JP2016118506A - Radiation detection device, manufacturing method of the same, and radiation imaging system - Google Patents

Radiation detection device, manufacturing method of the same, and radiation imaging system Download PDF

Info

Publication number
JP2016118506A
JP2016118506A JP2014259274A JP2014259274A JP2016118506A JP 2016118506 A JP2016118506 A JP 2016118506A JP 2014259274 A JP2014259274 A JP 2014259274A JP 2014259274 A JP2014259274 A JP 2014259274A JP 2016118506 A JP2016118506 A JP 2016118506A
Authority
JP
Japan
Prior art keywords
sensor panel
support member
support
region
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014259274A
Other languages
Japanese (ja)
Inventor
伸二 小野
Shinji Ono
伸二 小野
石井 孝昌
Takamasa Ishii
孝昌 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014259274A priority Critical patent/JP2016118506A/en
Publication of JP2016118506A publication Critical patent/JP2016118506A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technology for fixing a sensor panel to a support member while suppressing deformation of the sensor panel.SOLUTION: A manufacturing method of a radiation detection device includes: a holding step of holding a support member and a sensor panel so that a support surface of the support member and a first surface of the sensor panel face each other and a space is formed at least partially between the support surface and first surface; an injection step of injecting a liquid or gelatinous adhesive into a space between the sensor panel and support member; and a step of curing the adhesive to fix the sensor panel and support member to each other.SELECTED DRAWING: Figure 3

Description

本発明は、放射線検出装置、その製造方法及び放射線撮像システムに関する。   The present invention relates to a radiation detection apparatus, a manufacturing method thereof, and a radiation imaging system.

放射線検出装置の検出素子を半導体ウエハに形成する技術が知られている。半導体ウエハは一般的に小型であるため、検出素子が形成された複数の半導体ウエハをガラス等の基台に貼り付けることによって、大型なセンサパネルが実現される。センサパネルは筐体に格納され、固定される。放射線検出装置のセンサパネルの基台がガラスで形成されている場合に、基台をネジなどで筐体に直接固定するのは困難である。そこで、基台を接着剤で支持部材に固定し、この支持部材を筐体に固定する方法が行われている。特許文献1には、基台の側面のみを接着剤で支持部材に固定した構造が記載されている。   A technique for forming a detection element of a radiation detection apparatus on a semiconductor wafer is known. Since a semiconductor wafer is generally small, a large sensor panel is realized by attaching a plurality of semiconductor wafers on which detection elements are formed to a base such as glass. The sensor panel is stored in a housing and fixed. When the base of the sensor panel of the radiation detection apparatus is formed of glass, it is difficult to directly fix the base to the housing with a screw or the like. Therefore, a method of fixing the base to the support member with an adhesive and fixing the support member to the housing is performed. Patent Document 1 describes a structure in which only the side surface of a base is fixed to a support member with an adhesive.

特開2013−120851号公報JP 2013-120551 A

特許文献1のように基台の側面のみを支持部材に固体した構造では強度が不十分である。そこで、基台の底面を接着剤で支持部材に固定する方法が考えられる。例えば、基台と支持部材との間にシート状の接着剤を挟み、基台を支持部材に押し付けることによって基台の底面を支持部材に固定する。しかし、この方法では、支持部材の上面の平面度と基台の底面の平面度とが互いに異なる場合に、センサパネルが変形した状態で固定部材に固定されてしまうことを発明者は見出した。変形したセンサパネルでは画像を正しく取得できず、例えば画像出力が変形前後で数%変化してしまうことがある。本発明の一部の側面は、センサパネルの変形を抑制しつつ、センサパネルを支持部材に固定するための技術を提供することを目的とする。   A structure in which only the side surface of the base is solid on the support member as in Patent Document 1 has insufficient strength. Therefore, a method of fixing the bottom surface of the base to the support member with an adhesive can be considered. For example, the bottom of the base is fixed to the support member by sandwiching a sheet-like adhesive between the base and the support member and pressing the base against the support member. However, the inventors have found that in this method, when the flatness of the upper surface of the support member and the flatness of the bottom surface of the base are different from each other, the sensor panel is fixed to the fixing member in a deformed state. The deformed sensor panel cannot acquire an image correctly, and for example, the image output may change several percent before and after the deformation. An object of some aspects of the present invention is to provide a technique for fixing a sensor panel to a support member while suppressing deformation of the sensor panel.

上記課題に鑑みて、一部の実施形態では、放射線検出装置の製造方法であって、支持部材の支持面とセンサパネルの第1面とが互いに対向し、前記支持面と前記第1面との間の少なくとも一部に空間が形成されるように前記支持部材及び前記センサパネルを保持する保持工程と、前記センサパネルと前記支持部材との間の前記空間に液状又はゲル状の接着剤を注入する注入工程と、前記接着剤を硬化することによって、前記センサパネルと前記支持部材とを互いに固定する工程とを有することを特徴とする製造方法が提供される。   In view of the above problems, in some embodiments, a method for manufacturing a radiation detection apparatus is provided, wherein a support surface of a support member and a first surface of a sensor panel face each other, and the support surface and the first surface A holding step of holding the support member and the sensor panel so that a space is formed in at least a part of the space, and a liquid or gel adhesive in the space between the sensor panel and the support member There is provided a manufacturing method including an injection step of injecting and a step of fixing the sensor panel and the support member to each other by curing the adhesive.

