JP2016118223A - Motor valve - Google Patents

Motor valve Download PDF

Info

Publication number
JP2016118223A
JP2016118223A JP2014257016A JP2014257016A JP2016118223A JP 2016118223 A JP2016118223 A JP 2016118223A JP 2014257016 A JP2014257016 A JP 2014257016A JP 2014257016 A JP2014257016 A JP 2014257016A JP 2016118223 A JP2016118223 A JP 2016118223A
Authority
JP
Japan
Prior art keywords
valve
valve body
chamber
linear motion
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014257016A
Other languages
Japanese (ja)
Other versions
JP6293047B2 (en
Inventor
和之 浅野
Kazuyuki Asano
和之 浅野
治 高見
Osamu Takami
治 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Original Assignee
Pacific Industrial Co Ltd
Taiheiyo Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Co Ltd, Taiheiyo Kogyo KK filed Critical Pacific Industrial Co Ltd
Priority to JP2014257016A priority Critical patent/JP6293047B2/en
Publication of JP2016118223A publication Critical patent/JP2016118223A/en
Application granted granted Critical
Publication of JP6293047B2 publication Critical patent/JP6293047B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor valve capable of suppressing power consumption compared to conventional ones.SOLUTION: In a motor valve 10, a first valve body 14 is supported in a linearly movable manner to a support recess part 13K, and a first valve body open hole 14C is formed inside a taper surface 14B contacting with a valve seat 24A of a first valve port 24 in the first valve body 14. Then, since the inside of the support recess part 13K excluding the first valve body open hole 14C is sealed, a load that the first valve body 14 receives by fluid pressure in a linearly movable direction is reduced, and power consumption of the motor valve can be suppressed compared to conventional ones. Also, two flow rate characteristics can be assembled into one motor valve.SELECTED DRAWING: Figure 1

Description

本発明は、弁体を直動させて弁口を開閉する電動弁に関する。   The present invention relates to an electric valve that opens and closes a valve port by directly moving a valve body.

従来、この種の電動弁として、弁体を閉弁側にバネで付勢し、モータで弁体を開弁側に移動する構造のものが知られている。そのような電動弁のなかには、弁体に貫通孔を形成して閉弁状態でその貫通孔をシャフトにて閉塞し、開弁する際にシャフトを後退させて貫通孔を開放してから、シャフトに備えたフランジを弁体の一部に当接させて弁体も後退させ、弁口を開くものもある(例えば、特許文献1参照)。   Conventionally, as this type of electric valve, there is known a structure in which a valve body is urged by a spring toward a valve closing side and the valve body is moved to a valve opening side by a motor. In such an electric valve, a through hole is formed in the valve body, the through hole is closed with a shaft in a closed state, and when opening the valve, the shaft is retracted to open the through hole, and then the shaft There is also a type in which the valve body is moved backward by abutting a flange provided in the valve body to open the valve port (see, for example, Patent Document 1).

実開平6−024282号公報(段落[0016],[0017],及び図1)Japanese Utility Model Publication No. 6-024282 (paragraphs [0016], [0017], and FIG. 1)

しかしながら、従来の電動弁の構造では、流体圧力に打ち勝って弁体を駆動する必要があるので、弁口の口径が大きいと、その分、大きな駆動力が必要になる。また、弁体に貫通孔が形成されている電動弁では、貫通孔の開放により弁体にかかる流体圧力が下がるものの、貫通孔の口径が小さいと流体圧力は僅かしか下がらず、逆に貫通孔の口径が大きいと、貫通孔を閉塞する第2の弁体としてのシャフトにかかる流体圧力が大きくなり、結局は、大きな駆動力が必要になる。このため、従来の電動弁では、弁口の口径の大型化に伴い、消費電力が増加することが問題になっていた。また、弁口の口径が大きくなくても、現状より消費電力を抑えたいという要望もある。   However, in the conventional motor-operated valve structure, it is necessary to overcome the fluid pressure and drive the valve body. Therefore, if the diameter of the valve port is large, a correspondingly large driving force is required. In addition, in a motor-operated valve in which a through hole is formed in the valve body, the fluid pressure applied to the valve body is reduced by opening the through hole. However, if the diameter of the through hole is small, the fluid pressure is only slightly reduced. When the diameter of is large, the fluid pressure applied to the shaft as the second valve body that closes the through hole becomes large, and eventually a large driving force is required. For this reason, in the conventional motor operated valve, there has been a problem that the power consumption increases as the diameter of the valve port increases. There is also a desire to reduce power consumption from the current level even if the diameter of the valve port is not large.

本発明は、上記事情に鑑みてなされたもので、従来より消費電力を抑えることが可能な電動弁の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a motor-operated valve capable of suppressing power consumption as compared with the conventional art.

上記目的を達成するためになされた請求項1の発明は、第1弁口(24)を挟んで対向する第1部屋(21)と第2部屋(22)とを有するベース部材(11)と、前記第1部屋(21)のうち前記第1弁口(24)との対向面に形成された支持凹部(13K)と、前記支持凹部(13K)に直動可能に嵌合した第1弁体(14)と、前記第1弁体(14)に設けられ、前記第1弁口(24)の開口縁の弁座(24Z)に接離する環状当接部(14B)と、前記第1弁体(14)のうち前記環状当接部(14B)の内側部分を貫通して前記支持凹部(13K)の内外を連通する第1弁体貫通孔(14C)と、前記第1弁体貫通孔(14C)を除き、前記支持凹部(13K)の内部を密閉するシール部材(13E)と、前記環状当接部(14B)が前記弁座(24Z)に接離するように前記第1弁体(14)を駆動する駆動手段(15,50,60)と、前記第1部屋(21)に連通した第1流路(31)と、前記第2部屋(22)に連通し、前記環状当接部(14B)が前記弁座(24Z)に当接した閉弁状態で前記第1流路(31)から遮断される第2流路(32)とを有する電動弁(10,10V,10W,10X、10Y,10Z,100V)である。   The invention of claim 1 made to achieve the above object comprises a base member (11) having a first chamber (21) and a second chamber (22) facing each other across the first valve port (24). , A support recess (13K) formed on a surface of the first chamber (21) facing the first valve port (24), and a first valve fitted in the support recess (13K) so as to be directly movable. A body (14), an annular contact portion (14B) provided on the first valve body (14) and contacting and separating from a valve seat (24Z) at an opening edge of the first valve port (24); A first valve body through hole (14C) that passes through an inner portion of the annular contact portion (14B) of the one valve body (14) and communicates with the inside and outside of the support recess (13K); and the first valve body A seal member (13E) that seals the inside of the support recess (13K) except for the through hole (14C), and the annular contact portion (14B) Driving means (15, 50, 60) for driving the first valve body (14) so as to contact and separate from the valve seat (24Z), and a first flow path ( 31) and the second chamber (22), and is closed from the first flow path (31) in a closed state in which the annular contact portion (14B) is in contact with the valve seat (24Z). It is a motor-operated valve (10, 10V, 10W, 10X, 10Y, 10Z, 100V) having a second flow path (32).

請求項2の発明は、前記第1弁口(24)の内径と前記支持凹部(13K)の内径とが略同一である請求項1に記載の電動弁(10,10V,10W,10X、10Y,10Z,100V)である。   According to a second aspect of the present invention, the motor-operated valve (10, 10V, 10W, 10X, 10Y) according to the first aspect has the same inner diameter of the first valve port (24) and the inner diameter of the support recess (13K). , 10Z, 100V).

請求項3の発明は、前記ベース部材(11)のうち前記第2部屋(22)を挟んで前記第1部屋(21)と反対側に形成された第3部屋(23)と、前記第2部屋(22)と前記第3部屋(23)との間に形成された第2弁口(25)と、前記第3部屋(23)側から前記第2弁口(25)、前記第1弁口(24)を貫通し、前進して前記第1弁体(14)を開弁側に押圧する一方、後退して前記第1弁体(14)から離間する直動シャフト(17)と、前記直動シャフト(17)を前進及び後退させる駆動源(50,60)と、前記第1弁体(14)を閉弁側に付勢する弾性部材(15)と、前記直動シャフト(17)の軸方向の中間部を縮径してなる第2弁体(18)と、前記第3部屋(23)に連通した第3流路(33)と、を備え、前記駆動源(50,60)と前記弾性部材(15)とから前記駆動手段(15,50,60)が構成され、前記第2流路(32)が前記第1流路(31)及び第3流路(33)より上流に配置され、前記直動シャフト(17)が前記第1弁体(14)に接触している間は、前記直動シャフト(17)と前記第2弁口(25)との間の隙間が一定に維持されると共に、前記直動シャフト(17)が前記第1弁体(14)から離間していくときに前記直動シャフト(17)と前記第2弁口(25)との隙間が拡がるように前記第2弁体(18)が配置されている請求項1又は2に記載の電動弁(10,10W)である。   The invention according to claim 3 is the third chamber (23) formed on the opposite side of the first chamber (21) across the second chamber (22) of the base member (11), and the second chamber A second valve port (25) formed between the chamber (22) and the third chamber (23), the second valve port (25), the first valve from the third chamber (23) side. A linear motion shaft (17) penetrating through the port (24) and moving forward to press the first valve body (14) toward the valve opening side, while moving backward and separating from the first valve body (14); A drive source (50, 60) for moving the linear movement shaft (17) forward and backward, an elastic member (15) for urging the first valve body (14) toward the valve closing side, and the linear movement shaft (17) ) In the axial direction of the second valve body (18), and a third flow path (33) communicating with the third chamber (23), The drive means (15, 50, 60) includes the drive source (50, 60) and the elastic member (15), and the second flow path (32) is connected to the first flow path (31) and the first flow path (31). While being arranged upstream of the three flow paths (33) and the linear motion shaft (17) is in contact with the first valve body (14), the linear motion shaft (17) and the second valve port ( 25) and the linear movement shaft (17) and the second valve when the linear movement shaft (17) moves away from the first valve body (14). The motor-operated valve (10, 10W) according to claim 1 or 2, wherein the second valve body (18) is arranged so that a gap with the mouth (25) is widened.

