JP2016119371A - Dye-sensitized solar cell and method for manufacturing the same - Google Patents

Dye-sensitized solar cell and method for manufacturing the same Download PDF

Info

Publication number
JP2016119371A
JP2016119371A JP2014257676A JP2014257676A JP2016119371A JP 2016119371 A JP2016119371 A JP 2016119371A JP 2014257676 A JP2014257676 A JP 2014257676A JP 2014257676 A JP2014257676 A JP 2014257676A JP 2016119371 A JP2016119371 A JP 2016119371A
Authority
JP
Japan
Prior art keywords
substrate
melting point
thermoplastic resin
resin
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014257676A
Other languages
Japanese (ja)
Inventor
秀徳 染井
Hidenori Somei
秀徳 染井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2014257676A priority Critical patent/JP2016119371A/en
Publication of JP2016119371A publication Critical patent/JP2016119371A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dye-sensitized solar cell having a resin sealing structure excellent in heat resistance and mechanical strength, and a method for manufacturing the same.SOLUTION: A method for manufacturing a dye-sensitized solar cell comprises the steps of: preparing a first substrate 11 including a transparent conductive film 111, a second substrate 12, and a collector layer 15 made of metal and formed on the transparent conductive film 111; forming a resin coating film 16 around the collector layer 15; forming a thermoplastic resin layer 17 on at least one adhesive surface of the first substrate 11 and the second substrate 12; sticking the first substrate 11 and the second substrate 12 so as to secure the region into which a liquid electrolyte is encapsulated; and encapsulating a liquid electrolyte 14 between th first substrate 11 and the second substrate 12. At least one of the resin coating film 16 and the thermoplastic resin layer 17 includes a thermoplastic resin having a melting point lower than 80°C and a thermoplastic resin having a melting point higher than 80°C.SELECTED DRAWING: Figure 1

Description

本発明は、色素増感型太陽電池(以下、「DSSC」ともいう。)及びその製造方法に関する。   The present invention relates to a dye-sensitized solar cell (hereinafter also referred to as “DSSC”) and a method for producing the same.

色素増感型太陽電池(以下、「DSSC」ともいう。)は、透明導電膜が形成された透光性基板の透明導電膜上に増感色素が担持された金属酸化物層を形成することで作製した発電電極(負極)と、触媒金属が形成された対向電極(正極)とを対向させた構造を有する。対向させた両電極間に電解質を含有した電解液を内包している。DSSCに光が照射されると、金属酸化物層である酸化チタンに吸着した色素が電子励起を起こし、励起電子が酸化チタンの伝導帯に注入され、電子が酸化チタンから透明導電膜であるITOやFTOに移動し、電流として取り出すことができる。   In a dye-sensitized solar cell (hereinafter also referred to as “DSSC”), a metal oxide layer carrying a sensitizing dye is formed on a transparent conductive film of a translucent substrate on which a transparent conductive film is formed. The power generation electrode (negative electrode) produced in step 1 and the counter electrode (positive electrode) on which the catalyst metal is formed are opposed to each other. An electrolytic solution containing an electrolyte is included between the opposed electrodes. When the DSSC is irradiated with light, the dye adsorbed on the titanium oxide that is the metal oxide layer causes electronic excitation, the excited electrons are injected into the conduction band of the titanium oxide, and the electrons are transferred from the titanium oxide to the ITO that is a transparent conductive film. Or move to FTO and take out as current.

DSSCは一般的に基板にガラスを採用しているが、軽量、薄型、フレキシブル性などの特徴を付与するためにフイルム基板を適用することが考案されている。フイルム基板はフレキシブルであるために、その封止剤もフレキシブルである必要がある。また、接着性の確保、耐熱温度など、フイルム基板を用いたDSSCからの電解液漏洩防止のために要求される技術は、ガラス基板を用いたDSSCに使用される封止技術よりも高度である。特許文献1には、プラスチック基板を用いたDSSCにおいて、光硬化性樹脂等が使用された発明が記載されている。   DSSC generally employs glass as a substrate, but it has been devised to apply a film substrate in order to impart features such as light weight, thinness, and flexibility. Since the film substrate is flexible, the sealing agent needs to be flexible. In addition, the technology required to prevent electrolyte leakage from DSSC using a film substrate, such as ensuring adhesion and heat-resistant temperature, is higher than the sealing technology used for DSSC using a glass substrate. . Patent Document 1 describes an invention in which a photocurable resin or the like is used in DSSC using a plastic substrate.

特開2010−138290号公報JP 2010-138290 A

特許文献1で用いられる封止樹脂には、紫外線硬化剤が含まれている。含有している紫外線硬化剤は、封止樹脂の紫外線硬化の際に基本的には消費される。しかし、封止樹脂内の紫外線硬化剤が100%消費される訳ではなく、硬化後の封止樹脂層内に未反応の紫外線硬化樹脂および紫外線硬化剤が残存することになる。また、未反応の紫外線硬化剤および紫外線硬化剤の反応後の残渣とともに未硬化の紫外線硬化樹脂が電解液中に溶出してくることも本発明者の検討により確認されている。電解液中に溶出した余剰の紫外線硬化剤および紫外線硬化剤の反応後の残渣は、電解液中のレドックス(電解質)と反応し、発電に寄与する因子を阻害することにつながる。   The sealing resin used in Patent Document 1 contains an ultraviolet curing agent. The contained ultraviolet curing agent is basically consumed during the ultraviolet curing of the sealing resin. However, the ultraviolet curing agent in the sealing resin is not consumed 100%, and the unreacted ultraviolet curing resin and the ultraviolet curing agent remain in the cured sealing resin layer. Further, it has been confirmed by the present inventors that the uncured UV curable resin is eluted into the electrolyte together with the unreacted UV curable agent and the residue after the reaction of the UV curable agent. The excess ultraviolet curing agent eluted in the electrolytic solution and the residue after the reaction of the ultraviolet curing agent react with the redox (electrolyte) in the electrolytic solution, leading to inhibition of factors contributing to power generation.

