JP2016121383A - Method for producing aluminum-copper alloy from lithium ion secondary battery - Google Patents

Method for producing aluminum-copper alloy from lithium ion secondary battery Download PDF

Info

Publication number
JP2016121383A
JP2016121383A JP2014262658A JP2014262658A JP2016121383A JP 2016121383 A JP2016121383 A JP 2016121383A JP 2014262658 A JP2014262658 A JP 2014262658A JP 2014262658 A JP2014262658 A JP 2014262658A JP 2016121383 A JP2016121383 A JP 2016121383A
Authority
JP
Japan
Prior art keywords
aluminum
copper
lithium
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014262658A
Other languages
Japanese (ja)
Other versions
JP6435190B2 (en
Inventor
鳥居 数馬
Kazuma Torii
数馬 鳥居
松浦 博幸
Hiroyuki Matsuura
博幸 松浦
亮 松井
Akira Matsui
亮 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKOO FLEX KK
Original Assignee
SHINKOO FLEX KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKOO FLEX KK filed Critical SHINKOO FLEX KK
Priority to JP2014262658A priority Critical patent/JP6435190B2/en
Publication of JP2016121383A publication Critical patent/JP2016121383A/en
Application granted granted Critical
Publication of JP6435190B2 publication Critical patent/JP6435190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To solve the problem that: when the current collector (aluminum foil) on a positive electrode material side and the curent collector (copper foil) on a negative electrode material side are separated by dry process and without melting, a material having a high metal content ratio of aluminum and copper (aluminum-copper grain-state material) is produced in a mixed state; even though they can be utilized as an additive material for steel or the like, and as lithium is contained even by only a little, they cannot be utilized as the additive material for aluminum alloy.SOLUTION: In the method for producing aluminum-copper alloy from lithium ion secondary battery, when charging and melting the aluminum-copper grain-state material into a furnace, the lithium component is removed from the metal side; as a concrete technique, a molten salt layer is provided on top of the lower hot-melt, and the aluminum-copper grain-state material is charged thereinto; the aluminum and copper are warmed and melt, and go out from the molten salt layer and migrate and mix into the lower hot-melt, but the lithium component is separated and adsorbed to the molten salt layer to remain therein; also, as the molten salt layer blocks between the air and molten metal side, the amount of slag is less, and the yield is good, therefore the recycling without waste is possible; and when the molten salt layer is a salt bath layer, it is more preferable, as the lithium combines with chloride and stably remains in the salt bath layer side.SELECTED DRAWING: Figure 3

Description

本発明は、リチウムイオン二次電池に含まれる有価金属の回収方法に関し、特に集電材に着目し、アルミと銅の回収方法に関するものである。   The present invention relates to a method for recovering valuable metals contained in a lithium ion secondary battery, and particularly relates to a method for recovering aluminum and copper by focusing on a current collector.

現在利用されているリチウムイオン二次電池は、袋またはケース状の外装体内に、負極材と、正極材と、セパレータと、電解液とが封入されたものになっており、正極活物質がリチウム金属複合酸化物になっている。   Currently used lithium ion secondary batteries include a bag or case-shaped outer package in which a negative electrode material, a positive electrode material, a separator, and an electrolytic solution are sealed, and the positive electrode active material is lithium. It is a metal composite oxide.

リチウムイオン二次電池は、軽量で高電気容量であること等から、各種携帯機器用二次電池として以前から利用されていたが、最近では自動車向けに飛躍的に需要が拡大している。
従って、今後は、使用済み製品が大量に発生することになり、埋め立て場所も限界に来つつあることから、従来と同じように安易に廃棄処分することは最早許されない状況であり、資源化においても有価金属の回収率を高め、低コストで、広範囲に活用できる再資源化が強く求められている。
Lithium ion secondary batteries have been used for a long time as secondary batteries for various portable devices because of their light weight and high electric capacity, but recently there has been a dramatic increase in demand for automobiles.
Therefore, in the future, a large amount of used products will be generated, and the landfill site is approaching its limit, so it is no longer allowed to dispose of it as easily as in the past. However, there is a strong demand for recycling that can increase the recovery rate of valuable metals and that can be used in a wide range at a low cost.

それに応えて、特許文献1では、有価金属を回収する方法として、電池を解体し、解体物をアルコール又は水で洗浄して電解液を除去し、その後、湿式を利用して、集電体の構成金属をそれぞれ分離回収し、残った水溶液中のリチウム(Li)を溶媒抽出と逆抽出により濃縮した後、炭酸リチウムの固体として回収することが提案されている。   In response to this, in Patent Document 1, as a method of recovering valuable metals, the battery is disassembled, the disassembled material is washed with alcohol or water to remove the electrolytic solution, and then wet is used to collect the current collector. It has been proposed that the constituent metals are separated and recovered, and the remaining lithium (Li) in the aqueous solution is concentrated by solvent extraction and back extraction and then recovered as a lithium carbonate solid.