上記手段により、センサパネルの変形を抑制しつつ、センサパネルを支持部材に固定するための技術が提供される。   The above means provides a technique for fixing the sensor panel to the support member while suppressing deformation of the sensor panel.

本発明の一部の実施形態の放射線検出装置の構成を説明する図。The figure explaining the structure of the radiation detection apparatus of some embodiment of this invention. 図1の放射線検出装置の支持部材を説明する図。The figure explaining the supporting member of the radiation detection apparatus of FIG. 図1の放射線検出装置の製造方法を説明する図。The figure explaining the manufacturing method of the radiation detection apparatus of FIG. 図1の放射線検出装置の他の製造方法を説明する図。The figure explaining the other manufacturing method of the radiation detection apparatus of FIG. 本発明の一部の実施形態の放射線撮像システムの構成を説明する図。The figure explaining the structure of the radiation imaging system of some embodiment of this invention.

添付の図面を参照しつつ本発明の実施形態について以下に説明する。様々な実施形態を通じて同様の要素には同一の参照符号を付し、重複する説明を省略する。また、各実施形態は適宜変更、組み合わせが可能である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. Throughout the various embodiments, similar elements are given the same reference numerals, and redundant descriptions are omitted. In addition, each embodiment can be appropriately changed and combined.

図1を参照しつつ、本発明の一部の実施形態に係る放射線検出装置100の構成例について説明する。図1(a)は放射線検出装置100の平面図であり、図1(b)は図1(a)のA−A′線における放射線検出装置100の断面図である。図1(a)では放射線検出装置100の要素の位置関係が明確になるように、筐体160についてその側部のみ示し、シンチレータパネル120についてそのシンチレータ121の輪郭のみを示す。被検体に向けて曝射された放射線は、被検体による減衰を受けた後に、放射線検出装置100に入射する。放射線検出装置100は、入射した放射線を検出し、この放射線の線量に応じた信号を出力する。以下の説明で放射線はX線、α線、β線及びγ線を含む。また、光は可視光及び赤外線を含む。   A configuration example of a radiation detection apparatus 100 according to some embodiments of the present invention will be described with reference to FIG. 1A is a plan view of the radiation detection apparatus 100, and FIG. 1B is a cross-sectional view of the radiation detection apparatus 100 taken along the line AA ′ of FIG. 1A. In FIG. 1A, only the side portion of the housing 160 is shown, and only the outline of the scintillator 121 is shown for the scintillator panel 120 so that the positional relationship of the elements of the radiation detection apparatus 100 becomes clear. The radiation exposed toward the subject enters the radiation detection apparatus 100 after being attenuated by the subject. The radiation detection apparatus 100 detects incident radiation and outputs a signal corresponding to the radiation dose. In the following description, radiation includes X-rays, α rays, β rays, and γ rays. The light includes visible light and infrared light.

放射線検出装置100は、センサパネル110、シンチレータパネル120、固定部材130、支持部材140、固定部材150、筐体160、締結部材170及び配線基板180を備える。センサパネル110は、複数のセンサ基板111、基台112及び固定部材113を備える。シンチレータパネル120は、シンチレータ121及びシンチレータ基板122を備える。   The radiation detection apparatus 100 includes a sensor panel 110, a scintillator panel 120, a fixing member 130, a support member 140, a fixing member 150, a housing 160, a fastening member 170, and a wiring board 180. The sensor panel 110 includes a plurality of sensor substrates 111, a base 112, and a fixing member 113. The scintillator panel 120 includes a scintillator 121 and a scintillator substrate 122.

シンチレータ121は、放射線検出装置100に入射した放射線を、センサ基板111が検出可能な波長の光(例えば可視光)に変換する。シンチレータ121はシンチレータ基板122によって保持されており、例えばシンチレータ基板122に材料を蒸着することによって形成される。シンチレータ121は、例えばCsI:Tlなどの柱状結晶やGOSなどの粒状結晶で形成される。シンチレータ基板122は、例えばa−C(アモルファスカーボン)やAl(アルミニウム)、樹脂などで形成される。シンチレータパネル120は、シンチレータ121の表面を覆い、シンチレータ121への水分の侵入を抑制する耐湿保護膜を更に有してもよい。耐湿保護膜は例えばポリパラキシリレンやホットメルト樹脂などで形成される。   The scintillator 121 converts the radiation incident on the radiation detection apparatus 100 into light having a wavelength that can be detected by the sensor substrate 111 (for example, visible light). The scintillator 121 is held by a scintillator substrate 122, and is formed by evaporating a material on the scintillator substrate 122, for example. The scintillator 121 is formed of a columnar crystal such as CsI: Tl or a granular crystal such as GOS. The scintillator substrate 122 is made of, for example, aC (amorphous carbon), Al (aluminum), resin, or the like. The scintillator panel 120 may further include a moisture-resistant protective film that covers the surface of the scintillator 121 and suppresses intrusion of moisture into the scintillator 121. The moisture-resistant protective film is formed of, for example, polyparaxylylene or hot melt resin.

複数のセンサ基板111は、2次元配列状に並んだ状態で基台112に固定されている。放射線検出装置100は2行×4列に配された8個のセンサ基板111を有するが、センサ基板111の配列・個数はこれに限られない。各センサ基板111の1辺には配線基板180が接続されている。配線基板180は、フレキシブル配線板(FPC)であってもよいし、リジッド配線板であってもよい。   The plurality of sensor substrates 111 are fixed to the base 112 in a state of being arranged in a two-dimensional array. Although the radiation detection apparatus 100 includes eight sensor substrates 111 arranged in 2 rows × 4 columns, the arrangement / number of sensor substrates 111 is not limited to this. A wiring board 180 is connected to one side of each sensor board 111. The wiring board 180 may be a flexible wiring board (FPC) or a rigid wiring board.

