JP2016116177A - Bone conduction device - Google Patents

Bone conduction device Download PDF

Info

Publication number
JP2016116177A
JP2016116177A JP2014255617A JP2014255617A JP2016116177A JP 2016116177 A JP2016116177 A JP 2016116177A JP 2014255617 A JP2014255617 A JP 2014255617A JP 2014255617 A JP2014255617 A JP 2014255617A JP 2016116177 A JP2016116177 A JP 2016116177A
Authority
JP
Japan
Prior art keywords
magnet
diaphragm
yoke
bone conduction
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255617A
Other languages
Japanese (ja)
Other versions
JP6238302B2 (en
Inventor
竹下 隆晴
Takaharu Takeshita
隆晴 竹下
亘 北川
Wataru Kitagawa
亘 北川
滉也 吉川
Koya Yoshikawa
滉也 吉川
明弘 増田
Akihiro Masuda
明弘 増田
政広 中嶋
Masahiro Nakajima
政広 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKO KANAGATA KK
Nagoya Institute of Technology NUC
Original Assignee
SANKO KANAGATA KK
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKO KANAGATA KK, Nagoya Institute of Technology NUC filed Critical SANKO KANAGATA KK
Priority to JP2014255617A priority Critical patent/JP6238302B2/en
Publication of JP2016116177A publication Critical patent/JP2016116177A/en
Application granted granted Critical
Publication of JP6238302B2 publication Critical patent/JP6238302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Of Audible-Bandwidth Transducers (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bone conduction device securing a degree of freedom of a design of a diaphragm, further having high efficiency, and capable of securing a high output even if configured to be miniaturized and reduced in weight.SOLUTION: A bone conduction device includes: a tubular body 2 with a bottom comprising a magnetic material; a diaphragm 3 provided over upper end parts of the tubular body 2; a magnet 5 fixed to a lower surface 3c side of the diaphragm 3, at least a part of the magnet being located inside the tubular body 2; a yoke 4 stood on an inner side bottom surface 2b of the tubular body 2, the upper end surface 4a thereof facing a lower end surface 5b of the magnet 5 via a gap; and a voice coil 6 disposed around the yoke 4 inside the tubular body 2. A proximity part 8 is provided in the tubular body 2, the proximity part extending to the inside toward a magnet side surface 5a and comprising a magnetic material facing the side surface 5a with a gap formed therebetween.SELECTED DRAWING: Figure 2

Description

本発明は、骨伝導スピーカやマイクの振動ドライバとして好適に用いられる骨伝導デバイスに関し、特に、小型・軽量としても高出力が可能な効率の良い骨伝導デバイスに関する。   The present invention relates to a bone conduction device suitably used as a vibration driver for a bone conduction speaker or microphone, and more particularly to an efficient bone conduction device capable of high output even if it is small and light.

従来、この種の骨伝導デバイスとしては、例えば特許文献1の図1に開示されているように、振動板(70)を支持する延長部(30)(30’)を設け、ボイスコイル(40)と中央磁極(ヨーク)(50)を形成し、上部に鉄片(60)が固定される振動板(70)を延長部(30)(30’)間に渡設し、鉄片(60)の上部にマグネット(90)を付着した構造のものが提供されている。この構造は、組立工程が簡単となりコスト低減を図れるとともに、マグネットがボイスコイルの外周側ではなく振動板の上部に位置するためボイスコイルの大きさ等を比較的自由に変えることができ、特性の調整の巾が広がり、デバイス全体の小型化、軽量化も可能となるというものである。   Conventionally, as this type of bone conduction device, for example, as disclosed in FIG. 1 of Patent Document 1, an extension (30) (30 ′) for supporting a diaphragm (70) is provided, and a voice coil (40 ) And a central magnetic pole (yoke) (50), and a diaphragm (70) on which the iron piece (60) is fixed is placed between the extensions (30) and (30 ′), and the iron piece (60) A structure with a magnet (90) attached to the top is provided. This structure simplifies the assembly process and reduces costs, and the size of the voice coil can be changed relatively freely because the magnet is located not on the outer periphery of the voice coil but on the top of the diaphragm. The range of adjustment is widened, and the entire device can be reduced in size and weight.

