JP2016118328A - Heat storage type heat source device - Google Patents

Heat storage type heat source device Download PDF

Info

Publication number
JP2016118328A
JP2016118328A JP2014257871A JP2014257871A JP2016118328A JP 2016118328 A JP2016118328 A JP 2016118328A JP 2014257871 A JP2014257871 A JP 2014257871A JP 2014257871 A JP2014257871 A JP 2014257871A JP 2016118328 A JP2016118328 A JP 2016118328A
Authority
JP
Japan
Prior art keywords
heat
storage tank
heating
heat storage
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014257871A
Other languages
Japanese (ja)
Inventor
早川 秀樹
Hideki Hayakawa
秀樹 早川
義通 木内
Yoshimichi Kiuchi
義通 木内
善隆 柴田
Yoshitaka Shibata
善隆 柴田
山本 幸司
Koji Yamamoto
山本  幸司
歩 小椋
Ayumi Ogura
歩 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014257871A priority Critical patent/JP2016118328A/en
Publication of JP2016118328A publication Critical patent/JP2016118328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage type heat source device capable of effectively utilizing heat of a heat medium of a heat storage tank at a radiation terminal.SOLUTION: A heat storage type heat source device 100 including a heat storage tank 14 for storing heat by a heat medium, a heating part 11 generating heat, and a heat recovery processing part for recovering heat of the heating part 11 to the heat medium of the heat storage tank 14, further includes a heat consumption processing part for circulating the heat medium in a form of supplying the heat medium at an upper portion of the heat storage tank 14 to a radiation terminal 30 consuming heat of the heat medium after passing through an expansion tank 22, a radiation circulation pump 21 and a combustion type heating part 17 of a combustion type heating device 18 disposed independently of the heat storage tank 14, the heating part 11, and the heat recovery processing part, through an upper radiation terminal connection pipe, and returning the heat medium circulated in the radiation terminal 30 to a lower portion of the heat storage tank 14 through a lower radiation terminal connection pipe, and the heat storage tank 14 is connected to the expansion tank 22 to be opened to the atmospheric air.SELECTED DRAWING: Figure 1

Description

本発明は、熱媒により蓄熱する蓄熱槽と、熱を発生する加熱部と、加熱部の熱を蓄熱槽の熱媒に回収する熱回収処理部とを備えた蓄熱式熱源装置に関する。   The present invention relates to a heat storage type heat source device including a heat storage tank that stores heat using a heat medium, a heating unit that generates heat, and a heat recovery processing unit that recovers heat of the heating unit into a heat medium of the heat storage tank.

かかる蓄熱式熱源装置は、一般家庭等に設置されて、熱媒としての湯水を加熱部において発生した熱によって加熱して蓄熱槽に貯留し、その蓄熱槽の湯水を暖房や給湯等に用いるように構成されている。   Such a heat storage type heat source device is installed in a general household or the like, and hot water as a heat medium is heated by heat generated in the heating unit and stored in the heat storage tank, and the hot water in the heat storage tank is used for heating, hot water supply, etc. It is configured.

かかる蓄熱式熱源装置の従来例として、熱媒により蓄熱する蓄熱槽と、その蓄熱槽とは別に熱媒を貯留可能に構成した膨張タンク(シスターン)とが備えられ、熱媒の熱を消費するための循環流路として、膨張タンクと熱を消費する放熱端末との間で熱媒を循環する循環流路を設け、熱媒の熱を放熱端末にて消費するように構成されたものがある(例えば、特許文献1参照)。また、この従来例の蓄熱式熱源装置には、熱媒に熱を供給するための循環流路として、蓄熱槽と膨張タンクと加熱部を熱媒が循環する循環流路が設けられ、この循環流路に熱媒を循環させることで、蓄熱槽及び膨張タンクに貯留される熱媒が同時に加熱されるものである。   As a conventional example of such a heat storage type heat source device, a heat storage tank for storing heat with a heat medium and an expansion tank (systern) configured to store the heat medium separately from the heat storage tank are provided and consumes heat of the heat medium. As a circulation flow path, there is a circulation flow path that circulates a heat medium between an expansion tank and a heat dissipation terminal that consumes heat, and is configured to consume heat of the heat medium at the heat dissipation terminal (For example, refer to Patent Document 1). In addition, the heat storage type heat source device of this conventional example is provided with a circulation channel through which the heat medium circulates through the heat storage tank, the expansion tank, and the heating unit as a circulation channel for supplying heat to the heat medium. By circulating the heat medium in the flow path, the heat medium stored in the heat storage tank and the expansion tank is heated at the same time.

特開2002−333207号公報JP 2002-333207 A

従来の蓄熱式熱源装置では、膨張タンクと放熱端末との間を循環する循環流路が設けられているので、膨張タンクから放熱端末に熱媒を供給することができるが、蓄熱槽の熱媒を放熱端末に循環させることができず、蓄熱槽の熱媒の熱を放熱端末において有効に利用することができないという問題があった。
また、蓄熱槽と膨張タンクと加熱部を熱媒が循環する循環流路が設けられているので、一般的に使用されている、膨張タンクと放熱循環ポンプと燃焼式加熱部とで構成される燃焼式加熱装置を、蓄熱槽、加熱部及び熱回収処理部と別体にして、蓄熱槽の熱媒の熱を放熱端末において有効に利用することができなかった。
In the conventional heat storage type heat source device, since a circulation channel that circulates between the expansion tank and the heat radiating terminal is provided, the heat medium can be supplied from the expansion tank to the heat radiating terminal. Cannot be circulated to the heat radiating terminal, and the heat of the heat medium in the heat storage tank cannot be effectively used in the heat radiating terminal.
In addition, since a circulation passage through which the heat medium circulates through the heat storage tank, the expansion tank, and the heating unit is provided, it is configured by an expansion tank, a heat radiation circulation pump, and a combustion heating unit that are generally used. The combustion heating device is separated from the heat storage tank, the heating unit, and the heat recovery processing unit, and the heat of the heat medium in the heat storage tank cannot be effectively used in the heat dissipation terminal.

本発明は、かかる点に着目してなされたものであり、その目的は、燃焼式加熱装置を蓄熱槽、加熱部及び熱回収処理部と別体にしても、蓄熱槽の熱媒の熱を放熱端末において有効に利用することができる蓄熱式熱源装置を提供する点にある。   The present invention has been made paying attention to such points, and its purpose is to separate the combustion-type heating device from the heat storage tank, the heating unit, and the heat recovery processing unit, and to reduce the heat of the heat medium in the heat storage tank. It is in the point which provides the thermal storage heat source apparatus which can be utilized effectively in a thermal radiation terminal.

この目的を達成するための本発明に係る蓄熱式熱源装置は、
熱媒により蓄熱する蓄熱槽と、熱を発生する加熱部と、前記加熱部の熱を前記蓄熱槽の熱媒に回収する熱回収処理部を備えた蓄熱式熱源装置であって、その特徴構成は、
前記蓄熱槽の上部の熱媒を、上部放熱端末接続管を介して、前記蓄熱槽、前記加熱部及び前記熱回収処理部とは別体として設けられた燃焼式加熱装置の膨張タンクと放熱循環ポンプと燃焼式加熱部とを経由した後に、熱媒の熱を消費する放熱端末に供給すると共に、前記放熱端末を通流した熱媒を、下部放熱端末接続管を介して、前記蓄熱槽の下部に戻す形態で、熱媒を循環させる熱消費処理部とを備え、前記蓄熱槽が前記膨張タンクと接続されていることにより大気に開放されている点にある。
In order to achieve this object, a heat storage type heat source device according to the present invention comprises:
A heat storage type heat source device comprising a heat storage tank for storing heat with a heat medium, a heating unit for generating heat, and a heat recovery processing unit for recovering heat of the heating unit to a heat medium of the heat storage tank, and its characteristic configuration Is
The heat medium in the upper part of the heat storage tank is connected to the expansion tank and the heat circulation of the combustion heating apparatus provided separately from the heat storage tank, the heating unit and the heat recovery processing unit via an upper heat radiation terminal connection pipe. After passing through the pump and the combustion heating unit, the heat medium is supplied to the heat radiating terminal that consumes the heat of the heat medium, and the heat medium flowing through the heat radiating terminal is connected to the heat storage tank via the lower heat radiating terminal connection pipe. A heat consumption processing unit that circulates the heat medium in a form of returning to the lower part, and the heat storage tank is connected to the expansion tank and thus is open to the atmosphere.

上記特徴構成によれば、蓄熱槽が大気に開放されているため、蓄熱槽の上部の熱媒を、燃焼式加熱装置を経由して熱媒の熱を消費する放熱端末へ、熱交換器を介さずに供給し、この放熱端末を通流した熱媒を蓄熱槽の下部に戻す形態で、蓄熱槽の熱媒を蓄熱槽と放熱端末との間において直接循環させることができるので、蓄熱槽の熱媒の熱を放熱端末において有効かつ効率良く利用することができる。   According to the above characteristic configuration, since the heat storage tank is open to the atmosphere, the heat exchanger at the upper part of the heat storage tank is connected to the heat radiating terminal that consumes the heat of the heat medium via the combustion heating device. Since the heat medium that is supplied without going through and returns the heat medium flowing through the heat dissipation terminal to the lower part of the heat storage tank can be directly circulated between the heat storage tank and the heat dissipation terminal, the heat storage tank The heat of the heat medium can be used effectively and efficiently in the heat radiating terminal.