複数のセンサ基板111はそれぞれ、シンチレータ121で変換された光を電気信号に変換する。センサ基板111は、半導体基板と、この半導体基板に形成された変換素子やスイッチ素子などを含む回路素子とを有する。センサ基板111は、例えばCMOSセンサ、CCDセンサ、a−Si(非晶質シリコン)センサ、SOI(Silicon on Insulator)センサ等である。例えば、各センサ基板111には、PIN型やMIS型のフォトダイオードなどの光電変換素子とTFTなどのスイッチ素子とを有する複数の画素が二次元配列状に配されている。センサ基板111は既存の構成を有していてもよいので、その詳細な説明を省略する。   Each of the plurality of sensor substrates 111 converts the light converted by the scintillator 121 into an electrical signal. The sensor substrate 111 includes a semiconductor substrate and circuit elements including conversion elements and switch elements formed on the semiconductor substrate. The sensor substrate 111 is, for example, a CMOS sensor, a CCD sensor, an a-Si (amorphous silicon) sensor, an SOI (Silicon on Insulator) sensor, or the like. For example, on each sensor substrate 111, a plurality of pixels having photoelectric conversion elements such as PIN-type and MIS-type photodiodes and switch elements such as TFTs are arranged in a two-dimensional array. Since the sensor substrate 111 may have an existing configuration, a detailed description thereof is omitted.

図1に示すように、本実施形態の放射線検出装置100では、センサ基板111同士が接触した際に生じる電気的又は機械的な影響を抑制するために、複数のセンサ基板111は互いに間隔を置いて配されている。これに代えて、複数のセンサ基板111は互いに密着するように配されてもよい。基台112は、例えばガラス、石英、アクリルなどの樹脂、セラミック、金属などの材料で形成される。   As shown in FIG. 1, in the radiation detection apparatus 100 of the present embodiment, a plurality of sensor substrates 111 are spaced apart from each other in order to suppress electrical or mechanical influences that occur when the sensor substrates 111 contact each other. Are arranged. Instead of this, the plurality of sensor substrates 111 may be arranged to be in close contact with each other. The base 112 is made of a material such as a resin such as glass, quartz, or acrylic, a ceramic, or a metal.

複数のセンサ基板111で生成された電気信号は配線基板180を通じて放射線検出装置100の外部の信号処理部へ転送される。この信号処理部は、放射線検出装置100から取得した電気信号を用いて放射線画像を生成する。放射線検出装置100が放射線量に応じた電気信号の生成・出力を繰り返すことによって、動画像が生成されてもよい。   The electrical signals generated by the plurality of sensor boards 111 are transferred to the signal processing unit outside the radiation detection apparatus 100 through the wiring board 180. The signal processing unit generates a radiation image using the electrical signal acquired from the radiation detection apparatus 100. A moving image may be generated by the radiation detection apparatus 100 repeating generation and output of an electrical signal corresponding to the radiation dose.

固定部材113は、複数のセンサ基板111と基台112とに挟まれており、これらのそれぞれに接着する。具体的に、固定部材113は、各センサ基板111の底面(基台112に対向する面)と、基台112の上面(センサ基板111に対向する面)とのそれぞれに接着する。固定部材130によって、複数のセンサ基板111と基台112とは互いに固定される。基台112は、複数のセンサ基板111に対してシンチレータパネル120の反対側にある。固定部材113はシート状の接着剤であってもよい。固定部材113として、例えばアクリル系、シリコン系又はホットメルト樹脂のシートや、シート状のポリオレフィン系発泡体等の伸縮性を有するシートに粘着シートを貼り合わせた部材が用いられる。   The fixing member 113 is sandwiched between the plurality of sensor substrates 111 and the base 112 and is bonded to each of them. Specifically, the fixing member 113 is bonded to each of the bottom surface (surface facing the base 112) of each sensor substrate 111 and the upper surface (surface facing the sensor substrate 111) of the base 112. The plurality of sensor substrates 111 and the base 112 are fixed to each other by the fixing member 130. The base 112 is on the opposite side of the scintillator panel 120 with respect to the plurality of sensor substrates 111. The fixing member 113 may be a sheet-like adhesive. As the fixing member 113, for example, a member in which an adhesive sheet is bonded to an elastic sheet such as an acrylic, silicon, or hot melt resin sheet or a sheet-like polyolefin foam is used.

固定部材130は、センサパネル110とシンチレータパネル120とに挟まれており、これらのそれぞれに接着する。具体的に、固定部材130は、シンチレータ121の底面(センサパネル110に対向する面)と、センサパネル110の上面(シンチレータ121に対向する面)とのそれぞれに接着する。固定部材130によって、センサパネル110とシンチレータパネル120とは互いに固定される。固定部材130は、例えばアクリル系、シリコン系又はホットメルト樹脂のシートなどで形成される。放射線検出装置100はセンサパネル110とシンチレータパネル120とが互いに貼り合わされた間接型の放射線検出装置であるが、放射線検出装置100はセンサパネル110にシンチレータが直接蒸着された直接型の放射線検出装置であってもよい。   The fixing member 130 is sandwiched between the sensor panel 110 and the scintillator panel 120 and is bonded to each of them. Specifically, the fixing member 130 is bonded to each of the bottom surface of the scintillator 121 (surface facing the sensor panel 110) and the top surface of the sensor panel 110 (surface facing the scintillator 121). The sensor panel 110 and the scintillator panel 120 are fixed to each other by the fixing member 130. The fixing member 130 is formed of, for example, an acrylic, silicon, or hot melt resin sheet. The radiation detection apparatus 100 is an indirect radiation detection apparatus in which a sensor panel 110 and a scintillator panel 120 are bonded to each other. The radiation detection apparatus 100 is a direct radiation detection apparatus in which a scintillator is directly deposited on the sensor panel 110. There may be.