請求項4の発明は、前記ベース部材(11)のうち前記第2部屋(22)を挟んで前記第1部屋(21)と反対側に形成された第3部屋(23)と、前記第2部屋(22)と前記第3部屋(23)との間に形成された第2弁口(25)と、前記第3部屋(23)側から前記第2弁口(25)、前記第1弁口(24)を貫通し、前進して前記第1弁体(14)を開弁側に押圧する一方、後退して前記第1弁体(14)から離間する直動シャフト(17)と、前記直動シャフト(17)を前進及び後退させる駆動源(50,60)と、前記第1弁体(14)を閉弁側に付勢する弾性部材(15)と、前記直動シャフト(17)の軸方向の中間部を縮径してなる第2弁体(18)と、前記第1流路(31)と前記第3部屋(23)とを常時連絡した連絡流路(53)と、を備え、前記駆動源(50,60)と前記弾性部材(15)とから前記駆動手段(15,50,60)が構成され、前記第1流路(31)が前記第2流路(32)より上流に配置され、前記直動シャフト(17)が前記第1弁体(14)に接触している間は、前記直動シャフト(17)と前記第2弁口(25)との間の隙間が一定に維持されると共に、前記直動シャフト(17)が前記第1弁体(14)から離間していくときに前記直動シャフト(17)と前記第2弁口(25)との隙間が拡がるように前記第2弁体(18)が配置されている請求項1又は2に記載の電動弁(10V,10X)である。   According to a fourth aspect of the present invention, a third chamber (23) formed on the opposite side of the first chamber (21) across the second chamber (22) of the base member (11), and the second A second valve port (25) formed between the chamber (22) and the third chamber (23), the second valve port (25), the first valve from the third chamber (23) side. A linear motion shaft (17) penetrating through the port (24) and moving forward to press the first valve body (14) toward the valve opening side, while moving backward and separating from the first valve body (14); A drive source (50, 60) for moving the linear movement shaft (17) forward and backward, an elastic member (15) for urging the first valve body (14) toward the valve closing side, and the linear movement shaft (17) The second valve body (18) formed by reducing the diameter of the intermediate portion in the axial direction, the first flow path (31), and the third chamber (23) are always in communication with each other. An entangled flow path (53), and the drive means (15, 50, 60) includes the drive source (50, 60) and the elastic member (15), and the first flow path (31). Is disposed upstream of the second flow path (32), and the linear movement shaft (17) and the second linear movement shaft (17) are in contact with the first valve body (14). The gap between the valve port (25) is maintained constant, and when the linear motion shaft (17) moves away from the first valve body (14), the linear motion shaft (17) and the 3. The motor-operated valve (10 </ b> V, 10 </ b> X) according to claim 1, wherein the second valve body (18) is disposed so that a gap with the second valve port (25) is widened.

請求項5の発明は、前記第2部屋(22)を、前記第1部屋(21)側のメイン第2部屋(22A)と、前記第3部屋(23)側のサブ第2部屋(22B)とに区画して、それらメイン第2部屋(22A)とサブ第2部屋(22B)との間の流体の移動を規制する部屋区画壁(12H)を備え、前記第2流路(32)は、前記メイン第2部屋(22A)に連通しているメイン第2流路(32A)と、前記サブ第2部屋(22B)に連通しているサブ第2流路(32B)とからなる請求項4に記載の電動弁(10V,10X)である。   According to the invention of claim 5, the second room (22) is divided into a main second room (22A) on the first room (21) side and a sub second room (22B) on the third room (23) side. And a room partition wall (12H) that regulates the movement of fluid between the main second room (22A) and the sub second room (22B), the second flow path (32) The main second channel (32A) communicating with the main second chamber (22A) and the sub second channel (32B) communicating with the sub second chamber (22B). 4 is an electric valve (10V, 10X).

請求項6の発明は、前記第1弁体(14)には、前記第2弁体(18)側に向かってテーパー状に縮径した前記環状当接部としての第1テーパー面(14B)が形成され、前記第2弁体(18)には、前記第1弁体(14)側に向かってテーパー状に縮径し、前記直動シャフト(17)が前記第1弁体(14)から離間していくときに前記第2弁口(25)から徐々に離間していく第2テーパー面(18A)が形成され、前記直動シャフト(17)を位置制御可能な前記駆動源(50)としてのモータ(50)を備えた請求項3乃至5の何れか1の請求項に記載の電動弁(10,10V)である。   The invention according to claim 6 is the first tapered surface (14B) as the annular abutting portion having a diameter reduced toward the second valve body (18) toward the first valve body (14). The second valve body (18) is tapered toward the first valve body (14), and the linear shaft (17) is connected to the first valve body (14). A second tapered surface (18A) that gradually separates from the second valve port (25) when being separated from the second valve port (25) is formed, and the drive source (50) that can control the position of the linear motion shaft (17). The motor-operated valve (10, 10V) according to any one of claims 3 to 5, further comprising a motor (50) as a motor.

[請求項1及び2の発明]
請求項1の電動弁(10,10V,10W,10X,10Y,10Z,100V)では、第1弁体(14)が支持凹部(13K)に直動可能に支持され、その第1弁体(14)のうち第1弁口(24)の弁座(24Z)に当接する環状当接部(14B)より内側に第1弁体貫通孔(14C)が形成されている。そして、第1弁体貫通孔(14C)を除き支持凹部(13K)の内部が密閉されているので、第1弁体(14)が第1弁口(24)を閉弁した状態になると、第1弁体(14)が位置する第1部屋(21)とは第1弁口(24)を挟んで反対側の第2部屋(22)の内圧と支持凹部(13K)の内圧とが同じになる。これにより、第2部屋(22)の内圧により第1弁体(14)が第1部屋(21)側に押される負荷の少なくとも一部と、支持凹部(13K)の内圧により第1弁体(14)が第2部屋(22)側に押される負荷とが相殺される。即ち、本発明によれば、第1弁口(24)の口径を大きくしても、閉弁状態で第1弁体(14)にかかる流体圧力による負荷が抑えられ、従来より電動弁の消費電力を抑えることが可能になる。ここで、第1弁口(24)の内径と支持凹部(13K)の内径とが異なっていてもよいが、請求項2の構成のように、第1弁口(24)の内径と支持凹部(13K)の内径とを略同一にすれば、閉弁状態で第1弁体(14)が流体圧力によって受ける負荷が略0になり、従来より大幅に電動弁の消費電力を抑えることが可能になる。
[Inventions of Claims 1 and 2]
In the motor-operated valve (10, 10V, 10W, 10X, 10Y, 10Z, 100V) according to claim 1, the first valve body (14) is supported by the support recess (13K) so as to be directly movable, and the first valve body ( 14), a first valve body through hole (14C) is formed inside an annular contact portion (14B) that contacts the valve seat (24Z) of the first valve port (24). And since the inside of the support recess (13K) is sealed except for the first valve body through hole (14C), when the first valve body (14) closes the first valve port (24), The internal pressure of the second chamber (22) on the opposite side of the first valve port (24) and the internal pressure of the support recess (13K) are the same as the first chamber (21) where the first valve body (14) is located. become. As a result, at least part of the load by which the first valve body (14) is pushed to the first chamber (21) side by the internal pressure of the second chamber (22) and the first valve body (13K) by the internal pressure of the support recess (13K). 14) cancels out the load pushed to the second room (22) side. That is, according to the present invention, even if the diameter of the first valve port (24) is increased, the load due to the fluid pressure applied to the first valve body (14) in the closed state can be suppressed, and the consumption of the motor-operated valve is conventionally increased. It becomes possible to suppress electric power. Here, the inner diameter of the first valve port (24) may be different from the inner diameter of the support recess (13K). However, as in the configuration of claim 2, the inner diameter of the first valve port (24) and the support recess If the inner diameter of (13K) is made substantially the same, the load applied to the first valve body (14) by the fluid pressure in the valve closed state becomes substantially zero, and the power consumption of the motor-operated valve can be significantly reduced compared to the conventional case. become.

[請求項3の発明]
請求項3の構成によれば、直動シャフト(17)が前進すると、第1弁体(14)が直動シャフト(17)に押圧されて第1弁口(24)が開き、第2流路(32)から第1流路(31)へと流体が流れる。一方、直動シャフト(17)が後退すると、弾性部材(15)によって第1弁体(14)が直動シャフト(17)側に押し戻されて第1弁口(24)が閉塞されると共に、直動シャフト(17)の中間部の第2弁体(18)と第2弁口(25)との間が開いて、第2流路(32)から第3流路(33)へと流体が流れる。即ち、第1弁口(24)及び第2弁口(25)の異なる2つの弁口を使用して大流量と小流量とに分けて弁口の開閉を行うことができる。
[Invention of claim 3]
According to the configuration of claim 3, when the linear motion shaft (17) moves forward, the first valve body (14) is pressed against the linear motion shaft (17) to open the first valve port (24), and the second flow A fluid flows from the channel (32) to the first channel (31). On the other hand, when the linear motion shaft (17) is retracted, the first valve body (14) is pushed back toward the linear motion shaft (17) by the elastic member (15), and the first valve port (24) is closed. A space between the second valve body (18) and the second valve port (25) at the intermediate portion of the linear movement shaft (17) opens, and fluid flows from the second flow path (32) to the third flow path (33). Flows. That is, the opening and closing of the valve opening can be performed separately for the large flow rate and the small flow rate by using two different valve ports of the first valve port (24) and the second valve port (25).

[請求項4及び5の発明]
請求項4の構成によれば、直動シャフト(17)が前進すると、第1弁体(14)が直動シャフト(17)に押圧されて第1弁口(24)が開き、第1流路(31)から第2流路(32)へと流体が流れる。一方、直動シャフト(17)が後退すると、弾性部材(15)によって第1弁体(14)が直動シャフト(17)側に押し戻されて第1弁口(24)が閉塞されると共に、直動シャフト(17)の中間部の第2弁体(18)と第2弁口(25)との間が開き、第1流路(31)から連絡流路(53)、第3部屋(23)、さらには、第2部屋(22)を経て第2流路(32)へと流体が流れる。即ち、第1弁口(24)及び第2弁口(25)の異なる2つの弁口を使用して大流量と小流量とに分けて弁口の開閉を行うことができる。この場合、請求項5のように、第2部屋(22)をメイン第2部屋(22A)とサブ第2部屋(22B)とに区画し、第2流路(32)をメイン第2部屋(22A)に連通するメイン第2流路(32A)とサブ第2部屋(22B)に連通するサブ第2流路(32B)とに分け、直動シャフト(17)が前進して第1弁口(24)を開くことで第1流路(31)からメイン第2流路(32A)に流体を流し、直動シャフト(17)を後退させて第2弁口(25)を開くことで第1流路(31)からサブ第2流路(32B)に流体を流してもよい。
[Inventions of Claims 4 and 5]
When the linear motion shaft (17) advances, the first valve body (14) is pressed against the linear motion shaft (17) to open the first valve port (24). A fluid flows from the channel (31) to the second channel (32). On the other hand, when the linear motion shaft (17) is retracted, the first valve body (14) is pushed back toward the linear motion shaft (17) by the elastic member (15), and the first valve port (24) is closed. The space between the second valve body (18) and the second valve port (25) in the middle of the linear motion shaft (17) opens, and the first flow path (31) to the communication flow path (53), the third chamber ( 23), and further, the fluid flows through the second chamber (22) to the second flow path (32). That is, the opening and closing of the valve opening can be performed separately for the large flow rate and the small flow rate by using two different valve ports of the first valve port (24) and the second valve port (25). In this case, as in claim 5, the second room (22) is divided into a main second room (22A) and a sub second room (22B), and the second flow path (32) is defined in the main second room ( 22A) is divided into a main second flow path (32A) communicating with the sub second chamber (22B) and a sub second flow path (32B) communicating with the sub second chamber (22B). By opening (24), fluid flows from the first flow path (31) to the main second flow path (32A), the linear motion shaft (17) is retracted, and the second valve port (25) is opened. A fluid may flow from the first flow path (31) to the sub second flow path (32B).

