JP2016116947A - Pulse wave signal processing device and pulse wave measurement device - Google Patents

Pulse wave signal processing device and pulse wave measurement device Download PDF

Info

Publication number
JP2016116947A
JP2016116947A JP2016063246A JP2016063246A JP2016116947A JP 2016116947 A JP2016116947 A JP 2016116947A JP 2016063246 A JP2016063246 A JP 2016063246A JP 2016063246 A JP2016063246 A JP 2016063246A JP 2016116947 A JP2016116947 A JP 2016116947A
Authority
JP
Japan
Prior art keywords
light
light receiving
signal
component
pulse wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016063246A
Other languages
Japanese (ja)
Inventor
貴記 岩脇
Takanori Iwawaki
貴記 岩脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2016063246A priority Critical patent/JP2016116947A/en
Publication of JP2016116947A publication Critical patent/JP2016116947A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique that enables stable extraction of an AC component regardless of a measurement part.SOLUTION: A pulse wave signal processing device has a first light reception unit that receives a reflected light of light emitted from a light emission part that emits light toward the measurement part, where pulse waves are measured, and outputs a first signal according to an amount of the received light, and a second light reception unit that receives the reflected light of the light emitted from the light emission part and outputs a second signal according to the amount of the received light. Each of the first light reception unit and the second light reception unit is provided at a position where a ratio between the AC component and a DC component contained in the second signal is smaller than the ratio between these components contained in the first signal. A light reception amount of each of the first light reception unit and the second light reception unit is adjusted so as to satisfy a condition for the DC component of the second signal to have magnitude equal to or smaller than magnitude of the DC component of the first signal. An amplification unit amplifies a differential signal (l3) between a first signal (l1) outputted from the first light reception part and a second signal (l2) outputted from the second light reception part, and outputs the AC component.SELECTED DRAWING: Figure 2

Description

本発明は、脈波信号処理装置及び脈波計測装置に関する。   The present invention relates to a pulse wave signal processing device and a pulse wave measuring device.

生体、特に人体における脈波の検出方法として、光電変換による脈波測定方法が用いられてきた。この方法は、発光ダイオードなどの発光素子から血液に吸収されやすい波長の光を発光し、生体を透過若しくは生体内に進入後、生体内の組織による散乱によって外部へ出射した後方散乱光をフォトダイオードやフォトトランジスタなどの受光素子によって受光し、電気信号に変換することにより脈波を検出する。下記特許文献1には、生体の動脈血の酸素飽和度の測定に際し、生体の末梢血管の密度が比較的高い額や指などの体表面に光センサーを装着し、酸素飽和度の測定精度を向上させるように光源と光センサーとの距離を設定する技術が開示されている。具体的には、下記特許文献1は、光源と光センサーとの距離によって、光センサーから出力される信号の交流成分(AC成分)と直流成分(DC成分)の比(以下、AC/DC比という)が異なるという特性を利用し、AC/DC比が最も高くなる位置に光センサーを配置し、脈波を表していない直流成分をできるだけ少なくしている。   As a method for detecting a pulse wave in a living body, particularly a human body, a pulse wave measuring method using photoelectric conversion has been used. This method emits light of a wavelength that is easily absorbed by blood from a light emitting element such as a light emitting diode, and after passing through the living body or entering the living body, the back scattered light emitted to the outside by scattering by tissue in the living body is a photodiode. A pulse wave is detected by receiving light by a light receiving element such as a phototransistor and converting it into an electric signal. In Patent Document 1 below, when measuring the oxygen saturation level of arterial blood in a living body, an optical sensor is attached to the body surface such as the forehead and fingers where the density of peripheral blood vessels in the living body is relatively high, thereby improving the accuracy of measuring oxygen saturation level. A technique for setting the distance between the light source and the optical sensor is disclosed. Specifically, the following Patent Document 1 discloses a ratio of an AC component (AC component) and a DC component (DC component) of a signal output from the optical sensor (hereinafter referred to as an AC / DC ratio) depending on the distance between the light source and the optical sensor. Is utilized, and a photosensor is disposed at a position where the AC / DC ratio is the highest, so that the direct current component not representing the pulse wave is reduced as much as possible.

特開平10−216115号公報JP-A-10-216115

ところで、AC/DC比は、光源と光センサーとの距離に応じて変化するだけでなく、図11に示すように光センサーを装着する生体の部位によっても異なる。この図に示すように、生体の抹消血管の密度が比較的高い指はAC/DC比が大きく、後方散乱光に含まれる脈波を表す交流成分の割合が高い。一方、生体の抹消血管の密度が比較的低い手首や上腕では指と比べてAC/DC比が小さく、後方散乱光に含まれる交流成分の割合が少ない。光センサーから出力された信号は後段の増幅回路において増幅されて交流成分だけが抽出されるが、AC/DC比が小さい場合には直流成分によって増幅回路が飽和状態となり交流成分が抽出できない場合がある。また、AC/DC比が小さい手首などの測定部位で脈波を測定する場合、より多くの交流成分を得るために受光素子の受光面積を大きくしたり光源のパワーを増加させると出力信号全体が大きくなるため、上記と同様に増幅回路が飽和状態となり交流成分を抽出することができない。
本発明は、測定部位に関わらず交流成分を安定して抽出することができる技術を提供する。
By the way, the AC / DC ratio not only changes according to the distance between the light source and the optical sensor, but also varies depending on the part of the living body to which the optical sensor is attached as shown in FIG. As shown in this figure, a finger having a relatively high density of peripheral blood vessels in the living body has a large AC / DC ratio and a high ratio of AC components representing pulse waves contained in the backscattered light. On the other hand, the wrist and upper arm, which have a relatively low density of peripheral blood vessels in the living body, have a smaller AC / DC ratio than fingers, and the ratio of AC components contained in the backscattered light is small. The signal output from the optical sensor is amplified in the subsequent amplification circuit and only the AC component is extracted. However, when the AC / DC ratio is small, the amplification circuit may be saturated due to the DC component and the AC component may not be extracted. is there. Also, when measuring a pulse wave at a measurement site such as a wrist with a small AC / DC ratio, if the light receiving area of the light receiving element is increased or the power of the light source is increased in order to obtain more AC components, the entire output signal is Since it becomes large, the amplifier circuit becomes saturated as described above, and the AC component cannot be extracted.
The present invention provides a technique capable of stably extracting an AC component regardless of a measurement site.

本発明に係る脈波信号処理装置は、脈波を測定する測定部位に光を発する発光部と、前記発光部から発した光の反射光を受光して受光量に応じた第1信号を出力する第1受光部と、前記発光部から発した光の反射光を受光して受光量に応じた第2信号を出力する第2受光部と、前記第1受光部から出力される前記第1信号と前記第2受光部から出力される前記第2信号との差分信号を増幅して交流成分を出力する増幅部とを備え、前記第1受光部と前記第2受光部は、前記第2信号の直流成分に対する交流成分の比率が前記第1信号の前記比率よりも小さくなる位置に設けられ、前記第2信号の直流成分が前記第1信号の直流成分の大きさ以下となる条件を満たすように受光量が調整されていることを特徴とする。この構成によれば、測定部位に関わらず交流成分を安定して抽出する技術が提供される。   A pulse wave signal processing apparatus according to the present invention emits light to a measurement site for measuring pulse waves, and receives a reflected light of light emitted from the light emitting unit and outputs a first signal corresponding to the amount of received light A first light receiving section that receives the reflected light of the light emitted from the light emitting section and outputs a second signal corresponding to the amount of light received, and the first light output from the first light receiving section. An amplifying unit that amplifies a differential signal between the signal and the second signal output from the second light receiving unit and outputs an alternating current component, and the first light receiving unit and the second light receiving unit include the second light receiving unit and the second light receiving unit. Provided at a position where the ratio of the AC component to the DC component of the signal is smaller than the ratio of the first signal, and satisfies the condition that the DC component of the second signal is less than or equal to the magnitude of the DC component of the first signal. As described above, the amount of received light is adjusted. According to this structure, the technique which extracts an alternating current component stably irrespective of a measurement site | part is provided.