固定部材150は、基台112と支持部材140とに挟まれており、これらのそれぞれに接着する。具体的に、固定部材150は、支持部材140の上面(基台112に対向する面)と、基台112の底面(支持部材140に対向する面)とのそれぞれに接着する。支持部材140の上面を以下では支持面と呼ぶ。固定部材150によって、基台112と支持部材140とは互いに固定される。支持部材140は、例えばAl(アルミニウム)やSUS(ステンレス鋼)等の金属材料で形成される。支持部材140の材料と基台112の材料とは互いに異なる。固定部材150は、液状又はゲル状の接着剤が硬化したものである。支持部材140は、ネジなどを含む締結部材170によって筐体160に固定される。   The fixing member 150 is sandwiched between the base 112 and the support member 140 and is bonded to each of them. Specifically, the fixing member 150 is bonded to each of the upper surface of the support member 140 (surface facing the base 112) and the bottom surface of the base 112 (surface facing the support member 140). Hereinafter, the upper surface of the support member 140 is referred to as a support surface. The base 112 and the support member 140 are fixed to each other by the fixing member 150. The support member 140 is made of a metal material such as Al (aluminum) or SUS (stainless steel). The material of the support member 140 and the material of the base 112 are different from each other. The fixing member 150 is obtained by curing a liquid or gel adhesive. The support member 140 is fixed to the housing 160 by a fastening member 170 including screws and the like.

続いて、図2を参照して、支持部材140の形状の詳細について説明する。支持部材140の支持面の平面度は、0.5mm以上である。面の平面度とは、例えばJISで定義されるように、その面上のすべての点が、面の代表平面に平行な2つの平面内にあり、かつ、この平面の間の距離が最小となるときの2つの面の間の距離のことである。図2の例では、支持部材140支持面を挟む互いに平行な2つの平面201a及び平面201bの間の距離202が支持面の平面度を表す。支持部材140の支持面は、平坦な領域140aと、この領域140aに対して傾斜した領域140bとを含む。領域140aが平坦であるとは、この領域140aの平面度が所定の閾値以下(例えば、0.5mm以下)であることを意味する。領域140bは、支持部材140の側面に近づくにつれて支持部材140の厚さを低減するように傾斜している。その結果、領域140aの厚さと領域140bの厚さとは互いに異なる。領域140aの厚さは、領域140aの各部分の厚さの平均値であってもよく、領域140bの厚さについても同様である。本実施形態の支持部材140の支持面は、その内部に領域140aを有し、その外周部に領域140bを有する。領域140bは支持部材140の支持面のすべての辺に位置し、領域140aの全周を取り囲んでもよい。これに代えて、領域140bは支持部材140の支持面の一部の辺に位置し、他の辺には領域140aが延びていてもよい。支持部材140の支持面の領域140aは基台112の底面と平行であり、支持部材140の支持面の領域140bは基台112の底面と平行でない。   Next, the details of the shape of the support member 140 will be described with reference to FIG. The flatness of the support surface of the support member 140 is 0.5 mm or more. The flatness of a surface is defined, for example, by JIS, where all points on the surface are in two planes parallel to the representative plane of the surface, and the distance between the planes is the minimum. Is the distance between the two surfaces. In the example of FIG. 2, a distance 202 between two parallel planes 201a and 201b sandwiching the support surface of the support member 140 represents the flatness of the support surface. The support surface of the support member 140 includes a flat region 140a and a region 140b inclined with respect to the region 140a. The region 140a being flat means that the flatness of the region 140a is equal to or less than a predetermined threshold (for example, 0.5 mm or less). The region 140b is inclined so as to reduce the thickness of the support member 140 as it approaches the side surface of the support member 140. As a result, the thickness of the region 140a and the thickness of the region 140b are different from each other. The thickness of the region 140a may be an average value of the thickness of each part of the region 140a, and the same applies to the thickness of the region 140b. The support surface of the support member 140 of the present embodiment has a region 140a inside thereof and a region 140b on the outer periphery thereof. The region 140b may be located on all sides of the support surface of the support member 140 and may surround the entire circumference of the region 140a. Alternatively, the region 140b may be located on a part of the support surface of the support member 140, and the region 140a may extend on the other side. The support surface region 140 a of the support member 140 is parallel to the bottom surface of the base 112, and the support surface region 140 b of the support member 140 is not parallel to the bottom surface of the base 112.

本実施形態では、基台112の底面の平面度と支持部材140の支持面の平面度とが互いに異なる。具体的に、支持部材140の支持面の平面度は、基台112の底面の平面度よりも大きい。例えば、基台112の底面の平面度は0.0mm以上0.5mm以下であり、支持部材140の支持面の平面度は0.5mm以上10.0mm以下である。   In the present embodiment, the flatness of the bottom surface of the base 112 and the flatness of the support surface of the support member 140 are different from each other. Specifically, the flatness of the support surface of the support member 140 is greater than the flatness of the bottom surface of the base 112. For example, the flatness of the bottom surface of the base 112 is 0.0 mm or more and 0.5 mm or less, and the flatness of the support surface of the support member 140 is 0.5 mm or more and 10.0 mm or less.