[請求項6の発明]
請求項6の電動弁(10,10V)によれば、モータ(50)で直動シャフト(17)の位置を制御して第1弁口(24)及び第2弁口(25)の開度をそれぞれ徐々に変更し、流量を細かく制御することが可能になる。
[Invention of claim 6]
According to the electric valve (10, 10V) of claim 6, the opening degree of the first valve port (24) and the second valve port (25) by controlling the position of the linear motion shaft (17) with the motor (50). It is possible to gradually change the flow rate and finely control the flow rate.

本発明の第1実施形態に係る電動弁の側断面図1 is a side sectional view of a motor operated valve according to a first embodiment of the present invention. 電動弁の第1弁口と第2弁口とが閉じた状態の側断面図Side sectional view of the motor valve with the first valve port and the second valve port closed 電動弁の第1弁口が閉じ、第2弁口が開いた状態の側断面図Side sectional view of the motor valve with the first valve port closed and the second valve port opened 直動シャフトの位置と流量との関係を示したグラフGraph showing the relationship between linear shaft position and flow rate 第2実施形態の電動弁の側断面図Side sectional view of the electric valve of the second embodiment 電動弁の第1弁口と第2弁口とが閉じた状態の側断面図Side sectional view of the motor valve with the first valve port and the second valve port closed 電動弁の第1弁口が閉じ、第2弁口が開いた状態の側断面図Side sectional view of the motor valve with the first valve port closed and the second valve port opened 第3実施形態の電動弁の側断面図Side sectional view of the motor operated valve of the third embodiment 第4実施形態の電動弁の側断面図Side sectional view of the electric valve of the fourth embodiment 第5実施形態の電動弁の側断面図Side sectional view of the motor operated valve of the fifth embodiment 第6実施形態の電動弁の側断面図Side sectional view of the electric valve of the sixth embodiment 第7実施形態の電動弁の一部側断面図Partial side sectional view of the motor operated valve of the seventh embodiment 直動シャフトの位置と流量との関係を示したグラフGraph showing the relationship between linear shaft position and flow rate

[第1実施形態]
以下、本発明の第1実施形態を図1〜図4に基づいて説明する。図1に示すように、本実施形態の電動弁10は、ベース部材11の内部に第1と第2の弁口24,25を有し、それらの弁開度を第1と第2の弁体14,18にて変更して第2流路32から第1又は第3の流路31,33に流れる流体の流量を制御するものである。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the motor-operated valve 10 according to the present embodiment has first and second valve ports 24 and 25 inside a base member 11, and the opening degrees of the first and second valves are determined. The flow rate of the fluid flowing from the second flow path 32 to the first or third flow path 31 or 33 is changed by the bodies 14 and 18.

ベース部材11は、例えば直方体状のベース本体11Hが有するセンター孔12に下端詰栓13と駆動源ベース16とを組み付けてなる。センター孔12は、ベース本体11Hを上下に貫通し、下端側から順番に並んだ下端螺子孔部12A、下側大径孔部12B、中央小径孔部12C、上側中径孔部12D、上側大径孔部12E及び上端螺子孔部12Fに分かれていて、中央小径孔部12Cの内径が最も小さく、そこから上側及び下側に向かって内径が段階的に大きくなっている。そして、センター孔12の下端側に下端詰栓13が組み付けられる一方、上端側に駆動源ベース16が組み付けられている。   The base member 11 is formed, for example, by assembling a lower end plug 13 and a drive source base 16 in a center hole 12 of a rectangular parallelepiped base body 11H. The center hole 12 penetrates the base body 11H up and down, and is arranged in order from the lower end side, the lower end screw hole portion 12A, the lower large diameter hole portion 12B, the central small diameter hole portion 12C, the upper middle diameter hole portion 12D, the upper large diameter portion. It is divided into a diameter hole portion 12E and an upper end screw hole portion 12F, and the inner diameter of the central small diameter hole portion 12C is the smallest, and the inner diameter gradually increases upward and downward from there. And while the lower end plug 13 is assembled | attached to the lower end side of the center hole 12, the drive source base 16 is assembled | attached to the upper end side.

下端詰栓13は、上端開放、下端有底の筒形構造をなし、その下端部の外周面が段付き状に拡径され、そこに雄螺子部13Nが形成されている。そして、雄螺子部13Nがセンター孔12の下端螺子孔部12Aに締め付けられると共に、雄螺子部13Nの上端側の段差面が、センター孔12における下端螺子孔部12Aと下側大径孔部12Bとの段差面に押し当てられて位置決めされている。また、下端詰栓13の上端面は下側大径孔部12Bにおける軸方向の中間に位置し、下側大径孔部12Bの内側部分のうち下端詰栓13より上側が本発明に係る第1部屋21になっている。さらに、中央小径孔部12Cの内側は、本発明に係る第2部屋22になっていて、第1部屋21内に臨んだ第2部屋22の開口が、本発明に係る第1弁口24をなし、第1弁口24における開口縁のエッジ部分が本発明に係る弁座24Zになっている。   The lower end plug 13 has a cylindrical structure with an open upper end and a bottom with a lower end, and the outer peripheral surface of the lower end is enlarged in a stepped shape, and a male screw portion 13N is formed there. The male screw portion 13N is fastened to the lower end screw hole portion 12A of the center hole 12, and the stepped surface on the upper end side of the male screw portion 13N has a lower end screw hole portion 12A and a lower large diameter hole portion 12B in the center hole 12. Is positioned against the step surface. Moreover, the upper end surface of the lower end plug 13 is located in the middle of the lower large-diameter hole 12B in the axial direction, and the upper side from the lower end plug 13 in the inner portion of the lower large-diameter hole 12B is the There is one room 21. Further, the inside of the central small diameter hole portion 12C is the second chamber 22 according to the present invention, and the opening of the second chamber 22 facing the inside of the first chamber 21 defines the first valve port 24 according to the present invention. None, the edge portion of the opening edge of the first valve port 24 is the valve seat 24Z according to the present invention.

下端詰栓13は、その筒形構造部分における上下方向の中間位置で上側の上端スリーブ13Bと下側の詰栓本体13Aとに分割されている。詰栓本体13Aに残された筒形構造部分は、上端部が段付き状に縮径された小径軸部13Fになっている。これに対し、上端スリーブ13Bは、筒体の下端部の内径を拡径して大径孔部13Gとした構造をなし、その大径孔部13Gが詰栓本体13Aの小径軸部13Fの外側に嵌合されている。また、上端スリーブ13Bの上端部の内周面と小径軸部13Fの内周面とが面一になると共に、上端スリーブ13Bの外周面と、詰栓本体13Aにおける前述の雄螺子部13N及び後述のOリング溝13Cを除いた部分の外周面とが面一になっている。   The lower end plug 13 is divided into an upper upper sleeve 13B and a lower plug main body 13A at an intermediate position in the vertical direction of the cylindrical structure portion. The cylindrical structure portion left in the plug body 13A is a small-diameter shaft portion 13F whose upper end portion is reduced in a stepped shape. On the other hand, the upper end sleeve 13B has a structure in which the inner diameter of the lower end portion of the cylindrical body is enlarged to form a large diameter hole portion 13G, and the large diameter hole portion 13G is outside the small diameter shaft portion 13F of the plug body 13A. Is fitted. Further, the inner peripheral surface of the upper end portion of the upper end sleeve 13B and the inner peripheral surface of the small-diameter shaft portion 13F are flush with each other, the outer peripheral surface of the upper end sleeve 13B, the aforementioned male screw portion 13N in the plug main body 13A, and the later-described. The outer peripheral surface of the portion excluding the O-ring groove 13C is flush.

詰栓本体13Aの外周面のうち雄螺子部13Nと上端スリーブ13Bとの間には、Oリング溝13Cが形成され、そこに装着されたOリング13Dが下側大径孔部12Bの内周面に密着している。また、上端スリーブ13Bと小径軸部13Fとの間には、シート状のシール部材13Eが挟持され、下端詰栓13の筒形構造部分の内周面から突出している(図には表れず)。   An O-ring groove 13C is formed between the male screw portion 13N and the upper end sleeve 13B on the outer peripheral surface of the plug body 13A, and the O-ring 13D attached thereto is an inner periphery of the lower large-diameter hole portion 12B. It is in close contact with the surface. Further, a sheet-like seal member 13E is sandwiched between the upper end sleeve 13B and the small diameter shaft portion 13F, and protrudes from the inner peripheral surface of the cylindrical structure portion of the lower end plug 13 (not shown in the drawing). .

一方、駆動源ベース16は、後述する駆動源ユニット40の構成部品にもなっていて、下方に向かって段階的に外径が小さくなった円柱構造をなしている。そして、駆動源ベース16の上端側の大径部分に雄螺子部16Nが形成され、雄螺子部16Nがセンター孔12の上端螺子孔部12Fに締め付けられると共に、下端面をセンター孔12における上側中径孔部12Dと中央小径孔部12Cとの段差面に押し当てて位置決めされている。   On the other hand, the drive source base 16 is also a component of the drive source unit 40 described later, and has a cylindrical structure with an outer diameter gradually decreasing downward. Then, a male screw portion 16N is formed in the large diameter portion on the upper end side of the drive source base 16, the male screw portion 16N is fastened to the upper screw hole portion 12F of the center hole 12, and the lower end surface is located in the upper middle portion of the center hole 12. It is positioned by pressing against the step surface between the diameter hole portion 12D and the central small diameter hole portion 12C.

駆動源ベース16の外周面のうち雄螺子部16Nより下側には、大径軸部16A、小径軸部16B及びテーパー軸部16Cが順番に備えられている。そして、大径軸部16Aと小径軸部16Bとの段差面が、センター孔12の上側大径孔部12Eの中間位置に配置されて、小径軸部16Bの周囲に環状空間26が形成されている。なお、テーパー軸部16Cは、センター孔12の上側大径孔部12Eと上側中径孔部12Dとの段差角部に突き合わされ、テーパー軸部16Cと上側中径孔部12Dとの間にOリング16Dが設けられている。   A large-diameter shaft portion 16A, a small-diameter shaft portion 16B, and a tapered shaft portion 16C are sequentially provided on the outer peripheral surface of the drive source base 16 below the male screw portion 16N. The step surface between the large diameter shaft portion 16A and the small diameter shaft portion 16B is disposed at an intermediate position of the upper large diameter hole portion 12E of the center hole 12, and an annular space 26 is formed around the small diameter shaft portion 16B. Yes. The tapered shaft portion 16C is abutted against a stepped corner portion between the upper large-diameter hole portion 12E and the upper middle-diameter hole portion 12D of the center hole 12, and an O between the tapered shaft portion 16C and the upper intermediate-diameter hole portion 12D. A ring 16D is provided.