また、本発明に係る脈波信号処理装置は、上記脈波信号処理装置において、前記第1受光部と前記第2受光部は、前記条件を満たすように各々異なる受光面積の受光面を有することを特徴とする。この構成によれば、他の部材を用いて受光量を調整する場合と比べて簡易に受光量を調整することができる。   In the pulse wave signal processing device according to the present invention, in the pulse wave signal processing device, the first light receiving unit and the second light receiving unit have light receiving surfaces having different light receiving areas so as to satisfy the condition. It is characterized by. According to this configuration, it is possible to easily adjust the amount of received light as compared to the case of adjusting the amount of received light using another member.

また、本発明に係る脈波信号処理装置は、上記脈波信号処理装置において、前記第1受光部又は前記第2受光部は、前記条件を満たすように前記反射光の透過を抑制するフィルターが受光面に設けられていることを特徴とする。この構成によれば、受光面積によって受光量を調整する場合と比べて装置内の空間に規制されずに受光量を調整することができる。   The pulse wave signal processing device according to the present invention is the above pulse wave signal processing device, wherein the first light receiving unit or the second light receiving unit includes a filter that suppresses transmission of the reflected light so as to satisfy the condition. It is provided on the light receiving surface. According to this configuration, the received light amount can be adjusted without being restricted by the space in the apparatus as compared with the case where the received light amount is adjusted by the light receiving area.

また、本発明に係る脈波信号処理装置は、脈波を測定する測定部位に各々異なる波長の光を発する複数の発光部と、前記複数の発光部に対応して設けられ、当該発光部から発した光の反射光を受光して受光量に応じた第1信号を出力する第1受光部と、当該発光部から発した光の反射光を受光して受光量に応じた第2信号を出力する第2受光部とを有する複数の受光部と、前記複数の受光部の前記第1受光部と前記第2受光部から出力される前記第1信号と前記第2信号の各差分信号を増幅して交流成分を出力する増幅部とを備え、前記発光部の各々に対応する前記受光部の前記第1受光部及び前記第2受光部は、当該発光部が発する光の波長ごとに、前記第2信号に含まれる交流成分と直流成分との比率が前記第1信号の前記比率よりも小さくなる位置に設けられ、前記第2信号の直流成分が前記第1信号の直流成分の大きさ以下となるように受光量が調整され、前記発光部と前記受光部の各組は、各波長の光が干渉しない位置に配置されていることを特徴とする。この構成によれば、測定部位に関わらず各波長について交流成分を安定して抽出することができる。   Further, the pulse wave signal processing device according to the present invention is provided corresponding to the plurality of light emitting units, and a plurality of light emitting units that emit light of different wavelengths to the measurement site for measuring the pulse wave. A first light receiving unit that receives reflected light of the emitted light and outputs a first signal corresponding to the amount of received light; and a second signal that receives reflected light of the light emitted from the light emitting unit and that corresponds to the amount of received light. A plurality of light receiving units each having a second light receiving unit to output, the first signal of the plurality of light receiving units, and the difference signal between the first signal and the second signal output from the second light receiving unit. An amplification unit that amplifies and outputs an alternating current component, and the first light receiving unit and the second light receiving unit of the light receiving unit corresponding to each of the light emitting units, for each wavelength of light emitted by the light emitting unit, The ratio of the AC component and the DC component included in the second signal is smaller than the ratio of the first signal. The amount of received light is adjusted so that the direct current component of the second signal is less than or equal to the magnitude of the direct current component of the first signal. It arrange | positions in the position which does not interfere with light. According to this configuration, the AC component can be stably extracted for each wavelength regardless of the measurement site.

また、本発明に係る脈波計測装置は、上記いずれかの脈波信号処理装置と、前記脈波信号処理装置から出力された交流成分に基づいて脈波を示す情報を出力する脈波出力手段とを備えることを特徴とする。この構成によれば、測定部位に関わらず交流成分を安定して抽出することができる。   Also, the pulse wave measuring device according to the present invention is any one of the pulse wave signal processing devices described above, and pulse wave output means for outputting information indicating the pulse wave based on the AC component output from the pulse wave signal processing device. It is characterized by providing. According to this configuration, the AC component can be stably extracted regardless of the measurement site.

実施形態に係る脈波計測装置の構成例を示す図である。It is a figure showing an example of composition of a pulse wave measuring device concerning an embodiment. 実施形態における受光部と増幅部の回路構成例を示す図である。It is a figure which shows the circuit structural example of the light-receiving part in the embodiment, and the amplifier. 赤色光の場合の発光素子と受光素子の距離とAC/DC比との関係を表す図である。It is a figure showing the relationship between the distance of the light emitting element and light receiving element in the case of red light, and AC / DC ratio. 測定部位からの反射光の光路を表す図である。It is a figure showing the optical path of the reflected light from a measurement site | part. 実施形態に係る脈波計測装置の動作フローを示す図である。It is a figure which shows the operation | movement flow of the pulse wave measuring device which concerns on embodiment. (a)は、赤外光の場合の発光素子と受光素子の距離とAC/DC比との関係を表す図である。(b)は、緑色光の場合の発光素子と受光素子の距離とAC/DC比との関係を表す図である。(A) is a figure showing the relationship between the distance of the light emitting element and light receiving element in the case of infrared light, and AC / DC ratio. (B) is a figure showing the relationship between the distance of the light emitting element and light receiving element in the case of green light, and AC / DC ratio. 変形例(4)における発光部と受光部の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the light emission part in the modification (4), and a light-receiving part. 変形例(5)における受光部と増幅部の回路構成例を示す図である。It is a figure which shows the circuit structural example of the light-receiving part in a modification (5), and an amplifier. 変形例(6)における受光部と増幅部の回路構成例を示す図である。It is a figure which shows the circuit structural example of the light-receiving part in a modification (6), and an amplifier. 変形例(7)における発光部と受光部の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the light emission part in the modification (7), and a light-receiving part. 測定部位と赤色光の場合のAC/DC比の関係を示す図である。It is a figure which shows the relationship between a measurement site | part and AC / DC ratio in the case of red light.

