatus 1 is turned ON, the evaluation switch 8 is operated together with the start of the compacting operation. The vibration acceleration of the front rolling wheel 15 and the shoe 28 detected by the acceleration sensor 32 is input to the evaluation device 1, and the degree of compaction of the road surface is sequentially evaluated by the microcomputer (consolidation degree evaluation means), and the evaluation result Accordingly, the LED 9 is turned on.

このときのマイコン4による締固め度の評価原理については、特許文献1等に開示されているため、概略的な説明にとどめる。例えば振動ローラ車両2の場合、加速度センサ32により検出された振動加速度は、横軸を時間、縦軸を加速度とした図5に示すグラフにより表わされ、そのデータを周波数スペクトル解析して振動数域毎の分布として表したものが図6のグラフである。締固め作業の開始当初は振動波形に含まれる主成分は前部転圧輪15の基本振動数の約40Hzであるのに対し、締固め作業が進行するに従って路面の硬化により前部転圧輪15への反発力が強くなり、振動波形には基本振動数の他に2次や3次の振動数成分が次第に多く含まれるようになる。   The principle of evaluation of the degree of compaction by the microcomputer 4 at this time is disclosed in Patent Document 1 and the like, so only a brief description will be given. For example, in the case of the vibration roller vehicle 2, the vibration acceleration detected by the acceleration sensor 32 is represented by the graph shown in FIG. 5 with time on the horizontal axis and acceleration on the vertical axis. The graph of FIG. 6 represents the distribution for each region. The main component included in the vibration waveform at the beginning of the compaction operation is about 40 Hz, which is the basic frequency of the front compaction wheel 15, whereas the front compaction wheel is caused by the hardening of the road surface as the compaction work proceeds. The repulsive force to 15 becomes stronger, and the vibration waveform gradually contains more secondary and tertiary frequency components in addition to the fundamental frequency.

そこで、締固め作業の進行に伴って顕著に増加する次数の振動数成分を特定し、それらの振動数成分に基づき締固め度と相関する定量的な指標として、次式(1)に従って乱れ率が算出される。

Figure 2016121478
ここに、Fは前部転圧ローラの起振力、m1 は振動ローラ車両のフレーム質量、m2 は前部転圧ローラの質量である。式(1)中の「高調波」が、各次数の振動数成分の総和を表し、この式では3次までの振動数成分が加算されるようになっている。 Therefore, the frequency component of the order that increases remarkably with the progress of compaction work is identified, and the turbulence rate according to the following formula (1) is used as a quantitative index that correlates with the degree of compaction based on the frequency component. Is calculated.
Figure 2016121478
Here, F is the vibration force of the front roller, m 1 is the frame mass of the vibrating roller vehicle, and m 2 is the mass of the front roller. The “harmonic” in the equation (1) represents the sum of the frequency components of each order, and in this equation, the frequency components up to the third order are added.

このようにして算出される乱れ率と評価装置1の点灯させるべきLED9の数との関係が予め定められており、マイコン4は乱れ率に対応する数のLED9を点灯させる。振動ローラ車両2の走行(路面上での位置変位)に伴ってマイコン4により逐次乱れ率が算出され、その乱れ率に対応してLED9の点灯状態が逐次変更される。よって、オペレータはLED9の点灯数に基づき、現在の地点が十分に締固められているか否かをリアルタイムで把握でき、不足部分の締固めを速やかに実施可能となる。   The relationship between the disturbance rate calculated in this way and the number of LEDs 9 to be lit by the evaluation apparatus 1 is determined in advance, and the microcomputer 4 turns on the LEDs 9 corresponding to the disturbance rate. As the vibration roller vehicle 2 travels (position displacement on the road surface), the microcomputer 4 sequentially calculates the disturbance rate, and the lighting state of the LED 9 is sequentially changed according to the disturbance rate. Therefore, the operator can grasp in real time whether or not the current point is sufficiently compacted based on the number of lighting of the LED 9, and can quickly perform the compaction of the deficient portion.