また、上記特徴構成によれば、燃焼式加熱装置に燃焼式加熱部が設けられているので、燃焼式加熱装置を経由して放熱端末に供給される蓄熱槽の熱媒の熱が不足する場合には、燃焼式加熱部によって熱媒を加熱することによって、放熱端末において必要とされる熱を供給することができる。   Moreover, according to the said characteristic structure, since the combustion type heating part is provided in the combustion type heating apparatus, when the heat of the heat medium of the heat storage tank supplied to the heat radiation terminal via the combustion type heating apparatus is insufficient The heating medium can be heated by the combustion heating unit to supply the heat required for the heat dissipation terminal.

本発明に係る蓄熱式熱源装置の更なる特徴構成は、
前記熱回収処理部が、前記蓄熱槽の下部の熱媒を、下部加熱接続管を介して、前記加熱部もしくは前記加熱部の熱で加熱される熱交換器に供給すると共に、前記加熱部もしくは前記熱交換器を通流した熱媒を、上部加熱接続管を介して、前記蓄熱槽の上部に戻す形態で構成され、
前記膨張タンクに熱媒補給弁を備えると共に、前記下部放熱端末接続管と前記下部加熱接続管とを接続する接続配管を備え、前記下部放熱端末接続管に当該下部放熱端末接続管から前記接続配管への熱媒の供給状態を切替える熱媒供給切換弁を配置した点にある。
Further features of the heat storage heat source device according to the present invention are as follows:
The heat recovery processing unit supplies the heating medium at the lower part of the heat storage tank to the heating unit or a heat exchanger heated by the heat of the heating unit via a lower heating connection pipe, and the heating unit or The heat medium that has flowed through the heat exchanger is configured to return to the upper part of the heat storage tank via an upper heating connection pipe,
The expansion tank is provided with a heat medium supply valve, and further includes a connection pipe that connects the lower heat radiation terminal connection pipe and the lower heating connection pipe, and the connection pipe from the lower heat radiation terminal connection pipe to the lower heat radiation terminal connection pipe The heat medium supply switching valve which switches the supply state of the heat medium to is arranged.

上記特徴構成によれば、下部放熱端末接続管と下部加熱接続管とを接続する接続配管に熱媒供給切換弁が配置されているので、蓄熱槽、熱回収処理部及び熱消費処理部内に熱媒が満たされていない状態で、膨張タンクの熱媒補給弁から供給した熱媒を放熱循環ポンプで送出することにより、蓄熱槽、熱回収処理部及び熱消費処理部内に熱媒を満たす際、熱媒供給切換弁を下部放熱端末接続管から接続配管に熱媒が流入する状態に切替えることで、蓄熱槽をバイパスして、熱消費処理部から熱回収処理部に熱媒を供給することができる。   According to the above characteristic configuration, since the heat medium supply switching valve is arranged in the connection pipe connecting the lower heat radiating terminal connection pipe and the lower heating connection pipe, heat is stored in the heat storage tank, the heat recovery processing section, and the heat consumption processing section. When filling the heat medium in the heat storage tank, heat recovery processing part and heat consumption processing part by sending out the heat medium supplied from the heat medium replenishment valve of the expansion tank with the heat dissipation circulation pump in a state where the medium is not filled, By switching the heat medium supply switching valve so that the heat medium flows into the connection pipe from the lower heat radiation terminal connection pipe, the heat storage tank can be bypassed and the heat medium can be supplied from the heat consumption processing section to the heat recovery processing section. it can.

よって、蓄熱槽から熱回収処理部の下部加熱接続管への接続部において圧力損失等が発生し、蓄熱槽から熱回収処理部に熱媒が流入しにくい状態であっても、熱回収処理部内に熱媒を満たすことができる。例えば、熱回収処理部内に空気が存在することで、蓄熱槽から下部加熱接続管への熱媒が流入しにくい状態であっても、接続配管から供給される熱媒により熱回収処理部内に熱媒を満たすことができる。   Therefore, pressure loss or the like occurs in the connection part from the heat storage tank to the lower heating connection pipe of the heat recovery processing part, and even if it is difficult for the heat medium to flow from the heat storage tank to the heat recovery processing part, The heat medium can be filled. For example, even if the heat medium from the heat storage tank does not easily flow into the lower heating connecting pipe due to the presence of air in the heat recovery processing section, heat is supplied to the heat recovery processing section by the heat medium supplied from the connecting pipe. The medium can be filled.

本発明に係る蓄熱式熱源装置の概略構成図Schematic configuration diagram of a heat storage heat source device according to the present invention 加熱運転に係る制御フロー図Control flow chart for heating operation 放熱運転に係る制御フロー図Control flow chart for heat dissipation operation 加熱放熱運転に係る制御フロー図Control flow diagram for heating and heat dissipation operation 補助加熱量制御に係る制御フロー図Control flow chart for auxiliary heating amount control バイパス流量制御に係る制御フロー図Control flow chart for bypass flow control

本発明に係る蓄熱式熱源装置の実施形態について図面に基づいて説明する。
図1に示す蓄熱式熱源装置100は、熱媒としての湯水により蓄熱する蓄熱槽14と、熱を発生して湯水を加熱する熱電併給装置11(加熱部の一例)と、熱電併給装置11の熱を蓄熱槽14の湯水に回収する熱回収処理部と、暖房装置などの湯水の熱を消費する放熱端末30とを備えている。尚、図1において示された矢印Xの方向は、蓄熱式熱源装置100の上方側を示すものである。
An embodiment of a heat storage type heat source device according to the present invention will be described based on the drawings.
A heat storage type heat source device 100 shown in FIG. 1 includes a heat storage tank 14 that stores heat with hot water as a heat medium, a heat and power supply device 11 (an example of a heating unit) that generates heat and heats the hot water, and a heat and power supply device 11. A heat recovery processing unit that recovers heat in the hot water of the heat storage tank 14 and a heat radiating terminal 30 that consumes the heat of hot water such as a heating device are provided. In addition, the direction of the arrow X shown in FIG. 1 shows the upper side of the heat storage type heat source device 100.

熱回収処理部は、加熱循環回路C1と熱電併給装置11とを備え、蓄熱槽14の下部の湯水を、加熱往き路R1を形成する下部加熱接続管を介して、熱電併給装置11に供給すると共に、熱電併給装置11を通流した湯水を、加熱戻り路R2を形成する上部加熱接続管を介して、蓄熱槽14の上部に戻す形態で構成されている。   The heat recovery processing unit includes a heating circulation circuit C1 and a combined heat and power supply device 11, and supplies hot water in the lower part of the heat storage tank 14 to the combined heat and power supply device 11 via a lower heating connection pipe that forms a heating forward path R1. At the same time, the hot and cold water flowing through the combined heat and power supply device 11 is returned to the upper part of the heat storage tank 14 through the upper heating connecting pipe forming the heating return path R2.

また、蓄熱式熱源装置100には、蓄熱槽14の湯水の熱を消費する熱消費処理部が設けられている。
この熱消費処理部は、放熱端末循環回路C2と放熱端末30とを備え、蓄熱槽14の上部の湯水を、放熱端末往き路R3を形成する上部放熱端末接続管を介して、蓄熱槽14、熱電併給装置11及び熱回収処理部とは別体として設けられた燃焼式加熱装置18の膨張タンク22と放熱循環ポンプ21と燃焼式加熱部17を経由した上で、湯水の熱を消費する放熱端末30に供給すると共に、放熱端末30を通流した湯水を、放熱端末戻り路R4を形成する下部放熱端末接続管を介して、蓄熱槽14の下部に戻す形態で、湯水を循環させるものである。尚、蓄熱槽14は、大気開放されている膨張タンク22と接続されていることにより大気に開放されている。
In addition, the heat storage heat source device 100 is provided with a heat consumption processing unit that consumes the heat of the hot water in the heat storage tank 14.
This heat consumption processing unit includes a heat radiating terminal circulation circuit C2 and a heat radiating terminal 30, and the hot water in the upper part of the heat storage tank 14 is connected to the heat storage tank 14, via the upper heat radiating terminal connecting pipe forming the heat radiating terminal outgoing path R3, Heat dissipation that consumes the heat of hot water after passing through the expansion tank 22, the heat radiation circulation pump 21 and the combustion heating unit 17 of the combustion heating device 18 provided separately from the combined heat and power supply device 11 and the heat recovery processing unit. The hot water is circulated in such a form that it is supplied to the terminal 30 and the hot water flowing through the heat radiating terminal 30 is returned to the lower part of the heat storage tank 14 through the lower heat radiating terminal connecting pipe forming the heat radiating terminal return path R4. is there. The heat storage tank 14 is open to the atmosphere by being connected to the expansion tank 22 that is open to the atmosphere.