図1は、本実施形態に係る脈波計測装置の構成例を示す図である。図1において、脈波計測装置1は、発光部10、受光部11(第1受光部11a、第2受光部11b)、増幅部12、A/D(ANALOG/DIGITAL)変換部13、制御部14、操作部15、及び表示部16を備える。脈波計測装置1は、生体2の脈波を測定する測定部位に光を照射し、測定部位において反射された後方散乱光(反射光)を受光し、受光した光の受光量に基づいて脈波を示す脈波信号を出力する。以下、各構成について説明する。   FIG. 1 is a diagram illustrating a configuration example of a pulse wave measurement device according to the present embodiment. In FIG. 1, a pulse wave measuring device 1 includes a light emitting unit 10, a light receiving unit 11 (first light receiving unit 11a, second light receiving unit 11b), an amplification unit 12, an A / D (ANALOG / DIGITAL) conversion unit 13, and a control unit. 14, an operation unit 15, and a display unit 16. The pulse wave measuring device 1 irradiates a measurement site for measuring the pulse wave of the living body 2 with light, receives backscattered light (reflected light) reflected at the measurement site, and based on the amount of received light, the pulse wave is received. A pulse wave signal indicating a wave is output. Each configuration will be described below.

発光部10は、例えば赤色光の波長の光を発するLED(Light Emitting Diode)などの発光素子を有し、発光素子は、発光ピークの波長が600〜780nmの範囲(好ましくは625nm)となるように構成されている。発光部10は、後述の制御部14の制御の下、測定部位である生体2の手首に向けて光を発する。   The light emitting unit 10 includes a light emitting element such as an LED (Light Emitting Diode) that emits light having a wavelength of red light, and the light emitting element has a light emission peak wavelength in a range of 600 to 780 nm (preferably 625 nm). It is configured. The light emitting unit 10 emits light toward the wrist of the living body 2 that is a measurement site under the control of the control unit 14 described later.

次に、受光部11と増幅部12について説明する。図2は、本実施形態における受光部11と増幅部12の回路構成を示している。第1受光部11a及び第2受光部11bは、赤色光の波長の光を受光するフォトダイオードなどの受光素子111、112を有する。受光素子111と受光素子112は発光素子との距離が異なる位置に設けられ、受光素子112は受光素子111より受光面積が小さく構成されている。図2に示すように、本実施形態では、第1受光部11aの受光素子111のアノードと第2受光部11bの受光素子112のカソードとを直列に接続し、受光素子111のアノードと受光素子112のカソードの接続点p1は増幅部12の入力端子と接続されている。発光部10の発光素子によって発光された光の反射光を受光素子111と受光素子112が受光すると、受光素子111の受光量に応じた電流I1が矢印方向に流れ、受光素子112の受光量に応じた電流I2が矢印方向に流れる。受光素子111と受光素子112の接続点p1には、電流I1から電流I2を差し引いた電流I3が矢印方向に流れる。   Next, the light receiving unit 11 and the amplifying unit 12 will be described. FIG. 2 shows a circuit configuration of the light receiving unit 11 and the amplification unit 12 in the present embodiment. The first light receiving unit 11a and the second light receiving unit 11b include light receiving elements 111 and 112 such as photodiodes that receive light having a wavelength of red light. The light receiving element 111 and the light receiving element 112 are provided at different distances from the light emitting element, and the light receiving element 112 is configured to have a light receiving area smaller than that of the light receiving element 111. As shown in FIG. 2, in this embodiment, the anode of the light receiving element 111 of the first light receiving unit 11a and the cathode of the light receiving element 112 of the second light receiving unit 11b are connected in series, and the anode of the light receiving element 111 and the light receiving element are connected. The cathode connection point p 1 is connected to the input terminal of the amplifier 12. When the light receiving element 111 and the light receiving element 112 receive reflected light of the light emitted by the light emitting element of the light emitting unit 10, a current I1 corresponding to the amount of light received by the light receiving element 111 flows in the direction of the arrow, and the amount of light received by the light receiving element 112 is increased. A corresponding current I2 flows in the direction of the arrow. At a connection point p1 between the light receiving element 111 and the light receiving element 112, a current I3 obtained by subtracting the current I2 from the current I1 flows in the arrow direction.

ここで、発光素子と受光素子との距離に応じて受光素子から出力される信号に含まれるAC成分とDC成分との比(AC/DC比)が異なる点について説明する。図3は、赤色光の波長の光を発する発光素子の中心からの距離とAC/DC比との関係を示している。また、図4は、発光素子との距離が異なる受光素子X、Yで受光される光の光路を表す模式図である。発光素子は赤色光の波長の光を発し、受光素子X、Yは受光素子111、112と同じ特性を有し、受光面積が同程度に構成されている。   Here, the point that the ratio (AC / DC ratio) between the AC component and the DC component included in the signal output from the light receiving element differs according to the distance between the light emitting element and the light receiving element will be described. FIG. 3 shows the relationship between the distance from the center of the light emitting element that emits light of the wavelength of red light and the AC / DC ratio. FIG. 4 is a schematic diagram showing an optical path of light received by the light receiving elements X and Y having different distances from the light emitting element. The light emitting element emits light having a wavelength of red light, and the light receiving elements X and Y have the same characteristics as the light receiving elements 111 and 112 and have a light receiving area of the same level.

図4に示すように、発光素子からの距離がL1の受光素子Xは、血管の密度が比較的小さい表皮に近い部分からの後方散乱光が、血管の密度が比較的大きい真皮に近い部分からの後方散乱光よりも多く受光される。また、発光素子からの距離がL2の受光素子Yは、真皮に近い部分からの後方散乱光が表皮に近い部分からの後方散乱光よりも多く受光される。表皮に近い部分からの後方散乱光には、脈波を表すAC成分より脈波を表していないDC成分が多く含まれ、真皮に近い部分からの後方散乱光にはDC成分よりAC成分が多く含まれる。また、発光素子との距離近い受光素子Xには受光素子Yよりも多くの反射光が到達する。そのため、受光素子Xと受光素子Yから出力される信号に含まれるAC成分及びDC成分とAC/DC比の大小関係は以下のようになる。
AC成分 :受光素子X>受光素子Y
DC成分 :受光素子X>>受光素子Y
AC/DC比:受光素子X<受光素子Y
As shown in FIG. 4, in the light receiving element X having a distance L1 from the light emitting element, backscattered light from a portion close to the epidermis where the blood vessel density is relatively small is from a portion close to the dermis where the blood vessel density is relatively large. Is received more than the backscattered light. In the light receiving element Y whose distance from the light emitting element is L2, the backscattered light from the portion close to the dermis is received more than the backscattered light from the portion close to the epidermis. Backscattered light from a portion close to the epidermis contains more DC components that do not represent pulse waves than AC components that represent pulse waves, and backscattered light from portions close to the dermis has more AC components than DC components. included. In addition, more reflected light reaches the light receiving element X closer to the light emitting element than the light receiving element Y. Therefore, the magnitude relationship between the AC / DC ratio and the AC / DC ratio included in the signals output from the light receiving element X and the light receiving element Y is as follows.
AC component: light receiving element X> light receiving element Y
DC component: light receiving element X >> light receiving element Y
AC / DC ratio: light receiving element X <light receiving element Y