駆動源ベース16の中心には貫通孔16Hが形成され、その貫通孔16Hの下端部が段付き状に絞られて本発明に係る第2弁口25になっている。また、第2弁口25の内面は均一径をなして所定長(後述する第1弁体14のストローク分)だけ延びている。さらに、貫通孔16Hの上端寄り位置にはシャフト支持スリーブ16Fが嵌合されている。そして、貫通孔16Hのうちシャフト支持スリーブ16Fと第2弁口25との間が、本発明に係る第3部屋23になっている。また、駆動源ベース16の下端寄り位置には、貫通孔16Hと直交するように連通路16Gが形成されて、第3部屋23と環状空間26とを連絡している。   A through hole 16H is formed at the center of the drive source base 16, and a lower end portion of the through hole 16H is narrowed in a stepped manner to form the second valve port 25 according to the present invention. Further, the inner surface of the second valve port 25 has a uniform diameter and extends by a predetermined length (for a stroke of the first valve body 14 described later). Further, a shaft support sleeve 16F is fitted at a position near the upper end of the through hole 16H. And between the shaft support sleeve 16F and the 2nd valve port 25 among the through-holes 16H is the 3rd chamber 23 which concerns on this invention. Further, a communication path 16G is formed at a position near the lower end of the drive source base 16 so as to be orthogonal to the through hole 16H, and communicates the third chamber 23 and the annular space 26.

ベース部材11には、第1部屋21に一端部が連通した第1流路31と、第2部屋22に一端部が連通した第2流路32と、第3部屋23に一端部が連通した第3流路33とが形成され、それら第1〜第3の各流路31,32,33の他端部がベース部材11の外側面に開口している。そして、第1流路31と第2流路32との間に第1弁口24が位置し、その第1弁口24を開閉するための第1弁体14が第1部屋21に収容されている。   The base member 11 has one end connected to the first chamber 21, one end connected to the second chamber 22, one end connected to the second chamber 22, and one end connected to the third chamber 23. A third flow path 33 is formed, and the other end portions of the first to third flow paths 31, 32, 33 are open to the outer surface of the base member 11. The first valve port 24 is located between the first flow channel 31 and the second flow channel 32, and the first valve body 14 for opening and closing the first valve port 24 is accommodated in the first chamber 21. ing.

第1弁体14は、下端開放、上端有底の筒形構造をなして、第1弁体14の軸方向の中間部より下側が、下端詰栓13の筒形構造部分の内側に直動可能に嵌合されている。ここで、下端詰栓13の筒形構造部分の内側は、本発明に係る支持凹部13Kになっていて、支持凹部13Kの内径は第1弁口24の内径(即ち、中央小径孔部12Cの内径)と略同一になっている。また、第1弁体14の内側には本発明に係る「弾性部材」としての圧縮コイルバネ15が収容され、その下端部が第1弁体14より下方に突出して支持凹部13K内の底面に当接している。そして、圧縮コイルバネ15の弾発力によって第1弁体14が第1弁口24側に付勢されている。   The first valve body 14 has a cylindrical structure with an open lower end and a bottom with an upper end, and the lower side from the axial intermediate portion of the first valve body 14 moves directly inside the cylindrical structure portion of the lower end plug 13. It can be fitted. Here, the inside of the cylindrical structure portion of the lower end plug 13 is a support recess 13K according to the present invention, and the inner diameter of the support recess 13K is the inner diameter of the first valve port 24 (ie, the central small diameter hole portion 12C). Is substantially the same as the inner diameter). Further, a compression coil spring 15 as an “elastic member” according to the present invention is accommodated inside the first valve body 14, and a lower end thereof projects downward from the first valve body 14 and contacts the bottom surface in the support recess 13 </ b> K. It touches. The first valve body 14 is biased toward the first valve port 24 by the elastic force of the compression coil spring 15.

第1弁体14の外側面の上端部からは鍔部14Aが側方に突出していて、鍔部14Aの上面側は、テーパー面14B(本発明の「第1テーパー面」及び「環状当接部」に相当する)になっている。テーパー面14Bは、上方に向かって縮径していて、そのテーパー面14Bの上端部の外径は第1弁口24の内径より小さく、下端部の外径は第1弁口24の内径より大きくなっている。そして、テーパー面14Bが第1弁口24の開口縁のエッジ部分である弁座24Zに当接する。   A flange portion 14A protrudes laterally from the upper end portion of the outer surface of the first valve body 14, and the upper surface side of the flange portion 14A has a tapered surface 14B (“first tapered surface” and “annular contact” of the present invention). Part)). The taper surface 14B is reduced in diameter toward the upper side, the outer diameter of the upper end portion of the taper surface 14B is smaller than the inner diameter of the first valve port 24, and the outer diameter of the lower end portion is smaller than the inner diameter of the first valve port 24. It is getting bigger. Then, the tapered surface 14 </ b> B contacts the valve seat 24 </ b> Z that is an edge portion of the opening edge of the first valve port 24.

第1弁体14の上端部には、テーパー面14Bより内側部分を上下方向に貫通する複数の第1弁体貫通孔14Cが設けられている。また、第1弁体14の外周面と支持凹部13Kの内周面とは、前述のシール部材13Eによって密閉されている。これにより、支持凹部13K内は第1弁体貫通孔14Cを介してのみ外部に連通し、第1弁体14が第1弁口24を閉じた閉弁状態になると、支持凹部13K内と第2部屋22内の内圧が同じになる。   A plurality of first valve body through-holes 14 </ b> C are provided at the upper end portion of the first valve body 14 so as to vertically penetrate the inner portion from the tapered surface 14 </ b> B. Further, the outer peripheral surface of the first valve body 14 and the inner peripheral surface of the support recess 13K are sealed by the above-described seal member 13E. As a result, the inside of the support recess 13K communicates with the outside only through the first valve body through hole 14C, and when the first valve body 14 is in a closed state with the first valve port 24 closed, the inside of the support recess 13K The internal pressure in the two rooms 22 is the same.

第1弁体14は、第2部屋22側から直動シャフト17に押圧されて開弁側に移動する。直動シャフト17は、駆動源ベース16と同様に駆動源ユニット40の構成部品であり、その駆動源ユニット40は以下のように構成されている。即ち、駆動源ユニット40には、駆動源ベース16に固定された筒形ケース41が備えられている。筒形ケース41は、薄肉の円筒管41Aの上端部を上蓋部材41Bで閉塞してなり、上蓋部材41Bが貫通孔16Hの上端部を拡径してなるケース嵌合部16Lに嵌合されかつ溶接されている。なお、この筒形ケース41により、駆動源ベース16の貫通孔16Hのうちシャフト支持スリーブ16Fより上側部分が密閉されている。   The first valve body 14 is pressed by the linear movement shaft 17 from the second chamber 22 side and moves to the valve opening side. The linear motion shaft 17 is a component part of the drive source unit 40 similarly to the drive source base 16, and the drive source unit 40 is configured as follows. That is, the drive source unit 40 includes a cylindrical case 41 fixed to the drive source base 16. The cylindrical case 41 is formed by closing the upper end portion of a thin cylindrical tube 41A with an upper lid member 41B, and the upper lid member 41B is fitted in a case fitting portion 16L formed by expanding the upper end portion of the through hole 16H. Welded. The cylindrical case 41 seals the upper portion of the through hole 16H of the drive source base 16 above the shaft support sleeve 16F.

筒形ケース41の外側にはリング状の界磁巻線ユニット46が嵌合される一方、筒形ケース41の内側には、ロータ49が回転可能に収容されて、これら界磁巻線ユニット46とロータ49とを主要部としたステッピングモータ50(本発明の「駆動源」に相当する)が構成されている。なお、界磁巻線ユニット46は、コネクタを介してコントローラに接続可能になっている。   A ring-shaped field winding unit 46 is fitted on the outer side of the cylindrical case 41, while a rotor 49 is rotatably accommodated on the inner side of the cylindrical case 41. A stepping motor 50 (corresponding to the “drive source” of the present invention) having the main part of the rotor 49 and the rotor 49 is configured. The field winding unit 46 can be connected to the controller via a connector.

ロータ49を回転可能に支持するために、筒形ケース41の下端部が内側に直角曲げされて台座部41Fが形成され、その台座部41Fに固定されて上方に起立した筒形ブラケット42の内側に支持スリーブ43が固定されている。これに対し、ロータ49は、上端有底、下端開放の筒形界磁部45の上部中心にロッド部44を貫通状態に固定した構造をなしている。そして、ロッド部44のうち筒形界磁部45内に位置している部分の上端部が、支持スリーブ43内の上端部に直動可能かつ回転可能に支持され、ロッド部44の下端部に形成された雄螺子部44Bが、支持スリーブ43の下端部に形成された雌螺子部43Nに螺合している。また、筒形界磁部45は、支持スリーブ43を外側から覆った状態で筒形ケース41の内面に隣接している。そして、界磁巻線ユニット46と筒形界磁部45との間の磁力によってロータ49が回転駆動されながら上下動する。   In order to rotatably support the rotor 49, the lower end portion of the cylindrical case 41 is bent at a right angle to the inside to form a pedestal portion 41F, and the inner side of the cylindrical bracket 42 that is fixed to the pedestal portion 41F and stands upward. A support sleeve 43 is fixed to the frame. On the other hand, the rotor 49 has a structure in which the rod portion 44 is fixed in a penetrating state at the upper center of the cylindrical field portion 45 having an upper end bottom and an open lower end. The upper end portion of the rod portion 44 located in the cylindrical field portion 45 is supported by the upper end portion in the support sleeve 43 so as to be linearly movable and rotatable, and on the lower end portion of the rod portion 44. The formed male screw portion 44 </ b> B is screwed into a female screw portion 43 </ b> N formed at the lower end portion of the support sleeve 43. The cylindrical field part 45 is adjacent to the inner surface of the cylindrical case 41 with the support sleeve 43 covered from the outside. Then, the rotor 49 moves up and down while being rotationally driven by the magnetic force between the field winding unit 46 and the cylindrical field part 45.

なお、ロッド部44のうち筒形界磁部45より上側部分には、線材を螺旋状に巻き付けた螺旋ガイド46Gが備えられ、その螺旋ガイド46Gに係合しているストッパリング47のアーム部47Aが、筒形ケース41の上蓋部材41Bから垂下されたストッパシャフト48に当接している。そして、ロータ49が回転すると、ストッパリング47が螺旋ガイド46Gに対して相対回転して上下動し、螺旋ガイド46Gの上端部又は下端部まで移動したときに回動不能となってロータ49の回転を規制する。   In addition, a spiral guide 46G in which a wire rod is spirally wound is provided in a portion of the rod portion 44 above the cylindrical field portion 45, and an arm portion 47A of a stopper ring 47 engaged with the spiral guide 46G. Is in contact with a stopper shaft 48 suspended from the upper lid member 41B of the cylindrical case 41. When the rotor 49 rotates, the stopper ring 47 rotates relative to the spiral guide 46G and moves up and down, and when the rotor ring 49 moves to the upper end portion or the lower end portion of the spiral guide 46G, the rotation becomes impossible. To regulate.