膨張タンク22は、蓄熱槽14及び熱回収処理部よりも高く配置されている。また、膨張タンク22に設けられた外部より湯水が供給される熱媒供給路R8に、膨張タンク22への湯水の補給状態を切り替える熱媒補給弁23が備えられている。この熱媒補給弁23を開くことで、蓄熱式熱源装置100へ湯水を供給することができる。
また、膨張タンク22には、膨張タンク22内の湯水の水位を検知する水位センサ22aが設けられ、膨張タンク22の水位が上昇して水位センサ22aによって所定の水位が検知されると、熱媒補給弁23が閉じられるように構成されている。
The expansion tank 22 is disposed higher than the heat storage tank 14 and the heat recovery processing unit. In addition, a heat medium supply valve 23 that switches a supply state of hot water to the expansion tank 22 is provided in a heat medium supply path R8 that is supplied with hot water from the outside provided in the expansion tank 22. By opening the heat medium supply valve 23, hot water can be supplied to the heat storage type heat source device 100.
The expansion tank 22 is provided with a water level sensor 22a for detecting the level of hot water in the expansion tank 22. When the water level in the expansion tank 22 rises and a predetermined water level is detected by the water level sensor 22a, the heat medium The refill valve 23 is configured to be closed.

以下、図1に基づいて、加熱循環回路C1、放熱端末循環回路C2、及び、加熱循環回路C1と放熱端末循環回路C2とを接続する接続配管R9の構成について詳細に説明する。   Hereinafter, the configuration of the heating circuit C1, the heat radiating terminal circuit C2, and the connection pipe R9 for connecting the heating circuit C1 and the heat radiating terminal circuit C2 will be described in detail with reference to FIG.

〔加熱循環回路〕
加熱循環回路C1は、蓄熱槽14に貯湯される湯水を加熱するために蓄熱槽14と熱電併給装置11との間で湯水を循環させるための循環回路として構成されている。
詳しくは、加熱循環回路C1は、蓄熱槽14の下部と熱電併給装置11の湯水流入側とを接続する加熱往き路R1と、熱電併給装置11の湯水流出側と蓄熱槽14の上部とを接続する加熱戻り路R2と、加熱往き路R1において蓄熱槽14の下部から熱電併給装置11の湯水流入側に向けて湯水を送る加熱循環ポンプ12とから構成されている。
このように構成された加熱循環回路C1は、加熱循環ポンプ12を作動させることによって、蓄熱槽14の下部の湯水を、加熱往き路R1を介して熱電併給装置11に供給すると共に、熱電併給装置11を通流した湯水を、加熱戻り路R2を介して蓄熱槽14の上部に戻す形態で、湯水を循環させるものとなる。
[Heating circuit]
The heating circulation circuit C <b> 1 is configured as a circulation circuit for circulating hot water between the heat storage tank 14 and the combined heat and power supply device 11 in order to heat the hot water stored in the heat storage tank 14.
Specifically, the heating circuit C1 connects the heating forward path R1 connecting the lower part of the heat storage tank 14 and the hot water inflow side of the cogeneration apparatus 11, and the hot water outflow side of the cogeneration apparatus 11 and the upper part of the heat storage tank 14. The heating return path R2 and the heating circulation pump 12 that sends hot water from the lower portion of the heat storage tank 14 toward the hot water inflow side of the thermoelectric supply device 11 in the heating forward path R1.
The heating circuit C1 configured as described above operates the heating circulation pump 12 to supply hot water in the lower part of the heat storage tank 14 to the combined heat and power supply device 11 via the heating forward path R1, and also to the combined heat and power supply device. Hot water is circulated in such a form that the hot water flowing through 11 is returned to the upper part of the heat storage tank 14 via the heating return path R2.

尚、本実施形態において、蓄熱槽14の下部とは、蓄熱槽14内の下層に連通する部分を意味し、蓄熱槽14の上部とは、蓄熱槽14内の上層に連通する部分を意味する。また、加熱往き路R1の上流側端部は、蓄熱槽14の底面に接続されており、加熱戻り路R2の下流側端部は、蓄熱槽14の天井面に接続されている。
そして、かかる加熱循環回路C1において湯水を循環させながら、熱電併給装置11で湯水を加熱することによって、蓄熱槽14内の上層へは、熱電併給装置11で加熱された湯水が加熱戻り路R2から流入することになり、蓄熱槽14内の下層からは、低温の湯水が加熱往き路R1へ流出することになる。このことにより、蓄熱槽14内の湯水の状態は、上層から下層に亘って、上層に高温の湯水が存在し下層に低温の湯水が存在する形態の所謂温度成層が形成された成層貯湯状態となる。尚、この蓄熱槽14には、蓄熱槽14内の下層の湯水温度を検出する下層温度センサS4、及び、蓄熱槽14内の上層の湯水温度を検出する上層温度センサS5が設けられている。尚、本実施形態において、この下層温度センサS4で検出される温度を蓄熱槽下層温度T4と呼び、この上層温度センサS5で検出される温度を蓄熱槽上層温度T5と呼ぶ場合がある。
また、加熱戻り路R2には、当該加熱戻り路R2の湯水温度を検出する加熱戻り温度センサS1が設けられている。尚、本実施形態において、この加熱戻り温度センサS1で検出される温度を加熱戻り温度T1と呼ぶ場合がある。
In the present embodiment, the lower part of the heat storage tank 14 means a part communicating with the lower layer in the heat storage tank 14, and the upper part of the heat storage tank 14 means a part communicating with the upper layer in the heat storage tank 14. . Further, the upstream end portion of the heating forward path R1 is connected to the bottom surface of the heat storage tank 14, and the downstream end portion of the heating return path R2 is connected to the ceiling surface of the heat storage tank 14.
Then, hot water is heated by the combined heat and power supply device 11 while circulating the hot water in the heating circuit C1, so that the hot water heated by the combined heat and power supply device 11 is supplied from the heating return path R2 to the upper layer in the heat storage tank 14. As a result, low temperature hot water flows out from the lower layer in the heat storage tank 14 to the heating outbound path R1. As a result, the hot water in the heat storage tank 14 is in a stratified hot water storage state in which a so-called temperature stratification in which high temperature hot water exists in the upper layer and low temperature hot water exists in the lower layer is formed from the upper layer to the lower layer. Become. The heat storage tank 14 is provided with a lower layer temperature sensor S4 that detects the temperature of hot water in the lower layer in the heat storage tank 14, and an upper layer temperature sensor S5 that detects the temperature of hot water in the upper layer in the heat storage tank 14. In this embodiment, the temperature detected by the lower layer temperature sensor S4 may be referred to as a heat storage tank lower layer temperature T4, and the temperature detected by the upper layer temperature sensor S5 may be referred to as a heat storage tank upper layer temperature T5.
The heating return path R2 is provided with a heating return temperature sensor S1 that detects the hot water temperature of the heating return path R2. In the present embodiment, the temperature detected by the heating return temperature sensor S1 may be referred to as a heating return temperature T1.

〔放熱端末循環回路〕
放熱端末循環回路C2は、蓄熱槽14に貯湯された湯水を放熱端末30で放熱させるために蓄熱槽14と放熱端末30との間で湯水を循環させるための循環回路として構成されている。
詳しくは、放熱端末循環回路C2は、蓄熱槽14の上部と放熱端末30の湯水流入側とを接続する放熱端末往き路R3と、放熱端末30の湯水流出側と蓄熱槽14の下部とを接続する放熱端末戻り路R4で構成されており、放熱端末往き路R3には、膨張タンク22、放熱循環ポンプ21及び燃焼式加熱部17を備えた燃焼式加熱装置18が設けられている。
このように構成された放熱端末循環回路C2は、放熱循環ポンプ21を作動させることによって、蓄熱槽14の上部の湯水を、放熱端末往き路R3を介して、燃焼式加熱装置18の膨張タンク22と放熱循環ポンプ21と燃焼式加熱部17を経由した上で、放熱端末30に供給すると共に、放熱端末30を通流した湯水を、放熱端末戻り路R4を介して蓄熱槽14の下部に戻す形態で、湯水を循環させるものとなる。
[Heat dissipation terminal circulation circuit]
The heat radiation terminal circulation circuit C <b> 2 is configured as a circulation circuit for circulating hot water between the heat storage tank 14 and the heat radiation terminal 30 in order to dissipate the hot water stored in the heat storage tank 14 at the heat radiation terminal 30.
Specifically, the heat radiating terminal circulation circuit C2 connects the heat radiating terminal outgoing path R3 connecting the upper part of the heat storage tank 14 and the hot water inflow side of the heat radiating terminal 30, and the hot water outflow side of the heat radiating terminal 30 and the lower part of the heat storage tank 14. The combustion-type heating device 18 provided with the expansion tank 22, the heat-dissipation circulation pump 21, and the combustion-type heating unit 17 is provided in the heat-dissipation terminal return path R4.
The heat radiating terminal circulation circuit C2 configured in this manner operates the heat radiating circulation pump 21 so that the hot water in the upper part of the heat storage tank 14 is supplied to the expansion tank 22 of the combustion heating device 18 via the heat radiating terminal outgoing path R3. After passing through the heat radiating circulation pump 21 and the combustion heating unit 17, the hot water flowing through the heat radiating terminal 30 is returned to the lower part of the heat storage tank 14 through the heat radiating terminal return path R4. In the form, hot water is circulated.