紫外線硬化樹脂に代えて熱可塑性樹脂を使用する際には、紫外線硬化樹脂を用いる場合よりも耐熱性と機械的強度の確保が問題になり得る。そのような状況をかんがみて、本発明は、紫外線硬化樹脂を用いずとも耐熱性及び機械的強度にすぐれた樹脂封止構造をもつDSSC及びその製造方法の提供を課題とする。   When using a thermoplastic resin instead of an ultraviolet curable resin, securing heat resistance and mechanical strength may be more problematic than using an ultraviolet curable resin. In view of such a situation, an object of the present invention is to provide a DSSC having a resin sealing structure excellent in heat resistance and mechanical strength without using an ultraviolet curable resin and a method for manufacturing the DSSC.

本発明者が鋭意検討した結果、以下の発明を完成した。
本発明によれば、色素増感型太陽電池の製造方法が有する工程は:接着面をもち透明導電膜を備える第1の基板と、接着面をもつ第2の基板と、前記透明導電膜上に形成された金属からなる集電体層と、を用意する工程;前記集電体層の周囲に樹脂被覆膜を形成する工程;第1及び第2の基板の少なくとも一つの接着面に熱可塑性樹脂層を形成する工程;各々の接着面どうしを向かい合わせて流動性電解質が封入される領域を確保するように第1及び第2の基板を貼り合せる工程;及び前記貼り合せる前または後に、第1及び第2の基板間に流動性電解質を封入する工程;である。本発明によれば、樹脂被覆膜及び熱可塑性樹脂層の少なくとも一つ、好ましくは両方、は80℃未満の融点をもつ熱可塑性樹脂と80℃以上の融点をもつ熱可塑性樹脂とを含有する。
好適には、80℃未満の融点をもつ熱可塑性樹脂及び80℃以上の融点をもつ熱可塑性樹脂がいずれも酸変性ポリオレフィンである。
本発明の製造方法により得られる色素増感型太陽電池もまた本発明の実施の一態様である。
As a result of intensive studies by the inventor, the following invention has been completed.
According to the present invention, the steps of the method for producing a dye-sensitized solar cell include: a first substrate having an adhesive surface and having a transparent conductive film, a second substrate having an adhesive surface, and the transparent conductive film. A step of preparing a current collector layer made of metal formed on the substrate; a step of forming a resin coating film around the current collector layer; and heat applied to at least one adhesive surface of the first and second substrates A step of forming a plastic resin layer; a step of bonding the first and second substrates so as to secure a region in which the fluid electrolyte is sealed by facing each bonding surface; and before or after the bonding, Encapsulating a flowable electrolyte between the first and second substrates. According to the present invention, at least one of the resin coating film and the thermoplastic resin layer, preferably both, contains a thermoplastic resin having a melting point of less than 80 ° C. and a thermoplastic resin having a melting point of 80 ° C. or more. .
Preferably, both the thermoplastic resin having a melting point of less than 80 ° C. and the thermoplastic resin having a melting point of 80 ° C. or more are acid-modified polyolefins.
The dye-sensitized solar cell obtained by the production method of the present invention is also an embodiment of the present invention.

本発明では、融点の低い熱可塑性樹脂と融点の高い熱可塑性樹脂の少なくとも二種類を混合する。そのことによる耐熱性と機械的強度の両立のメカニズムは必ずしも明確ではなく、本発明は以下の推察に拘束されるものではないが、本発明者の推察によれば、高融点の樹脂の周囲に低融点の樹脂が配置され相互作用を起こすことにより、低融点の樹脂だけを用いた場合に比較して耐熱性が向上すると考えることができる。高融点の樹脂の周囲に低融点の樹脂が配置されると、封止時は低融点の樹脂に対する加温で樹脂が一部融解し、封止することが出来る。高融点の樹脂の周囲に低融点の樹脂が配置されるため、高融点の樹脂が低融点の樹脂に溶媒和され、その結晶性が低下するため、高融点の単独樹脂と比較して電解液の封止性が向上するものと推察される。   In the present invention, at least two kinds of a thermoplastic resin having a low melting point and a thermoplastic resin having a high melting point are mixed. The mechanism for achieving both heat resistance and mechanical strength due to this is not necessarily clear, and the present invention is not limited to the following inferences. It can be considered that the heat resistance is improved by arranging a low melting point resin and causing an interaction as compared with the case of using only the low melting point resin. When a low-melting resin is disposed around a high-melting resin, when the resin is sealed, the resin partially melts by heating the low-melting resin and can be sealed. Since the low melting point resin is arranged around the high melting point resin, the high melting point resin is solvated into the low melting point resin and its crystallinity is lowered. It is presumed that the sealing performance of the material is improved.

本発明により製造されるDSSCの一例の模式断面図である。It is a schematic cross section of an example of DSSC manufactured by this invention.

図面を適宜参照しながら本発明を詳述する。但し、本発明は図示された態様に限定されるわけでなく、また、図面においては発明の特徴的な部分を強調して表現することがあるので、図面各部において縮尺の正確性は必ずしも担保されていない。   The present invention will be described in detail with appropriate reference to the drawings. However, the present invention is not limited to the illustrated embodiment, and in the drawings, the characteristic portions of the invention may be emphasized and expressed, so that the accuracy of the scale is not necessarily guaranteed in each part of the drawings. Not.