図3を参照して、放射線検出装置100の製造方法例について説明する。まず、図3(a)に示すように、センサパネル110とシンチレータパネル120とが固定部材130によって互いに固定された構造体301を準備する。センサパネル110は、固定部材113を用いて複数のセンサ基板111を基台112に固定することによって形成される。シンチレータパネル120はシンチレータ基板122にシンチレータ121を蒸着することによって形成される。構造体301はこのように形成されたセンサパネル110とシンチレータパネル120とを固定部材130で互いに固定することによって形成される。   With reference to FIG. 3, the example of the manufacturing method of the radiation detection apparatus 100 is demonstrated. First, as shown in FIG. 3A, a structure 301 in which the sensor panel 110 and the scintillator panel 120 are fixed to each other by a fixing member 130 is prepared. The sensor panel 110 is formed by fixing a plurality of sensor substrates 111 to the base 112 using a fixing member 113. The scintillator panel 120 is formed by depositing the scintillator 121 on the scintillator substrate 122. The structure 301 is formed by fixing the sensor panel 110 and the scintillator panel 120 thus formed to each other by a fixing member 130.

続いて、図3(b)に示すように、支持部材140を支持台302によって保持し、支持部材140の上に構造体301を配置する。構造体301は、吊り下げ装置(不図示)によって保持されており、基台112の底面と支持部材140の支持面とが互いに対向するように保持される。図3(b)に示すように、基台112の底面と支持部材140の支持面とが互いに離れていてもよい。これに代えて、基台112の底面の一部と支持部材140の支持面の一部(例えば、領域140a)とが互いに接触していてもよい。   Subsequently, as illustrated in FIG. 3B, the support member 140 is held by the support base 302, and the structural body 301 is disposed on the support member 140. The structure 301 is held by a suspension device (not shown), and is held so that the bottom surface of the base 112 and the support surface of the support member 140 face each other. As shown in FIG. 3B, the bottom surface of the base 112 and the support surface of the support member 140 may be separated from each other. Instead, a part of the bottom surface of the base 112 and a part of the support surface of the support member 140 (for example, the region 140a) may be in contact with each other.

続いて、図3(c)に示すように、基台112の底面と支持部材140の支持面との間の空間を取り囲むように封止部材303を配置する。その後、基台112、支持部材140及び封止部材303によって形成された空間に液状又はゲル状の接着剤304を注入する。その後、接着剤304を硬化させる。接着剤304の硬化は、自然乾燥によって行われてもよいし、紫外線の照射や加熱によって行われてもよい。接着剤304が硬化したものが図1の固定部材150となる。その後、封止部材303及び支持台302を取り外し、支持部材140を締結部材170によって筐体160に取り付けることによって、放射線検出装置100が完成する。   Subsequently, as illustrated in FIG. 3C, the sealing member 303 is disposed so as to surround the space between the bottom surface of the base 112 and the support surface of the support member 140. Thereafter, a liquid or gel adhesive 304 is injected into the space formed by the base 112, the support member 140 and the sealing member 303. Thereafter, the adhesive 304 is cured. Curing of the adhesive 304 may be performed by natural drying, or may be performed by irradiation with ultraviolet rays or heating. The cured adhesive 304 is the fixing member 150 in FIG. Thereafter, the sealing member 303 and the support base 302 are removed, and the support member 140 is attached to the housing 160 with the fastening member 170, whereby the radiation detection apparatus 100 is completed.

構造体301に支持部材140を固定する際に、構造体301に支持部材140を押し付けると、基台112の底面の平面度と支持部材140の支持面の平面度との差に起因して、構造体301が変形することがある。構造体301が変形すると、それに応じて、放射線検出装置100によって得られる電荷信号に変動が発生してしまう。本実施形態では、液状又はゲル状の接着剤を注入することによって構造体301と支持部材140とを互いに固定しているため、基台112の底面の平面度と支持部材140の支持面の平面度との差に起因する構造体301の変形が抑制される。例えば、基台112の底面の平面度が0.5mm以下に維持される。   When fixing the support member 140 to the structure 301, when the support member 140 is pressed against the structure 301, due to the difference between the flatness of the bottom surface of the base 112 and the flatness of the support surface of the support member 140, The structure 301 may be deformed. When the structure 301 is deformed, the charge signal obtained by the radiation detection apparatus 100 varies accordingly. In this embodiment, since the structure 301 and the support member 140 are fixed to each other by injecting a liquid or gel adhesive, the flatness of the bottom surface of the base 112 and the plane of the support surface of the support member 140 are fixed. Deformation of the structure 301 due to the difference from the degree is suppressed. For example, the flatness of the bottom surface of the base 112 is maintained at 0.5 mm or less.