放熱端末循環回路C2には、当該放熱端末循環回路C2において蓄熱槽14をバイパスするバイパス路R5が放熱端末戻り路R4と放熱端末往き路R3とを直接接続する状態で設けられており、このバイパス路R5と放熱端末往き路R3との接続部には、放熱端末循環回路C2における湯水の通流状態を切り換える切換手段として機能する三方弁15が設けられている。
即ち、この三方弁15は、バイパス路R5が接続されるバイパス側接続ポート、放熱端末往き路R3の上流側(即ち蓄熱槽14側)が接続される蓄熱槽側接続ポート、放熱端末往き路R3の下流側(即ち放熱端末30側)が接続される放熱端末側接続ポートを有し、これら各接続ポートの連通状態を切り換えることで、放熱端末循環回路C2における湯水の通流状態を切り換え可能となる。
In the heat radiation terminal circulation circuit C2, a bypass path R5 that bypasses the heat storage tank 14 in the heat radiation terminal circulation circuit C2 is provided in a state of directly connecting the heat radiation terminal return path R4 and the heat radiation terminal forward path R3. A three-way valve 15 that functions as switching means for switching the hot water flow state in the heat radiating terminal circulation circuit C2 is provided at a connection portion between the path R5 and the heat radiating terminal outgoing path R3.
That is, the three-way valve 15 includes a bypass side connection port to which the bypass path R5 is connected, a heat storage tank side connection port to which the upstream side (that is, the heat storage tank 14 side) of the heat dissipation terminal outbound path R3 is connected, and a heat dissipation terminal outbound path R3. The heat radiation terminal side connection port to which the downstream side (that is, the heat radiation terminal 30 side) is connected, and by switching the communication state of each of these connection ports, the hot water flow state in the heat radiation terminal circulation circuit C2 can be switched. Become.

この放熱端末循環回路C2における湯水の通流状態の切り換えは、放熱端末戻り路R4の湯水の全量をバイパス路R5に流入させる全量バイパス状態と、蓄熱槽14の下部とバイパス路R5への放熱端末戻り路R4の湯水の流入を許容する分流許容状態との間で切り換えられる。
即ち、三方弁15は、全量バイパス状態では、蓄熱槽側接続ポートを閉塞すると共にバイパス側接続ポートと放熱端末側接続ポートとを連通させる状態となり、一方、分流許容状態では、全ての接続ポートを互いに連通させる状態となる。
更に、この三方弁15は、少なくとも分流許容状態において、バイパス側接続ポートと蓄熱槽側接続ポートの開度の配分を調整することにより、バイパス路R5における湯水の流量であるバイパス流量L3を調整可能なバイパス流量調整手段として機能するように構成されている。
The switching of the hot water flow state in the heat radiating terminal circulation circuit C2 is performed in such a manner that the total amount of hot water in the heat radiating terminal return path R4 flows into the bypass path R5, the heat radiation tank 14 and the heat radiating terminal to the bypass path R5. It is switched between a split flow allowable state that allows inflow of hot water in the return path R4.
That is, the three-way valve 15 is in a state where the heat storage tank side connection port is closed and the bypass side connection port and the heat radiating terminal side connection port are communicated with each other in the bypass state, while in the bypass state, all connection ports are connected. It will be in the state where it mutually communicates.
Further, the three-way valve 15 can adjust the bypass flow rate L3, which is the flow rate of hot water in the bypass passage R5, by adjusting the distribution of the opening degree of the bypass side connection port and the heat storage tank side connection port at least in a state where flow is allowed. It is configured to function as a proper bypass flow rate adjusting means.

放熱端末往き路R3の三方弁15の下流側には、上流側から順に、当該放熱端末往き路R3の湯水を加熱する燃焼式加熱装置18と、湯水の通流を断続可能な開閉弁19とが設けられている。
かかる燃焼式加熱装置18は、燃焼式加熱部17に設けられたバーナ17aによりガス燃料を燃焼させて湯水を加熱する一般的な給湯装置として構成されている。また、この燃焼式加熱部17は、バーナ17aへのガス燃料の供給量を調整弁17bにより調整することにより、湯水に対する加熱量を調整可能に構成されている。
On the downstream side of the three-way valve 15 of the radiating terminal outgoing path R3, in order from the upstream side, a combustion type heating device 18 that heats the hot water of the radiating terminal outgoing path R3, and an on-off valve 19 that can interrupt the flow of hot water. Is provided.
The combustion heating device 18 is configured as a general hot water supply device that heats hot water by burning gas fuel with a burner 17 a provided in the combustion heating unit 17. In addition, the combustion heating unit 17 is configured to be able to adjust the amount of heating with respect to hot water by adjusting the amount of gas fuel supplied to the burner 17a with the adjustment valve 17b.

また、放熱端末往き路R3における燃焼式加熱装置18の内部には、燃焼式加熱部17による加熱前の放熱端末往き路R3の湯水温度を検出する放熱往き温度センサS2と、放熱端末往き路R3の湯水流量を検出する放熱往き流量センサF1とが設けられており、燃焼式加熱部17の下流側には、燃焼式加熱部17にて加熱された湯水の温度を検出する補助加熱温度センサS3が設けられている。尚、本実施形態において、この放熱往き温度センサS2で検出される温度を放熱往き温度T2と呼び、補助加熱温度センサS3で検出される温度を放熱端末往き温度T3と呼ぶ場合がある。
また、放熱端末戻り路R4におけるバイパス路R5との接続部の上流側には、放熱端末戻り路R4の湯水温度を検出する放熱戻り温度センサS6が設けられている。尚、本実施形態において、放熱戻り温度センサS6で検出される温度を放熱戻り温度T6と呼ぶ場合がある。
Further, inside the combustion heating device 18 in the heat dissipation terminal outgoing path R3, a heat dissipation forward temperature sensor S2 for detecting the hot water temperature of the heat dissipation terminal outgoing path R3 before heating by the combustion heating unit 17, and a heat dissipation terminal outgoing path R3 A heat release flow rate sensor F1 for detecting the hot water flow rate is provided, and an auxiliary heating temperature sensor S3 for detecting the temperature of the hot water heated by the combustion type heating unit 17 is provided downstream of the combustion type heating unit 17. Is provided. In the present embodiment, the temperature detected by the heat dissipation forward temperature sensor S2 may be referred to as a heat dissipation forward temperature T2, and the temperature detected by the auxiliary heating temperature sensor S3 may be referred to as a heat dissipation terminal forward temperature T3.
In addition, a heat dissipation return temperature sensor S6 that detects the hot water temperature of the heat dissipation terminal return path R4 is provided on the upstream side of the connection portion with the bypass path R5 in the heat dissipation terminal return path R4. In the present embodiment, the temperature detected by the heat dissipation return temperature sensor S6 may be referred to as a heat dissipation return temperature T6.

〔接続配管〕
接続配管R9は、放熱端末戻り路R4を形成する下部放熱端末接続管と加熱往き路R1を形成する下部加熱接続管とを接続するように設けられている。また、接続配管R9と下部放熱端末接続管との接続部には、下部放熱端末接続管から接続配管R9への湯水の供給状態を切替える熱媒供給切換弁24が配置されている。熱媒供給切換弁24は、蓄熱式熱源装置100への水張り時において、湯水が接続配管R9に供給される状態に切替えて、放熱端末戻り路R4を流れる湯水を熱回収処理部に供給するために使用するものである。
[Connection piping]
The connection pipe R9 is provided so as to connect the lower heat radiating terminal connecting pipe forming the heat radiating terminal return path R4 and the lower heating connecting pipe forming the heating forward path R1. In addition, a heating medium supply switching valve 24 that switches the hot water supply state from the lower heat radiating terminal connection pipe to the connection pipe R9 is disposed at the connection portion between the connection pipe R9 and the lower heat radiating terminal connection pipe. The heat medium supply switching valve 24 switches to a state in which hot water is supplied to the connection pipe R9 and supplies hot water flowing through the heat radiating terminal return path R4 to the heat recovery processing unit when the heat storage type heat source device 100 is filled with water. It is used for