図1は、本発明により製造されるDSSCの一例の模式断面図である。図1(A)は全体図であり、図1(B)は集電体層付近の拡大図である。このDSSCは第1の基板11を有する。第1の基板11は接着面11a、11bを有する。第1の基板11は積層構造を有していてもよく、少なくとも、透明導電膜111を備える。透明導電膜111は例えばプラスチック板112の上に形成されていてもよく、この形態では、プラスチック板112と透明導電膜111とが第1の基板11を構成する。   FIG. 1 is a schematic cross-sectional view of an example of a DSSC manufactured according to the present invention. FIG. 1A is an overall view, and FIG. 1B is an enlarged view near the current collector layer. The DSSC has a first substrate 11. The first substrate 11 has adhesive surfaces 11a and 11b. The first substrate 11 may have a laminated structure and includes at least a transparent conductive film 111. For example, the transparent conductive film 111 may be formed on the plastic plate 112, and in this embodiment, the plastic plate 112 and the transparent conductive film 111 constitute the first substrate 11.

DSSCは第2の基板12を有する。第2の基板12は接着面12a及び12bを有する。図1の形態では、第2の基板12は金属板121及びその一面に形成された触媒層122を備える。第1及び第2の基板11、12は対向する一対の電極に対応する。第1及び第2の基板11、12は典型的には板状であり、電解質の浸透を防ぐものであれば、形態や材質には特に限定は無い。図示されるように、一対の基板11、12の片方又は両方は複数の層や膜からなる積層体であってもよい。基板は硬質基板であってもよいし、可撓性をもつ基板(いわゆるフレキシブル基板)であってもよい。このDSSCでは、色素担持酸化物半導体層13(例えば、色素担持酸化チタン層)が形成されている第1の基板11が負極として作用し、対向する第2の基板12が正極として作用する。第1の基板11と色素担持酸化物半導体層13との積層体、及び、第2の基板12の間に流動性電解質14が封入される。   The DSSC has a second substrate 12. The second substrate 12 has adhesive surfaces 12a and 12b. In the form of FIG. 1, the second substrate 12 includes a metal plate 121 and a catalyst layer 122 formed on one surface thereof. The first and second substrates 11 and 12 correspond to a pair of electrodes facing each other. The first and second substrates 11 and 12 are typically plate-shaped, and there is no particular limitation on the form or material as long as the penetration of the electrolyte is prevented. As shown in the figure, one or both of the pair of substrates 11 and 12 may be a laminate composed of a plurality of layers or films. The substrate may be a hard substrate or a flexible substrate (so-called flexible substrate). In this DSSC, the first substrate 11 on which the dye-carrying oxide semiconductor layer 13 (for example, the dye-carrying titanium oxide layer) is formed functions as a negative electrode, and the second substrate 12 that faces the first substrate 11 functions as a positive electrode. A fluid electrolyte 14 is sealed between the laminate of the first substrate 11 and the dye-supported oxide semiconductor layer 13 and the second substrate 12.

DSSCでは電解質は何らかの媒体と共存させて使用するのが一般的である。電解質そのものが流動可能であるか、あるいは、電解質を流動可能な媒体と共存させたものを流動性電解質とよぶ。流動可能な形態としては、例えば、液体、ゲル状態、などの形態が特に限定無く挙げられる。流動性電解質14の具体的な態様については、DSSCにおける従来技術を適宜参照することができる。   In DSSC, the electrolyte is generally used in the presence of some medium. The electrolyte itself is flowable, or the one in which the electrolyte coexists with a flowable medium is called a flowable electrolyte. As a form which can flow, forms, such as a liquid and a gel state, are not specifically limited, for example. For specific embodiments of the fluid electrolyte 14, reference can be made to the prior art in DSSC as appropriate.

第1の基板11の透明導電膜111としては、ITOやFTOなどが非限定的に挙げられる。透明導電膜111に隣接して好適に設けられる色素担持酸化物半導体層13は発電層として作用し、材質としては、酸化チタンから構成される多孔質膜や、酸化亜鉛から構成される多孔質膜などが非限定的に挙げられ、これらに色素が担持される。色素担持酸化物半導体層13の材料・構成などについては公知技術などを適宜参照することができる。図1の形態では、透明導電膜111上に、集電体層15が形成される。集電体層15は、透明導電膜111の上に形成された銀などの金属からなる。   Non-limiting examples of the transparent conductive film 111 of the first substrate 11 include ITO and FTO. The dye-carrying oxide semiconductor layer 13 suitably provided adjacent to the transparent conductive film 111 acts as a power generation layer, and the material is a porous film made of titanium oxide or a porous film made of zinc oxide. These include, but are not limited to, dyes carried on these. For the material and configuration of the dye-carrying oxide semiconductor layer 13, known techniques can be referred to as appropriate. In the form of FIG. 1, the current collector layer 15 is formed on the transparent conductive film 111. The current collector layer 15 is made of a metal such as silver formed on the transparent conductive film 111.