特開2007−122885号公報JP 2007-122885 A 特開2012−193424号公報JP 2012-193424 A

上記の伝統的な方法は一貫して湿式工程によるものであり、排水処理が必要となり、コストが高くつく。最近では、コバルト酸リチウムに比肩し得る特性を有するマンガン酸リチウムを正極活物質に使用したリチウムイオン二次電池が開発され、マンガンはコバルトに比べて地金価格が安いことから、今後はこの使用が主流となると予測されるが、上記したような湿式的な回収方法では、採算が取れない。
そのため、乾式工程を利用したものが模索されており、特許文献2では、その一つとして、乾式工程を利用したマンガン系合金の回収方法が提案されており、Mn−Ni合金として採算に合う形での回収を可能ならしめている。
The above traditional methods are consistently wet processes, require wastewater treatment and are expensive. Recently, lithium ion secondary batteries using lithium manganate, which has characteristics comparable to lithium cobaltate, have been developed as the positive electrode active material, and manganese is cheaper than cobalt. However, the above-mentioned wet recovery method cannot be profitable.
Therefore, a method using a dry process has been sought, and Patent Document 2 proposes, as one of them, a method for recovering a manganese-based alloy using the dry process, which is suitable for profitability as an Mn-Ni alloy. It is possible to collect in

また、正極材側の集電体はアルミニウム箔で、負極材側の集電体は銅箔で構成されており、乾式により溶融せずに電池からこれらを分離する際には、アルミニウムと銅の金属含有比の高いものが出てくる。特に、分離した後に剥離機にかけると、金属含有比のより高いものが出てくる。
これらは、そのまま、またはブリケット加工なりプレス加工なりして成型した上で、現在は、鉄鋼等の銅の添加材として活用することは想定されているが、それでは、有効活用可能な成分比率が高いものの積極的な資源化にはなっていない。
また、アルミニウムと銅の混合成分から鋳造用アルミニウム合金の添加材としての活用も想定されるが、リチウムが僅かでも、例えば100ppmでも含まれていれば、湯流れが悪くなるので、アルミ合金の添加材としては利用できない。
The current collector on the positive electrode material side is made of aluminum foil, and the current collector on the negative electrode material side is made of copper foil. When these are separated from the battery without melting by a dry method, The one with a high metal content comes out. In particular, when it is separated and then applied to a peeling machine, a metal with a higher metal content appears.
These are assumed to be used as they are or after briquetting or press forming, and are currently expected to be used as additives for copper, such as steel, but then the ratio of components that can be effectively used is high. It is not an active resource recycling of things.
Also, it can be used as an additive for casting aluminum alloys from the mixed components of aluminum and copper. However, if even a small amount of lithium, for example, 100 ppm, is included, the hot water flow becomes worse. It cannot be used as a material.

それ故、本発明は、リチウムイオン二次電池から、リチウムを実質的に含まないアルミ・銅合金の地金を歩留り良く製造できて、アルミ合金の添加材としての活用の途も開く、新規且つ有用なリチウムイオン二次電池からのアルミ・銅合金製造方法を提供することを、その目的とする。   Therefore, the present invention is capable of producing aluminum / copper alloy bullion substantially free of lithium from a lithium ion secondary battery with a high yield, and is open to use as an additive for aluminum alloy. It is an object of the present invention to provide a method for producing an aluminum / copper alloy from a useful lithium ion secondary battery.

本発明は、上記課題を解決するためになされたものであり、請求項1の発明は、リチウムイオン二次電池からのアルミ・銅合金製造方法において、アルミ系の正極集電体由来をアルミ源とし、銅系の負極集電体由来を銅源としてそれぞれ炉に投入し溶解させる際に、リチウム成分を合金の中に実質的に含ませない溶解方法にて合金化することを特徴とする方法である。   The present invention has been made to solve the above-mentioned problems, and the invention of claim 1 is directed to an aluminum / copper alloy manufacturing method from a lithium ion secondary battery, wherein an aluminum-based positive electrode current collector is derived from an aluminum source. And a method of alloying by a melting method in which a lithium component is not substantially contained in the alloy when the copper-based negative electrode current source is introduced into a furnace as a copper source and dissolved. It is.