しかしながら、上記特許文献1の骨伝導デバイスの構造によれば、たしかにボイスコイルの外周側にマグネットが存在せず、全体のスリム化が可能となり、ボイスコイルやマグネットについて、特性の調整の巾や設計の自由度も高まるのであるが、出力アップに一定の限界が生じていた。   However, according to the structure of the bone conduction device of the above-mentioned Patent Document 1, there is no magnet on the outer peripheral side of the voice coil, and the whole can be slimmed down. However, there was a certain limit to the increase in output.

そこで本出願人は既に、さらなるスリム化や高効率を実現できる骨伝導デバイスを提案している(特願2014−61947)。具体的には、上端が開口し、該開口を全周にわたって囲む周壁を備えた磁性材料よりなる有底の筒状本体と、前記筒状本体の開口部に渡設される振動板と、前記振動板の下面側に固定され、少なくとも一部が筒状本体の上端開口の位置よりも下側の筒状本体内に位置するマグネットと、前記筒状本体の内側底面に立設され、上端が前記マグネットの下端面に隙間を介して対向するヨークと、前記筒状本体内における前記ヨークの周りに配置されるボイスコイルとよりなる骨伝導デバイスを提案した。   Therefore, the present applicant has already proposed a bone conduction device that can achieve further slimming and high efficiency (Japanese Patent Application No. 2014-61947). Specifically, a bottomed cylindrical body made of a magnetic material having a peripheral wall having an upper end opened and surrounding the opening over the entire circumference, a diaphragm provided across the opening of the cylindrical body, The magnet is fixed to the lower surface side of the diaphragm, and at least a part thereof is positioned in the cylindrical main body below the position of the upper end opening of the cylindrical main body, and is erected on the inner bottom surface of the cylindrical main body. A bone conduction device comprising a yoke facing the lower end surface of the magnet via a gap and a voice coil disposed around the yoke in the cylindrical main body has been proposed.

この先の提案に係る骨伝導デバイスによれば、振動板の下面側に固定されたマグネット上面からの磁束が筒状本体の周壁上端部に捕捉され、磁束の流れが均一且つコンパクトな効率のよい磁気回路が形成され、外部への磁気漏れも少なくなり、小型・軽量にして高出力を得ることが可能となる。しかし、この提案に係る骨伝導デバイスは、マグネット上面からの磁束を周壁上端部で補足するものであり、振動板を突き抜けて外部に放散される磁気漏れは避けられない。振動板を磁性材料で構成すれば磁気漏れを抑えることができるが、振動板の素材が限定され、設計の自由度が低下する。   According to the bone conduction device according to the previous proposal, the magnetic flux from the upper surface of the magnet fixed to the lower surface side of the diaphragm is captured by the upper end of the peripheral wall of the cylindrical main body, and the flow of the magnetic flux is uniform, compact and efficient. A circuit is formed, magnetic leakage to the outside is reduced, and it is possible to obtain a high output with a small size and light weight. However, the bone conduction device according to this proposal supplements the magnetic flux from the upper surface of the magnet at the upper end portion of the peripheral wall, and magnetic leakage that radiates outside through the diaphragm is inevitable. If the diaphragm is made of a magnetic material, magnetic leakage can be suppressed, but the material of the diaphragm is limited and the degree of freedom in design is reduced.

特開2007−74693号公報JP 2007-74693 A

本発明が解決しようとするところは、動作(振動特性)に影響の大きい振動板の素材が限定されることがなく、これにより振動板の設計の自由度を確保しつつ、さらに高効率であり、小型・軽量に構成しても高出力を確保できる骨伝導デバイスを提供する点にある。   The problem to be solved by the present invention is that the material of the diaphragm having a large influence on the operation (vibration characteristics) is not limited, thereby ensuring a high degree of freedom while ensuring the degree of freedom in designing the diaphragm. The object is to provide a bone conduction device that can ensure high output even if it is compact and lightweight.

本発明は、前述の課題解決のために、磁性材料よりなる有底の筒状本体と、前記筒状本体の上端部又は内壁部に渡設される振動板と、前記振動板の上下面のうち筒状本体の内側底面に対向する下面側にs固定されるマグネットと、前記筒状本体の内側底面に立設され、上端が前記マグネットの下端面に隙間を介して対向するヨークと、前記筒状本体内における前記ヨークの周りに配置されるボイスコイルとよりなり、前記筒状本体に、前記マグネットの側面に向けて内側に延び、該側面に隙間を介して対向する磁性材料よりなる近接部を設けてなることを特徴とする骨伝導デバイスを提供する。   In order to solve the above-mentioned problems, the present invention provides a bottomed cylindrical body made of a magnetic material, a diaphragm provided on an upper end portion or an inner wall of the cylindrical body, and upper and lower surfaces of the diaphragm. A magnet fixed to the lower surface facing the inner bottom surface of the cylindrical main body, a yoke standing on the inner bottom surface of the cylindrical main body and having an upper end facing the lower end surface of the magnet via a gap, Proximity comprising a voice coil disposed around the yoke in the cylindrical main body, and extending to the cylindrical main body toward the side surface of the magnet and facing the side surface through a gap. There is provided a bone conduction device comprising a portion.