図1(B)は、集電体層15の近傍の拡大断面図である。透明導電膜111の上に形成された集電体層15は、樹脂被覆膜16に覆われる。樹脂被覆膜16は、集電体層15と透明導電膜111との界面付近からの液状体の浸入を効果的に防ぐことが期待される。例えば、DSSCにおいて流動性電解質14を用いる場合に、その流動性電解質14が集電体層15と透明導電膜111との界面付近に達することが抑制されるため、流動性電解質14に集電体層15を侵食する物質が含まれていたとしても、集電体層15への侵食が効果的に抑制される。   FIG. 1B is an enlarged cross-sectional view in the vicinity of the current collector layer 15. The current collector layer 15 formed on the transparent conductive film 111 is covered with the resin coating film 16. The resin coating film 16 is expected to effectively prevent the liquid material from entering from the vicinity of the interface between the current collector layer 15 and the transparent conductive film 111. For example, when the fluid electrolyte 14 is used in DSSC, the fluid electrolyte 14 is suppressed from reaching the vicinity of the interface between the current collector layer 15 and the transparent conductive film 111. Even if a substance that erodes the layer 15 is included, the erosion to the current collector layer 15 is effectively suppressed.

第1の基板11と第2の基板12とは熱可塑性樹脂層17を介して貼り合わせられる。具体的には、第1の基板11の接着面11a、11b及び第2の基板12の接着面12a、12bの少なくとも1つに熱可塑性樹脂層17を形成して、接着面どうしを貼り合わせる。このとき、第1及び第2の基板11、12の間に流動性電解質14が封入される領域を確保するように熱可塑性樹脂層17の厚さ等が調節される。   The first substrate 11 and the second substrate 12 are bonded together via a thermoplastic resin layer 17. Specifically, the thermoplastic resin layer 17 is formed on at least one of the bonding surfaces 11a and 11b of the first substrate 11 and the bonding surfaces 12a and 12b of the second substrate 12, and the bonding surfaces are bonded to each other. At this time, the thickness or the like of the thermoplastic resin layer 17 is adjusted so as to secure a region in which the fluid electrolyte 14 is sealed between the first and second substrates 11 and 12.

上述の樹脂被覆膜16及び熱可塑性樹脂層17では、加熱によって軟化して可塑性を示し冷却によって固化する性質をもつ熱可塑性樹脂が好ましく用いられ、特に、紫外線による硬化を必要とせず、酸性又はアルカリ性を呈する官能基を側鎖にもつポリマーが好適に用いられる。熱可塑性樹脂の基本骨格は特に限定無く、好ましくはポリオレフィン骨格、ポリオキシアルキレン骨格、セルロース骨格、ポリイミド骨格などが非限定的に挙げられる。側鎖にもつ官能基としては、好適にはカルボキシル基、りん酸基、ホスホン酸基などが非限定的に挙げられる。熱可塑性樹脂は、変性された樹脂であってもよいし、変性されていなくてもよい。具体的な樹脂としては、アイオノマー樹脂、ポリエチレングリコール共重合体、メチルセルロース共重合体、エチルセルロース共重合体、ポリフッ化ビニリデン共重合体、ポリメチルメタクリレート共重合体、ポリアクリロニトリル共重合体、ポリオレフィン共重合体、けん化メチルセルロース、けん化エチルセルロース、変性ポリフッ化ビニリデン、けん化ポリメチルメタクリレート、けん化ポリアクリロニトリル、ポリオレフィン、変性ポリオレフィン、変性ポリイミド、変性ポリオレフィン共重合体、変性ポリイミド共重合体、ポリアミドイミド、変性ポリアミドイミド、変性ポリテトラフルオロエチレン、けん化ポリビニルアルコール、けん化ポリビニルブチラート等が非限定的に挙げられ、好ましくは酸変性ポリオレフィン、特に好ましくはマレイン酸変性ポリオレフィンが挙げられる。   In the resin coating film 16 and the thermoplastic resin layer 17 described above, a thermoplastic resin having a property of being softened by heating and exhibiting plasticity and solidifying by cooling is preferably used. A polymer having a functional group exhibiting alkalinity in the side chain is preferably used. The basic skeleton of the thermoplastic resin is not particularly limited, and preferably includes a polyolefin skeleton, a polyoxyalkylene skeleton, a cellulose skeleton, a polyimide skeleton, and the like. Preferred examples of the functional group in the side chain include, but are not limited to, a carboxyl group, a phosphoric acid group, and a phosphonic acid group. The thermoplastic resin may be a modified resin or may not be modified. Specific resins include ionomer resins, polyethylene glycol copolymers, methylcellulose copolymers, ethylcellulose copolymers, polyvinylidene fluoride copolymers, polymethylmethacrylate copolymers, polyacrylonitrile copolymers, polyolefin copolymers. Saponified methylcellulose, saponified ethylcellulose, modified polyvinylidene fluoride, saponified polymethylmethacrylate, saponified polyacrylonitrile, polyolefin, modified polyolefin, modified polyimide, modified polyolefin copolymer, modified polyimide copolymer, polyamideimide, modified polyamideimide, modified poly Nonlimiting examples include tetrafluoroethylene, saponified polyvinyl alcohol, saponified polyvinyl butyrate, and preferably acid-modified polyolefins, particularly Mashiku the maleic acid-modified polyolefin.