一方、例えば振動ローラ車両2による締固め作業が終了し、次いでランマ3を使用する場合には、評価装置1を振動ローラ車両2の取付ベース10から取り外してランマ3の取付ベース10に取り付ける。同様に加速度センサ32についても振動ローラ車両2からランマ3に取り付けなおす。これにより上記と同様に、ランマ3による路面の締固め度が評価装置1上のLED9の点灯数として表示される。   On the other hand, for example, when the compacting operation by the vibration roller vehicle 2 is finished and then the rammer 3 is used, the evaluation device 1 is detached from the attachment base 10 of the vibration roller vehicle 2 and attached to the attachment base 10 of the rammer 3. Similarly, the acceleration sensor 32 is also attached from the vibration roller vehicle 2 to the ramp 3. As a result, the degree of road surface compaction by the RAMA 3 is displayed as the number of lighting of the LEDs 9 on the evaluation device 1 as described above.

ところで、[発明が解決しようとする課題]で述べたように、式(1)に代入する基本振動数及び振動数成分の次数は個々の締固め機械によって相違する。例えばランマ3の場合の振動加速度及び周波数スペクトル解析後の振動数域の分布は、図7,8に示すとおりである。図5,6との比較から明らかなように、ランマ3の場合には振動ローラ車両2よりも基本振動数が約70Hz程度と高く、図8から判るように、より高次の振動数域まで式(1)に代入する必要がある。換言すれば、振動ローラ車両2とランマ3とでは適用すべき乱れ率の計算式の内容が相違する。   By the way, as described in [Problems to be Solved by the Invention], the fundamental frequency and the order of the frequency components to be substituted into the equation (1) differ depending on the individual compaction machines. For example, the vibration acceleration and frequency distribution after frequency spectrum analysis in the case of the ramper 3 are as shown in FIGS. As is clear from comparison with FIGS. 5 and 6, in the case of the ramper 3, the fundamental frequency is about 70 Hz higher than that of the vibration roller vehicle 2, and as can be seen from FIG. 8, the higher frequency range. It is necessary to substitute into equation (1). In other words, the turbulence rate calculation formula to be applied differs between the vibrating roller vehicle 2 and the ramp 3.

そこで、本実施形態では、予め振動ローラ車両2及びランマ3の作動試験を実施して、それぞれの乱れ率を算出するための最適な計算式を導出し、それらの計算式を上記のようにマイコン4のメモリ4aに記憶させているのである。そして、締固め機械の使用に際しては、自動的に計測した基本振動数に基づき機種を特定し、それに対応した計算式を選択して締固め度の評価に適用しており、以下、そのためマイコン4が実行する処理を説明する。   Therefore, in this embodiment, the operation test of the vibration roller vehicle 2 and the rammer 3 is performed in advance, and the optimum calculation formulas for calculating the respective disturbance rates are derived, and those calculation formulas are calculated as described above. 4 is stored in the memory 4a. When using the compacting machine, a model is specified based on the automatically measured fundamental frequency, and a calculation formula corresponding to the model is selected and applied to the compaction degree evaluation. The process executed by will be described.

図9はマイコン4が実行する機種特定ルーチンを示すフローチャートであり、評価装置1の機種特定スイッチ7が操作されると当該ルーチンがマイコン4により実行される。
例えば振動ローラ車両2を使用する場合、オペレータは機種特定スイッチ7を操作し、締固め作業時と同様に起振体を作動させながら振動ローラ車両2を走行させる。なお、車両2を停車させたまま起振体を作動させて前部転圧輪15を加振してもよい。ランマ3の場合も同様であり、実際に締固め作業を実施してもよいし、原動機29を運転してシュー28を加振するだけでもよい。
FIG. 9 is a flowchart showing a model specifying routine executed by the microcomputer 4. When the model specifying switch 7 of the evaluation device 1 is operated, the routine is executed by the microcomputer 4.
For example, when the vibration roller vehicle 2 is used, the operator operates the model specifying switch 7 and causes the vibration roller vehicle 2 to travel while operating the vibration generator as in the compacting operation. Alternatively, the front rolling wheel 15 may be vibrated by operating the vibrator while the vehicle 2 is stopped. The same applies to the case of the ramper 3, and the compacting operation may be actually performed, or the prime mover 29 may be operated and the shoe 28 may be simply vibrated.