以上が蓄熱式熱源装置100の基本構成であるが、係る蓄熱式熱源装置100には、マイクロコンピュータ等からなる制御装置20が設けられており、この制御装置20により、放熱循環ポンプ21、三方弁15、及び、熱媒補給弁23等が制御され、以下に示すように蓄熱式熱源装置100への水張りが行われる。
すなわち、三方弁15の開度を、バイパス路R5と連通するバイパス側接続ポートと放熱端末往き路R3の蓄熱槽側と連通する蓄熱槽側接続ポートとの開度が均等となるように調整し、熱媒供給切換弁24を湯水が蓄熱槽14側に流れるように切り替える。そして、膨張タンク22の熱媒供給路R8に設けられた熱媒補給弁23を開けて、膨張タンク22に湯水を供給し、放熱循環ポンプ21を作動させる。その後、蓄熱槽14において満水状態の50%以上の湯水が満たされた時に、熱媒供給切換弁24を湯水が接続配管R9側に流れるように切り替える。その後、蓄熱槽14が満水となり、さらに、燃焼式加熱装置18の膨張タンク22の湯水の水位が上昇して水位センサ22aによって所定の水位が検知されると、熱媒補給弁23を閉じると共に、放熱循環ポンプ21を停止して水張りを完了する。尚、蓄熱槽14において50%以上の湯水が満たされたかどうかの判断は、蓄熱槽14に設けられた図示しない水位センサで行われる。
The above is the basic configuration of the heat storage type heat source device 100. The heat storage type heat source device 100 is provided with a control device 20 composed of a microcomputer or the like. 15 and the heat medium supply valve 23 and the like are controlled, and water filling to the heat storage type heat source device 100 is performed as described below.
That is, the opening degree of the three-way valve 15 is adjusted so that the opening degrees of the bypass side connection port communicating with the bypass path R5 and the heat storage tank side connection port communicating with the heat storage tank side of the heat radiation terminal outgoing path R3 are equal. Then, the heat medium supply switching valve 24 is switched so that hot water flows to the heat storage tank 14 side. Then, the heat medium supply valve 23 provided in the heat medium supply path R8 of the expansion tank 22 is opened, hot water is supplied to the expansion tank 22, and the heat radiation circulation pump 21 is operated. Thereafter, when 50% or more of hot water is filled in the heat storage tank 14, the heat medium supply switching valve 24 is switched so that the hot water flows to the connection pipe R9 side. After that, when the heat storage tank 14 becomes full, and when the water level of the expansion tank 22 of the combustion heating device 18 rises and a predetermined water level is detected by the water level sensor 22a, the heat medium supply valve 23 is closed, The heat-dissipation circulation pump 21 is stopped to complete the water filling. Note that whether or not 50% or more of hot water is filled in the heat storage tank 14 is determined by a water level sensor (not shown) provided in the heat storage tank 14.

また、制御装置20により、加熱循環回路C1に湯水を循環させて熱電併給装置11による湯水の加熱を行う加熱運転、放熱端末循環回路C2に湯水を循環させて放熱端末30による湯水の放熱を行う放熱運転、及び、これら加熱運転と放熱運転とを同時に行う加熱放熱運転を択一的に実行するように構成されている。
以下、これら加熱運転、放熱運転、及び加熱放熱運転の詳細構成、並びに、これらの運転中に実行される各種制御構成について、図2〜図6に基づいて、順に説明する。
Further, the controller 20 circulates hot water in the heating circuit C1 to heat the hot water by the combined heat and power supply device 11, and circulates hot water in the heat radiating terminal circulation circuit C2 to radiate hot water from the heat radiating terminal 30. The heat radiation operation and the heat radiation operation that performs the heating operation and the heat radiation operation at the same time are alternatively executed.
Hereinafter, detailed configurations of the heating operation, the heat radiation operation, and the heat radiation operation, and various control configurations executed during these operations will be described in order based on FIGS.

〔加熱運転〕
制御装置20により実行される加熱運転の詳細構成について、図2に基づいて説明する。
加熱運転は、外部からの加熱運転の開始指令が入力された際に実行が開始され、かかる加熱運転では、先ず、加熱循環ポンプ12の作動が開始されることで、加熱循環回路C1における湯水の循環が開始される(ステップ#11)。このとき、放熱端末循環回路C2においては、放熱循環ポンプ21の作動は停止されることで、湯水の循環は停止している状態となる。
尚、加熱循環ポンプ12の作動開始直後は、加熱循環ポンプ12は最低回転数で作動し、加熱循環回路C1における湯水の循環流量である加熱循環流量L1は最小流量に設定される。
[Heating operation]
A detailed configuration of the heating operation executed by the control device 20 will be described with reference to FIG.
The heating operation is started when an external heating operation start command is input. In such a heating operation, first, the operation of the heating circulation pump 12 is started, so that hot water in the heating circulation circuit C1 is started. Circulation is started (step # 11). At this time, in the heat radiating terminal circulation circuit C2, the operation of the heat radiating circulation pump 21 is stopped, and the hot water circulation is stopped.
Immediately after the operation of the heating circulation pump 12 is started, the heating circulation pump 12 operates at the minimum number of revolutions, and the heating circulation flow rate L1, which is the circulation flow rate of hot water in the heating circulation circuit C1, is set to the minimum flow rate.

次に、熱電併給装置11の作動が開始されて、加熱循環回路C1を循環する湯水の加熱が開始され(ステップ#12)、同時に、加熱戻り温度T1が所定の目標貯湯温度(例えば60〜75℃の間の所定の温度)になるように、加熱循環ポンプ12の回転数を調整する形態で、加熱循環回路C1における加熱循環流量L1が制御される(ステップ#13)。
このステップ#13の加熱循環流量L1の制御は、加熱運転の終了指令が入力されるまでは継続して実行され(ステップ#14)、加熱運転の終了指令が入力された場合には、加熱運転を終了すべく、加熱循環ポンプ12及び熱電併給装置11等を停止する形態で加熱運転終了処理が実行される(ステップ#15)。
Next, the operation of the combined heat and power supply device 11 is started, and heating of hot water circulating through the heating circuit C1 is started (Step # 12). At the same time, the heating return temperature T1 is set to a predetermined target hot water storage temperature (for example, 60 to 75). The heating circulation flow rate L1 in the heating circulation circuit C1 is controlled by adjusting the number of rotations of the heating circulation pump 12 so as to be a predetermined temperature between 0 ° C. (step # 13).
The control of the heating circulation flow rate L1 in step # 13 is continuously executed until the heating operation end command is input (step # 14), and when the heating operation end command is input, the heating operation is performed. In order to end the heating operation, the heating operation end process is executed in a form in which the heating circulation pump 12 and the combined heat and power supply device 11 are stopped (step # 15).

〔放熱運転〕
制御装置20により実行される放熱運転の詳細構成について、図3に基づいて説明する。
放熱運転は、外部からの放熱運転の開始指令が入力された際に実行が開始され、かかる放熱運転では、先ず、三方弁15により放熱端末循環回路C2における湯水の通流状態が、蓄熱槽14の下部とバイパス路R5への放熱端末戻り路R4の湯水の流入を許容する分流許容状態とされる(ステップ#21)。更に、開閉弁19が開状態に切り換えられた状態で放熱循環ポンプ21の作動が開始されることで、放熱端末循環回路C2における湯水の循環が開始される(ステップ#22)。このとき、加熱循環回路C1においては、加熱循環ポンプ12の作動は停止されることで、湯水の循環は停止している状態となる。
尚、放熱循環ポンプ21は、常に定格回転数で作動し、放熱端末循環回路C2における湯水の循環流量である放熱循環流量L2は所定の設定放熱循環流量(例えば1〜10L/minの間の所定の流量)に設定される。また、放熱運転の開始直後においては、三方弁15のバイパス側接続ポートの開度は最大とされて、バイパス流量L3は最大に設定される。
尚、複数の設定放熱循環流量を設け、放熱循環流量L2を適宜それら複数の設定放熱循環流量の間で切り換えるように構成しても構わない。
更に、蓄熱槽上層温度T5が目標熱媒温度に所定値α(例えば、0〜10℃の間の所定の温度)を加えた温度よりも低いか否かが判定される(ステップ#23)。蓄熱槽上層温度T5が目標熱媒温度に所定値αを加えた温度よりも低い場合には、放熱端末循環回路C2における湯水の通流状態が、蓄熱槽14の湯水循環状態を全量バイパス状態に切り換えられ(ステップ#24)、放熱端末往き温度T3を目標熱媒温度に維持するべく、図5に示す補助加熱量制御が実行される(ステップ#25)。一方、蓄熱槽上層温度T5が目標熱媒温度に所定値αを加えた温度以上の場合には、放熱端末循環回路C2における湯水の通流状態が、蓄熱槽14の下部とバイパス路R5への放熱端末戻り路R4の湯水の流入を許容する所謂分流許容状態に切り換えられ(ステップ#26)、図6に示すバイパス流量制御(ステップ#27)が実行されることで、放熱端末往き温度T3が、目標熱媒温度に維持される。
そして、これらステップ#23〜ステップ#27の判定並びに制御が、放熱運転の終了指令が入力されるまでは継続して実行され(ステップ#28)、放熱運転の終了指令が入力された場合には、放熱運転を終了すべく、放熱循環ポンプ21、燃焼式加熱部17等を停止する形態で放熱運転終了処理が実行される(ステップ#29)。
[Heat dissipation operation]
A detailed configuration of the heat radiation operation executed by the control device 20 will be described with reference to FIG.
The heat radiation operation is started when an external heat radiation operation start command is input. In this heat radiation operation, first, the flow of hot water in the heat radiation terminal circulation circuit C2 is determined by the three-way valve 15 in the heat storage tank 14. And a diversion permitting state permitting the inflow of hot water from the heat radiating terminal return path R4 to the bypass path R5 (step # 21). Furthermore, the operation of the heat dissipation circulation pump 21 is started in a state where the on-off valve 19 is switched to the open state, whereby the hot water circulation in the heat dissipation terminal circulation circuit C2 is started (step # 22). At this time, in the heating circulation circuit C1, the operation of the heating circulation pump 12 is stopped, so that the hot water circulation is stopped.
The heat radiation circulation pump 21 always operates at the rated rotational speed, and the heat radiation circulation flow rate L2, which is the circulating water flow rate in the heat radiation terminal circulation circuit C2, is a predetermined heat radiation circulation flow rate (for example, a predetermined value between 1 and 10 L / min). Flow rate). Further, immediately after the start of the heat radiation operation, the opening degree of the bypass side connection port of the three-way valve 15 is set to the maximum, and the bypass flow rate L3 is set to the maximum.
A plurality of set heat radiation circulation flows may be provided, and the heat radiation circulation flow L2 may be appropriately switched between the plurality of set heat radiation circulation flows.
Further, it is determined whether or not the heat storage tank upper layer temperature T5 is lower than a temperature obtained by adding a predetermined value α (for example, a predetermined temperature between 0 to 10 ° C.) to the target heat medium temperature (step # 23). When the heat storage tank upper layer temperature T5 is lower than the temperature obtained by adding the predetermined value α to the target heat medium temperature, the hot water flow state in the heat radiating terminal circulation circuit C2 changes the hot water circulation state of the heat storage tank 14 to the bypass state. Switching is performed (step # 24), and the auxiliary heating amount control shown in FIG. 5 is executed (step # 25) in order to maintain the heat radiation terminal going temperature T3 at the target heat medium temperature. On the other hand, when the heat storage tank upper layer temperature T5 is equal to or higher than the temperature obtained by adding the predetermined value α to the target heat medium temperature, the hot water flow state in the heat radiating terminal circulation circuit C2 is reduced to the lower part of the heat storage tank 14 and the bypass R5. By switching to a so-called diversion permitting state that allows the inflow of hot water in the heat radiating terminal return path R4 (step # 26), the bypass flow rate control (step # 27) shown in FIG. The target heat medium temperature is maintained.
The determination and control in Step # 23 to Step # 27 are continuously executed until the end command for the heat radiation operation is input (Step # 28), and when the end command for the heat radiation operation is input. Then, in order to end the heat radiation operation, the heat radiation operation end processing is executed in such a manner that the heat radiation circulation pump 21, the combustion heating unit 17 and the like are stopped (step # 29).