本発明によれば、好ましくは、上述の熱可塑性樹脂については高融点のものと低融点のものが混合して用いられる。ここで、高融点の樹脂は、融点が80℃以上、好ましくは90℃以上、より好ましくは95℃以上である。高融点の樹脂の融点の上限は特に限定は無く、例えば140℃を挙げることができる。低融点の樹脂は、融点が80℃未満、好ましくは75℃以下である。低融点の樹脂の融点の下限は特に限定は無く、例えば60℃を挙げることができる。一般的な傾向として高融点の樹脂は結晶性が高く、低融点の樹脂は結晶性が低い。高融点及び低融点の樹脂を混合する結果、結晶性が比較的高い樹脂が骨格のように全体的な構造を形成し、それら結晶性が高い樹脂からなる「骨格」の隙間を埋めるように結晶性が低い樹脂が存在することになって、全体的な耐熱性と機械的強度が顕著に向上するものと推察される。   According to the present invention, it is preferable to use a mixture of the above-mentioned thermoplastic resin having a high melting point and a low melting point. Here, the high melting point resin has a melting point of 80 ° C. or higher, preferably 90 ° C. or higher, more preferably 95 ° C. or higher. The upper limit of the melting point of the high melting point resin is not particularly limited, and examples thereof include 140 ° C. The low melting point resin has a melting point of less than 80 ° C, preferably 75 ° C or less. The lower limit of the melting point of the low melting point resin is not particularly limited, and can be 60 ° C., for example. As a general tendency, high melting point resins have high crystallinity, and low melting point resins have low crystallinity. As a result of mixing the high melting point resin and the low melting point resin, the resin having a relatively high crystallinity forms an overall structure like a skeleton, and the crystal is formed so as to fill the gap between the “skeleton” made of the resin having a high crystallinity. It is assumed that there is a resin having low properties, and the overall heat resistance and mechanical strength are remarkably improved.

本発明では、集電体層15を覆う上述の樹脂被覆膜16、及び、第1及び第2の基板11、12を貼り合わせるための熱可塑性樹脂層17の少なくとも一つ、好ましくは両方において、上述した高融点の熱可塑性樹脂と低融点の熱可塑性樹脂との混合物が用いられる。これにより、流動性電解質14の封止構造の耐熱性向上及び強度向上や、集電体層15の浸食防止などが顕著に促進され得る。   In the present invention, at least one of the above-described resin coating film 16 covering the current collector layer 15 and the thermoplastic resin layer 17 for bonding the first and second substrates 11 and 12, preferably both. A mixture of the above-described high-melting thermoplastic resin and low-melting thermoplastic resin is used. Thereby, improvement in heat resistance and strength of the sealing structure of the fluid electrolyte 14 and prevention of erosion of the current collector layer 15 can be promoted significantly.

高融点の樹脂と低融点の樹脂との混合比率については特に限定は無く、前記効果をより高める観点から、高融点の樹脂と低融点の樹脂との合計量100重量部に対して、高融点の樹脂は10〜90重量部含まれ、より好ましくは20〜40重量部含まれる。上述の樹脂被覆膜16及び/又は熱可塑性樹脂層17は、3種以上の熱可塑性樹脂を混合して製造してもよい。この場合、それぞれの熱可塑性樹脂は、それぞれの融点に応じて「高融点の樹脂」または「低融点の樹脂」であると解釈することができる。   The mixing ratio of the high melting point resin and the low melting point resin is not particularly limited. From the viewpoint of further enhancing the above effect, the high melting point resin is added to the total amount of 100 parts by weight of the high melting point resin and the low melting point resin. The resin is contained in an amount of 10 to 90 parts by weight, more preferably 20 to 40 parts by weight. The resin coating film 16 and / or the thermoplastic resin layer 17 described above may be manufactured by mixing three or more kinds of thermoplastic resins. In this case, each thermoplastic resin can be interpreted as a “high melting point resin” or a “low melting point resin” depending on the melting point.

本発明によるDSSCの製造においては、上述した第1の基板11、第2の基板12、集電体層15が用意される。このとき、例えば、第2の基板12に触媒層122を付与してもよい。集電体層15は、図示されるように、上述した透明導電膜111上に形成される。各基板11、12の製造については従来技術を適宜参照することができる。集電体層15については例えば銀ペーストを用いるなどの従来技術を適宜参照することができる。   In manufacturing the DSSC according to the present invention, the first substrate 11, the second substrate 12, and the current collector layer 15 described above are prepared. At this time, for example, the catalyst layer 122 may be provided on the second substrate 12. As illustrated, the current collector layer 15 is formed on the transparent conductive film 111 described above. For the manufacture of the substrates 11 and 12, the prior art can be referred to as appropriate. For the current collector layer 15, for example, a conventional technique such as using a silver paste can be appropriately referred to.

第1及び第2の基板11、12を貼り合わせるために、それらの少なくとも一つの接着面に熱可塑性樹脂層17を形成する。上述の集電体層15の周囲にも樹脂被覆膜16を形成する。熱可塑性樹脂17及び樹脂被覆膜16の少なくとも一つ、好ましくは両方は、上述したように、高融点の樹脂と低融点の樹脂とを混合してなる熱可塑性樹脂が用いられる。熱可塑性樹脂層17の形成や樹脂被覆膜16の形成方法は特に限定は無く、従来技術を適宜参照することができる。例えば、熱可塑性樹脂を適切な溶媒に溶解又は分散させてなる塗布液(後述の実施例では「封止剤溶液」ともいう。)を製造し、この塗布液を塗布して、しかる後に乾燥させることによって熱可塑性樹脂層17や樹脂被覆膜16を形成することもできる。具体的な乾燥条件などの例は後述の実施例において挙げられる。   In order to bond the first and second substrates 11 and 12 together, a thermoplastic resin layer 17 is formed on at least one bonding surface thereof. A resin coating film 16 is also formed around the current collector layer 15 described above. As described above, a thermoplastic resin obtained by mixing a high melting point resin and a low melting point resin is used for at least one, preferably both of the thermoplastic resin 17 and the resin coating film 16. The formation method of the thermoplastic resin layer 17 and the formation method of the resin coating film 16 are not particularly limited, and the prior art can be referred to as appropriate. For example, a coating liquid (also referred to as “sealing agent solution” in the examples described later) in which a thermoplastic resin is dissolved or dispersed in a suitable solvent is manufactured, and this coating liquid is applied and then dried. Thus, the thermoplastic resin layer 17 and the resin coating film 16 can also be formed. Examples of specific drying conditions and the like are given in the examples described later.