つまり、図3に示すように、赤色光の波長の光の場合、発光素子と受光素子の距離がL2に近づくほどAC/DC比は大きくなり、距離L2を境にAC/DC比が小さくなる特性を有する。受光素子XのようにDC成分が大きい信号が初段の増幅回路に入力されると飽和状態となりAC成分が抽出されなくなるため、本実施形態では、発光素子との距離によって異なるAC/DC比を利用し、初段の増幅回路に入力する前にDC成分を小さくするように構成している。具体的には、受光素子111は発光素子との距離がL2となる位置に設けられ、受光素子112は発光素子との距離がL1(<L2)となる位置に設けられている。すなわち、受光素子111に到達する後方散乱光の生体2内の光路より短い光路を経た後方散乱光が受光素子112で受光されるように配置する。このような配置により、第2受光部11bの電流信号(以下、第2信号という)のAC/DC比は、第1受光部11aの電流信号(以下、第1信号という)のAC/DC比よりも小さくなる。   That is, as shown in FIG. 3, in the case of light having a wavelength of red light, the AC / DC ratio increases as the distance between the light emitting element and the light receiving element approaches L2, and the AC / DC ratio decreases with the distance L2 as a boundary. Has characteristics. When a signal having a large DC component, such as the light receiving element X, is input to the first stage amplifier circuit, it becomes saturated and no AC component is extracted. In this embodiment, an AC / DC ratio that varies depending on the distance from the light emitting element is used. In addition, the DC component is reduced before being input to the first stage amplifier circuit. Specifically, the light receiving element 111 is provided at a position where the distance from the light emitting element is L2, and the light receiving element 112 is provided at a position where the distance from the light emitting element is L1 (<L2). That is, the light-scattering element 112 is arranged to receive the back-scattered light that has passed through the light path shorter than the optical path in the living body 2 of the back-scattered light reaching the light-receiving element 111. With this arrangement, the AC / DC ratio of the current signal of the second light receiving unit 11b (hereinafter referred to as the second signal) is the AC / DC ratio of the current signal of the first light receiving unit 11a (hereinafter referred to as the first signal). Smaller than.

また、受光素子112のDC成分が受光素子111のDC成分と同程度となるように、受光素子112の受光面積を受光素子111より小さく構成する。このように構成することで、第1信号のDC成分と同程度のDC成分が含まれ、AC/DC比が第1信号より小さい第2信号が受光素子112から出力され、接続点p1において、第1信号と第2信号のAC成分とDC成分の差分を表す差分信号が出力される。差分信号に含まれるAC成分は第1信号のAC成分よりも小さくなるが、DC成分は、第1信号及び第2信号のDC成分より小さくすることができる。つまり、第1信号、第2信号に含まれるAC成分とDC成分を、(AC1,DC1)、(AC2,DC2)と定義すると、第1信号と第2信号は、DC1≧DC2,AC1/DC1>AC2/DC2の条件を満たす。   In addition, the light receiving area of the light receiving element 112 is configured to be smaller than the light receiving element 111 so that the DC component of the light receiving element 112 is approximately the same as the DC component of the light receiving element 111. By configuring in this way, a second signal that includes a DC component of the same degree as the DC component of the first signal and has an AC / DC ratio smaller than the first signal is output from the light receiving element 112, and at the connection point p1, A difference signal representing the difference between the AC component and the DC component of the first signal and the second signal is output. The AC component included in the difference signal is smaller than the AC component of the first signal, but the DC component can be smaller than the DC components of the first signal and the second signal. That is, when the AC component and the DC component included in the first signal and the second signal are defined as (AC1, DC1) and (AC2, DC2), the first signal and the second signal are DC1 ≧ DC2, AC1 / DC1. > The condition of AC2 / DC2 is satisfied.

次に増幅部12について説明する。図2に示すように増幅部12は、抵抗121、NPNトランジスタで構成された第1増幅回路122、コンデンサー123、第2増幅回路124とを有する。第1増幅回路122において、ベースに入力される差分信号の電流I3が抵抗121を流れ、出力点p2においてAC成分とDC成分を含む出力電圧V(I3×hfe×R)が出力される。コンデンサー123において出力電圧VのDC成分Vdcが除去され、AC成分Vacが第2増幅回路124に出力される。第2増幅回路124は、反転増幅回路などで構成され、コンデンサー123からのAC成分Vacを増幅して出力端子に出力する。   Next, the amplification unit 12 will be described. As shown in FIG. 2, the amplifying unit 12 includes a resistor 121, a first amplifying circuit 122 composed of an NPN transistor, a capacitor 123, and a second amplifying circuit 124. In the first amplifier circuit 122, the current I3 of the differential signal input to the base flows through the resistor 121, and an output voltage V (I3 × hfe × R) including an AC component and a DC component is output at the output point p2. The capacitor 123 removes the DC component Vdc of the output voltage V, and the AC component Vac is output to the second amplifier circuit 124. The second amplifier circuit 124 is composed of an inverting amplifier circuit, and amplifies the AC component Vac from the capacitor 123 and outputs it to the output terminal.

図1に戻り、説明を続ける。A/D変換部13は、増幅部12から出力された電圧信号を予め定められたサンプリング周波数に基づいて量子化を行う。制御部14は、CPU(Central Processing Unit)とメモリ(ROM(Read Only Memory)及びRAM(Random Access Memory)を有し、ROMに記憶されている制御プログラムをCPUが実行することにより制御部14と接続されている各部を制御する。具体的には、制御部14は、A/D変換部13から出力された電圧値に基づいて脈波を示す情報を表示部16に表示させる。操作部15は、利用者からの操作を受付けるスイッチや操作キーを有し、利用者によって操作された内容を表す操作信号を制御部14に出力する。表示部16は、液晶ディスプレイを有し、制御部14の制御の下、指示された脈波を示す情報などの各種画像を表示する。   Returning to FIG. 1, the description will be continued. The A / D conversion unit 13 quantizes the voltage signal output from the amplification unit 12 based on a predetermined sampling frequency. The control unit 14 includes a CPU (Central Processing Unit), a memory (ROM (Read Only Memory), and a RAM (Random Access Memory)), and the CPU executes a control program stored in the ROM, so that the control unit 14 Specifically, the control unit 14 controls the display unit 16 to display information indicating a pulse wave based on the voltage value output from the A / D conversion unit 13. Has a switch and an operation key for accepting an operation from the user, and outputs an operation signal indicating the content operated by the user to the control unit 14. The display unit 16 includes a liquid crystal display, and the control unit 14 Under the control, various images such as information indicating the instructed pulse wave are displayed.

(動作例)
図5は、脈波計測装置1の動作フロー図である。利用者は、脈波の計測を開始する際に、操作部15を介して脈波の計測開始を指示する操作を行う。制御部14は、操作部15から脈波の計測開始を指示する操作を受付け(ステップS11)、発光部10を制御して脈波の計測を開始し、受光部11から出力される第1信号と第2信号の差分信号について信号処理を行う(ステップS12)。
(Operation example)
FIG. 5 is an operation flowchart of the pulse wave measuring device 1. The user performs an operation to instruct the start of pulse wave measurement via the operation unit 15 when starting measurement of the pulse wave. The control unit 14 receives an operation for instructing the start of pulse wave measurement from the operation unit 15 (step S11), starts the pulse wave measurement by controlling the light emitting unit 10, and outputs the first signal output from the light receiving unit 11. And signal processing is performed on the difference signal of the second signal (step S12).