(補助加熱量制御)
以下、補助加熱量制御について、図5に基づいて説明を加える。
かかる補助加熱量制御では、先ず、放熱端末往き温度T3(補助加熱温度センサS3にて測定される温度)が放熱端末30にて要求される目標熱媒温度(例えば、40〜60℃の間の所定の温度)以下であるか否かが判定される(ステップ#51)。
そして、上記ステップ#51において放熱端末往き温度T3が目標熱媒温度以下であると判定した場合には、燃焼式加熱部17の加熱量が所定量増加され(ステップ#52)、このことで放熱端末循環回路C2において放熱端末30を通流する湯水の温度が上昇して、放熱端末往き温度T3が目標熱媒温度に近づくべく上昇する。
(Auxiliary heating amount control)
Hereinafter, the auxiliary heating amount control will be described with reference to FIG.
In this auxiliary heating amount control, first, the heat radiation terminal going temperature T3 (temperature measured by the auxiliary heating temperature sensor S3) is a target heat medium temperature (for example, between 40 to 60 ° C.) required by the heat radiation terminal 30. It is determined whether the temperature is equal to or lower than a predetermined temperature (step # 51).
If it is determined in step # 51 that the heat radiation terminal return temperature T3 is equal to or lower than the target heat medium temperature, the heating amount of the combustion heating unit 17 is increased by a predetermined amount (step # 52). In the terminal circulation circuit C2, the temperature of the hot water flowing through the heat radiating terminal 30 rises, and the heat radiating terminal going temperature T3 rises to approach the target heat medium temperature.

一方、上記ステップ#51において放熱端末往き温度T3が目標熱媒温度を超えると判定した場合には、燃焼式加熱部17の加熱量が調整可能範囲の下限値である最小加熱量であるか否かが判定される(ステップ#53)。
そして、燃焼式加熱部17の加熱量が最小加熱量でない場合には、当該加熱量が所定量減少され(ステップ#54)、このことで放熱端末循環回路C2において放熱端末30を通流する湯水の温度が低下して、放熱端末往き温度T3が目標熱媒温度に近づくべく低下する。また、燃焼式加熱部17の加熱量が最小加熱量である場合には、当該加熱量をそれ以上低下させることができないので、燃焼式加熱部17による加熱が停止され(ステップ#55)、このことで放熱端末循環回路C2において放熱端末30を通流する湯水の温度が低下して、放熱端末往き温度T3が目標熱媒温度に近づくべく低下する。
尚、本補助加熱量制御における上記ステップ#51及び上記ステップ#53の判定処理は、夫々個別の判定処理とするのではなく、一の判定処理で夫々の場合を判定するように構成しても構わない。
On the other hand, if it is determined in step # 51 that the heat radiation terminal return temperature T3 exceeds the target heat medium temperature, whether or not the heating amount of the combustion heating unit 17 is the minimum heating amount that is the lower limit value of the adjustable range. Is determined (step # 53).
When the heating amount of the combustion type heating unit 17 is not the minimum heating amount, the heating amount is decreased by a predetermined amount (step # 54), whereby hot water flowing through the heat radiating terminal 30 in the heat radiating terminal circulation circuit C2. The temperature of the heat dissipation terminal decreases, and the heat radiation terminal return temperature T3 decreases to approach the target heat medium temperature. Further, when the heating amount of the combustion type heating unit 17 is the minimum heating amount, the heating amount cannot be reduced any further, so that the heating by the combustion type heating unit 17 is stopped (step # 55). Thus, the temperature of the hot water flowing through the heat radiating terminal 30 in the heat radiating terminal circulation circuit C2 is lowered, and the heat radiating terminal going temperature T3 is lowered to approach the target heat medium temperature.
It should be noted that the determination processing of step # 51 and step # 53 in the auxiliary heating amount control may be configured so that each case is determined by one determination processing instead of individual determination processing. I do not care.

(バイパス流量制御)
以下、バイパス流量制御について、図6に基づいて説明を加える。
かかるバイパス流量制御では、先ず、放熱端末往き温度T3(補助加熱温度センサS3にて測定される温度)が放熱端末30にて要求される目標熱媒温度(例えば、40〜60℃の間の所定の温度)以下であるか否かが判定される(ステップ#61)。
そして、上記ステップ#61において放熱端末往き温度T3が目標熱媒温度以下であると判定した場合には、三方弁15のバイパス側接続ポートの開度が最小(又は全閉)であって、バイパス路R5におけるバイパス流量L3が調整可能範囲の下限値である最小流量であるか否かが判定される(ステップ#62)。
そして、バイパス流量L3が最小流量でない場合には、当該バイパス流量L3が所定量減少され(ステップ#64)、蓄熱槽下部戻り流量L4が増加することで、放熱端末循環回路C2において放熱端末30を通流する湯水の温度が上昇して、放熱端末往き温度T3が目標熱媒温度に近づくべく上昇する。また、バイパス流量L3が最小流量である場合には、バイパス流量L3をそれ以上減少させることができないので、燃焼式加熱部17の作動が最小加熱量で開始され(ステップ#63)、このことで放熱端末循環回路C2において放熱端末30を通流する湯水の温度が上昇して、放熱端末往き温度T3が目標熱媒温度に近づくべく上昇する。
(Bypass flow control)
Hereinafter, the bypass flow rate control will be described with reference to FIG.
In such bypass flow rate control, first, the heat dissipation terminal return temperature T3 (temperature measured by the auxiliary heating temperature sensor S3) is a target heat medium temperature required by the heat dissipation terminal 30 (for example, a predetermined temperature range of 40 to 60 ° C.). It is determined whether the temperature is equal to or lower than (step # 61).
If it is determined in step # 61 that the heat radiating terminal return temperature T3 is equal to or lower than the target heat medium temperature, the opening degree of the bypass side connection port of the three-way valve 15 is minimum (or fully closed) and It is determined whether or not the bypass flow rate L3 in the path R5 is the minimum flow rate that is the lower limit value of the adjustable range (step # 62).
If the bypass flow rate L3 is not the minimum flow rate, the bypass flow rate L3 is decreased by a predetermined amount (step # 64), and the heat storage tank lower return flow rate L4 is increased, so that the heat dissipation terminal 30 is connected in the heat dissipation terminal circulation circuit C2. The temperature of the flowing hot water rises, and the radiating terminal going temperature T3 rises to approach the target heat medium temperature. Further, when the bypass flow rate L3 is the minimum flow rate, the bypass flow rate L3 cannot be reduced any further, so the operation of the combustion heating unit 17 is started with the minimum heating amount (step # 63). In the heat radiating terminal circulation circuit C2, the temperature of hot water flowing through the heat radiating terminal 30 rises, and the heat radiating terminal going temperature T3 rises so as to approach the target heat medium temperature.

一方、上記ステップ#61において放熱端末往き温度T3が目標熱媒温度を超えると判定した場合には、当該バイパス流量L3が所定量増加され(ステップ#65)、蓄熱槽下部戻り流量L4が減少することで、放熱端末循環回路C2において放熱端末30を通流する湯水の温度が低下して、放熱端末往き温度T3が目標熱媒温度に近づくべく低下する。
尚、本バイパス流量制御における上記ステップ#61及び上記ステップ#62の判定処理は、夫々個別の判定処理とするのではなく、一の判定処理で夫々の場合を判定するように構成しても構わない。
On the other hand, when it is determined in step # 61 that the heat radiation terminal return temperature T3 exceeds the target heat medium temperature, the bypass flow rate L3 is increased by a predetermined amount (step # 65), and the heat storage tank lower return flow rate L4 is decreased. Thus, the temperature of the hot water flowing through the heat radiating terminal 30 is lowered in the heat radiating terminal circulation circuit C2, and the heat radiating terminal going temperature T3 is lowered so as to approach the target heat medium temperature.
It should be noted that the determination processing of step # 61 and step # 62 in the bypass flow rate control may be configured to determine each case by one determination processing instead of using individual determination processing. Absent.