請求項2の発明は、請求項1に記載した、リチウムイオン二次電池からのアルミ・銅合金製造方法において、溶解させる際に、溶融塩層で大気と遮断することを特徴とする方法である。   The invention according to claim 2 is the method for producing an aluminum / copper alloy from the lithium ion secondary battery according to claim 1, wherein the molten salt layer is cut off from the atmosphere when dissolved. .

請求項3の発明は、請求項2に記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、塩化物で溶融塩層を形成することを特徴とする方法である。   A third aspect of the invention is a method for producing an aluminum / copper alloy from a lithium ion secondary battery according to the second aspect, wherein the molten salt layer is formed of chloride.

請求項4の発明は、請求項3に記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、塩化物として塩類を含む混合物を使用することを特徴とする方法である。   According to a fourth aspect of the present invention, in the method for producing an aluminum / copper alloy from the lithium ion secondary battery according to the third aspect, a mixture containing a salt as a chloride is used.

請求項5の発明は、請求項1から4のいずれかに記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、アルミ系またはアルミと銅の混合系の下湯を事前に造りその上にアルミ源と銅源を投入することを特徴とする方法である。   According to a fifth aspect of the present invention, in the method for producing an aluminum / copper alloy from the lithium ion secondary battery according to any one of the first to fourth aspects, an aluminum-based or a mixed system of aluminum and copper is prepared in advance. The method is characterized in that an aluminum source and a copper source are put on the top.

請求項6の発明は、請求項5に記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、下湯を攪拌状態にしながら、アルミ源と銅源を投入することを特徴とする方法である。   The invention of claim 6 is the method for producing an aluminum / copper alloy from the lithium ion secondary battery according to claim 5, wherein the aluminum source and the copper source are added while the molten metal is being stirred. It is.

本発明の方法によれば、リチウムイオン二次電池から、リチウムを実質的に含まないアルミ・銅合金を歩留り良く製造できる。   According to the method of the present invention, an aluminum / copper alloy substantially free of lithium can be produced from a lithium ion secondary battery with good yield.

本発明の実施の形態に使用するリチウムイオン二次電池(ラミネートセル)の斜視図である。It is a perspective view of the lithium ion secondary battery (laminate cell) used for embodiment of this invention. 実施の形態に係る方法を含む有価金属回収方法の全体のフロー図である。It is a flowchart of the whole valuable metal collection | recovery method including the method which concerns on embodiment. 図2の一部を成す実施の形態に係る方法を示す図である。It is a figure which shows the method based on embodiment which forms a part of FIG. 実施の形態に係る方法で使用する溶解ポット炉と撹拌装置の模式図である。It is a schematic diagram of the melting pot furnace and stirring apparatus used with the method which concerns on embodiment. 実施例で使用した材質A3004Pの打ち抜き板と高速回転式剥離機で生産したAl・Cu金属比率が高い物を示す写真である。It is a photograph which shows the thing with the high Al * Cu metal ratio produced with the punching board of the material A3004P used in the Example, and the high-speed rotation type peeling machine.

(処理対象物)
処理対象は、リチウムイオン二次電池である。
リチウムイオン二次電池は、袋またはケース状の外装体内に、主に、正極材と負極材とセパレータが電解液を介して積層した状態で封入されている。
外装体は、金属で構成されており、素材金属はアルミニウムが主流になっている。
正極材は、シート状の正極集電体と、それに固着させた正極活物質とから主になる。現在主流になっているものでは、正極集電体は、アルミ箔で構成したものであり、正極活物質は、リチウム含有複合金属酸化物である。負極材は、シート状の負極集電体と、それに固着させた負極活物質とから主になる。現在主流になっているものでは、負極集電体は、銅または銅合金箔で構成したものであり、負極活物質は、リチウムを吸蔵・放出できるグラファイト等の炭素材料で構成したものである。
(Processing object)
The processing target is a lithium ion secondary battery.
Lithium ion secondary batteries are enclosed in a bag or case-shaped exterior body, mainly in a state where a positive electrode material, a negative electrode material, and a separator are stacked with an electrolyte solution interposed therebetween.
The exterior body is made of metal, and the main metal is aluminum.
The positive electrode material mainly includes a sheet-like positive electrode current collector and a positive electrode active material fixed thereto. In the current mainstream, the positive electrode current collector is made of an aluminum foil, and the positive electrode active material is a lithium-containing composite metal oxide. The negative electrode material is mainly composed of a sheet-like negative electrode current collector and a negative electrode active material fixed thereto. In the current mainstream, the negative electrode current collector is made of copper or a copper alloy foil, and the negative electrode active material is made of a carbon material such as graphite that can occlude and release lithium.