図4を参照して、放射線検出装置100の他の製造方法例について説明する。まず、図4(a)に示すように、構造体301を準備する。この工程は図3で説明した製造方法の工程と同様である。続いて、図4(b)に示すように、支持部材140を支持台302の上に配置する。そして、支持部材140の支持面の領域140aの上にシート状の接着部材401を配置し、その上に構造体301を配置する。構造体301は、吊り下げ装置(不図示)によって保持されており、基台112の底面と支持部材140の支持面とが互いに対向するように配置される。接着部材401は支持部材140の支持面の領域140aを覆い、領域140bを覆わない。すなわち、接着部材401は支持部材140の支持面のうち平坦な部分のみを覆う。接着部材401は、例えばアクリル系、シリコン系又はホットメルト樹脂のシートや、シート状のポリオレフィン系発泡体等の伸縮性を有するシートに粘着シートを貼り合わせた部材である。   With reference to FIG. 4, another example of the manufacturing method of the radiation detection apparatus 100 will be described. First, as shown in FIG. 4A, a structure 301 is prepared. This process is the same as the process of the manufacturing method described in FIG. Subsequently, as illustrated in FIG. 4B, the support member 140 is disposed on the support base 302. Then, the sheet-like adhesive member 401 is disposed on the support surface region 140a of the support member 140, and the structure 301 is disposed thereon. The structural body 301 is held by a suspension device (not shown), and is arranged such that the bottom surface of the base 112 and the support surface of the support member 140 face each other. The adhesive member 401 covers the region 140a of the support surface of the support member 140 and does not cover the region 140b. That is, the adhesive member 401 covers only a flat portion of the support surface of the support member 140. The adhesive member 401 is a member in which an adhesive sheet is bonded to an elastic sheet such as an acrylic, silicon, or hot melt resin sheet or a sheet-like polyolefin foam.

続いて、図4(c)に示すように、基台112の底面と支持部材140の支持面との間の空間を取り囲むように封止部材303を配置する。その後、基台112、支持部材140、接着部材401及び封止部材303によって形成された空間に液状又はゲル状の接着剤402を注入する。その後、接着剤402を硬化させる。接着剤402の硬化は、自然乾燥によって行われてもよいし、紫外線の照射や加熱によって行われてもよい。接着剤402が硬化したものと接着部材401とが図1の固定部材150となる。その後、封止部材303及び支持台302を取り外し、支持部材140を締結部材170によって筐体160に取り付けることによって、放射線検出装置100が完成する。図4の方法で製造された放射線検出装置100の固定部材150の材料は、支持部材140の領域140aと基台112との間にある部分と、支持部材140の領域140bと基台112との間にある部分とで互いに異なる。図4の製造方法ではシート状の接着部材401を支持部材140の支持面のうち平坦な領域140aのみの接着に使用し、他の領域140bの接着には液状又はゲル状の接着剤402を使用する。従って、図4の製造方法でも、基台112の底面の平面度と支持部材140の支持面の平面度との差に起因する構造体301の変形が抑制される。   Subsequently, as illustrated in FIG. 4C, the sealing member 303 is disposed so as to surround the space between the bottom surface of the base 112 and the support surface of the support member 140. Thereafter, a liquid or gel adhesive 402 is injected into the space formed by the base 112, the support member 140, the adhesive member 401, and the sealing member 303. Thereafter, the adhesive 402 is cured. Curing of the adhesive 402 may be performed by natural drying, or may be performed by irradiation with ultraviolet rays or heating. The hardened adhesive 402 and the adhesive member 401 become the fixing member 150 in FIG. Thereafter, the sealing member 303 and the support base 302 are removed, and the support member 140 is attached to the housing 160 with the fastening member 170, whereby the radiation detection apparatus 100 is completed. The material of the fixing member 150 of the radiation detection apparatus 100 manufactured by the method of FIG. 4 includes the portion between the region 140a and the base 112 of the support member 140, the region 140b of the support member 140, and the base 112. It is different from each other in the part in between. In the manufacturing method of FIG. 4, the sheet-like adhesive member 401 is used for bonding only the flat region 140a of the support surface of the support member 140, and the liquid or gel-like adhesive 402 is used for bonding the other region 140b. To do. Therefore, even in the manufacturing method of FIG. 4, the deformation of the structural body 301 due to the difference between the flatness of the bottom surface of the base 112 and the flatness of the support surface of the support member 140 is suppressed.

図5を参照しつつ、一部の実施形態に係る放射線撮像システムSYSについて説明する。放射線撮像システムSYSは、例えば放射線透視診断装置として用いられる。放射線撮像システムSYSは、図5に示される各構成要素を備える。C型アームARMの一方の端に放射線検出装置DTCが固定されており、他方の端に放射線源SRCが固定されている。放射線検出装置DTCは例えば上述の放射線検出装置100である。被検体は放射線検出装置DTCと放射線源SRCとの間に位置する。C型アームARMが制御装置CTLからの指示に従って回転することによって、放射線源SRCから被検体へ照射される放射線の角度が変化する。これにより、3次元の放射線撮影が行われる。放射線検出装置DTCで生成された信号は通信ケーブルCMUを通じて制御装置CTLに転送される。制御装置CTLはこの信号に基づいて3次元の放射線画像を生成し、表示部DPLに表示する。   The radiation imaging system SYS according to some embodiments will be described with reference to FIG. The radiation imaging system SYS is used as, for example, a radiological diagnostic apparatus. The radiation imaging system SYS includes each component shown in FIG. The radiation detection device DTC is fixed to one end of the C-arm ARM, and the radiation source SRC is fixed to the other end. The radiation detection apparatus DTC is, for example, the radiation detection apparatus 100 described above. The subject is located between the radiation detection apparatus DTC and the radiation source SRC. As the C-arm ARM rotates according to an instruction from the control device CTL, the angle of radiation irradiated from the radiation source SRC to the subject changes. Thereby, three-dimensional radiography is performed. The signal generated by the radiation detection device DTC is transferred to the control device CTL through the communication cable CMU. The control device CTL generates a three-dimensional radiation image based on this signal and displays it on the display unit DPL.