〔加熱放熱運転〕
制御装置20により実行される加熱放熱運転の詳細構成について、図4に基づいて説明する。
加熱放熱運転は、外部からの加熱放熱運転の開始指令が入力された際に実行が開始され、かかる加熱放熱運転では、上述した加熱運転(図2参照)と同様に、加熱循環回路C1における湯水の循環と、熱電併給装置11の作動とが開始される(ステップ#31、#32)。同時に、上述した放熱運転(図3参照)と同様に、放熱端末循環回路C2における湯水の通流状態が分流許容状態とされ、放熱端末循環回路C2における湯水の循環が開始される(ステップ#33、#34)。
[Heating heat dissipation operation]
A detailed configuration of the heat radiation operation executed by the control device 20 will be described with reference to FIG.
The heating / radiating operation is started when an external heating / radiating operation start command is input. In the heating / radiating operation, similar to the above-described heating operation (see FIG. 2), And the operation of the combined heat and power supply device 11 are started (steps # 31 and # 32). At the same time, similarly to the above-described heat radiation operation (see FIG. 3), the hot water flow state in the heat radiation terminal circulation circuit C2 is allowed to be diverted, and the hot water circulation in the heat radiation terminal circulation circuit C2 is started (step # 33). , # 34).

次に、放熱戻り温度T6が所定の全量バイパス判定温度以下であるか否かが判定される(ステップ#35)。
かかる全量バイパス判定温度は、加熱往き路R1の湯水に対して許容される許容上限温度(例えば65℃)に対して所定の余裕分低い温度(例えば55〜60℃の間の所定の温度)に設定されている。
そして、上記ステップ#35において放熱戻り温度T6が全量バイパス判定温度を超える所謂高温状態の場合には、放熱端末循環回路C2における湯水の通流状態が、放熱端末戻り路R4の湯水の全量をバイパス路R5に流入させる所謂全量バイパス状態に切り換えられる(ステップ#36)。すると、その高温状態となる放熱端末戻り路R4の湯水の全てがバイパス路R5を介して放熱端末往き路R3に流入する。これにより、蓄熱槽14の下部から蓄熱槽14の下層や加熱往き路R1に高温状態となる放熱端末戻り路R4の湯水が流入することが防止され、蓄熱槽14の成層貯湯状態と加熱往き路R1の低温状態とが良好に維持される。
尚、上記ステップ#36において放熱端末循環回路C2の湯水通流状態を全量バイパス状態とした場合、放熱端末往き温度T3(補助加熱温度センサS3にて測定される温度)を目標熱媒温度に維持するべく、上述した放熱運転(図3参照)と同様に、図5に示す補助加熱量制御が実行される(ステップ#37)。
Next, it is determined whether or not the heat dissipation return temperature T6 is equal to or lower than a predetermined full amount bypass determination temperature (step # 35).
The total amount bypass determination temperature is set to a temperature that is lower by a predetermined margin (for example, a predetermined temperature between 55 to 60 ° C.) than the allowable upper limit temperature (for example, 65 ° C.) allowed for the hot water in the heating outbound path R1. Is set.
When the heat dissipation return temperature T6 exceeds the bypass determination temperature in step # 35, the hot water flow in the heat dissipation terminal circulation circuit C2 bypasses the total amount of hot water in the heat dissipation terminal return path R4. The state is switched to the so-called full amount bypass state for flowing into the path R5 (step # 36). Then, all the hot and cold water in the heat radiating terminal return path R4 that is in a high temperature state flows into the heat radiating terminal going path R3 via the bypass path R5. Thereby, it is prevented that the hot water of the heat radiating terminal return path R4 which will be in a high temperature state flows into the lower layer of the heat storage tank 14 or the heating forward path R1 from the lower part of the thermal storage tank 14, and the stratified hot water storage state and the heating forward path of the thermal storage tank 14 The low temperature state of R1 is well maintained.
Note that when the hot water flow state of the heat radiating terminal circulation circuit C2 is completely bypassed in step # 36, the heat radiating terminal return temperature T3 (temperature measured by the auxiliary heating temperature sensor S3) is maintained at the target heat medium temperature. Therefore, the auxiliary heating amount control shown in FIG. 5 is executed (step # 37) as in the above-described heat radiation operation (see FIG. 3).

一方、上記ステップ#35において放熱戻り温度T6が全量バイパス判定温度以下の所謂中低温状態の場合には、蓄熱槽上層温度T5が目標熱媒温度に所定値α(例えば、0〜10℃の間の所定の温度)を加えた温度よりも低いか否かが判定される(ステップ#42)。蓄熱槽上層温度T5が目標熱媒温度に所定値αを加えた温度よりも低い場合には、放熱端末循環回路C2における湯水の通流状態が、蓄熱槽14の湯水循環状態を全量バイパス状態に切り換えられ(ステップ#36)、上述した放熱運転(図3参照)と同様に、放熱端末往き温度T3を目標熱媒温度に維持するべく、図5に示す補助加熱量制御が実行される(ステップ#37)。一方、蓄熱槽上層温度T5が目標熱媒温度に所定値αを加えた温度以上の場合には、放熱端末循環回路C2における湯水の通流状態が、蓄熱槽14の下部とバイパス路R5への放熱端末戻り路R4の湯水の流入を許容する所謂分流許容状態に切り換えられる(ステップ#38)。尚、上記ステップ#38において放熱端末循環回路C2の湯水通流状態を分流許容状態とした場合、放熱端末往き温度T3(補助加熱温度センサS3にて測定される温度)を目標熱媒温度に維持するべく、上述した放熱運転(図6参照)と同様に、図6に示すバイパス流量制御が実行される(ステップ#39)。
そして、これらステップ#35〜ステップ#39及びステップ#42の判定並びに制御が、加熱放熱運転の終了指令が入力されるまでは継続して実行され(ステップ#40)、加熱放熱運転の終了指令が入力された場合には、加熱放熱運転を終了すべく、加熱循環ポンプ12、熱電併給装置11、放熱循環ポンプ16、燃焼式加熱部17等を停止する形態で加熱放熱運転終了処理が実行される(ステップ#41)。
On the other hand, when the heat release return temperature T6 is a so-called medium / low temperature state where the total heat return temperature T6 is equal to or lower than the bypass determination temperature in step # 35, the heat storage tank upper layer temperature T5 is set to the target heat medium temperature at a predetermined value α (for example, between 0 to 10 ° C. It is determined whether the temperature is lower than the temperature obtained by adding (predetermined temperature) (step # 42). When the heat storage tank upper layer temperature T5 is lower than the temperature obtained by adding the predetermined value α to the target heat medium temperature, the hot water flow state in the heat radiating terminal circulation circuit C2 changes the hot water circulation state of the heat storage tank 14 to the bypass state. As in the above-described heat radiation operation (see FIG. 3), the auxiliary heating amount control shown in FIG. 5 is executed in order to maintain the heat radiation terminal going temperature T3 at the target heat medium temperature (step # 36) (step # 36). # 37). On the other hand, when the heat storage tank upper layer temperature T5 is equal to or higher than the temperature obtained by adding the predetermined value α to the target heat medium temperature, the hot water flow state in the heat radiating terminal circulation circuit C2 is reduced to the lower part of the heat storage tank 14 and the bypass R5. It is switched to a so-called diversion permitting state in which hot water is allowed to flow into the heat radiation terminal return path R4 (step # 38). In step # 38, when the hot water / water flow state of the heat radiating terminal circulation circuit C2 is set to the shunting allowable state, the heat radiating terminal return temperature T3 (temperature measured by the auxiliary heating temperature sensor S3) is maintained at the target heat medium temperature. Therefore, the bypass flow rate control shown in FIG. 6 is executed (step # 39) as in the above-described heat radiation operation (see FIG. 6).
And the determination and control of these step # 35-step # 39 and step # 42 are continuously performed until the completion | finish instruction | indication of heating heat radiation operation is input (step # 40), When the input is made, in order to end the heating and heat radiation operation, the heating and heat radiation operation end process is executed in such a manner that the heating circulation pump 12, the combined heat and power supply device 11, the heat radiation circulation pump 16, the combustion heating unit 17, and the like are stopped. (Step # 41).

<別実施形態>
(1)上記実施形態では、加熱部としての熱電併給装置11の例として、ガスエンジン発電機を挙げたが、当該熱電併給装置11は、例えば、固体酸化物型燃料電池等、電力と共に熱を発生するものであれば、どのようなものでも含む。
また、加熱部としては、熱電併給装置11に限らず、ヒートポンプや太陽熱回収パネル等を採用することもでき、更に、複数の加熱部を備える構成を採用することもできる。
<Another embodiment>
(1) In the said embodiment, although the gas engine generator was mentioned as an example of the cogeneration apparatus 11 as a heating part, the said cogeneration apparatus 11 is heat | fever with electric power, such as a solid oxide fuel cell, for example. Anything that occurs is included.
Moreover, as a heating part, not only the cogeneration apparatus 11 but a heat pump, a solar heat recovery panel, etc. can also be employ | adopted, Furthermore, the structure provided with a some heating part is also employable.