図1は、一例のラミネートセル形態のリチウムイオン二次電池1(約30cm×約30cm)を示したものであり、アルミ製袋で外装体3が構成されている。外装体3内では、積層体5が収容されており、これは正極材・セパレータ・負極材・セパレータ・正極材のように交互に積層されたものである。リチウムイオン二次電池1の正極はアルミ板で負極は表面にニッケルメッキされた銅板で通常束ねられている構造である。   FIG. 1 shows an example of a lithium ion secondary battery 1 (about 30 cm × about 30 cm) in the form of a laminate cell, and an outer package 3 is formed of an aluminum bag. In the exterior body 3, the laminated body 5 is accommodated, and is laminated | stacked alternately like a positive electrode material, a separator, a negative electrode material, a separator, and a positive electrode material. The lithium ion secondary battery 1 has a structure in which a positive electrode is usually bundled with an aluminum plate and a negative electrode is a nickel plate with a nickel plate on the surface.

上記したものを再資源化する。図2は、リチウムイオン二次電池の概略的な資源化フロ−である。
≪加熱解体工程≫
リチウムイオン二次電池をそのまま回転型加熱炉に装入し、回転しながら、始めはバーナーの火炎を吹きかけて加熱燃焼させるが、炉内が500℃以上になると電解液が速やかに気化し燃焼炎を着火源としバ−ナ−を止めても連鎖的に自己燃焼が始まる。すると、加熱解体工程が開始され、正極材と負極材が分離して解体されていく。
その際、剥がれた正極活物質及び負極グラファイト等は、炉のパンチング内壁を通り抜けて落下する。
≪フルイ分別工程≫
炉から排出されたアルミニウムおよび銅の金属含有比が高い粗いものとリチウム含有複合金属酸化物およびグラファイトの混合された細かいものとにフルイ分けする。
アルミニウムおよび銅の金属含有比が高いフルイ上物が更なる工程に供される。
因みに、フルイ下物は、溶融還元法によりMn−Ni合金地金製品として再資源化される。
Recycle the above. FIG. 2 is a schematic resource flow of the lithium ion secondary battery.
≪Heat demolition process≫
The lithium ion secondary battery is inserted into a rotary heating furnace as it is, and while it is rotating, the flame of the burner is blown and burned at first, but when the temperature in the furnace reaches 500 ° C or higher, the electrolyte quickly vaporizes and burns Even if the burner is stopped using the as an ignition source, self-combustion starts in a chain. Then, the heating dismantling process is started, and the positive electrode material and the negative electrode material are separated and disassembled.
At that time, the peeled positive electrode active material and negative electrode graphite fall through the punching inner wall of the furnace.
≪Fluy separation process≫
The material is divided into a coarse material having a high metal content ratio of aluminum and copper discharged from the furnace and a fine material in which lithium-containing composite metal oxide and graphite are mixed.
A sieve top with a high metal content of aluminum and copper is subjected to further processing.
Incidentally, the sieving material is recycled as a Mn—Ni alloy ingot product by the smelting reduction method.

≪破砕分離工程≫
アルミニウムおよび銅の金属含有比が高いフルイ上物を、高速回転式衝撃剥離機により破砕分離、すなわち剥離させた上で再度フルイ分別して、正極活物質およびカーボン粉を更に除去し金属含有比をより一層高めた0.25mm以上のフルイ上物がアルミニウムと銅の粒状物として混合状態で出てくる。これを本発明での処理対象物とし、資源化する。
因みに、この段階のフルイ下物も、上記した溶融還元法によりMn−Ni合金地金製品として再資源化される。
≪Crushing separation process≫
The high-fluid metal content ratio of aluminum and copper is crushed and separated by a high-speed rotary impact peeler, that is, separated from the fluid and separated again to further remove the positive electrode active material and carbon powder, thereby further increasing the metal content ratio. A further higher sieve of 0.25 mm or more comes out in a mixed state as aluminum and copper granules. This is used as the object to be processed in the present invention and is recycled.
By the way, the sieving material at this stage is also recycled as a Mn—Ni alloy ingot product by the above-described melt reduction method.