ここで、前記近接部の内側端部が、マグネット側面の下端よりも上側の領域に前記隙間を介して対向しているものが好ましい。   Here, it is preferable that the inner end portion of the proximity portion is opposed to the region above the lower end of the magnet side surface via the gap.

さらに、前記マグネットと振動板下面との間に、電磁鋼板よりなる板材を介在させたものが好ましい。   Furthermore, it is preferable that a plate material made of an electromagnetic steel plate is interposed between the magnet and the lower surface of the diaphragm.

また本発明は、磁性材料よりなる有底の筒状本体と、前記筒状本体の上端部又は内壁部に渡設される振動板と、前記振動板の上下面のうち筒状本体の内側底面に対向する下面側に固定され、その下端面が前記筒状本体の内側底面に隙間を介して対向するマグネットと、前記筒状本体内における前記マグネットの周りに配置されるボイスコイルとよりなり、前記筒状本体に、前記マグネットの側面に向けて内側に延び、該側面に隙間を介して対向する磁性材料よりなる近接部を設けてなることを特徴とする骨伝導デバイスをも提供する。   The present invention also provides a bottomed cylindrical body made of a magnetic material, a diaphragm provided on an upper end portion or an inner wall of the cylindrical body, and an inner bottom surface of the cylindrical body among the upper and lower surfaces of the diaphragm. The lower end surface of the cylindrical body is fixed to the inner bottom surface of the cylindrical main body through a gap, and a voice coil disposed around the magnet in the cylindrical main body. There is also provided a bone conduction device, wherein the cylindrical main body is provided with a proximity portion made of a magnetic material that extends inward toward the side surface of the magnet and faces the side surface through a gap.

ここで、前記マグネットと振動板下面との間に、ヨークを介在させたものが好ましい。   Here, it is preferable that a yoke is interposed between the magnet and the lower surface of the diaphragm.

以上にしてなる本願発明に係る骨伝導デバイスによれば、振動板の下面側に固定されているマグネットの上面側からの磁束の大部分が、近接部を通じて筒状本体に効率よく導かれ、該筒状本体を通じてマグネット下面側へと導かれる。磁束の方向は限定されず、逆の場合も同じである。これにより、振動板が非磁性材料であっても効率的な磁気回路が形成され、振動板の設計の自由度を維持しつつ、外部への磁気漏れも極めて少なくなり、コンパクトな構造で出力アップを図ることが可能となる。   According to the bone conduction device according to the present invention as described above, most of the magnetic flux from the upper surface side of the magnet fixed to the lower surface side of the diaphragm is efficiently guided to the cylindrical body through the proximity portion, It is guided to the lower surface side of the magnet through the cylindrical main body. The direction of the magnetic flux is not limited, and the reverse case is the same. As a result, an efficient magnetic circuit is formed even if the diaphragm is made of a non-magnetic material, and while maintaining the degree of freedom in designing the diaphragm, magnetic leakage to the outside is extremely reduced and the output is increased with a compact structure. Can be achieved.

また、前記近接部の内側端部が、マグネット側面の下端よりも上側の領域に前記隙間を介して対向しているので、マグネット下面からの磁力線の一部が近接部に入って磁場がショートカットし、出力低下しまう虞も防止できる。   In addition, since the inner end of the proximity portion faces the region above the lower end of the magnet side surface via the gap, a part of the magnetic force lines from the lower surface of the magnet enter the proximity portion and the magnetic field is shortcut. Moreover, the possibility that the output is reduced can also be prevented.

また、前記マグネットと振動板下面との間に、電磁鋼板よりなる板材を介在させたので、マグネット上面側からの磁束をより多く、効率よく、近接部を通じて筒状本体に導くことができる。   In addition, since a plate material made of an electromagnetic steel plate is interposed between the magnet and the lower surface of the diaphragm, more magnetic flux from the upper surface side of the magnet can be more efficiently guided to the cylindrical main body through the proximity portion.