また、ロッド部44の下端部は下端開放の筒部44Cになっていて、その筒部44C内に圧縮コイルバネ51が収容され、その下方に直動シャフト17の上端部が直動可能に収容されている。また、直動シャフト17の上端に備えたフランジ17Fが、筒部44Cの下端部に嵌合固定されたブッシュ44Tに上方から当接して筒部44C内に抜け止めされている。そして、直動シャフト17がロータ49と共に上下動する。   Further, the lower end portion of the rod portion 44 is a cylindrical portion 44C having an open lower end. The compression coil spring 51 is accommodated in the cylindrical portion 44C, and the upper end portion of the linear motion shaft 17 is accommodated in the lower portion thereof so as to be linearly movable. ing. Further, a flange 17F provided at the upper end of the linear motion shaft 17 is in contact with the bush 44T fitted and fixed to the lower end portion of the cylindrical portion 44C from above, and is prevented from falling into the cylindrical portion 44C. The linear motion shaft 17 moves up and down together with the rotor 49.

直動シャフト17は、フランジ17Fから第2弁口25の近傍位置まで均一外径をなし、第2弁口25の近傍位置でテーパー状に縮径され、そこからさらに先端まで均一外径をなしている。そして、その直動シャフト17のテーパー状に縮径した部分が本発明に係る第2弁体18になっている。また、直動シャフト17のうち第2弁体18より基端側のシャフト基端部19Aは、シャフト支持スリーブ16Fに直動可能に支持されている。また、シャフト基端部19Aの外径は、第2弁口25の内径より僅かに小さいが、図1には、シャフト基端部19Aと第2弁口25との間の隙間が強調して示されている。   The linear movement shaft 17 has a uniform outer diameter from the flange 17F to the vicinity of the second valve port 25, is tapered in the vicinity of the second valve port 25, and further has a uniform outer diameter from there to the tip. ing. And the part diameter-reduced to the taper shape of the linear motion shaft 17 is the 2nd valve body 18 which concerns on this invention. Further, the shaft base end portion 19A on the base end side of the second valve body 18 of the linear motion shaft 17 is supported by the shaft support sleeve 16F so as to be linearly movable. Further, the outer diameter of the shaft base end portion 19A is slightly smaller than the inner diameter of the second valve port 25, but FIG. 1 emphasizes the gap between the shaft base end portion 19A and the second valve port 25. It is shown.

直動シャフト17の先端は平坦面になっていて、第1弁体14の上面中央に対向している。これに対し、第1弁体14の上面中央からは中央突部14Dが突出し、その先端面は外縁部が上方に迫り上がり、外縁部以外の全体が平坦面になっている。そして、直動シャフト17が下方に前進すると、図1に示すように、直動シャフト17の先端面が中央突部14Dの先端の平坦部分に面当接して第1弁体14を下方に押し下げ、直動シャフト17が上方に後退すると、図3に示すように第1弁体14から離間する。   The front end of the linear motion shaft 17 is a flat surface and faces the center of the upper surface of the first valve body 14. On the other hand, the central protrusion 14D protrudes from the center of the upper surface of the first valve body 14, the outer edge of the tip end surface rises upward, and the entirety other than the outer edge is a flat surface. Then, when the linear motion shaft 17 advances downward, as shown in FIG. 1, the front end surface of the linear motion shaft 17 comes into surface contact with the flat portion at the front end of the central protrusion 14D to push down the first valve body 14 downward. When the linear motion shaft 17 is retracted upward, it is separated from the first valve body 14 as shown in FIG.

第1弁体14に直動シャフト17の先端面が当接しかつ第1弁体14によって第1弁口24が閉弁されている状態では、図2に示すように、第2弁体18におけるシャフト基端部19Aとの境界部分(以下、「第2弁体18の上端境界部」という)が第2弁口25内の上端に位置する。また、直動シャフト17が第1弁体14をその可動範囲の最も下端となる位置まで押し下げた状態では、図1に示すように、第2弁体18の上端境界部が、第2弁口25内の下端寄り位置に位置する。そして、図3に示すように、直動シャフト17が第1弁体14から離間すると、第2弁体18の上端境界部が、第2弁口25の上方にずれて第2弁体18のテーパー面18A(本発明の「第2テーパー面」に相当する)の途中部分に第2弁口25の上面側の開口縁のエッジ部が対向し、直動シャフト17が上方に移動するに従って第2弁口25と第2弁体18との隙間が徐々に大きくなる。   In a state in which the front end surface of the linear movement shaft 17 is in contact with the first valve body 14 and the first valve port 24 is closed by the first valve body 14, as shown in FIG. A boundary portion with the shaft base end portion 19 </ b> A (hereinafter referred to as “the upper end boundary portion of the second valve body 18”) is located at the upper end in the second valve port 25. Further, in a state where the linear motion shaft 17 pushes down the first valve body 14 to a position that is the lowest end of the movable range, as shown in FIG. 1, the upper end boundary portion of the second valve body 18 is the second valve port. 25 is located near the lower end. Then, as shown in FIG. 3, when the linear motion shaft 17 is separated from the first valve body 14, the upper end boundary portion of the second valve body 18 is displaced above the second valve port 25 and the second valve body 18 The edge portion of the opening edge on the upper surface side of the second valve port 25 faces the middle portion of the taper surface 18A (corresponding to the “second taper surface” of the present invention), and the linear movement shaft 17 moves upward as the linear motion shaft 17 moves upward. The gap between the two valve ports 25 and the second valve body 18 gradually increases.

即ち、直動シャフト17が第1弁体14に接触しているだけの状態では、第1弁口24と第2弁口25とが共に閉弁状態となり、そこから直動シャフト17が前進して第1弁体14を押し下げるに従い第1弁口24の開度が大きくなり、その間、第2弁口25は第2弁体18によって閉弁状態に維持される一方、直動シャフト17が第1弁体14に接触しているだけの状態から直動シャフト17が後退していくと第2弁口25の開度が大きくなっていき、その間、第1弁口24は第1弁体14によって閉弁状態に維持される。   That is, when the linear motion shaft 17 is only in contact with the first valve body 14, the first valve port 24 and the second valve port 25 are both closed, and the linear motion shaft 17 advances from there. As the first valve body 14 is pushed down, the opening degree of the first valve port 24 increases. During this time, the second valve port 25 is maintained in the closed state by the second valve body 18, while the linear motion shaft 17 is When the linear movement shaft 17 is retracted from the state where it is only in contact with the one valve body 14, the opening degree of the second valve port 25 increases, and during this time, the first valve port 24 is connected to the first valve body 14. Is maintained in a closed state.

本実施形態の電動弁10の構造に関する説明は以上である。次に、この電動弁10の作用効果について説明する。本実施形態の電動弁10は、流体回路の途中に取り付けられ、第2流路32が第1流路31及び第3流路33より上流側に配置される。そして、直動シャフト17の直動位置をステッピングモータ50にて制御することで第2流路32から第1流路31又は第3流路33に流れる流体の流量が制御される。   This completes the description of the structure of the motor-operated valve 10 of the present embodiment. Next, the function and effect of the motor-operated valve 10 will be described. The motor-operated valve 10 of the present embodiment is attached in the middle of the fluid circuit, and the second flow path 32 is disposed upstream of the first flow path 31 and the third flow path 33. The flow rate of the fluid flowing from the second flow path 32 to the first flow path 31 or the third flow path 33 is controlled by controlling the linear movement position of the linear movement shaft 17 by the stepping motor 50.

ここで、図4には、直動シャフト17を最も前進(図1において降下)させた位置を原点として、そこから徐々に直動シャフト17を後退させたときに、直動シャフト17の直動位置と第2流路32を通過する流量との関係が示されている。直動シャフト17を最も前進させたときには、第1弁口24の開度が最大になり、第1弁口24を通して第2流路32から第1流路31に流れる流量が最大になる。そこから直動シャフト17を後退させていくと第1弁口24の開度が徐々に小さくなり、それに伴って、第2流路32から第1流路31に流れる流量が減少していき、やがて第1弁口24の開度及び流量が共に0になる。そして、さらに直動シャフト17を後退させると、今度は第2弁口25の開度が徐々に大きくなって第2流路32から第3流路33に流れる流量が増加していく。本実施形態の電動弁10では、このように第1弁口24と第2弁口25との2つの異なる弁口で流量を制御することができる。また、図4に示すように、第1弁口24を通して流体が流れるときと、第2弁口25を通して流体が流れるときとでは、直動シャフト17の移動距離に対して第2流路32を流れる流量の変化量が異なるので、このことを利用した流量制御が可能になる。   Here, in FIG. 4, when the linear movement shaft 17 is gradually retracted from the position where the linear movement shaft 17 is moved forward most (lowered in FIG. 1) as the origin, the linear movement of the linear movement shaft 17 is performed. The relationship between the position and the flow rate passing through the second flow path 32 is shown. When the linear movement shaft 17 is moved forward most, the opening degree of the first valve port 24 becomes maximum, and the flow rate flowing from the second flow path 32 to the first flow path 31 through the first valve port 24 becomes maximum. When the linear movement shaft 17 is retracted from there, the opening degree of the first valve port 24 gradually decreases, and accordingly, the flow rate flowing from the second flow path 32 to the first flow path 31 decreases, Eventually, both the opening degree and flow rate of the first valve port 24 become zero. When the linear motion shaft 17 is further retracted, the opening degree of the second valve port 25 gradually increases and the flow rate flowing from the second flow path 32 to the third flow path 33 increases. In the electric valve 10 of the present embodiment, the flow rate can be controlled by two different valve ports, the first valve port 24 and the second valve port 25 in this way. In addition, as shown in FIG. 4, when the fluid flows through the first valve port 24 and when the fluid flows through the second valve port 25, the second flow path 32 is defined with respect to the movement distance of the linear movement shaft 17. Since the amount of change in the flowing flow rate is different, the flow rate control utilizing this is possible.