マイコン4は、機種特定スイッチ7が操作されると図9のルーチンを開始し、ステップS1で所定間隔(例えば10msec毎)に加速度センサ32からの振動加速度を読み込み、自己のメモリ4aに逐次保存する。この処理を所定時間に亘って繰り返すとステップS2に移行し、保存した振動加速度のデータに基づき次式(2)に従って基本振動数を算出する(基本振動数算出手段)。

Figure 2016121478
ここに、aは振動加速度の波形から求めた最大加速度、Aは同じく波形の最大振幅である。 The microcomputer 4 starts the routine of FIG. 9 when the model specifying switch 7 is operated, reads the vibration acceleration from the acceleration sensor 32 at a predetermined interval (for example, every 10 msec) in step S1, and sequentially stores it in its own memory 4a. . When this process is repeated for a predetermined time, the process proceeds to step S2, and the basic frequency is calculated according to the following equation (2) based on the stored vibration acceleration data (basic frequency calculating means).
Figure 2016121478
Here, a is the maximum acceleration obtained from the waveform of vibration acceleration, and A is the maximum amplitude of the waveform.

続くステップS3では、算出した基本振動数に基づき締固め機械の機種を特定する。即ち、算出した基本振動数をメモリ4aに記憶されている各締固め機械の基本振動数と比較し、基本振動数が一致している締固め機械に評価装置1が取り付けられているものと見なす(機種特定手段)。   In the subsequent step S3, the type of compaction machine is specified based on the calculated fundamental frequency. That is, the calculated fundamental frequency is compared with the fundamental frequency of each compaction machine stored in the memory 4a, and it is assumed that the evaluation device 1 is attached to the compaction machine having the same fundamental frequency. (Model identification means).

そして、ステップS3で振動ローラ車両2と特定した場合には、ステップS4で振動ローラ車両2に対応する計算式をメモリ4aから読み出し、ステップS3でランマ3と特定した場合には、ステップS5でランマ3に対応する計算式をメモリ4aから読み出した後にルーチンを終了する。   If the vibration roller vehicle 2 is specified in step S3, the calculation formula corresponding to the vibration roller vehicle 2 is read from the memory 4a in step S4. If the random number 3 is specified in step S3, the random number is determined in step S5. After the calculation formula corresponding to 3 is read from the memory 4a, the routine is terminated.

従って、その後の締固め作業では、読み出した計算式に基づき上記の手順で乱れ率が算出され、LED9により締固め度の表示がなされる。
なお、機種特定スイッチ7を省略して、評価スイッチ8が操作されたときに、まず機種の特定処理を行い、その後に選択した計算式に基づき締固め度の評価処理を開始してもよい。
Therefore, in the subsequent compaction operation, the disturbance rate is calculated according to the above procedure based on the read calculation formula, and the compaction degree is displayed by the LED 9.
Alternatively, the model specifying switch 7 may be omitted, and when the evaluation switch 8 is operated, the model specifying process may be performed first, and then the compaction degree evaluation process may be started based on the selected calculation formula.

以上のように本実施形態の締固め機械の評価装置1によれば、振動ローラ車両2とランマ3との間で単一の評価装置1を流用しているため、これらの振動ローラ車両2及びランマ3を購入する際の初期費用を最小限に抑制することができる。そして、締固め機械を使用する際には、基本振動数を自動的に計測して現在評価装置1が取り付けられている締固め機械を特定し、それに対応する計算式をメモリ4aから読み出して乱れ率の算出処理に適用している。よって、使用の際の煩雑な入力作業が一切不要になると共に誤入力の可能性もなくなるため、常に適切な締固め度の評価に基づき良好な路面品質を実現することができる。   As described above, according to the compaction machine evaluation apparatus 1 of the present embodiment, since the single evaluation apparatus 1 is used between the vibration roller vehicle 2 and the rammer 3, these vibration roller vehicle 2 and The initial cost when purchasing the Ranma 3 can be minimized. Then, when using the compacting machine, the basic frequency is automatically measured to identify the compacting machine to which the evaluation device 1 is currently attached, and the corresponding calculation formula is read from the memory 4a and the disturbance is detected. This is applied to the rate calculation process. Therefore, since no complicated input work at the time of use is required and there is no possibility of erroneous input, good road surface quality can always be realized based on an appropriate evaluation of the degree of compaction.