次に、処理対象の粒状物を使用した、本発明の合金製造方法を、図3にしたがって詳細に説明する。
図3は、この合金製造方法の処理内容を時系列に従って図式化したものである。
図4は、符号7は溶解ポット炉を示し、この溶解ポット炉7上面が開口し、ポット(つぼ)9が収められている。熱源はガスバーナーとなっている。符号11は撹拌装置を示し、この撹拌装置11の支持シャフト13の下部に扁平なヘラ15が取り付けられている。支持シャフト13は軸周りに回転するようになっており、回転すると、ヘラ15がポット9内を軸周りに回転して溶湯を攪拌する。
Next, the alloy manufacturing method of the present invention using the granular material to be treated will be described in detail with reference to FIG.
FIG. 3 shows the processing contents of this alloy manufacturing method in a time series.
In FIG. 4, reference numeral 7 denotes a melting pot furnace, the upper surface of the melting pot furnace 7 is opened, and a pot (pot) 9 is accommodated. The heat source is a gas burner. Reference numeral 11 denotes a stirring device, and a flat spatula 15 is attached to the lower portion of the support shaft 13 of the stirring device 11. The support shaft 13 rotates around the axis, and when it rotates, the spatula 15 rotates around the axis in the pot 9 to stir the molten metal.

先ず、この溶解ポット炉7のポット9にアルミ材を投入し溶解して下湯をつくる。このアルミ材は、A3004P素材の打ち抜き板である。なお、アルミ・銅粒状物と下湯の配合比率はアルミニウム銅合金製品の成分規格に合わせて投入量を設定する。
この下湯の上に、溶湯カバ−リング溶融剤(=フラックス)として、塩化物を投入する。塩化物は、NaClとKClを質量比1:1で混合したものが好ましい。融点が低いので、溶融して下湯の上に安定的な塩浴層(=溶融塩層)を形成し易いからである。その時に使用する塩化物は低融点且つ有害なガスの発生がない塩類またはその混合物も有効である。塩浴層ができると、下湯をカバーリングして、塩浴層で大気(酸素)と遮断された状態になる。塩浴層の厚さは、厚すぎると熱ロスが発生したり、後述する溶解した金属分の下湯側への移行を阻害したりするが、一方、薄すぎると粒状物の被覆が不十分で露出する箇所ができてくるので、粒状物が30mm以下の場合には、5〜40mm程度が好ましく、20〜40mm程度がより好ましい。
これにより予備処理が完了する。
ポット9内では、撹拌すれば、湯温が均一に保持される。この撹拌により、後述する引込み作用も働いている。
First, an aluminum material is put into the pot 9 of the melting pot furnace 7 and melted to make a hot water. This aluminum material is a stamped plate made of A3004P material. The mixing ratio of the aluminum / copper granular material and the sewage is set according to the component specifications of the aluminum copper alloy product.
Chloride is added as a molten metal covering melting agent (= flux) on the lower hot water. The chloride is preferably a mixture of NaCl and KCl at a mass ratio of 1: 1. This is because the melting point is low, and it is easy to melt and form a stable salt bath layer (= molten salt layer) on the sewage. As the chloride used at that time, a salt having a low melting point and no harmful gas generation or a mixture thereof is also effective. When the salt bath layer is formed, the hot water is covered and the salt bath layer is shielded from the atmosphere (oxygen). If the thickness of the salt bath layer is too thick, heat loss will occur, or the dissolved metal will be transferred to the bottom of the hot metal side, but if it is too thin, the coating of the particulate matter will be insufficient. When the granular material is 30 mm or less, about 5 to 40 mm is preferable, and about 20 to 40 mm is more preferable.
This completes the preliminary process.
If the pot 9 is stirred, the hot water temperature is kept uniform. This agitation also works as described below.

この状態で、処理対象物であるリチウムイオン二次電池から解体分離された金属含有比が高い物を、ポット9に投入する。撹拌が開始すれば、下湯だけでなく、上層側の塩浴層も流れ状態になるので、投入された粒状物がその流れに乗って最表層から速やかに塩浴層内に引き込まれ被覆される。従って、酸化され易いアルミニウムの酸化も阻止される。
そして、塩浴層内で、金属物、すなわちアルミニウムと銅は温められて溶解し、塩浴層から出て下湯中に移行して混ざっていく。その際、正極の活物質側に付着していたリチウムと電解液由来のリチウムは、溶融塩層でも吸着され易いが、特に塩浴層の場合には塩化物と化合するので、リチウム金属複合酸化物およびリチウム有機化合物側からスムーズに離れ、塩浴層側に取り残される。
このようにして、ポット9内に、アルミニウムと銅の溶湯ができ、増えていく一方で、リチウムはスラグ化して塩浴層内に溜まっていく。
In this state, a material with a high metal content ratio disassembled and separated from the lithium ion secondary battery that is the object to be treated is put into the pot 9. When stirring starts, not only the bottom water but also the salt bath layer on the upper layer side will be in a flow state, so that the charged particulate matter is quickly drawn into the salt bath layer from the outermost layer and covered. The Therefore, oxidation of aluminum that is easily oxidized is also prevented.
In the salt bath layer, the metal, that is, aluminum and copper are warmed and dissolved, and then move out of the salt bath layer and into the hot water to be mixed. At that time, lithium adhering to the active material side of the positive electrode and lithium derived from the electrolyte are easily adsorbed even in the molten salt layer, but in the case of the salt bath layer, in particular, they combine with the chloride, so the lithium metal composite oxidation Smoothly leaves the product and the lithium organic compound side and is left behind on the salt bath layer side.
In this way, molten aluminum and copper are formed and increased in the pot 9, while lithium is slagged and accumulated in the salt bath layer.