具体的には、制御部14は、ある光強度を示す電流信号を発光部10に出力して発光部10から測定部位に対して光を照射させ、第1受光部11a及び第2受光部11bによりその光の反射光を受光し、受光量に応じた電流を示す第1信号と第2信号とを出力する。第1受光部11aから出力された第1信号と第2受光部11bから出力された第2信号のAC成分とDC成分の差分を含む差分信号は増幅部12の第1増幅回路122に入力される。第1増幅回路122において差分信号が増幅され、電圧信号に変換されてコンデンサー123に入力される。コンデンサー123に入力された電圧信号はDC成分が除去され、第2増幅回路124にAC成分が入力される。第2増幅回路124は入力されたAC成分の電圧信号を増幅してA/D変換部13へ出力する。   Specifically, the control unit 14 outputs a current signal indicating a certain light intensity to the light emitting unit 10 to irradiate the measurement site with light from the light emitting unit 10, and the first light receiving unit 11a and the second light receiving unit 11b. To receive the reflected light of the light and output a first signal and a second signal indicating a current corresponding to the amount of light received. The difference signal including the difference between the AC component and the DC component of the first signal output from the first light receiving unit 11a and the second signal output from the second light receiving unit 11b is input to the first amplification circuit 122 of the amplification unit 12. The In the first amplifier circuit 122, the differential signal is amplified, converted into a voltage signal, and input to the capacitor 123. The DC signal is removed from the voltage signal input to the capacitor 123, and the AC component is input to the second amplifier circuit 124. The second amplifier circuit 124 amplifies the input AC component voltage signal and outputs it to the A / D converter 13.

A/D変換部13は、増幅部12から入力された脈波を表わす交流成分の電圧信号を量子化した電圧値を制御部14へ出力する(ステップS13)。制御部14は、A/D変換部13から出力された電圧値に基づく波形のピークの時間間隔を脈拍間隔、所定時間毎のピークの出現頻度を脈拍数とし、脈波を示す情報として脈拍間隔及び脈拍数を表示部16に出力する(ステップS14)。   The A / D converter 13 outputs a voltage value obtained by quantizing the voltage signal of the AC component representing the pulse wave input from the amplifier 12 to the controller 14 (step S13). The control unit 14 uses the time interval of the peak of the waveform based on the voltage value output from the A / D conversion unit 13 as the pulse interval, the frequency of appearance of the peak every predetermined time as the pulse rate, and the pulse interval as information indicating the pulse wave The pulse rate is output to the display unit 16 (step S14).

上述した実施形態では、第1受光部11aの受光素子111と第2受光部11bの受光素子112から出力される電流信号のAC/DC比が異なるように受光素子111と受光素子112とが配置されているので、第1信号と第2信号のDC成分よりも少ないDC成分の差分信号が第1増幅回路122に入力される。その結果、DC成分が原因となる第1増幅回路122の飽和状態が抑制され、第1増幅回路122を安定して動作させることができ、脈波の計測中に交流成分が出力されないなどの不具合を生じにくくすることができる。   In the embodiment described above, the light receiving element 111 and the light receiving element 112 are arranged so that the AC / DC ratios of the current signals output from the light receiving element 111 of the first light receiving unit 11a and the light receiving element 112 of the second light receiving unit 11b are different. Therefore, a difference signal having a DC component smaller than the DC components of the first signal and the second signal is input to the first amplifier circuit 122. As a result, the saturation state of the first amplifier circuit 122 caused by the DC component is suppressed, the first amplifier circuit 122 can be stably operated, and an AC component is not output during pulse wave measurement. Can be made difficult to occur.

<変形例>
本発明は、上述した実施形態に限定されるものではなく、以下のように変形させて実施してもよい。また、以下の変形例を組み合わせてもよい。
<Modification>
The present invention is not limited to the above-described embodiment, and may be carried out by being modified as follows. Further, the following modifications may be combined.

(1)上述した実施形態では、第1受光部11aの受光素子111は、赤色光のAC/DC比がピーク値となる発光素子からの距離L2(図3)に配置し、第2受光部11bの受光素子112は、距離L2よりも小さいL1の位置に配置する例を説明したが、受光素子112は、発光素子からの距離L3(L3>L2)の位置に配置してもよい。要は、受光素子111と受光素子112において受光される光のAC/DC比が異なるように、受光素子111と受光素子112が配置されていればよい。この場合には、受光素子112の受光量は受光素子111よりも小さくなるため、受光素子111と受光素子112のDC成分とが同程度となるように受光素子112の受光面積を受光素子111より大きく構成してもよい。 (1) In the above-described embodiment, the light receiving element 111 of the first light receiving unit 11a is disposed at the distance L2 (FIG. 3) from the light emitting element where the AC / DC ratio of red light has a peak value, and the second light receiving unit. Although the example in which the light receiving element 112 of 11b is arranged at the position of L1 smaller than the distance L2 has been described, the light receiving element 112 may be arranged at a position of distance L3 (L3> L2) from the light emitting element. In short, it is only necessary that the light receiving element 111 and the light receiving element 112 are arranged so that the AC / DC ratio of the light received by the light receiving element 111 and the light receiving element 112 is different. In this case, since the amount of light received by the light receiving element 112 is smaller than that of the light receiving element 111, the light receiving area of the light receiving element 112 is smaller than that of the light receiving element 111 so that the DC components of the light receiving element 111 and the light receiving element 112 are approximately the same. You may comprise large.

(2)上述した実施形態では、発光素子から赤色光の波長の光を発する例を説明したが、赤外光や緑色光であってもよい。赤外光の場合におけるAC/DC比は、赤色光と同様、図6(a)に示すようにピーク値を有するため、実施形態や上記(1)で説明した各位置に受光素子111と受光素子112とを配置すればよい。また、図6(b)に示すようにAC/DC比のピーク値を有さない緑色光の場合は、AC/DC比が高い距離L2と、それよりAC/DC比が低い距離L1とに受光素子111と受光素子112とを各々配置するようにすればよい。 (2) In the above-described embodiment, an example in which light having a wavelength of red light is emitted from the light emitting element has been described. However, infrared light or green light may be used. Since the AC / DC ratio in the case of infrared light has a peak value as shown in FIG. 6A as in the case of red light, the light receiving element 111 and the light receiving element are received at each position described in the embodiment and (1) above. The element 112 may be disposed. In the case of green light having no AC / DC ratio peak value as shown in FIG. 6B, the distance L2 has a high AC / DC ratio and the distance L1 has a lower AC / DC ratio. What is necessary is just to arrange | position the light receiving element 111 and the light receiving element 112, respectively.

(3)上述した実施形態では、DC成分が同程度となるように受光素子112の受光面積を小さく構成する例を説明したが、例えば、受光素子112の受光面に光の透過を抑制する光学フィルターを設けて受光量を調整するようにしてもよい。また、変形例(1)に例示したように、発光素子からの距離が受光素子111よりも遠い位置に受光素子112を配置する場合には、受光素子111の受光面に上記光学フィルターを設けて受光量を調整するようにしてもよい。 (3) In the above-described embodiment, the example in which the light receiving area of the light receiving element 112 is configured to be small so that the DC components are approximately the same has been described. However, for example, optical that suppresses light transmission on the light receiving surface of the light receiving element 112. A filter may be provided to adjust the amount of received light. Further, as illustrated in the modification example (1), when the light receiving element 112 is arranged at a position farther from the light receiving element 111 than the light emitting element, the optical filter is provided on the light receiving surface of the light receiving element 111. The amount of received light may be adjusted.