また、マグネットと振動板下面との間に、ヨークを介在させたので、マグネット上面側からの磁束をより多く、効率よく、近接部を通じて筒状本体に導くことができ、またマグネットのみからなるヨークレスとした場合に比べて出力も向上する。   In addition, since a yoke is interposed between the magnet and the lower surface of the diaphragm, more magnetic flux from the upper surface side of the magnet can be more efficiently guided to the cylindrical body through the proximity portion, and the yokeless consisting of only the magnet Compared with the case, the output is also improved.

本発明の第1実施形態に係る骨伝導デバイスを示す斜視図。The perspective view which shows the bone conduction device which concerns on 1st Embodiment of this invention. 同じく骨伝導デバイスの縦断面図。The longitudinal cross-sectional view of a bone conduction device similarly. 同じく分解斜視図。Similarly disassembled perspective view. 本発明の第2実施形態に係る骨伝導デバイスを示す斜視図。The perspective view which shows the bone conduction device which concerns on 2nd Embodiment of this invention. 同じく骨伝導デバイスの縦断面図。The longitudinal cross-sectional view of a bone conduction device similarly. 同じく分解斜視図。Similarly disassembled perspective view. 同じく第2実施形態の骨伝導デバイスの変形例を示す縦断面図。Similarly, the longitudinal cross-sectional view which shows the modification of the bone conduction device of 2nd Embodiment. 同じく他の変形例を示す縦断面図。The longitudinal cross-sectional view which shows another modification similarly. 本発明の第3実施形態に係る骨伝導デバイスを示す斜視図。The perspective view which shows the bone conduction device which concerns on 3rd Embodiment of this invention. 同じく骨伝導デバイスの縦断面図。The longitudinal cross-sectional view of a bone conduction device similarly. 同じく分解斜視図。Similarly disassembled perspective view. 本発明の第4実施形態に係る骨伝導デバイスを示す縦断面図。The longitudinal cross-sectional view which shows the bone conduction device which concerns on 4th Embodiment of this invention. 同じく第4実施形態の骨伝導デバイスの変形例を示す縦断面図。Similarly, the longitudinal cross-sectional view which shows the modification of the bone conduction device of 4th Embodiment. 実施例3のモデルの構造を示す説明図。Explanatory drawing which shows the structure of the model of Example 3. FIG. 比較例1のモデルの構造を示す説明図。Explanatory drawing which shows the structure of the model of the comparative example 1. FIG. 比較例2のモデルの構造を示す説明図。Explanatory drawing which shows the structure of the model of the comparative example 2. FIG. 比較例3、4のモデルの構造を示す説明図。Explanatory drawing which shows the structure of the model of the comparative examples 3 and 4. FIG. 比較例5、6のモデルの構造を示す説明図。Explanatory drawing which shows the structure of the model of the comparative examples 5 and 6. FIG. 比較例7のモデルの構造を示す説明図。Explanatory drawing which shows the structure of the model of the comparative example 7. FIG. 実施例3の磁束密度分布のシミュレーション結果。The simulation result of magnetic flux density distribution of Example 3. 比較例1の磁束密度分布のシミュレーション結果。The simulation result of the magnetic flux density distribution of the comparative example 1. 実施例4の磁束密度分布のシミュレーション結果。The simulation result of magnetic flux density distribution of Example 4. 実施例5の磁束密度分布のシミュレーション結果。The simulation result of magnetic flux density distribution of Example 5. 実施例6の磁束密度分布のシミュレーション結果。The simulation result of the magnetic flux density distribution of Example 6. 実施例7の磁束密度分布のシミュレーション結果。The simulation result of magnetic flux density distribution of Example 7. FIG. 実施例8の磁束密度分布のシミュレーション結果。The simulation result of the magnetic flux density distribution of Example 8. 実施例9の磁束密度分布のシミュレーション結果。The simulation result of magnetic flux density distribution of Example 9. FIG. 実施例10の磁束密度分布のシミュレーション結果。The simulation result of the magnetic flux density distribution of Example 10. FIG. 実施例11の磁束密度分布のシミュレーション結果。The simulation result of the magnetic flux density distribution of Example 11.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

まず、図1〜図3に基づき、本発明の第1実施形態を説明する。   First, a first embodiment of the present invention will be described with reference to FIGS.