また、振動ローラ車両2の前部転圧輪15やランマ3のシュー28に加速度センサ32を任意に固定可能としているため、評価装置1のみならず加速度センサ32についても振動ローラ車両2とランマ3との間で流用可能となる。よって、単一の加速度センサ32のみで振動ローラ車両2とランマ3とを稼働でき、その初期費用を一層低減することができる。   Further, since the acceleration sensor 32 can be arbitrarily fixed to the front roller wheel 15 of the vibration roller vehicle 2 and the shoe 28 of the rammer 3, the vibration roller vehicle 2 and the rammer 3 can be used not only for the evaluation device 1 but also for the acceleration sensor 32. Can be diverted between. Therefore, the vibration roller vehicle 2 and the rammer 3 can be operated only by the single acceleration sensor 32, and the initial cost can be further reduced.

また、このように加速度センサ32を流用することなく、予め振動ローラ車両2の前部転圧輪15とランマ3のシュー28にそれぞれ加速度センサ32を設けてもよい。この場合には、前部転圧輪15やシュー28に加速度センサ32を固定する手間が省けるという別の効果が得られ、締固め機械に評価装置1を取り付けた際には、加速度センサ32からの電力線33及び信号線34を評価装置1のケーブル接続部1aに接続するだけでよくなる。   Further, without using the acceleration sensor 32 in this way, the acceleration sensor 32 may be provided in advance on the front rolling wheel 15 of the vibration roller vehicle 2 and the shoe 28 of the rammer 3, respectively. In this case, another effect of saving the effort of fixing the acceleration sensor 32 to the front rolling wheel 15 or the shoe 28 can be obtained. When the evaluation device 1 is attached to the compacting machine, the acceleration sensor 32 It is only necessary to connect the power line 33 and the signal line 34 to the cable connection part 1a of the evaluation apparatus 1.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、振動ローラ車両2とランマ3との間で評価装置1を流用したが、これらに限定されるものではなく、振動体を加振して路面を締め固める締固め機械であれば任意に変更可能である。例えば搭乗型のマカダムローラ、或いは非搭乗型のプレートコンパクタやハンドガイドローラに適用し、これらの締固め機械の間で評価装置1を流用するようにしてもよい。
また上記実施形態では、評価装置1に設けたLED9の点灯状態により乱れ率を表示したが、これに限るものではない。例えば、締固め作業の繰り返しにより良好な締固め度に対応する乱れ率に達した時点で、ライトを点灯させてオペレータに報知するようにしてもよい。また、このような視覚的な報知に代えて音を利用してもよく、例えば乱れ率を数値として読み上げたり、或いは乱れ率の変化に応じてブザーから発する報知音の音階を低音から高音に段階的に切り換えたり、或いは断続音の周期を早めたりしてもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the evaluation device 1 is diverted between the vibration roller vehicle 2 and the runner 3, but the invention is not limited to these, and it may be a compacting machine that vibrates a vibrating body and compacts the road surface. Can be arbitrarily changed. For example, it may be applied to a boarding type Macadam roller, or a non-boarding type plate compactor or a hand guide roller, and the evaluation device 1 may be used between these compacting machines.
Moreover, in the said embodiment, although the disturbance rate was displayed by the lighting state of LED9 provided in the evaluation apparatus 1, it does not restrict to this. For example, when the disturbance rate corresponding to a good degree of compaction is reached by repetition of compaction work, the light may be turned on to notify the operator. In addition, sound may be used instead of such visual notification. For example, the disturbance rate is read as a numerical value, or the tone of the notification sound emitted from the buzzer is changed from low to high according to the change of the disturbance rate. May be switched automatically or the period of the intermittent sound may be shortened.