(2)上記実施形態では、放熱端末循環回路C2における湯水の通流状態を全量バイパス状態と分流許容状態との間で切り換えるための切換手段を、バイパス路R5と放熱端末往き路R3との接続部に設けられた三方弁15で構成したが、バイパス路R5や放熱端末往き路R3に適宜複数の制御弁を設けて、放熱端末循環回路C2における湯水の通流状態を切り換えるように構成しても構わない。 (2) In the above embodiment, the switching means for switching the hot water flow state in the heat radiating terminal circulation circuit C2 between the full bypass state and the shunting permitted state is the connection between the bypass path R5 and the heat radiating terminal forward path R3. It is configured with a three-way valve 15 provided in the section, but a plurality of control valves are appropriately provided in the bypass path R5 and the heat radiating terminal outgoing path R3 so as to switch the hot water flow state in the heat radiating terminal circulation circuit C2. It doesn't matter.

(3)上記実施形態では、単一の制御装置20で、加熱運転、放熱運転、加熱放熱運転を行う集中制御の形態としたが、お互いの運転状況を通信する機能を備えて各運転を行う制御装置を個別に備えた分散制御の形態でも構わない。 (3) In the above embodiment, the single control device 20 is in the form of centralized control that performs the heating operation, the heat radiation operation, and the heat radiation operation, but each operation is performed with a function of communicating each other's operation status. A distributed control form in which the control devices are individually provided may be used.

(4)上記実施形態では、全量バイパス状態と分流許容状態との切り換えにおいて、蓄熱槽上層温度T5と目標熱媒温度とに基づく判定(ステップ#23及びステップ#42の判定)を行っているが、当該判定は、省略しても構わない。 (4) In the above embodiment, the determination based on the heat storage tank upper layer temperature T5 and the target heat medium temperature is performed (the determination of step # 23 and step # 42) in switching between the full amount bypass state and the shunting allowable state. The determination may be omitted.

(5)上記実施形態では、熱回収処理部が、蓄熱槽14の下部の湯水を熱電併給装置11に供給すると共に、熱電併給装置11を通流した湯水を蓄熱槽14の上部に戻す形態で構成されたが、これに限らず、熱回収処理部を、蓄熱槽14の下部の湯水を熱電併給装置11の熱で加熱される熱交換器に供給すると共に、熱交換器を通流した湯水を蓄熱槽14の上部に戻す形態で構成してもよい。 (5) In the above embodiment, the heat recovery processing unit supplies the hot water in the lower part of the heat storage tank 14 to the thermoelectric supply device 11 and returns the hot water flowing through the heat and power supply apparatus 11 to the upper part of the heat storage tank 14. Although comprised, it is not restricted to this, The heat recovery process part supplies the hot water of the lower part of the thermal storage tank 14 to the heat exchanger heated with the heat of the cogeneration apparatus 11, and the hot water which flowed through the heat exchanger You may comprise in the form which returns to the upper part of the thermal storage tank 14. FIG.

以上説明したように、蓄熱槽の熱媒の熱を放熱端末において有効に利用することができる蓄熱式熱源装置を提供することができる。   As described above, it is possible to provide a heat storage heat source device that can effectively use the heat of the heat medium in the heat storage tank in the heat dissipation terminal.

11 熱電併給装置(加熱部)
14 蓄熱槽
17 燃焼式加熱部
18 燃焼式加熱装置
21 放熱循環ポンプ
22 膨張タンク
23 熱媒補給弁
24 熱媒供給切換弁
30 放熱端末
100 蓄熱式熱源装置
R9 接続配管
11 Cogeneration device (heating unit)
14 Heat Storage Tank 17 Combustion Heating Unit 18 Combustion Heating Device 21 Heat Dissipation Circulation Pump 22 Expansion Tank 23 Heat Medium Supply Valve 24 Heat Medium Supply Switching Valve 30 Heat Dissipation Terminal 100 Heat Storage Heat Source Device R9 Connection Piping

Claims (2)

熱媒により蓄熱する蓄熱槽と、熱を発生する加熱部と、前記加熱部の熱を前記蓄熱槽の熱媒に回収する熱回収処理部を備えた蓄熱式熱源装置であって、
前記蓄熱槽の上部の熱媒を、上部放熱端末接続管を介して、前記蓄熱槽、前記加熱部及び前記熱回収処理部とは別体として設けられた燃焼式加熱装置の膨張タンクと放熱循環ポンプと燃焼式加熱部とを経由した上で、熱媒の熱を消費する放熱端末に供給すると共に、前記放熱端末を通流した熱媒を、下部放熱端末接続管を介して、前記蓄熱槽の下部に戻す形態で、熱媒を循環させる熱消費処理部とを備え、前記蓄熱槽が前記膨張タンクと接続されていることにより大気に開放されている蓄熱式熱源装置。
A heat storage type heat source device comprising a heat storage tank for storing heat with a heat medium, a heating unit for generating heat, and a heat recovery processing unit for recovering heat of the heating unit to the heat medium of the heat storage tank,
The heat medium in the upper part of the heat storage tank is connected to the expansion tank and the heat circulation of the combustion heating apparatus provided separately from the heat storage tank, the heating unit and the heat recovery processing unit via an upper heat radiation terminal connection pipe. The heat storage tank is supplied to the heat radiating terminal that consumes the heat of the heat medium after passing through the pump and the combustion heating unit, and the heat medium flowing through the heat radiating terminal is passed through the lower heat radiating terminal connection pipe. A heat storage heat source device that includes a heat consumption processing unit that circulates a heat medium in a form that is returned to the lower part of the heat storage tank and that is open to the atmosphere by being connected to the expansion tank.
前記熱回収処理部が、前記蓄熱槽の下部の熱媒を、下部加熱接続管を介して、前記加熱部もしくは前記加熱部の熱で加熱される熱交換器に供給すると共に、前記加熱部もしくは前記熱交換器を通流した熱媒を、上部加熱接続管を介して、前記蓄熱槽の上部に戻す形態で構成され、
前記膨張タンクに熱媒補給弁を備えると共に、前記下部放熱端末接続管と前記下部加熱接続管とを接続する接続配管を備え、前記下部放熱端末接続管に当該下部放熱端末接続管から前記接続配管への熱媒の供給状態を切替える熱媒供給切換弁を配置した請求項1に記載の蓄熱式熱源装置。
The heat recovery processing unit supplies the heating medium at the lower part of the heat storage tank to the heating unit or a heat exchanger heated by the heat of the heating unit via a lower heating connection pipe, and the heating unit or The heat medium that has flowed through the heat exchanger is configured to return to the upper part of the heat storage tank via an upper heating connection pipe,
The expansion tank is provided with a heat medium supply valve, and further includes a connection pipe that connects the lower heat radiation terminal connection pipe and the lower heating connection pipe, and the connection pipe from the lower heat radiation terminal connection pipe to the lower heat radiation terminal connection pipe The heat storage type heat source device according to claim 1, further comprising a heat medium supply switching valve that switches a supply state of the heat medium to the heat medium.
JP2014257871A 2014-12-19 2014-12-19 Heat storage type heat source device Pending JP2016118328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257871A JP2016118328A (en) 2014-12-19 2014-12-19 Heat storage type heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257871A JP2016118328A (en) 2014-12-19 2014-12-19 Heat storage type heat source device

Publications (1)

Publication Number Publication Date
JP2016118328A true JP2016118328A (en) 2016-06-30

Family

ID=56244052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257871A Pending JP2016118328A (en) 2014-12-19 2014-12-19 Heat storage type heat source device

Country Status (1)

Country Link
JP (1) JP2016118328A (en)

Similar Documents

Publication Publication Date Title
JP2005061711A (en) Exhaust heat recovering water heater
JP5300717B2 (en) Cogeneration system
JP2009103418A (en) Cogeneration system
JP5829492B2 (en) Hot water storage type hot water supply system and operation control method thereof
US10544945B2 (en) Heat supply system
JP5146731B2 (en) Hot water supply apparatus and hot water supply system
JP6366335B2 (en) Hot water storage heat source device
JP2003240345A (en) Waste heat recovery hot water supply system
JP2006052902A (en) Cogeneration system
JP5921416B2 (en) Cogeneration system and hot water supply equipment
JP6331461B2 (en) Hot water heater
JP6152312B2 (en) heater
JP2016118328A (en) Heat storage type heat source device
JP2017044442A (en) Composite heat source machine
JP2016099073A (en) Storage hot water supply system
EP3322016A1 (en) Fuel cell system
JP2015040670A (en) Hot water storage and supply device
JP2016118327A (en) Heat storage type heat source device
JP2017194219A (en) Storage water heater
JP2013057435A (en) Heat supply system
JP6015924B2 (en) Hot water storage hot water system
JP2015155780A (en) Cogeneration device
KR102350060B1 (en) Heating Device
JP2013238333A (en) Storage type heat source device
JP2014095488A (en) Cogeneration system and hot-water supply facility