(4)上述した実施形態では、1つの波長の光を測定部位に照射し、その反射光を受光する例を説明したが、複数の波長の光を測定部位に照射し、各波長の反射光を受光するように構成してもよい。この場合における各波長に対応する受発光部の配置を図7に示す。受発光部Aは、赤色光の波長の光を発する発光素子を有する発光部100とその反射光を受光する受光素子を有する第1受光部101と第2受光部102とを有する。受発光部Bは、赤外光の波長の光を発する発光素子を有する発光部200とその反射光を受光する受光素子を有する第1受光部201と第2受光部202とを有する。受発光部Cは、緑色光の波長の光を発する発光素子を有する発光部300とその反射光を受光する受光素子を有する第1受光部301と第2受光部302とを有する。 (4) In the above-described embodiment, the example in which the measurement site is irradiated with light of one wavelength and the reflected light is received has been described. However, the measurement site is irradiated with light of a plurality of wavelengths, and the reflected light of each wavelength. May be configured to receive light. FIG. 7 shows the arrangement of the light emitting / receiving units corresponding to each wavelength in this case. The light receiving / emitting unit A includes a light emitting unit 100 having a light emitting element that emits light having a wavelength of red light, and a first light receiving unit 101 and a second light receiving unit 102 having a light receiving element that receives the reflected light. The light emitting / receiving unit B includes a light emitting unit 200 having a light emitting element that emits light having a wavelength of infrared light, and a first light receiving unit 201 and a second light receiving unit 202 having a light receiving element that receives the reflected light. The light emitting / receiving unit C includes a light emitting unit 300 having a light emitting element that emits light having a wavelength of green light, and a first light receiving unit 301 and a second light receiving unit 302 having a light receiving element that receives the reflected light.

第2受光部102、202、302の各受光素子は、第1受光部101、201、301の各受光素子よりも発光素子から離れた位置、すなわち、AC/DC比が高い位置に配置されている。また、第1受光部101、201、301の各受光素子は、対応する第2受光部から出力される第1信号のDC成分と同程度となるように受光面積が小さく構成されている。つまり、各波長の第1信号と第2信号はAC2/DC2>AC1/DC1、DC2≧DC1の条件を満たすように受光量が調整されている。そして、受発光部A、受発光部B、及び受発光部Cの各第1受光部と各第2受光部は、各波長の光が干渉しないように各発光部より外側に配列されている。このように構成することにより、複数の波長の光を用いて脈波を計測することができる。   The light receiving elements of the second light receiving units 102, 202, and 302 are arranged at positions farther from the light emitting elements than the light receiving elements of the first light receiving units 101, 201, and 301, that is, at positions where the AC / DC ratio is higher. Yes. In addition, each of the light receiving elements of the first light receiving units 101, 201, and 301 is configured to have a small light receiving area so as to be approximately the same as the DC component of the first signal output from the corresponding second light receiving unit. That is, the amount of received light is adjusted so that the first signal and the second signal of each wavelength satisfy the conditions of AC2 / DC2> AC1 / DC1 and DC2 ≧ DC1. And each 1st light-receiving part and each 2nd light-receiving part of light-receiving / emitting part A, light-receiving / emitting part B, and light-receiving / emitting part C are arranged outside each light-emitting part so that the light of each wavelength may not interfere. . By comprising in this way, a pulse wave can be measured using the light of a some wavelength.

なお、この場合には、一定時間ごとに交互に各発光部を発光させるようにしてもよいし、各発光部から同時に各波長の光を照射するようにしてもよい。後者の場合には、受発光部毎に増幅部12とA/D変換部13とを設けるように構成してもよい。各第1受光部と第2受光部において反射光を受光し、各第1受光部と第2受光部から対応する増幅部12に受光量に応じた第1信号及び第2信号を出力する。そして、各増幅部12において各波長の交流成分を抽出して増幅し、対応するA/D変換部13に出力する。本変形例では、3つ波長の光を照射して受光する例を説明したが、2つ以上の波長の光を照射して受光する構成であればこれに限らない。   In this case, each light emitting section may be made to emit light alternately every certain time, or light of each wavelength may be irradiated simultaneously from each light emitting section. In the latter case, the amplification unit 12 and the A / D conversion unit 13 may be provided for each light emitting / receiving unit. The first light receiving unit and the second light receiving unit receive the reflected light, and the first light receiving unit and the second light receiving unit output the first signal and the second signal corresponding to the amount of received light to the corresponding amplification unit 12. Then, each amplifying unit 12 extracts and amplifies the AC component of each wavelength, and outputs it to the corresponding A / D converter 13. In the present modification, an example in which light having three wavelengths is irradiated and received is described, but the present invention is not limited to this as long as light having two or more wavelengths is irradiated and received.

(5)上述した実施形態において、第1増幅回路122は、図8に示す電流電圧変換回路125で構成されていてもよい。この図において、電流電圧変換回路125は、オペアンプ125aと帰還抵抗125bとを有する。電流電圧変換回路125のオペアンプ125aの正端子は接地されており、受光素子111と受光素子112の接続点P1にオペアンプ125aの負端子が接続されている。電流電圧変換回路125は、受光素子111と受光素子112から出力される第1信号と第2信号の差分信号がオペアンプ125aの負端子に入力されるとその差分信号を電圧信号に変換して反転増幅させて出力する。電流電圧変換回路125から出力された電圧信号はコンデンサー123において直流成分が除去され、その交流成分が第2増幅回路124に入力されて増幅される。 (5) In the above-described embodiment, the first amplifier circuit 122 may be configured by the current-voltage conversion circuit 125 shown in FIG. In this figure, the current-voltage conversion circuit 125 has an operational amplifier 125a and a feedback resistor 125b. The positive terminal of the operational amplifier 125 a of the current-voltage conversion circuit 125 is grounded, and the negative terminal of the operational amplifier 125 a is connected to the connection point P 1 between the light receiving element 111 and the light receiving element 112. When the difference signal between the first signal and the second signal output from the light receiving element 111 and the light receiving element 112 is input to the negative terminal of the operational amplifier 125a, the current-voltage conversion circuit 125 converts the difference signal into a voltage signal and inverts it. Amplify and output. The voltage signal output from the current-voltage conversion circuit 125 has its DC component removed by the capacitor 123, and the AC component is input to the second amplifier circuit 124 and amplified.

(6)上述した実施形態では、第1増幅回路122に第1信号と第2信号の差分信号が入力される例を説明したが、例えば、図9に示すように、受光素子111と受光素子112のアノードをNPNトランジスタを組み合わせた差動増幅回路に接続し、差動増幅回路において入力される第1信号と第2信号の差分を増幅した電圧信号を出力してもよい。この場合には、受光素子111と受光素子112は、AC1/DC1>AC2/DC2、DC1≧DC2の条件を満たすように、発光素子からの距離と受光面積を調整する。また、受光素子112のアノード側にグランドに接続された抵抗を設けて、受光素子112と受光素子111のDC成分とが同程度となるように受光素子111と受光素子112の受光量を調整してもよい。 (6) In the above-described embodiment, the example in which the difference signal between the first signal and the second signal is input to the first amplifier circuit 122 has been described. For example, as illustrated in FIG. The anode of 112 may be connected to a differential amplifier circuit combined with an NPN transistor, and a voltage signal obtained by amplifying the difference between the first signal and the second signal input in the differential amplifier circuit may be output. In this case, the light receiving element 111 and the light receiving element 112 adjust the distance from the light emitting element and the light receiving area so as to satisfy the conditions of AC1 / DC1> AC2 / DC2, DC1 ≧ DC2. In addition, a resistor connected to the ground is provided on the anode side of the light receiving element 112, and the amounts of light received by the light receiving element 111 and the light receiving element 112 are adjusted so that the DC components of the light receiving element 112 and the light receiving element 111 are approximately the same. May be.