1 評価装置、1a ケーブル接続部(接続部位)、2 振動ローラ車両(締固め機械)、3 ランマ(締固め機械)、4 マイコン(基本振動数算出手段、機種特定手段、締固め度評価手段)、4a メモリ(記憶手段)、10 取付ベース(取付手段)、15 前部転圧輪(振動体)、22 マグネット(取付手段)、28 シュー(振動体)、32 加速度センサ DESCRIPTION OF SYMBOLS 1 Evaluation apparatus, 1a Cable connection part (connection part), 2 Vibrating roller vehicle (consolidation machine), 3 Ramma (consolidation machine), 4 Microcomputer (basic frequency calculation means, model specification means, compaction degree evaluation means) 4a memory (storage means), 10 mounting base (mounting means), 15 front rolling wheel (vibrating body), 22 magnet (mounting means), 28 shoe (vibrating body), 32 acceleration sensor

Claims (3)

路面の締固め度を評価する締固め機械の評価装置であって、
振動体を加振して路面を締め固める複数の異なる機種の締固め機械に対して脱着可能に取り付ける取付手段と、
上記各締固め機械の基本振動数、及び路面の締固めに伴う上記振動体の振動加速度を周波数スペクトル解析により定量的な乱れ率として算出するために上記締固め機械毎に設定された計算式をそれぞれ記憶する記憶手段と、
上記取付手段により取り付けられている締固め機械の作動中において、該締固め機械の振動体の振動加速度に基づき基本振動数を算出する基本振動数算出手段と、
上記基本振動数算出手段により算出された基本振動数を上記記憶手段に記憶されている上記各締固め機械の基本振動数と比較し、該比較結果に基づき上記取付手段により取り付けられている締固め機械の機種を特定する機種特定手段と、
上記機種特定手段により特定された締固め機械の機種に対応する乱れ率の計算式を上記記憶手段から読み出し、該計算式を用いて上記締固め機械による締固め作業中に上記振動体の振動加速度に基づき上記乱れ率を算出し、該乱れ率に基づき路面の締固め度を評価する締固め度評価手段と
を具備したことを特徴とする締固め機械の評価装置。
A compaction machine evaluation device for evaluating the degree of compaction of a road surface,
Mounting means for detachably attaching to a plurality of different types of compaction machines that vibrate a vibrating body and compact a road surface;
In order to calculate the basic vibration frequency of each compacting machine and the vibration acceleration of the vibrating body accompanying the compaction of the road surface as a quantitative disturbance rate by frequency spectrum analysis, a calculation formula set for each compacting machine is used. Storage means for storing each;
Basic frequency calculation means for calculating a basic frequency based on vibration acceleration of a vibration body of the compacting machine during operation of the compacting machine mounted by the mounting means;
The fundamental frequency calculated by the fundamental frequency calculation means is compared with the fundamental frequency of each compaction machine stored in the storage means, and the compaction attached by the attachment means based on the comparison result. Model identification means for identifying the machine model,
The calculation formula of the disturbance rate corresponding to the compacting machine model specified by the model specifying means is read from the storage means, and the vibration acceleration of the vibrating body during the compacting work by the compacting machine is read using the calculation formula. A compaction machine evaluation apparatus comprising: a compaction degree evaluation unit that calculates the disorder rate based on the disturbance rate and evaluates a degree of compaction of the road surface based on the disorder rate.
上記評価装置は、上記各締固め機械の振動体に対して任意に固定可能な加速度センサを有し、
上記加速度センサは、上記取付手段により上記評価装置が何れかの締固め機械に取り付けられたときに、該締固め機械の振動体に固定されて上記評価装置と接続され、
上記基本振動数算出手段及び上記締固め度評価手段は、上記加速度センサにより検出された振動加速度に基づきそれぞれの処理を実行する
ことを特徴とする請求項1に記載の締固め機械の評価装置。
The evaluation device has an acceleration sensor that can be arbitrarily fixed to the vibrating body of each compaction machine,
The acceleration sensor is fixed to a vibration body of the compacting machine and connected to the evaluation device when the evaluation device is attached to any of the compacting machines by the mounting means.
2. The compacting machine evaluation device according to claim 1, wherein the basic frequency calculating means and the compaction degree evaluating means execute processing based on vibration acceleration detected by the acceleration sensor. 3.
上記評価装置は、上記各締固め機械の振動体にそれぞれ設けられた加速度センサに任意に接続可能な接続部位を有し、上記取付手段により何れかの締固め機械に取り付けられたときに、該締固め機械の加速度センサと上記接続部位を介して接続され、
上記基本振動数算出手段及び上記締固め度評価手段は、上記接続中の加速度センサにより検出された振動加速度に基づきそれぞれの処理を実行する
ことを特徴とする請求項1に記載の締固め機械の評価装置。
The evaluation device has a connection portion that can be arbitrarily connected to an acceleration sensor provided in each vibration body of the compaction machine, and when the evaluation device is attached to any compaction machine by the attachment means, Connected to the acceleration sensor of the compacting machine through the connection part,
2. The compacting machine according to claim 1, wherein the basic frequency calculating means and the compaction degree evaluating means execute respective processes based on vibration acceleration detected by the connected acceleration sensor. Evaluation device.
JP2014261680A 2014-12-25 2014-12-25 Compaction machine evaluation equipment Active JP6297968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261680A JP6297968B2 (en) 2014-12-25 2014-12-25 Compaction machine evaluation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261680A JP6297968B2 (en) 2014-12-25 2014-12-25 Compaction machine evaluation equipment