溶湯はポット9から出して冷却させると、アルミ・銅合金の地金となる。得られた地金は、歩留りが良く、しかも、リチウムは殆ど含まれていないものとなっており、アルミ合金の添加材として活用できる。
なお、アルミ・銅合金は、銅の添加材目的観念から共晶点である銅33%含有品が好ましいが、需要に応じて銅配合比を設定する。
When the molten metal is taken out from the pot 9 and cooled, it becomes an ingot of aluminum / copper alloy. The obtained bullion has a good yield and contains almost no lithium, and can be used as an additive for an aluminum alloy.
The aluminum / copper alloy is preferably a product containing 33% copper, which is the eutectic point from the viewpoint of the purpose of the copper additive, but the copper blending ratio is set according to demand.

以上、本発明の実施の形態について詳述してきたが、具体的構成は、これらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲における設計の変更などがあっても発明に含まれる。
例えば、低周波誘導炉を溶解炉として使用すれば、溶湯の自動撹拌作用が働くので、別体の攪拌装置は不要となる。
As described above, the embodiments of the present invention have been described in detail. However, the specific configuration is not limited to these embodiments, and the invention can be changed even if there is a design change without departing from the gist of the present invention. include.
For example, if a low frequency induction furnace is used as a melting furnace, an automatic stirring action of the molten metal works, so that a separate stirring device is not necessary.

ポット9は、アルミニウム500Kg用になっており、高さは865mm、上端口径は876mm、底径は350mm、容量は326Lとなっている。
これに、下記の条件で、図5に示した材料も含めて、各材料を投入して、合金化した。
図5に示すのは、材質A3004Pの打ち抜き板とリチウムイオン二次電池から解体分離し高速回転型剥離機で生産した金属含有比が高い粒状物の写真である。
The pot 9 is for aluminum 500 kg, the height is 865 mm, the upper end diameter is 876 mm, the bottom diameter is 350 mm, and the capacity is 326L.
Each material, including the material shown in FIG. 5, was added to this and alloyed under the following conditions.
FIG. 5 shows a photograph of a granular material with a high metal content ratio that was disassembled and separated from a punched plate of a material A3004P and a lithium ion secondary battery and was produced by a high-speed rotation type peeling machine.

(実施例1)

Figure 2016121383
Example 1
Figure 2016121383

表中、酸化反応鎮静剤は、塩化カリウムであり、粒状材料の投入時に酸化反応を抑制するために併用した。また、粒状原料は少々ずつ分けて投入した。
このようにすることで、スラグの生成量はある程度は抑えられた。
また、スラグは、蛍光×線回折結果から、LiCl・LiCO・LiClOの有意量の存在が確認されており、正極活物質に含まれているリチウム金属複合酸化物のリチウムおよび電解液由来のリチウム化合物から分離されていることが実証された。
In the table, the oxidation reaction sedative was potassium chloride, which was used in combination to suppress the oxidation reaction when the granular material was charged. In addition, the granular raw materials were charged in small portions.
By doing so, the amount of slag produced was suppressed to some extent.
In addition, the presence of a significant amount of LiCl.LiCO 2 .LiClO 4 has been confirmed from the result of fluorescence x-ray diffraction, and the slag is derived from lithium of lithium metal composite oxide and electrolyte solution contained in the positive electrode active material. It was demonstrated that it was separated from the lithium compound.