ところで、大流量が流れ得る第1弁口24が第1弁体14によって閉じられた状態から第1弁体14を開弁側に移動する際には、従来では、大きな駆動力が必要であったが、本実施形態の電動弁10では、小さな駆動力で第1弁体14を開弁側に移動することができる。即ち、本実施形態の電動弁10では、第1弁体14が支持凹部13Kに直動可能に支持され、その第1弁体14のうち第1弁口24の弁座24Zに当接するテーパー面14Bより内側に第1弁体貫通孔14Cが形成されている。そして、第1弁体貫通孔14Cを除き支持凹部13Kの内部が密閉されているので、第1弁体14が第1弁口24を閉弁した状態になると、第1弁体14が位置する第1部屋21とは第1弁口24を挟んで反対側の第2部屋22の内圧と支持凹部13Kの内圧とが同じになる。しかも、第1弁口24の内径と支持凹部13Kの内径とが略同一になっているので、第1弁口24が閉弁状態で第1弁体14が第2部屋22側から流体圧力によって押される力と支持凹部13K側から流体圧力によって押される力とが同じになって相殺される。また、第1部屋21内の流体圧力も、第1弁体14の縁部14Aに対して上下両方からかかる流体圧力が相殺し合う。これにより、第1弁体14が、直動方向で流体圧力によって受ける負荷は0になる。つまり、本実施形態の電動弁10では、第1弁口24の口径を大きくしても、閉弁状態で第1弁体14にかかる流体圧力による負荷を小さく抑えることができ、従来より電動弁の消費電力を抑えることが可能になる。   By the way, when the first valve body 24 that can flow a large flow rate is moved by the first valve body 14 from the closed state to the valve-opening side, a large driving force is conventionally required. However, in the electric valve 10 of the present embodiment, the first valve body 14 can be moved to the valve opening side with a small driving force. That is, in the motor-operated valve 10 of the present embodiment, the first valve body 14 is supported by the support recess 13K so as to be directly movable, and the tapered surface of the first valve body 14 that contacts the valve seat 24Z of the first valve port 24. A first valve body through hole 14C is formed inside 14B. Since the inside of the support recess 13K is sealed except for the first valve body through hole 14C, the first valve body 14 is located when the first valve body 14 is in a state of closing the first valve port 24. In the first chamber 21, the internal pressure of the second chamber 22 on the opposite side across the first valve port 24 and the internal pressure of the support recess 13K are the same. In addition, since the inner diameter of the first valve port 24 and the inner diameter of the support recess 13K are substantially the same, the first valve body 14 is closed from the second chamber 22 side by the fluid pressure while the first valve port 24 is closed. The force pushed and the force pushed by the fluid pressure from the support recess 13K side become the same and cancel each other. Further, the fluid pressure in the first chamber 21 cancels out from both the upper and lower sides with respect to the edge 14 </ b> A of the first valve body 14. Thereby, the load which the 1st valve body 14 receives with the fluid pressure in the linear motion direction becomes zero. That is, in the motor-operated valve 10 of the present embodiment, even if the diameter of the first valve port 24 is increased, the load due to the fluid pressure applied to the first valve body 14 in the valve-closed state can be suppressed to a small value. It becomes possible to suppress power consumption.

[第2実施形態]
本実施形態の電動弁10Vは、図5〜図7に示されている。以下、第1実施形態の電動弁10と異なる構成に関してのみ説明する。この電動弁10Vでは、前記第1実施形態の第2部屋22が、ベース部材11に設けられた部屋区画壁12Hによって第1部屋21側のメイン第2部屋22Aと、第3部屋23側のサブ第2部屋22Bとに区画されている。そして、第1実施形態の第2流路32が、メイン第2部屋22Aに連通しているメイン第2流路32Aと、サブ第2部屋22Bに連通しているサブ第2流路32Bとに分かれている。また、部屋区画壁12Hに貫通孔12Gが形成され、そこに直動シャフト17における第2弁体18より先端側の小径部分が貫通している。そして、部屋区画壁12H及び直動シャフト17によりメイン第2部屋22Aとサブ第2部屋22Bとの間で流体の移動が規制されている。さらに、ベース部材11には、第1流路31と第3部屋23との間を連絡する連絡流路53が設けられている。そして、この電動弁10Vでは、第1流路31がメイン第2流路32A及びサブ第2部屋22Bより上流側に接続される。
[Second Embodiment]
The motor-operated valve 10V of the present embodiment is shown in FIGS. Hereinafter, only a configuration different from the motor-operated valve 10 of the first embodiment will be described. In this motor operated valve 10V, the second chamber 22 of the first embodiment is divided into a main second chamber 22A on the first chamber 21 side and a sub chamber on the third chamber 23 side by a room partition wall 12H provided on the base member 11. It is partitioned into a second room 22B. The second flow path 32 of the first embodiment is divided into a main second flow path 32A communicating with the main second chamber 22A and a sub second flow path 32B communicating with the sub second chamber 22B. I know. Further, a through hole 12G is formed in the room partition wall 12H, and a small-diameter portion on the distal end side from the second valve body 18 in the linear motion shaft 17 passes therethrough. The movement of the fluid is regulated between the main second chamber 22A and the sub second chamber 22B by the room partition wall 12H and the linear motion shaft 17. Further, the base member 11 is provided with a communication channel 53 that communicates between the first channel 31 and the third chamber 23. In the motor operated valve 10V, the first flow path 31 is connected to the upstream side of the main second flow path 32A and the sub second chamber 22B.

この構成により、本実施形態の電動弁10Vでは、直動シャフト17が前進して第1弁体14が押圧され、第1弁口24が開くと、図5に示すように、第1流路31から第1部屋21、第1弁口24、メイン第2部屋22Aを経てメイン第2流路32Aへと流体が流れる。そして、図6に示すように、直動シャフト17が後退して第1弁体14が第1弁口24を閉弁し、その第1弁体14に直動シャフト17が接触した状態になると、流体が流れなくなり、そこから更に直動シャフト17が後退して第1弁体14から離間すると、図7に示すように、直動シャフト17の第2弁体18と第2弁口25との間が開き、第1流路31から連絡流路53、環状空間26、第3部屋23、第2弁口25、さらには、サブ第2部屋22Bを経てサブ第2流路32Bへと流体が流れる。この構成によっても第1実施形態の電動弁10と同様の作用効果を奏する。   With this configuration, in the motor-operated valve 10V of the present embodiment, when the linear motion shaft 17 moves forward and the first valve body 14 is pressed and the first valve port 24 is opened, as shown in FIG. The fluid flows from 31 to the main second flow path 32A through the first chamber 21, the first valve port 24, and the main second chamber 22A. Then, as shown in FIG. 6, when the linear motion shaft 17 moves backward and the first valve body 14 closes the first valve port 24, the linear motion shaft 17 comes into contact with the first valve body 14. When the fluid stops flowing and the linear movement shaft 17 further moves backward from the first valve body 14, the second valve body 18 and the second valve port 25 of the linear movement shaft 17, as shown in FIG. Between the first flow path 31, the communication flow path 53, the annular space 26, the third chamber 23, the second valve port 25, and the sub second chamber 22 </ b> B to the sub second flow path 32 </ b> B. Flows. Even with this configuration, the same function and effect as the motor-operated valve 10 of the first embodiment can be obtained.

[第3実施形態]
本実施形態の電動弁10Wは、図8に示されており、前記第1実施形態の電動弁10のステッピングモータ50に代えて、ソレノイド60を備えた構造になっている。ソレノイド60は、筒形ケース55の上端部にその筒形ケース55と同じ外径の円柱状のヨーク57を連結した芯部材60Aを備えて、その芯部材60Aの筒形ケース55が前記第1実施形態の筒形ケース41の代わりに駆動源ベース16に固定されている。そして、その芯部材60Aの外側にコイル56が嵌合されると共に、筒形ケース55内にプランジャ58が直動可能に収容され、さらにそのプランジャ58とヨーク57との間に圧縮コイルバネ59が備えられている。そして、プランジャ58に前記した第1実施形態の直動シャフト17が固定され、コイル56を励磁するとプランジャ58がヨーク57側に移動して直動シャフト17が後退し、コイル56を消磁すると圧縮コイルバネ59の弾発力によってプランジャ58が下方に移動して直動シャフト17が前進する。この構成によっても第1実施形態の電動弁10と同様の作用効果を奏する。
[Third Embodiment]
The electric valve 10W of this embodiment is shown in FIG. 8, and has a structure provided with a solenoid 60 instead of the stepping motor 50 of the electric valve 10 of the first embodiment. The solenoid 60 includes a core member 60A in which a cylindrical yoke 57 having the same outer diameter as that of the cylindrical case 55 is connected to an upper end portion of the cylindrical case 55. The cylindrical case 55 of the core member 60A is the first case. Instead of the cylindrical case 41 of the embodiment, it is fixed to the drive source base 16. A coil 56 is fitted to the outside of the core member 60 </ b> A, a plunger 58 is accommodated in the cylindrical case 55 so as to be linearly movable, and a compression coil spring 59 is provided between the plunger 58 and the yoke 57. It has been. The linear motion shaft 17 of the first embodiment described above is fixed to the plunger 58, and when the coil 56 is excited, the plunger 58 moves to the yoke 57 side, the linear motion shaft 17 moves backward, and when the coil 56 is demagnetized, a compression coil spring is obtained. The plunger 58 moves downward by the elastic force of 59 and the linear movement shaft 17 moves forward. Even with this configuration, the same function and effect as the motor-operated valve 10 of the first embodiment can be obtained.

[第4実施形態]
本実施形態の電動弁10Xは、図9に示されており、前記第2実施形態の電動弁10Vのステッピングモータ50に代えて、前記第3実施形態のソレノイド60を備えた構造になっている。この構成によっても第2実施形態の電動弁10Vと同様の作用効果を奏する。
[Fourth Embodiment]
An electric valve 10X of the present embodiment is shown in FIG. 9 and has a structure including the solenoid 60 of the third embodiment instead of the stepping motor 50 of the electric valve 10V of the second embodiment. . This configuration also achieves the same operational effects as the motor operated valve 10V of the second embodiment.

[第5実施形態]
本実施形態の電動弁10Yは、図10に示されており、前記第1実施形態の電動弁10から第3部屋23、第2弁口25、第3流路33を排除した構造になっている。このような構造でも、従来の電動弁に比べて消費電力を抑えることが可能になる。また、第1流路31と第2流路32の何れを上流側に配置しても使用することができる。なお、第1弁体14が収容されている第1部屋21側を上流側に配置する方が好ましい。
[Fifth Embodiment]
The electric valve 10Y of this embodiment is shown in FIG. 10, and has a structure in which the third chamber 23, the second valve port 25, and the third flow path 33 are excluded from the electric valve 10 of the first embodiment. Yes. Even with such a structure, it is possible to reduce power consumption as compared with a conventional electric valve. Moreover, it can be used even if it arrange | positions any of the 1st flow path 31 and the 2nd flow path 32 in an upstream. In addition, it is more preferable to arrange | position the 1st chamber 21 side in which the 1st valve body 14 is accommodated in an upstream.