Publications (2)

Publication Number Publication Date
JP2016121478A true JP2016121478A (en) 2016-07-07
JP6297968B2 JP6297968B2 (en) 2018-03-20

Family

ID=56328210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261680A Active JP6297968B2 (en) 2014-12-25 2014-12-25 Compaction machine evaluation equipment

Country Status (1)

Country Link
JP (1) JP6297968B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018096200A (en) * 2016-12-14 2018-06-21 ハム アーゲーHamm AG Construction machinery
JP2019522134A (en) * 2016-07-26 2019-08-08 ボーマーク・ゲー・エム・ベー・ハーBomag Gmbh Ground compression roller having sensor device on roller and method for calculating ground rigidity
US10801167B2 (en) 2016-07-26 2020-10-13 Bomag Gmbh Hand-guided soil compaction machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117311A (en) * 1984-11-14 1986-06-04 川崎重工業株式会社 Apparatus for detecting ground compactness degree
JPS63241204A (en) * 1987-03-27 1988-10-06 株式会社トキメック Apparatus for detecting compactness degree
JPH053981U (en) * 1991-07-03 1993-01-22 日本鋪道株式会社 Compaction degree measuring device
JPH0547034U (en) * 1991-11-21 1993-06-22 株式会社淺沼組 Hardness measuring device for soil structures
JP2000345547A (en) * 1999-06-04 2000-12-12 Ohbayashi Corp Earth compaction control method and equipment
US20020003990A1 (en) * 2000-06-16 2002-01-10 Niels Laugwitz Method and device for determining the degree of compaction during ground compaction
JP2003083803A (en) * 2001-09-17 2003-03-19 Sato Kogyo Co Ltd Monitoring reducing method of noise/vibration and noise/ vibration monitoring device therefor
JP2003166232A (en) * 2001-09-20 2003-06-13 Taisei Corp Compaction control device
US20080260462A1 (en) * 2007-04-23 2008-10-23 Hamm Ag Method for determining a compaction degree of asphalts and system for determining a compaction degree