(7)上述した実施形態では、発光部10の発光素子と、第1受光部11a及び第2受光部11bの受光素子111、112とを同一平面上に並べて配置する例を説明したが、受光素子111と受光素子112から出力される第1信号と第2信号のAC/DC比が異なる位置、つまり、測定部位内における光路長が異なる配置であれば、例えば図10に示すような配置でもよい。図10は、本変形例における受発光部の断面を表す図である。この例では、受光素子111と受光素子112は、光を透過する各透明基板23の一方の面において受光面が図の上方向となるように設けられ、受光素子111、112を覆う集光部21、22が設けられている。集光部21、22の内側の面は反射鏡が設けられている。受光素子112が設けられた透明基板23の他方の面には発光素子20が設けられ、図の矢印方向に発光素子20から光が照射される。各透明基板23の受光素子111、112が設けられていない側の両端には支柱24が設けられ、支柱24を介して、生体2の上部に設けられた光を透過させるガラスなどの部材25と透明基板23の間に空間Kが設けられている。この例では、発光素子20との距離が近い受光素子112より受光素子111のAC/DC比が大きくなるように構成され、集光部21、22の大きさや曲率半径を変えることにより各受光量が調整されている。発光素子20から照射された光は、空間Kから部材25を透過して生体2に入射し、生体2の内部において反射されて部材25、空間K、透明基板23を透過して集光部21、22の内側の面で反射され、受光素子111、112で各々受光される。 (7) In the above-described embodiment, the example in which the light emitting element of the light emitting unit 10 and the light receiving elements 111 and 112 of the first light receiving unit 11a and the second light receiving unit 11b are arranged side by side on the same plane has been described. For example, an arrangement as shown in FIG. 10 may be used as long as the positions of the first and second signals output from the element 111 and the light receiving element 112 are different from each other in the AC / DC ratio, that is, the optical path lengths in the measurement region are different. Good. FIG. 10 is a diagram illustrating a cross section of the light receiving and emitting unit in the present modification. In this example, the light receiving element 111 and the light receiving element 112 are provided so that the light receiving surface is in the upward direction in the figure on one surface of each transparent substrate 23 that transmits light, and the light collecting unit that covers the light receiving elements 111 and 112. 21 and 22 are provided. Reflective mirrors are provided on the inner surfaces of the light collecting portions 21 and 22. The light emitting element 20 is provided on the other surface of the transparent substrate 23 provided with the light receiving element 112, and light is emitted from the light emitting element 20 in the direction of the arrow in the figure. Supports 24 are provided at both ends of each transparent substrate 23 on which the light receiving elements 111 and 112 are not provided. Through the support 24, a member 25 such as glass that transmits light provided above the living body 2 is provided. A space K is provided between the transparent substrates 23. In this example, the light receiving element 111 is configured such that the AC / DC ratio of the light receiving element 111 is larger than that of the light receiving element 112 that is close to the light emitting element 20, and each light receiving amount is changed by changing the size and the radius of curvature of the light collecting portions 21 and 22. Has been adjusted. The light emitted from the light emitting element 20 passes through the member 25 from the space K and enters the living body 2, is reflected inside the living body 2, passes through the member 25, the space K, and the transparent substrate 23, and collects the light. , 22 are reflected by the inner surfaces of the light receiving elements 111 and 112, respectively.

(8)上述した実施形態では、脈波計測装置を例に説明したが、発光部10、受光部11、及び増幅部12を有する脈波信号処理装置と、A/D変換部13及び制御部14を少なくとも含む制御装置とを別体に構成し、脈波信号処理装置と制御装置とを有線又は無線通信により接続して構成してもよい。この場合には、制御装置は、脈波信号処理装置の増幅部12から出力される交流成分の信号を取得し、取得した交流成分の信号に基づいて脈波を示す情報を外部の表示装置などに出力するように構成してもよい。 (8) In the above-described embodiment, the pulse wave measurement device has been described as an example. However, the pulse wave signal processing device including the light emitting unit 10, the light receiving unit 11, and the amplification unit 12, the A / D conversion unit 13, and the control unit. The control device including at least 14 may be configured separately, and the pulse wave signal processing device and the control device may be connected by wired or wireless communication. In this case, the control device acquires an AC component signal output from the amplification unit 12 of the pulse wave signal processing device, and displays information indicating the pulse wave based on the acquired AC component signal, such as an external display device. You may comprise so that it may output to.

1・・・脈波計測装置、10,100・・・発光部、11・・・受光部、11a,101,201,301・・・第1受光部、11b,102,202,302・・・第2受光部、12・・・増幅部、13・・・A/D変換部、14・・・制御部、15・・・操作部、16・・・表示部、111,112・・・受光素子、121・・・抵抗、122・・・第1増幅回路、123・・・コンデンサー、124・・・第2増幅回路、125・・・電流電圧変換回路、125a・・・オペアンプ、125b・・・帰還抵抗、A,B,C・・・受発光部。   DESCRIPTION OF SYMBOLS 1 ... Pulse wave measuring device 10, 100 ... Light emission part, 11 ... Light receiving part, 11a, 101, 201, 301 ... 1st light receiving part, 11b, 102, 202, 302 ... 2nd light-receiving part, 12 ... Amplification part, 13 ... A / D conversion part, 14 ... Control part, 15 ... Operation part, 16 ... Display part, 111, 112 ... Light reception Elements 121, resistors, 122, first amplifier circuit, 123, capacitor, 124, second amplifier circuit, 125, current-voltage conversion circuit, 125a, operational amplifier, 125b,. -Feedback resistor, A, B, C ... Light emitting / receiving section.

Claims (5)