[第6実施形態]
本実施形態の電動弁10Zは、図11に示されている。この電動弁10Zでは、駆動源ベース16の下端部を、前記第1実施形態の下端詰栓13と同様の筒形構造にして、駆動源ベース16の下端部に本発明に係る支持凹部13Kを形成し、そこに前記第1実施形態と同様に第1弁体14Xが直動可能に収容されている。そして、第1弁体14Xの中心部に形成された貫通孔14Yに直動シャフト17Zの下端部が通されて下端フランジ17Xにて抜け止めされている。このような構造でも、第5実施形態と同様に、従来の電動弁に比べて消費電力を抑えることが可能になる。
[Sixth Embodiment]
The motor operated valve 10Z of the present embodiment is shown in FIG. In this electric valve 10Z, the lower end portion of the drive source base 16 has a cylindrical structure similar to the lower end plug 13 of the first embodiment, and the support recess 13K according to the present invention is provided at the lower end portion of the drive source base 16. In the same manner as in the first embodiment, the first valve body 14X is accommodated therein so as to be capable of linear movement. Then, the lower end portion of the linear movement shaft 17Z is passed through the through hole 14Y formed in the central portion of the first valve body 14X and is prevented from coming off by the lower end flange 17X. Even with such a structure, as in the fifth embodiment, it is possible to reduce power consumption compared to a conventional motor-operated valve.

[第7実施形態]
本実施形態の電動弁100Vは、図12に示されている。この電動弁100Vの直動シャフト17Vは、シャフト支持スリーブ16Fに支持された部分より先端側から第2弁口25の近傍付近までがシャフト基端部19Aより外径の小さいシャフト中間部19Bになっている。そして、第2弁口25の近傍付近でテーパー状に拡径した第2弁体18Vをなし、そこからさらに先端までが均一外径をなしている。なお、本実施形態では、第1弁体14の中央突部14D全体が平坦面になっている。
[Seventh Embodiment]
The motor operated valve 100V of this embodiment is shown in FIG. The linear motion shaft 17V of the electric valve 100V is a shaft intermediate portion 19B having a smaller outer diameter than the shaft base end portion 19A from the tip side to the vicinity of the second valve port 25 from the portion supported by the shaft support sleeve 16F. ing. And the 2nd valve body 18V expanded in the taper shape in the vicinity of the 2nd valve port 25 is comprised, and it has comprised the uniform outer diameter from there to the front-end | tip further. In the present embodiment, the entire central protrusion 14D of the first valve body 14 is a flat surface.

第1弁体14に直動シャフト17Vの先端面が当接しかつ第1弁体14によって第1弁口24が閉弁されている状態では、図12に示すように、第2弁体18Vにおけるシャフト中間部19Bとの境界部分(以下、「第2弁体18Vの上端境界部」という)が第2弁口25内の下端に位置する。そして、直動シャフト17Vが第1弁体14から離間すると、第2弁体18Vの上端境界部が第2弁口25内にずれて、第2弁体18Vのテーパー面の途中に第2弁口25の下面側の開口縁のエッジが対向し、直動シャフト17Vが上方に移動するに従って第2弁口25と第2弁体18Vとの隙間が徐々に小さくなる。   In a state in which the front end surface of the linear movement shaft 17V is in contact with the first valve body 14 and the first valve port 24 is closed by the first valve body 14, as shown in FIG. A boundary portion with the shaft intermediate portion 19 </ b> B (hereinafter referred to as “upper boundary portion of the second valve body 18 </ b> V”) is located at the lower end in the second valve port 25. When the linear motion shaft 17V is separated from the first valve body 14, the upper end boundary portion of the second valve body 18V is shifted into the second valve port 25, and the second valve is placed in the middle of the tapered surface of the second valve body 18V. The gap between the second valve port 25 and the second valve body 18V gradually decreases as the edge of the opening edge on the lower surface side of the port 25 faces and the linear motion shaft 17V moves upward.

ここで、図4と同様に、本実施形態における直動シャフト17Vの位置と第2流路32を通過する流量との関係を図13に示す。本実施形態の電動弁100Vでは、直動シャフト17Vを最も前進させたときから直動シャフト17Vを後退させて第2弁体18Vの上端境界部が第2弁体25内の下端に位置するときまでの間は、第2弁口25の開度及び流量が一定に保たれた状態で、第1弁口24の開度が徐々に小さくなって第2流路32から第1流路31に流れる流量が減少していく。そして、さらに直動シャフト17Vを後退させると、第2弁口25の開度が徐々に小さくなって第2流路32から第3流路33に流れる流量が減少していく。このように、本実施形態の電動弁100Vにおいても、直動シャフト17Vの移動距離に対して第2流路32を流れる流量を変化させることができ、このことを利用した流量制御が可能になる。   Here, similarly to FIG. 4, the relationship between the position of the linear motion shaft 17 </ b> V and the flow rate passing through the second flow path 32 in this embodiment is shown in FIG. 13. In the motor-operated valve 100V according to the present embodiment, when the linear motion shaft 17V is moved forward most, the linear motion shaft 17V is retracted and the upper boundary portion of the second valve body 18V is positioned at the lower end in the second valve body 25. Until the opening of the second valve port 25 and the flow rate are kept constant, the opening of the first valve port 24 gradually decreases from the second flow path 32 to the first flow path 31. The flowing flow rate decreases. When the linear motion shaft 17V is further retracted, the opening degree of the second valve port 25 gradually decreases, and the flow rate flowing from the second flow path 32 to the third flow path 33 decreases. Thus, also in the motor-operated valve 100V of this embodiment, the flow volume which flows through the 2nd flow path 32 with respect to the moving distance of the linear_motion | direct_drive shaft 17V can be changed, and flow control using this can be performed. .

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)前記第1〜第7の実施形態では、第1弁口24の内径と支持凹部13Kの内径とが略同一であったが、それらが異なっていてもよい。 (1) In the first to seventh embodiments, the inner diameter of the first valve port 24 and the inner diameter of the support recess 13K are substantially the same, but they may be different.

(2)前記第1実施形態の第1流路31と第3流路33とを1つに纏めた構造にしてもよいし、それと同様に、第2実施形態のメイン第2部屋22Aとサブ第2部屋22B、及び、メイン第2流路32Aとサブ第2流路32Bを1つに纏めた構造にしてもよい。 (2) The first flow path 31 and the third flow path 33 of the first embodiment may be combined into one, and similarly, the main second room 22A of the second embodiment and the sub The second chamber 22B and the main second flow path 32A and the sub second flow path 32B may be combined into one.

10〜10Z,100V 電動弁
11 ベース部材
12H 部屋区画壁
13E シール部材
13K 支持凹部
14,14X 第1弁体
14B テーパー面(環状当接部,第1テーパー面)
14C 第1弁体貫通孔
15 圧縮コイルバネ(弾性部材)
17,17V,17Z 直動シャフト
18,18V 第2弁体
18A テーパー面(第2テーパー面)
19A シャフト基端部
19B シャフト中間部
21 第1部屋
22 第2部屋
22A メイン第2部屋
22B サブ第2部屋
23 第3部屋
24 第1弁口
24Z 弁座
25 第2弁口
31 第1流路
32 第2流路
32A メイン第2流路
32B サブ第2流路
33 第3流路
50 ステッピングモータ(駆動源)
53 連絡流路
60 ソレノイド(駆動源)
10 to 10Z, 100V Motorized valve 11 Base member 12H Room partition wall 13E Seal member 13K Support concave portion 14, 14X First valve body 14B Tapered surface (annular contact portion, first tapered surface)
14C 1st valve body through-hole 15 Compression coil spring (elastic member)
17, 17V, 17Z Linear shaft 18, 18V Second valve element 18A Tapered surface (second tapered surface)
19A Shaft base end portion 19B Shaft intermediate portion 21 First chamber 22 Second chamber 22A Main second chamber 22B Sub second chamber 23 Third chamber 24 First valve port 24Z Valve seat 25 Second valve port 31 First flow path 32 Second channel 32A Main second channel 32B Sub second channel 33 Third channel 50 Stepping motor (drive source)
53 Communication channel 60 Solenoid (drive source)

Claims (6)