110 センサパネル、111 センサ基板、112 基台、113 固定部材、140 支持部材、150 固定部材、304 接着剤 110 sensor panel, 111 sensor substrate, 112 base, 113 fixing member, 140 supporting member, 150 fixing member, 304 adhesive

Claims (16)

放射線検出装置の製造方法であって、
支持部材の支持面とセンサパネルの第1面とが互いに対向し、前記支持面と前記第1面との間の少なくとも一部に空間が形成されるように前記支持部材及び前記センサパネルを保持する保持工程と、
前記センサパネルと前記支持部材との間の前記空間に液状又はゲル状の接着剤を注入する注入工程と、
前記接着剤を硬化することによって、前記センサパネルと前記支持部材とを互いに固定する工程とを有することを特徴とする製造方法。
A method for manufacturing a radiation detection apparatus, comprising:
The support surface of the support member and the first surface of the sensor panel are opposed to each other, and the support member and the sensor panel are held so that a space is formed at least between the support surface and the first surface. Holding process to
An injection step of injecting a liquid or gel adhesive into the space between the sensor panel and the support member;
And a step of fixing the sensor panel and the support member to each other by curing the adhesive.
前記センサパネルの前記第1面の平面度と、前記支持部材の前記支持面の平面度とが互いに異なることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the flatness of the first surface of the sensor panel and the flatness of the support surface of the support member are different from each other. 前記支持部材の前記支持面は、第1領域と、前記第1領域に対して傾斜した第2領域とを含み、
前記保持工程において、前記センサパネルの前記第1面と前記支持面の前記第1領域とが互いに平行となるように前記支持部材及び前記センサパネルが保持され、
前記注入工程において、前記接着剤は、少なくとも前記支持面の前記第2領域と前記センサパネルとの間に注入されることを特徴とする請求項1又は2に記載の製造方法。
The support surface of the support member includes a first region and a second region inclined with respect to the first region,
In the holding step, the support member and the sensor panel are held such that the first surface of the sensor panel and the first region of the support surface are parallel to each other,
3. The manufacturing method according to claim 1, wherein in the injection step, the adhesive is injected at least between the second region of the support surface and the sensor panel.
前記注入工程において、前記接着剤は、前記支持面の前記第1領域と前記センサパネルとの間に更に注入されることを特徴とする請求項3に記載の製造方法。   The manufacturing method according to claim 3, wherein in the injection step, the adhesive is further injected between the first region of the support surface and the sensor panel. 前記支持面の前記第1領域と前記センサパネルの前記第1面との間にシート状の接着部材を配置する工程を更に有することを特徴とする請求項3に記載の製造方法。   The manufacturing method according to claim 3, further comprising a step of disposing a sheet-like adhesive member between the first region of the support surface and the first surface of the sensor panel. 前記センサパネルに重なるようにシンチレータを配置する工程を更に有することを特徴とする請求項1乃至5の何れか1項に記載の製造方法。   The manufacturing method according to claim 1, further comprising a step of arranging a scintillator so as to overlap the sensor panel. 前記支持面の平面度が0.5mm以上であることを特徴とする請求項1乃至6の何れか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 6, wherein the flatness of the support surface is 0.5 mm or more. 前記センサパネルは、複数のセンサ基板と、前記複数のセンサ基板が一方の面に固定された基台とを有し、
前記センサパネルの前記第1面は、前記基台のうち前記複数のセンサ基板が固定された面の反対側の面であることを特徴とする請求項1乃至7の何れか1項に記載の製造方法。
The sensor panel includes a plurality of sensor substrates and a base on which the plurality of sensor substrates are fixed to one surface,
The said 1st surface of the said sensor panel is a surface on the opposite side to the surface to which these sensor substrates were fixed among the said bases, The any one of Claim 1 thru | or 7 characterized by the above-mentioned. Production method.
締結部材を用いて前記支持部材を筐体に取り付ける工程を更に有することを特徴とする請求項1乃至8の何れか1項に記載の製造方法。   The manufacturing method according to claim 1, further comprising a step of attaching the support member to the casing using a fastening member. 第1面を有するセンサパネルと、
前記センサパネルの前記第1面に対向する位置に支持面を有する支持部材と、
前記センサパネルの前記第1面と前記支持部材の前記支持面とのそれぞれに接着した固定部材とを備え、
前記支持部材の前記支持面は、前記センサパネルの前記第1面に平行な第1領域と、前記第1領域に対して傾斜した第2領域とを含み、
前記固定部材は、前記支持面の前記第1領域と前記センサパネルとの間にある第1部分と、前記支持面の前記第2領域と前記センサパネルとの間にある第2部分とを含み、
前記第1部分の材料と前記第2部分の材料とが互いに異なることと、前記第1部分の厚さと前記第2部分の厚さとが互いに異なることとの少なくとも一方を満たすことを特徴とする放射線検出装置。
A sensor panel having a first surface;
A support member having a support surface at a position facing the first surface of the sensor panel;
A fixing member bonded to each of the first surface of the sensor panel and the support surface of the support member;
The support surface of the support member includes a first region parallel to the first surface of the sensor panel, and a second region inclined with respect to the first region,
The fixing member includes a first portion between the first region of the support surface and the sensor panel, and a second portion between the second region of the support surface and the sensor panel. ,
Radiation satisfying at least one of a difference between the material of the first part and the material of the second part and the difference between the thickness of the first part and the thickness of the second part Detection device.
前記センサパネルの前記第1面の平面度と、前記支持部材の前記支持面の平面度とが互いに異なることを特徴とする請求項10に記載の放射線検出装置。   The radiation detection apparatus according to claim 10, wherein the flatness of the first surface of the sensor panel and the flatness of the support surface of the support member are different from each other. 前記支持部材の前記支持面の平面度が0.5mm以上であることを特徴とする請求項10又は11に記載の放射線検出装置。   The radiation detection apparatus according to claim 10 or 11, wherein the flatness of the support surface of the support member is 0.5 mm or more. 前記センサパネルは、複数のセンサ基板と、前記複数のセンサ基板が一方の面に固定された基台とを有し、
前記センサパネルの前記第1面は、前記基台のうち前記複数のセンサ基板が固定された面の反対側の面であることを特徴とする請求項10乃至12の何れか1項に記載の放射線検出装置。
The sensor panel includes a plurality of sensor substrates and a base on which the plurality of sensor substrates are fixed to one surface,
The said 1st surface of the said sensor panel is a surface on the opposite side to the surface to which these sensor substrates were fixed among the said bases, The Claim 1 characterized by the above-mentioned. Radiation detection device.
筐体と、
前記支持部材を前記筐体に固定する締結部材とを更に備えることを特徴とする請求項10乃至13の何れか1項に記載の放射線検出装置。
A housing,
The radiation detection apparatus according to claim 10, further comprising a fastening member that fixes the support member to the housing.
前記センサパネルに重なる位置にシンチレータを更に備えることを特徴とする請求項10乃至14の何れか1項に記載の放射線検出装置。   The radiation detection apparatus according to claim 10, further comprising a scintillator at a position overlapping the sensor panel. 請求項10乃至15の何れか1項に記載の放射線検出装置と、
前記放射線検出装置によって得られた信号を処理する信号処理手段と
を備えることを特徴とする放射線撮像システム。
The radiation detection apparatus according to any one of claims 10 to 15,
A radiation imaging system comprising: signal processing means for processing a signal obtained by the radiation detection apparatus.
JP2014259274A 2014-12-22 2014-12-22 Radiation detection device, manufacturing method of the same, and radiation imaging system Pending JP2016118506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259274A JP2016118506A (en) 2014-12-22 2014-12-22 Radiation detection device, manufacturing method of the same, and radiation imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259274A JP2016118506A (en) 2014-12-22 2014-12-22 Radiation detection device, manufacturing method of the same, and radiation imaging system