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61117311A (en) * 1984-11-14 1986-06-04 川崎重工業株式会社 Apparatus for detecting ground compactness degree
JPS63241204A (en) * 1987-03-27 1988-10-06 株式会社トキメック Apparatus for detecting compactness degree
JPH053981U (en) * 1991-07-03 1993-01-22 日本鋪道株式会社 Compaction degree measuring device
JPH0547034U (en) * 1991-11-21 1993-06-22 株式会社淺沼組 Hardness measuring device for soil structures
JP2000345547A (en) * 1999-06-04 2000-12-12 Ohbayashi Corp Earth compaction control method and equipment
US20020003990A1 (en) * 2000-06-16 2002-01-10 Niels Laugwitz Method and device for determining the degree of compaction during ground compaction
JP2003083803A (en) * 2001-09-17 2003-03-19 Sato Kogyo Co Ltd Monitoring reducing method of noise/vibration and noise/ vibration monitoring device therefor
JP2003166232A (en) * 2001-09-20 2003-06-13 Taisei Corp Compaction control device
US20080260462A1 (en) * 2007-04-23 2008-10-23 Hamm Ag Method for determining a compaction degree of asphalts and system for determining a compaction degree

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019522134A (en) * 2016-07-26 2019-08-08 ボーマーク・ゲー・エム・ベー・ハーBomag Gmbh Ground compression roller having sensor device on roller and method for calculating ground rigidity
US10801167B2 (en) 2016-07-26 2020-10-13 Bomag Gmbh Hand-guided soil compaction machine
JP2018096200A (en) * 2016-12-14 2018-06-21 ハム アーゲーHamm AG Construction machinery
US10508391B2 (en) 2016-12-14 2019-12-17 Hamm Ag Construction machine

Also Published As

Publication number Publication date
JP6297968B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6297968B2 (en) Compaction machine evaluation equipment
CN102535313B (en) Drivable device for compacting a soil layer structure and method for ascertaining a layer modulus of elasticity of an uppermost layer of this soil layer structure
US20170268193A1 (en) Method For Soil Compaction With An Attachable Compactor, Attachable Compactor As Well As An Excavator With An Attachable Compactor
CN102852134A (en) Apparatus for soil compaction, especially hand-operated, comprising electric drive, and method for operating such apparatus
US20120197587A1 (en) Vehicle ride evaluation
ATE505358T1 (en) METHOD FOR DRIVING A HYBRID POWER TRAIN BASED ON A BATTERY CHARGE STATUS
CN204228425U (en) Automobile chassis abnormal sound, Performance Testing analoging detecting device
US9758045B2 (en) Travelable distance calculation apparatus
JPH11514058A (en) Method and apparatus for providing an indication of the degree of compaction in a vibratory compacted vehicle
AU2010362535A1 (en) Method for determining the stiffness and/or damping of a body
CN107650909A (en) Vehicle and its slide energy feedback control system and method, torque adjusting device
US20150153167A1 (en) Texture automatic monitoring system
TW201515917A (en) Slope calculation device
CN102928302A (en) Apparatus for testing comprehensive mechanical performances of shopping bag, and method thereof
ATE378655T1 (en) DEVICE AND METHOD FOR COLLECTING DRIVING DATA OF A MOTOR VEHICLE WITH AN ELECTRONICALLY CONTROLLED DRIVE TRAIN
CN103276655A (en) Concrete laser leveling machine driven by driving type pure electric power
JP6534539B2 (en) Vibration compacting detector for concrete
JP7015122B2 (en) How to drive concrete
CN107107986A (en) Vehicle with electric driver, especially electric bicycle, and the method for running this vehicle
CN103374913B (en) Manual working machine and the method being used for running manual working machine
CN203270424U (en) Driving-type full-electric driven concrete laser leveling machine
CN110174276A (en) Tire testing device and method
CN109186911A (en) A kind of adaptive exciting of building and dynamic characteristics identifying system and method
CN106872129B (en) A kind of support class bracket assembly endurance test method and device
JP2021011771A (en) Compaction quality control system and compaction quality control method using automatic operation of vibratory rollers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180222

R150 Certificate of patent or registration of utility model

Ref document number: 6297968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150