第1及び第2の基板11、12が貼り合わせられ、貼り合わせの前後の適時に、あるいは貼り合わせと同時に流動性電解質14が第1及び第2の基板11、12の間に封入される。色素担持酸化物半導体層13も適宜な段階で形成することができる。これら、流動性電解質14の封入や色素担持酸化物半導体層13の形成などについては従来技術を適宜参照することができる。このため、当業者であれば、以上の記載及び請求項の記載にもとづいて、本発明の製造方法を実施することができ、耐熱性及び機械的強度が顕著に向上し得るDSSCを得ることができる。   The first and second substrates 11 and 12 are bonded together, and the fluid electrolyte 14 is sealed between the first and second substrates 11 and 12 at appropriate times before and after the bonding or simultaneously with the bonding. The dye-supported oxide semiconductor layer 13 can also be formed at an appropriate stage. For the encapsulation of the fluid electrolyte 14 and the formation of the dye-carrying oxide semiconductor layer 13, the prior art can be referred to as appropriate. For this reason, a person skilled in the art can carry out the production method of the present invention based on the above description and the description of the claims, and obtain a DSSC in which heat resistance and mechanical strength can be remarkably improved. it can.

以下、実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the embodiments described in these examples.

各実施例・比較例にて共通する条件等は以下のとおりである。
封止剤溶液は融点が75℃である酸変性ポリオレフィン及び/又は融点が100℃である酸変性ポリオレフィン(合計量100重量部)、ならびに、溶剤として233から900重量部の炭化水素系溶剤および極性溶剤を含む(すなわち、封止剤溶液中の酸変性ポリオレフィン濃度は、10から30重量%となる)。この溶剤は、後述する120℃における乾燥で除去されるものである。
Conditions common to each example and comparative example are as follows.
The sealing agent solution includes an acid-modified polyolefin having a melting point of 75 ° C. and / or an acid-modified polyolefin having a melting point of 100 ° C. (total amount: 100 parts by weight), and 233 to 900 parts by weight of a hydrocarbon solvent and a polar solvent. It contains a solvent (ie, the acid-modified polyolefin concentration in the sealant solution is 10 to 30% by weight). This solvent is removed by drying at 120 ° C., which will be described later.

(実施例1)光ディスク型色素増感太陽電池の作製
融点が75℃である酸変性ポリオレフィンを70重量部含み、融点が100℃である酸変性ポリオレフィンを30重量部含む、封止剤溶液を作製した。尚、前記の酸変性ポリオレフィンの総重量に対して、400重量部の炭化水素系溶剤および極性溶剤を添加して、封止剤溶液の粘度を調整した。すなわち、封止剤溶液中の酸変性ポリオレフィン濃度は、20重量%となる。
第1の基板はプラスチック/ITO基板である。前記基板におけるITO膜上に色素を吸着した発電層と銀ペーストを集電体層として配して負極を形成した。プラスチック/ITO基板のITO表面の封止部(接着面)と集電体層の周囲に、上記の封止剤溶液を塗布し、120℃で20分程度乾燥させた。
第2の基板は正極となるチタン電極板である。このチタン電極板の表面の封止部(接着面)にも上記の封止剤溶液を塗布し、120℃で20分程度乾燥させた。
Example 1 Production of Optical Disc Type Dye-Sensitized Solar Cell A sealant solution comprising 70 parts by weight of acid-modified polyolefin having a melting point of 75 ° C. and 30 parts by weight of acid-modified polyolefin having a melting point of 100 ° C. did. Incidentally, 400 parts by weight of a hydrocarbon solvent and a polar solvent were added to the total weight of the acid-modified polyolefin to adjust the viscosity of the sealant solution. That is, the acid-modified polyolefin concentration in the sealant solution is 20% by weight.
The first substrate is a plastic / ITO substrate. A power generation layer adsorbing a pigment and a silver paste were arranged as a current collector layer on the ITO film of the substrate to form a negative electrode. The sealing agent solution was applied around the sealing portion (adhesive surface) on the ITO surface of the plastic / ITO substrate and the current collector layer, and dried at 120 ° C. for about 20 minutes.
The second substrate is a titanium electrode plate serving as a positive electrode. The above sealant solution was also applied to the sealing portion (adhesion surface) on the surface of the titanium electrode plate and dried at 120 ° C. for about 20 minutes.

このようにして作製した負極であるプラスチック/ITO基板および正極であるチタン電極表面において、封止部を互いに対向させた。封止剤溶液を塗布した部位より内側にディスペンサーを用いて電解液を注液し、封止部を加熱しながら圧着することで電解液を2枚の電極間に封止してセルを製造した。   The sealing portions were made to face each other on the surface of the plastic / ITO substrate that was the negative electrode and the titanium electrode surface that was the positive electrode. A cell was manufactured by injecting an electrolytic solution using a dispenser on the inner side of the portion where the sealing agent solution was applied, and sealing the electrolytic solution between two electrodes by pressing the sealing portion while heating the sealing portion. .