脈波を測定する測定部位に光を発する発光部と、
前記発光部から発した光の反射光を受光して受光量に応じた第1信号を出力する第1受光部と、
前記発光部から発した光の反射光を受光して受光量に応じた第2信号を出力する第2受光部と、
前記第1受光部から出力される前記第1信号と前記第2受光部から出力される前記第2信号との差分信号を増幅して交流成分を出力する増幅部とを備え、
前記第1受光部と前記第2受光部は、前記第2信号の直流成分に対する交流成分の比率が前記第1信号の前記比率よりも小さくなる位置に設けられ、前記第2信号の直流成分が前記第1信号の直流成分の大きさ以下となる条件を満たすように受光量が調整されていることを特徴とする脈波信号処理装置。
A light emitting unit that emits light to a measurement site for measuring a pulse wave;
A first light receiving unit that receives reflected light of the light emitted from the light emitting unit and outputs a first signal corresponding to the amount of received light;
A second light receiving unit that receives reflected light of the light emitted from the light emitting unit and outputs a second signal corresponding to the amount of received light;
An amplification unit that amplifies a differential signal between the first signal output from the first light receiving unit and the second signal output from the second light receiving unit and outputs an AC component;
The first light receiving unit and the second light receiving unit are provided at a position where the ratio of the AC component to the DC component of the second signal is smaller than the ratio of the first signal, and the DC component of the second signal is The received light amount is adjusted so as to satisfy a condition that is equal to or less than the magnitude of the DC component of the first signal.
前記第1受光部と前記第2受光部は、前記条件を満たすように各々異なる受光面積の受光面を有することを特徴とする請求項1に記載の脈波信号処理装置。   2. The pulse wave signal processing apparatus according to claim 1, wherein the first light receiving unit and the second light receiving unit have light receiving surfaces having different light receiving areas so as to satisfy the condition. 前記第1受光部又は前記第2受光部は、前記条件を満たすように前記反射光の透過を抑制するフィルターが受光面に設けられていることを特徴とする請求項1に記載の脈波信号処理装置。   2. The pulse wave signal according to claim 1, wherein the first light receiving unit or the second light receiving unit is provided with a filter on the light receiving surface for suppressing transmission of the reflected light so as to satisfy the condition. Processing equipment. 脈波を測定する測定部位に各々異なる波長の光を発する複数の発光部と、
前記複数の発光部に対応して設けられ、当該発光部から発した光の反射光を受光して受光量に応じた第1信号を出力する第1受光部と、当該発光部から発した光の反射光を受光して受光量に応じた第2信号を出力する第2受光部とを有する複数の受光部と、
前記複数の受光部の前記第1受光部と前記第2受光部から出力される前記第1信号と前記第2信号の各差分信号を増幅して交流成分を出力する増幅部とを備え、
前記発光部の各々に対応する前記受光部の前記第1受光部及び前記第2受光部は、当該発光部が発する光の波長ごとに、前記第2信号に含まれる交流成分と直流成分との比率が前記第1信号の前記比率よりも小さくなる位置に設けられ、前記第2信号の直流成分が前記第1信号の直流成分の大きさ以下となるように受光量が調整され、前記発光部と前記受光部の各組は、各波長の光が干渉しない位置に配置されていることを特徴とする脈波信号処理装置。
A plurality of light emitting units that emit light of different wavelengths to the measurement site for measuring the pulse wave;
A first light-receiving unit that is provided corresponding to the plurality of light-emitting units, receives reflected light of light emitted from the light-emitting unit, and outputs a first signal corresponding to the amount of received light; and light emitted from the light-emitting unit A plurality of light receiving parts having a second light receiving part that receives the reflected light of the first light and outputs a second signal according to the amount of light received;
An amplification unit that amplifies each differential signal of the first signal and the second signal output from the first light receiving unit and the second light receiving unit of the plurality of light receiving units and outputs an AC component;
The first light receiving unit and the second light receiving unit of the light receiving unit corresponding to each of the light emitting units have an AC component and a DC component included in the second signal for each wavelength of light emitted by the light emitting unit. The light receiving amount is adjusted so that the ratio is smaller than the ratio of the first signal, and the direct current component of the second signal is less than or equal to the magnitude of the direct current component of the first signal. The pulse wave signal processing device is characterized in that each pair of the light receiving units is arranged at a position where light of each wavelength does not interfere.
請求項1から請求項4のいずれか一項に記載の脈波信号処理装置と、
前記脈波信号処理装置から出力された交流成分に基づいて脈波を示す情報を出力する脈波出力手段と
を備えることを特徴とする脈波計測装置。
The pulse wave signal processing device according to any one of claims 1 to 4,
A pulse wave measuring device comprising: pulse wave output means for outputting information indicating a pulse wave based on an alternating current component output from the pulse wave signal processing device.
JP2016063246A 2016-03-28 2016-03-28 Pulse wave signal processing device and pulse wave measurement device Withdrawn JP2016116947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063246A JP2016116947A (en) 2016-03-28 2016-03-28 Pulse wave signal processing device and pulse wave measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063246A JP2016116947A (en) 2016-03-28 2016-03-28 Pulse wave signal processing device and pulse wave measurement device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011241180A Division JP5909999B2 (en) 2011-11-02 2011-11-02 Pulse wave signal processing device and pulse wave measuring device

Publications (1)

Publication Number Publication Date
JP2016116947A true JP2016116947A (en) 2016-06-30

Family

ID=56243505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063246A Withdrawn JP2016116947A (en) 2016-03-28 2016-03-28 Pulse wave signal processing device and pulse wave measurement device

Country Status (1)

Country Link
JP (1) JP2016116947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114098668A (en) * 2020-08-31 2022-03-01 荣耀终端有限公司 Living body detection method and electronic equipment
JP7379144B2 (en) 2019-12-24 2023-11-14 株式会社東芝 pulse sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028157A (en) * 1997-09-05 2005-02-03 Seiko Epson Corp Biological information measuring device
JP3689914B2 (en) * 1997-09-05 2005-08-31 セイコーエプソン株式会社 Biological information measuring device
JP2005323906A (en) * 2004-05-17 2005-11-24 Seiko Instruments Inc Biological information measuring device and biological information measuring method
JP2007105133A (en) * 2005-10-12 2007-04-26 Nippon Telegr & Teleph Corp <Ntt> Light receiving device
JP2010178983A (en) * 2009-02-06 2010-08-19 Seiko Epson Corp Measuring apparatus and measuring method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028157A (en) * 1997-09-05 2005-02-03 Seiko Epson Corp Biological information measuring device
JP3689914B2 (en) * 1997-09-05 2005-08-31 セイコーエプソン株式会社 Biological information measuring device
JP2005323906A (en) * 2004-05-17 2005-11-24 Seiko Instruments Inc Biological information measuring device and biological information measuring method
JP2007105133A (en) * 2005-10-12 2007-04-26 Nippon Telegr & Teleph Corp <Ntt> Light receiving device
JP2010178983A (en) * 2009-02-06 2010-08-19 Seiko Epson Corp Measuring apparatus and measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7379144B2 (en) 2019-12-24 2023-11-14 株式会社東芝 pulse sensor
CN114098668A (en) * 2020-08-31 2022-03-01 荣耀终端有限公司 Living body detection method and electronic equipment

Similar Documents

Publication Publication Date Title
JP5909999B2 (en) Pulse wave signal processing device and pulse wave measuring device
US11141075B2 (en) Heart rate and blood oxygen monitoring system
CN110650684B (en) Circuit arrangement for an optical monitoring system and method for optical monitoring
US9808162B2 (en) Pulse wave sensor and semiconductor module
EP3122243B1 (en) Optical heart rate sensor
JP5565463B2 (en) Pulse wave sensor device
JP6431697B2 (en) Wrist-mounted pulse oximeter
JPWO2010023744A1 (en) Biological information measuring device
JP2011087657A (en) Measuring apparatus and measuring method
JP2016116947A (en) Pulse wave signal processing device and pulse wave measurement device
JP2023052921A (en) Photoplethysmography (ppg) apparatus and method for measuring physiological changes
JP2013180031A (en) Pulse wave measuring apparatus
CN115153530A (en) Sampling circuit, biometric recognition device, and electronic apparatus
JP6019668B2 (en) Biological information detector, biological information detecting apparatus, and biological information detecting method
JP2013111444A (en) Device for determination of hemostasis state, pulse wave measurement device and method for determination of hemostasis state
WO2013047565A1 (en) Blood component analyzer
JP2009201919A (en) Pulse wave detector and pulse wave detection method
JP6137321B2 (en) Biosensor
US20170086687A1 (en) Biosignal measuring device and biosignal measuring system
JP2008264327A (en) Biological information measuring apparatus and method of controlling biological information measuring apparatus
JP2017093507A (en) Biological information measurement device, measurement method and program
KR101216535B1 (en) A pulse oximeter using non-square waves
WO2015198584A1 (en) Measurement device and measurement method
JP7039925B2 (en) Bioanalyzer
WO2015146044A1 (en) Measurement device, measurement system, measurement method, and electronic device provided with measurement device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170502