(実施例2)

Figure 2016121383
(Example 2)
Figure 2016121383

粒状原料は全量一度に投入したが、スムーズに溶解し、酸化反応は起きなかった。
スラグは、蛍光×線回折結果から、LiCl・LiCO・LiClOの有意量の存在が確認されており、正極活物質に含まれているリチウム金属複合酸化物のリチウムおよび電解液由来のリチウム化合物から分離されていることが実証された。
歩留りも有意的に向上されていた。
この結果から、塩浴層にはある程度の厚さがあると、顕著に効果が高まることが確認された。
また、地金は略共晶組成に近づいていた。
The whole amount of the granular raw material was charged at once, but it dissolved smoothly and no oxidation reaction occurred.
The presence of a significant amount of LiCl·LiCO 2 · LiClO 4 is confirmed from the result of fluorescence x-ray diffraction, and the slag is lithium of a lithium metal composite oxide contained in the positive electrode active material and the lithium compound derived from the electrolytic solution Proved to be separated from
Yield was also significantly improved.
From this result, it was confirmed that when the salt bath layer has a certain thickness, the effect is remarkably enhanced.
In addition, the bare metal was close to a nearly eutectic composition.

(比較例1)
実施例2との比較のために、フラックス、すなわち塩浴層無しでの実験を行い、比較したところ、以下の通りであった。

Figure 2016121383
Figure 2016121383
(Comparative Example 1)
For comparison with Example 2, an experiment without flux, that is, no salt bath layer was performed and compared, and the results were as follows.
Figure 2016121383
Figure 2016121383

上記の結果から、本発明の合金化方法で、溶融塩層を形成することで、歩留りが良いだけでなく、リチウムも金属側から分離させることができることが明確に実証された。   From the above results, it was clearly demonstrated that not only the yield is good but also lithium can be separated from the metal side by forming the molten salt layer by the alloying method of the present invention.

本発明の方法を利用すれば、使用済みリチウムイオン二次電池や製造段階で出るものを、廃棄物とせずに有効活用可能な成分比率とコストパフォーマンスが高く、広範囲に活用できる方式で再資源化できる。   By using the method of the present invention, used lithium ion secondary batteries and those produced at the manufacturing stage are recycled in a method that can be used extensively, with a high ratio of components and cost performance that can be used effectively without making them waste. it can.

1‥‥リチウムイオン二次電池(セル)
3‥‥外装体 5‥‥積層体
7‥‥溶解ポット炉 9‥‥ポット
11‥‥撹拌装置 13‥‥支持シャフト
15‥‥ヘラ
1. Lithium ion secondary battery (cell)
3 ... Exterior body 5 ... Laminated body 7 ... Melting pot furnace 9 ... Pot 11 ... Stirrer 13 ... Support shaft 15 ... Spatula

Claims (6)

リチウムイオン二次電池からのアルミ・銅合金製造方法において、
アルミ系の正極集電体由来をアルミ源とし、銅系の負極集電体由来を銅源としてそれぞれ炉に投入し溶解させる際に、リチウム成分を合金の中に実質的に含ませない溶解方法にて合金化することを特徴とする方法。
In the method for producing aluminum / copper alloy from lithium ion secondary battery,
Dissolving method in which lithium component is not substantially contained in the alloy when the aluminum-based positive electrode current collector is used as the aluminum source, and the copper-based negative electrode current collector is derived from the copper source as it is introduced into the furnace. A method characterized in that alloying is performed.
請求項1に記載した、リチウムイオン二次電池からのアルミ・銅合金製造方法において、
溶解させる際に、溶融塩層で大気と遮断することを特徴とする方法。
The method for producing an aluminum / copper alloy from a lithium ion secondary battery according to claim 1,
A method of cutting off from the atmosphere with a molten salt layer when dissolving.
請求項2に記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、
塩化物で溶融塩層を形成することを特徴とする方法。
In the method for producing an aluminum / copper alloy from the lithium ion secondary battery according to claim 2,
Forming a molten salt layer with chloride;
請求項3に記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、
塩化物として塩類を含む混合物を使用することを特徴とする方法。
In the aluminum and copper alloy manufacturing method from the lithium ion secondary battery according to claim 3,
A method characterized in that a mixture containing salts as chloride is used.
請求項1から4のいずれかに記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、
アルミ系またはアルミと銅の混合系の下湯を事前に造りその上にアルミ源と銅源を投入することを特徴とする方法。
In the aluminum and copper alloy manufacturing method from the lithium ion secondary battery according to any one of claims 1 to 4,
A method characterized in that an aluminum-based or a mixed system of aluminum and copper is preliminarily made, and an aluminum source and a copper source are put thereon.
請求項5に記載したリチウムイオン二次電池からのアルミ・銅合金製造方法において、
下湯を攪拌状態にしながら、アルミ源と銅源を投入することを特徴とする方法。
In the aluminum and copper alloy manufacturing method from the lithium ion secondary battery according to claim 5,
A method characterized in that an aluminum source and a copper source are added while stirring the sewer.
JP2014262658A 2014-12-25 2014-12-25 Aluminum / copper alloy production method from lithium ion secondary battery Active JP6435190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262658A JP6435190B2 (en) 2014-12-25 2014-12-25 Aluminum / copper alloy production method from lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262658A JP6435190B2 (en) 2014-12-25 2014-12-25 Aluminum / copper alloy production method from lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016121383A true JP2016121383A (en) 2016-07-07
JP6435190B2 JP6435190B2 (en) 2018-12-05