このようにして製造したセルについて、80℃、12時間の加温試験を行い、加温前後における封止部の破壊および性能変化を測定した。結果は以下のとおりである。
加速試験前後の封止部破壊:無し
加速試験前後の変換効率低下率:1.4%
集電体層の色調変化(銀ペーストへの電解液浸漬):無し
The cell thus manufactured was subjected to a heating test at 80 ° C. for 12 hours, and the destruction and performance change of the sealing part before and after the heating were measured. The results are as follows.
Sealed part destruction before and after acceleration test: None Conversion efficiency decrease rate before and after acceleration test: 1.4%
Change in color of current collector layer (immersion of electrolyte in silver paste): None

(実施例2)光ディスク型色素増感太陽電池の作製
融点が75℃である酸変性ポリオレフィンを50重量部含み、融点が100℃である酸変性ポリオレフィンを50重量部含む、封止剤溶液を作製して用いたことの他は実施例1と同様にして、セルを製造し、加速試験を行った。結果は以下のとおりである。
加速試験前後の封止部破壊:無し
加速試験前後の変換効率低下率:12.4%
集電体層の色調変化(銀ペーストへの電解液浸漬):有り
この実施例及び以降の実施例では銀ペーストへの電解液浸漬が見られるものの、加速試験の結果に顕著な影響を及ぼすレベルではなく、耐熱性及び機械的強度にすぐれた樹脂封止構造をもっていると結論づけることができる。
(Example 2) Production of optical disk type dye-sensitized solar cell A sealing agent solution containing 50 parts by weight of acid-modified polyolefin having a melting point of 75 ° C and 50 parts by weight of acid-modified polyolefin having a melting point of 100 ° C was prepared. A cell was manufactured in the same manner as in Example 1 except that it was used, and an acceleration test was performed. The results are as follows.
Sealed part destruction before and after acceleration test: None Conversion efficiency decrease rate before and after acceleration test: 12.4%
Change in color tone of current collector layer (electrolyte immersion in silver paste): Existence In this example and the following examples, although electrolyte immersion in silver paste is observed, it has a significant effect on the results of accelerated tests Rather, it can be concluded that the resin sealing structure has excellent heat resistance and mechanical strength.

(実施例3)光ディスク型色素増感太陽電池の作製
融点が75℃である酸変性ポリオレフィンを30重量部含み、融点が100℃である酸変性ポリオレフィンを70重量部含む、封止剤溶液を作製して用いたことの他は実施例1と同様にして、セルを製造し、加速試験を行った。結果は以下のとおりである。
加速試験前後の封止部破壊:無し
加速試験前後の変換効率低下率:12.8%
集電体層の色調変化(銀ペーストへの電解液浸漬):有り
Example 3 Production of Optical Disc Type Dye-Sensitized Solar Cell A sealant solution comprising 30 parts by weight of acid-modified polyolefin having a melting point of 75 ° C. and 70 parts by weight of acid-modified polyolefin having a melting point of 100 ° C. A cell was manufactured in the same manner as in Example 1 except that it was used, and an acceleration test was performed. The results are as follows.
Sealing part destruction before and after the acceleration test: None Conversion efficiency decrease rate before and after the acceleration test: 12.8%
Change in color of current collector layer (immersion of electrolyte in silver paste): Available

(実施例4)光ディスク型色素増感太陽電池の作製
融点が75℃である酸変性ポリオレフィンを10重量部含み、融点が100℃である酸変性ポリオレフィンを90重量部含む、封止剤溶液を作製して用いたことの他は実施例1と同様にして、セルを製造し、加速試験を行った。結果は以下のとおりである。
加速試験前後の封止部破壊:無し
加速試験前後の変換効率低下率:24.0%
集電極の色調変化(銀ペーストへの電解液浸漬):有り
Example 4 Production of Optical Disc Type Dye-Sensitized Solar Cell A sealant solution comprising 10 parts by weight of acid-modified polyolefin having a melting point of 75 ° C. and 90 parts by weight of acid-modified polyolefin having a melting point of 100 ° C. A cell was manufactured in the same manner as in Example 1 except that it was used, and an acceleration test was performed. The results are as follows.
Sealed part failure before and after acceleration test: None Conversion efficiency decrease rate before and after acceleration test: 24.0%
Change in color of collector electrode (immersion of electrolyte in silver paste): Available

(比較例1)光ディスク型色素増感太陽電池の作製
融点が100℃である酸変性ポリオレフィンを100重量部含む、封止剤溶液を作製して用いたことの他は実施例1と同様にして、セルを製造し、加速試験を行った。結果は以下のとおりである。
加速試験前後の封止部破壊:無し
加速試験前後の変換効率低下率:26.3%
集電体層の色調変化(銀ペーストへの電解液浸漬):有り
Comparative Example 1 Preparation of Optical Disc Type Dye-Sensitized Solar Cell As in Example 1, except that a sealant solution containing 100 parts by weight of acid-modified polyolefin having a melting point of 100 ° C. was used. The cell was manufactured and subjected to an accelerated test. The results are as follows.
Sealed part destruction before and after acceleration test: None Conversion efficiency decrease rate before and after acceleration test: 26.3%
Change in color of current collector layer (immersion of electrolyte in silver paste): Available

(比較例2)光ディスク型色素増感太陽電池の作製
融点が75℃である酸変性ポリオレフィンを100重量部含む、封止剤溶液を作製して用いたことの他は実施例1と同様にして、セルを製造し、加速試験を行った。結果は以下のとおりである。
加速試験前後の封止部破壊:あり
加速試験前後の変換効率低下率:70%以上
集電体層の色調変化(銀ペーストへの電解液浸漬):有り
Comparative Example 2 Production of Optical Disc Type Dye-Sensitized Solar Cell As in Example 1, except that a sealant solution containing 100 parts by weight of acid-modified polyolefin having a melting point of 75 ° C. was used. The cell was manufactured and subjected to an accelerated test. The results are as follows.
Sealed part destruction before and after acceleration test: Yes Conversion efficiency decrease rate before and after acceleration test: 70% or more Color change of current collector layer (electrolyte immersion in silver paste): Yes