第1弁口(24)を挟んで対向する第1部屋(21)と第2部屋(22)とを有するベース部材(11)と、
前記第1部屋(21)のうち前記第1弁口(24)との対向面に形成された支持凹部(13K)と、
前記支持凹部(13K)に直動可能に嵌合した第1弁体(14)と、
前記第1弁体(14)に設けられ、前記第1弁口(24)の開口縁の弁座(24Z)に接離する環状当接部(14B)と、
前記第1弁体(14)のうち前記環状当接部(14B)の内側部分を貫通して前記支持凹部(13K)の内外を連通する第1弁体貫通孔(14C)と、
前記第1弁体貫通孔(14C)を除き、前記支持凹部(13K)の内部を密閉するシール部材(13E)と、
前記環状当接部(14B)が前記弁座(24Z)に接離するように前記第1弁体(14)を駆動する駆動手段(15,50,60)と、
前記第1部屋(21)に連通した第1流路(31)と、
前記第2部屋(22)に連通し、前記環状当接部(14B)が前記弁座(24Z)に当接した閉弁状態で前記第1流路(31)から遮断される第2流路(32)とを有する電動弁(10,10V,10W,10X、10Y,10Z,100V)。
A base member (11) having a first chamber (21) and a second chamber (22) facing each other across the first valve port (24);
A support recess (13K) formed on a surface of the first chamber (21) facing the first valve port (24);
A first valve body (14) fitted in the support recess (13K) so as to be linearly movable;
An annular contact portion (14B) provided on the first valve body (14) and contacting and separating from a valve seat (24Z) at an opening edge of the first valve port (24);
A first valve body through hole (14C) that penetrates an inner portion of the annular contact portion (14B) in the first valve body (14) and communicates the inside and outside of the support recess (13K);
A seal member (13E) for sealing the inside of the support recess (13K) except for the first valve body through hole (14C);
Drive means (15, 50, 60) for driving the first valve body (14) so that the annular contact portion (14B) contacts and separates from the valve seat (24Z);
A first flow path (31) communicating with the first chamber (21);
A second flow path communicating with the second chamber (22) and shut off from the first flow path (31) in a closed state in which the annular contact portion (14B) is in contact with the valve seat (24Z). (32) and a motor-operated valve (10, 10V, 10W, 10X, 10Y, 10Z, 100V).
前記第1弁口(24)の内径と前記支持凹部(13K)の内径とが略同一である請求項1に記載の電動弁(10,10V,10W,10X,10Y,10Z,100V)。   The motor-operated valve (10, 10V, 10W, 10X, 10Y, 10Z, 100V) according to claim 1, wherein an inner diameter of the first valve port (24) is substantially the same as an inner diameter of the support recess (13K). 前記ベース部材(11)のうち前記第2部屋(22)を挟んで前記第1部屋(21)と反対側に形成された第3部屋(23)と、
前記第2部屋(22)と前記第3部屋(23)との間に形成された第2弁口(25)と、
前記第3部屋(23)側から前記第2弁口(25)、前記第1弁口(24)を貫通し、前進して前記第1弁体(14)を開弁側に押圧する一方、後退して前記第1弁体(14)から離間する直動シャフト(17)と、
前記直動シャフト(17)を前進及び後退させる駆動源(50,60)と、
前記第1弁体(14)を閉弁側に付勢する弾性部材(15)と、
前記直動シャフト(17)の軸方向の中間部を縮径してなる第2弁体(18)と、
前記第3部屋(23)に連通した第3流路(33)と、を備え、
前記駆動源(50,60)と前記弾性部材(15)とから前記駆動手段(15,50,60)が構成され、
前記第2流路(32)が前記第1流路(31)及び第3流路(33)より上流に配置され、
前記直動シャフト(17)が前記第1弁体(14)に接触している間は、前記直動シャフト(17)と前記第2弁口(25)との間の隙間が一定に維持されると共に、前記直動シャフト(17)が前記第1弁体(14)から離間していくときに前記直動シャフト(17)と前記第2弁口(25)との隙間が拡がるように前記第2弁体(18)が配置されている請求項1又は2に記載の電動弁(10,10W)。
A third chamber (23) formed on the opposite side of the first chamber (21) across the second chamber (22) of the base member (11);
A second valve port (25) formed between the second chamber (22) and the third chamber (23);
While passing through the second valve port (25) and the first valve port (24) from the side of the third chamber (23) and moving forward to press the first valve body (14) to the valve opening side, A linear motion shaft (17) that moves backward and separates from the first valve body (14);
A drive source (50, 60) for moving the linear shaft (17) forward and backward;
An elastic member (15) for urging the first valve body (14) toward the valve closing side;
A second valve body (18) formed by reducing the diameter of an intermediate portion in the axial direction of the linear motion shaft (17);
A third flow path (33) communicating with the third chamber (23),
The drive means (15, 50, 60) includes the drive source (50, 60) and the elastic member (15).
The second flow path (32) is disposed upstream of the first flow path (31) and the third flow path (33);
While the linear motion shaft (17) is in contact with the first valve body (14), the gap between the linear motion shaft (17) and the second valve port (25) is maintained constant. And the clearance between the linear motion shaft (17) and the second valve port (25) increases when the linear motion shaft (17) moves away from the first valve body (14). The motor-operated valve (10, 10W) according to claim 1 or 2, wherein the second valve body (18) is arranged.
前記ベース部材(11)のうち前記第2部屋(22)を挟んで前記第1部屋(21)と反対側に形成された第3部屋(23)と、
前記第2部屋(22)と前記第3部屋(23)との間に形成された第2弁口(25)と、
前記第3部屋(23)側から前記第2弁口(25)、前記第1弁口(24)を貫通し、前進して前記第1弁体(14)を開弁側に押圧する一方、後退して前記第1弁体(14)から離間する直動シャフト(17)と、
前記直動シャフト(17)を前進及び後退させる駆動源(50,60)と、
前記第1弁体(14)を閉弁側に付勢する弾性部材(15)と、
前記直動シャフト(17)の軸方向の中間部を縮径してなる第2弁体(18)と、
前記第1流路(31)と前記第3部屋(23)とを常時連絡した連絡流路(53)と、を備え、
前記駆動源(50,60)と前記弾性部材(15)とから前記駆動手段(15,50,60)が構成され、
前記第1流路(31)が前記第2流路(32)より上流に配置され、
前記直動シャフト(17)が前記第1弁体(14)に接触している間は、前記直動シャフト(17)と前記第2弁口(25)との間の隙間が一定に維持されると共に、前記直動シャフト(17)が前記第1弁体(14)から離間していくときに前記直動シャフト(17)と前記第2弁口(25)との隙間が拡がるように前記第2弁体(18)が配置されている請求項1又は2に記載の電動弁(10V,10X)。
A third chamber (23) formed on the opposite side of the first chamber (21) across the second chamber (22) of the base member (11);
A second valve port (25) formed between the second chamber (22) and the third chamber (23);
While passing through the second valve port (25) and the first valve port (24) from the side of the third chamber (23) and moving forward to press the first valve body (14) to the valve opening side, A linear motion shaft (17) that moves backward and separates from the first valve body (14);
A drive source (50, 60) for moving the linear shaft (17) forward and backward;
An elastic member (15) for urging the first valve body (14) toward the valve closing side;
A second valve body (18) formed by reducing the diameter of an intermediate portion in the axial direction of the linear motion shaft (17);
A communication channel (53) that constantly communicates the first channel (31) and the third chamber (23),
The drive means (15, 50, 60) includes the drive source (50, 60) and the elastic member (15).
The first channel (31) is disposed upstream of the second channel (32);
While the linear motion shaft (17) is in contact with the first valve body (14), the gap between the linear motion shaft (17) and the second valve port (25) is maintained constant. And the clearance between the linear motion shaft (17) and the second valve port (25) increases when the linear motion shaft (17) moves away from the first valve body (14). The motor-operated valve (10V, 10X) of Claim 1 or 2 with which the 2nd valve body (18) is arrange | positioned.
前記第2部屋(22)を、前記第1部屋(21)側のメイン第2部屋(22A)と、前記第3部屋(23)側のサブ第2部屋(22B)とに区画して、それらメイン第2部屋(22A)とサブ第2部屋(22B)との間の流体の移動を規制する部屋区画壁(12H)を備え、
前記第2流路(32)は、前記メイン第2部屋(22A)に連通しているメイン第2流路(32A)と、前記サブ第2部屋(22B)に連通しているサブ第2流路(32B)とからなる請求項4に記載の電動弁(10V,10X)。
The second room (22) is divided into a main second room (22A) on the first room (21) side and a sub second room (22B) on the third room (23) side. A room partition wall (12H) that regulates fluid movement between the main second room (22A) and the sub second room (22B);
The second flow path (32) includes a main second flow path (32A) communicating with the main second chamber (22A) and a sub second flow communicating with the sub second chamber (22B). The motor-operated valve (10V, 10X) according to claim 4, comprising a passage (32B).
前記第1弁体(14)には、前記第2弁体(18)側に向かってテーパー状に縮径した前記環状当接部としての第1テーパー面(14B)が形成され、
前記第2弁体(18)には、前記第1弁体(14)側に向かってテーパー状に縮径し、前記直動シャフト(17)が前記第1弁体(14)から離間していくときに前記第2弁口(25)から徐々に離間していく第2テーパー面(18A)が形成され、
前記直動シャフト(17)を位置制御可能な前記駆動源(50)としてのモータ(50)を備えた請求項3乃至5の何れか1の請求項に記載の電動弁(10,10V)。
The first valve body (14) is formed with a first taper surface (14B) as the annular abutting portion that is tapered toward the second valve body (18).
The second valve body (18) has a tapered diameter toward the first valve body (14), and the linear motion shaft (17) is separated from the first valve body (14). A second tapered surface (18A) that gradually separates from the second valve port (25) when formed,
The motor-operated valve (10, 10V) according to any one of claims 3 to 5, further comprising a motor (50) as the drive source (50) capable of controlling the position of the linear motion shaft (17).
JP2014257016A 2014-12-19 2014-12-19 Motorized valve Active JP6293047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014257016A JP6293047B2 (en) 2014-12-19 2014-12-19 Motorized valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014257016A JP6293047B2 (en) 2014-12-19 2014-12-19 Motorized valve

Publications (2)

Publication Number Publication Date
JP2016118223A true JP2016118223A (en) 2016-06-30
JP6293047B2 JP6293047B2 (en) 2018-03-14

Family

ID=56243986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014257016A Active JP6293047B2 (en) 2014-12-19 2014-12-19 Motorized valve

Country Status (1)

Country Link
JP (1) JP6293047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200266A1 (en) * 2019-04-02 2020-10-08 浙江三花制冷集团有限公司 Electric valve
US11835145B2 (en) 2019-04-02 2023-12-05 Zhejiang Sanhua Commercial Refrigeration Controls Co., Ltd. Electric valve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107508U (en) * 1975-02-25 1976-08-27
JPS60188281U (en) * 1984-05-24 1985-12-13 太平洋工業株式会社 three way solenoid valve
JPH01269769A (en) * 1988-04-19 1989-10-27 Mitsubishi Electric Corp Solenoid valve
JPH0272279A (en) * 1988-09-02 1990-03-12 Mitsubishi Electric Corp Solenoid valve
JPH0319175U (en) * 1989-03-28 1991-02-25
JP2002295709A (en) * 2001-03-29 2002-10-09 Isuzu Motors Ltd Flow rate control valve
WO2014126642A1 (en) * 2013-02-14 2014-08-21 Parker-Hannifin Corporation Modulating balance ported three way valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51107508U (en) * 1975-02-25 1976-08-27
JPS60188281U (en) * 1984-05-24 1985-12-13 太平洋工業株式会社 three way solenoid valve
JPH01269769A (en) * 1988-04-19 1989-10-27 Mitsubishi Electric Corp Solenoid valve
JPH0272279A (en) * 1988-09-02 1990-03-12 Mitsubishi Electric Corp Solenoid valve
JPH0319175U (en) * 1989-03-28 1991-02-25
JP2002295709A (en) * 2001-03-29 2002-10-09 Isuzu Motors Ltd Flow rate control valve
WO2014126642A1 (en) * 2013-02-14 2014-08-21 Parker-Hannifin Corporation Modulating balance ported three way valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020200266A1 (en) * 2019-04-02 2020-10-08 浙江三花制冷集团有限公司 Electric valve
US11835145B2 (en) 2019-04-02 2023-12-05 Zhejiang Sanhua Commercial Refrigeration Controls Co., Ltd. Electric valve

Also Published As

Publication number Publication date
JP6293047B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
CN108953620B (en) Motor-driven valve
US9435456B2 (en) Valve
CN102782379B (en) Solenoid valve
CN105276205B (en) Motor-driven valve
CN105008758A (en) Damping valve
JP2018013140A (en) Motor-operated valve
JP6293047B2 (en) Motorized valve
JP2020041596A (en) Motor-operated valve
WO2015125404A1 (en) Valve device
CN105008757A (en) Damping valve
CN105135029A (en) Two-stage pilot solenoid valve
JP2024510724A (en) electric valve
JP5473695B2 (en) Motor safety valve
CN203757110U (en) Self-operated internal pressure tapping type adjusting valve
JP6793945B2 (en) Electrical drive valve
US9856992B2 (en) Solenoid valve
KR101660800B1 (en) Globe valve using electromagnetic force of the disc portion
JP6606338B2 (en) Valve device
CN109469768B (en) Refrigerating system and electronic expansion valve thereof
JP2016118222A (en) Electric valve
JP2005221115A (en) Expansion valve
JP5292231B2 (en) Control valve
CN102301169B (en) A servo valve
CN112997028A (en) Flow path switching valve
KR102406952B1 (en) Flow control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180213

R150 Certificate of patent or registration of utility model

Ref document number: 6293047

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250