Publications (1)

Publication Number Publication Date
JP2016118506A true JP2016118506A (en) 2016-06-30

Family

ID=56244079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259274A Pending JP2016118506A (en) 2014-12-22 2014-12-22 Radiation detection device, manufacturing method of the same, and radiation imaging system

Country Status (1)

Country Link
JP (1) JP2016118506A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016478A (en) * 2018-07-23 2020-01-30 キヤノン株式会社 Radiation imaging device, method for manufacturing the same and radiation imaging system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016478A (en) * 2018-07-23 2020-01-30 キヤノン株式会社 Radiation imaging device, method for manufacturing the same and radiation imaging system
CN110749915A (en) * 2018-07-23 2020-02-04 佳能株式会社 Radiation imaging apparatus, method of manufacturing the same, and radiation imaging system
US11086030B2 (en) 2018-07-23 2021-08-10 Canon Kabushiki Kaisha Radiation imaging apparatus, manufacturing method thereof, and radiation imaging system
CN110749915B (en) * 2018-07-23 2023-09-29 佳能株式会社 Radiation imaging apparatus, method of manufacturing the same, and radiation imaging system

Similar Documents

Publication Publication Date Title
US9158010B2 (en) Radiation detector
JP6000680B2 (en) Radiation detection apparatus, manufacturing method thereof, and imaging system
US9529094B2 (en) Radiation imaging apparatus and radiation imaging system
US10283557B2 (en) Radiation detector assembly
US10156641B2 (en) Radiation image sensing apparatus and radiation image sensing system
JP2011247686A (en) Imaging apparatus for radiation image
JPWO2008078702A1 (en) Radiation detector
CN102466807A (en) Radiation detector
JP2014066672A5 (en)
US9684083B2 (en) X-ray detector panel
WO2018123189A1 (en) Radiation imaging device, method for manufacturing radiation imaging device, and imaging system
US10345455B2 (en) Radiation detection apparatus, radiation imaging system, and method of manufacturing radiation detection apparatus
US10686003B2 (en) Radiation detector assembly
RU2461022C1 (en) Plane-parallel x-ray receiver and method of making said receiver
KR101818874B1 (en) Radiation detection apparatus, radiation detection system, and radiation detection apparatus manufacturing method
JP2016118506A (en) Radiation detection device, manufacturing method of the same, and radiation imaging system
JP2006052978A5 (en)
US8969818B2 (en) Radiation imaging apparatus
JP2023117956A (en) Sensor substrate, radiation imaging apparatus, radiation imaging system, and method for manufacturing sensor substrate
JP2017026499A (en) Radiation imaging device, manufacturing method thereof, and imaging system
JP2017190981A (en) Radiation imaging apparatus, method for manufacturing the same, and radiation imaging system