Family

ID=56328209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262658A Active JP6435190B2 (en) 2014-12-25 2014-12-25 Aluminum / copper alloy production method from lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6435190B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158751A (en) * 1996-11-27 1998-06-16 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from used lithium secondary battery
JPH1197076A (en) * 1997-09-18 1999-04-09 Toshiba Corp Method for processing battery
JP2003206132A (en) * 2002-01-15 2003-07-22 Kawasaki Heavy Ind Ltd Method and apparatus for recovering valuable metal in lithium secondary battery electrode material
JP2005011698A (en) * 2003-06-19 2005-01-13 Kawasaki Heavy Ind Ltd Recycle processing method and device for lithium secondary battery electrode material
WO2007074513A1 (en) * 2005-12-27 2007-07-05 Kawasaki Plant Systems Kabushiki Kaisha Apparatus and method for recovering valuable substance from lithium rechargeable battery
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
US20130071306A1 (en) * 2011-08-16 2013-03-21 John Camp Battery disposal system
JP2014122369A (en) * 2012-12-20 2014-07-03 Toyota Industries Corp Method for recovering metal from composite metal oxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158751A (en) * 1996-11-27 1998-06-16 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from used lithium secondary battery
JPH1197076A (en) * 1997-09-18 1999-04-09 Toshiba Corp Method for processing battery
JP2003206132A (en) * 2002-01-15 2003-07-22 Kawasaki Heavy Ind Ltd Method and apparatus for recovering valuable metal in lithium secondary battery electrode material
JP2005011698A (en) * 2003-06-19 2005-01-13 Kawasaki Heavy Ind Ltd Recycle processing method and device for lithium secondary battery electrode material
WO2007074513A1 (en) * 2005-12-27 2007-07-05 Kawasaki Plant Systems Kabushiki Kaisha Apparatus and method for recovering valuable substance from lithium rechargeable battery
WO2007088617A1 (en) * 2006-02-02 2007-08-09 Kawasaki Plant Systems Kabushiki Kaisha Method of recovering valuable substance from lithium secondary battery, and recovery apparatus therefor
US20130071306A1 (en) * 2011-08-16 2013-03-21 John Camp Battery disposal system
JP2014122369A (en) * 2012-12-20 2014-07-03 Toyota Industries Corp Method for recovering metal from composite metal oxide

Also Published As

Publication number Publication date
JP6435190B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6819827B2 (en) How to recover valuable metals from waste lithium-ion batteries
JP5771031B2 (en) Method for recovering manganese-based alloys from manganese oxide-based waste
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
JP7400589B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP7338326B2 (en) Methods of recovering valuable metals
JP7354903B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP2021031762A (en) Process for recovering valuable metal
Milian et al. A comprehensive review of emerging technologies for recycling spent lithium-ion batteries
JP6571123B2 (en) Method for leaching lithium ion battery scrap and method for recovering metal from lithium ion battery scrap
JP7103293B2 (en) How to recover valuable metals
JP6435190B2 (en) Aluminum / copper alloy production method from lithium ion secondary battery
US20170362683A1 (en) Method for producing aluminum-copper alloy from lithium ion secondary battery
JP2014122369A (en) Method for recovering metal from composite metal oxide
JP7359062B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP7363206B2 (en) How to recover valuable metals
CN107528100A (en) By the method for lithium rechargeable battery manufacture aluminium copper
KR20220139978A (en) How to recover valuable metals
JP6411001B1 (en) Method for producing metal manganese
Khan et al. Recovery of zinc from the spent zinc-carbon dry cell batteries through pyrometallurgical route
WO2023157397A1 (en) Production method for valuable metals
JP7220840B2 (en) Valuable metal manufacturing method
JP7400590B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
WO2023286387A1 (en) Production method for valuable metals
JP7416153B1 (en) How to recover valuable metals
WO2024070500A1 (en) Valuable metal production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R150 Certificate of patent or registration of utility model

Ref document number: 6435190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250