11:第1の基板 12:第2の基板
13:色素担持酸化物半導体層 14:流動性電解質
15:集電体層 16:樹脂被覆膜
17:熱可塑性樹脂層
DESCRIPTION OF SYMBOLS 11: 1st board | substrate 12: 2nd board | substrate 13: Dye carrying | support oxide semiconductor layer 14: Fluid electrolyte 15: Current collector layer 16: Resin coating film 17: Thermoplastic resin layer

Claims (4)

接着面をもち透明導電膜を備える第1の基板と、接着面をもつ第2の基板と、前記透明導電膜上に形成された金属からなる集電体層と、を用意する工程;
前記集電体層の周囲に樹脂被覆膜を形成する工程;
第1及び第2の基板の少なくとも一つの接着面に熱可塑性樹脂層を形成する工程;
各々の接着面どうしを向かい合わせて流動性電解質が封入される領域を確保するように第1及び第2の基板を貼り合せる工程;及び
前記貼り合せと同時に、あるいは貼り合わせる前または後に、第1及び第2の基板間に流動性電解質を封入する工程;
を有する製造方法であって、
前記樹脂被覆膜及び熱可塑性樹脂層の少なくとも一つは80℃未満の融点をもつ熱可塑性樹脂と80℃以上の融点をもつ熱可塑性樹脂とを含有する、
色素増感型太陽電池の製造方法。
Providing a first substrate having an adhesive surface and having a transparent conductive film, a second substrate having an adhesive surface, and a current collector layer made of metal formed on the transparent conductive film;
Forming a resin coating around the current collector layer;
Forming a thermoplastic resin layer on at least one adhesive surface of the first and second substrates;
A step of bonding the first and second substrates so as to secure a region in which the fluid electrolyte is sealed by facing each of the bonding surfaces; and at the same time as the bonding or before or after the bonding, And encapsulating a flowable electrolyte between the second substrate;
A manufacturing method comprising:
At least one of the resin coating film and the thermoplastic resin layer contains a thermoplastic resin having a melting point of less than 80 ° C. and a thermoplastic resin having a melting point of 80 ° C. or more.
A method for producing a dye-sensitized solar cell.
前記樹脂被覆膜及び熱可塑性樹脂層の両方が80℃未満の融点をもつ熱可塑性樹脂と80℃以上の融点をもつ熱可塑性樹脂とを含有する請求項1記載の製造方法。   The method according to claim 1, wherein both the resin coating film and the thermoplastic resin layer contain a thermoplastic resin having a melting point of less than 80 ° C and a thermoplastic resin having a melting point of 80 ° C or more. 80℃未満の融点をもつ熱可塑性樹脂及び80℃以上の融点をもつ熱可塑性樹脂がいずれも酸変性ポリオレフィンである請求項1又は2記載の製造方法。   The method according to claim 1 or 2, wherein both the thermoplastic resin having a melting point of less than 80 ° C and the thermoplastic resin having a melting point of 80 ° C or more are acid-modified polyolefins. 請求項1〜3のいずれか1項記載の製造方法により得られる色素増感型太陽電池。   The dye-sensitized solar cell obtained by the manufacturing method of any one of Claims 1-3.
JP2014257676A 2014-12-19 2014-12-19 Dye-sensitized solar cell and method for manufacturing the same Pending JP2016119371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257676A JP2016119371A (en) 2014-12-19 2014-12-19 Dye-sensitized solar cell and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257676A JP2016119371A (en) 2014-12-19 2014-12-19 Dye-sensitized solar cell and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2016119371A true JP2016119371A (en) 2016-06-30

Family

ID=56242439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257676A Pending JP2016119371A (en) 2014-12-19 2014-12-19 Dye-sensitized solar cell and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2016119371A (en)

Similar Documents

Publication Publication Date Title
JP5098185B2 (en) Dye-sensitized solar cell module
TWI462369B (en) Dye-sensitized solar cell and method for preparing the same
KR101518871B1 (en) Method of preparing the dye-sensitized solar cell
WO2010041729A1 (en) Functional device and manufacturing method therefor
JP5098186B2 (en) Method for producing dye-sensitized solar cell and dye-sensitized solar cell
JP2004172048A (en) Method of manufacturing photoelectric conversion element
TW201326962A (en) Side package structure of electric modules
JP2007048504A (en) Sealing material for dye-sensitized solar cell
JP2007106822A (en) Photo-curing composition, its use as sealing material for dye-sensitization type solar cell, dye-sensitization type solar cell and method for production of the same
JP2009169229A (en) Electrochromic element and method of manufacturing the same
JP2009289549A (en) Sealer for dye-sensitized solar cell
JP4396574B2 (en) Dye-sensitized solar cell and method for producing the same
JP2015195297A (en) solar cell module
JP2016119371A (en) Dye-sensitized solar cell and method for manufacturing the same
JP2009199782A (en) Dye-sensitized solar cell and manufacturing method therefor
JP2015191986A (en) Dye-sensitized solar cell and method for manufacturing the same
JP5140938B2 (en) Dye-sensitized solar cell
JP2009231204A (en) Dye-sensitized solar cell and its manufacturing method
US20130340809A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
JP2008226615A (en) Dye-sensitized solar cell, its manufacturing method, and sealer for dye-sensitized solar cell
JP5882084B2 (en) Resin composition, dye-sensitized solar cell sealing material, electrode substrate, and dye-sensitized solar cell
KR20100005591A (en) A sealling for sub-moduledye of sensitized solar cell
JP2015069920A (en) Electrolyte-sealing structure and method of manufacturing the same
JP2011159514A (en) Sealing structure of dye-sensitized solar cell, and dye-sensitized solar cell
JP5573671B2 (en) Solar cell