本実施形態に係る骨伝導デバイス1は、図1〜図3に示すように、全周にわたる周壁2cを備えた磁性材料よりなる有底の筒状本体2と、筒状本体2の上端部に渡設される振動板3と、振動板3の下面3c側に固定され、少なくとも一部が筒状本体2内部に位置するマグネット5と、筒状本体2の内側底面2bに立設され、上端面4aがマグネット5の下端面5bに隙間を介して対向するヨーク4と、筒状本体2内のヨーク4周りに配置されるボイスコイル6とより構成されている。   As shown in FIGS. 1 to 3, the bone conduction device 1 according to the present embodiment has a bottomed cylindrical main body 2 made of a magnetic material provided with a peripheral wall 2 c that extends over the entire circumference, and an upper end portion of the cylindrical main body 2. A diaphragm 3 to be provided, a magnet 5 that is fixed to the lower surface 3c side of the diaphragm 3, and at least a part thereof is positioned inside the cylindrical body 2, and an inner bottom surface 2b of the cylindrical body 2 The end surface 4a is composed of a yoke 4 facing the lower end surface 5b of the magnet 5 with a gap, and a voice coil 6 disposed around the yoke 4 in the cylindrical main body 2.

特に、筒状本体2には、マグネット側面5aに向けて内側に延び、該側面5aに対して隙間をあけて対向する磁性材料よりなる近接部8が設けられている。マグネット5の上面側からの磁束は、その大部分が近接部8を通じて筒状本体2に効率よく導かれ、外部への磁気漏れも極めて少なく、効率的な磁気回路が形成される。これにより、デバイス全体のコンパクト化及び出力向上が可能な構造とされている。   In particular, the cylindrical body 2 is provided with a proximity portion 8 made of a magnetic material that extends inward toward the magnet side surface 5a and faces the side surface 5a with a gap. Most of the magnetic flux from the upper surface side of the magnet 5 is efficiently guided to the cylindrical main body 2 through the proximity portion 8, and there is very little magnetic leakage to the outside, so that an efficient magnetic circuit is formed. As a result, the entire device can be made compact and the output can be improved.

筒状本体2は、ヨーク4、マグネット5及びボイスコイル6を内側に配する有底のケースである。本例では磁性材料で形成される内側筒状部20と非磁性材料で形成される外側被覆部21とより構成され、内側筒状部20の上端内側に近接部8が設けられている。非磁性体の外側被覆部21には上端に振動板3を固定するための固定部23が形成されている。他方、磁性体の内側筒状部20はそのような複雑構造を有しない周方向に均一な形状とされ、マグネット5からの磁束が乱されることなく内側筒状部20を通じて均一に効率よく導かれるように構成されている。   The cylindrical main body 2 is a bottomed case in which a yoke 4, a magnet 5 and a voice coil 6 are arranged on the inner side. In this example, it is comprised from the inner side cylindrical part 20 formed with a magnetic material, and the outer side coating | coated part 21 formed with a nonmagnetic material, and the proximity | contact part 8 is provided inside the upper end of the inner cylindrical part 20. FIG. The non-magnetic outer covering portion 21 is formed with a fixing portion 23 for fixing the diaphragm 3 at the upper end. On the other hand, the inner cylindrical portion 20 made of a magnetic material has a uniform shape in the circumferential direction without such a complicated structure, and the magnetic flux from the magnet 5 is uniformly and efficiently guided through the inner cylindrical portion 20 without being disturbed. It is configured to be.

内側筒状部20は、具体的には筒状本体2の周壁2cの一部を為す全周にわたる周壁24とその上端に内側に向けて開口を塞ぐように設けられる近接部8としての環状部材27と底壁25とを備えた有底の筒状体である。周壁24及び底壁25は、磁性体金属、例えばSUS430のステンレス材をプレス加工等して構成されている。環状部材27は、同じくSUS430のステンレス材等より構成される板状の部材であり、周壁24の上端内壁側に組み付けられている。   Specifically, the inner cylindrical portion 20 is an annular member as the proximity portion 8 provided so as to close the opening toward the inside at the upper end of the peripheral wall 24 that forms a part of the peripheral wall 2c of the cylindrical main body 2 and the entire periphery thereof. 27 is a bottomed cylindrical body provided with 27 and a bottom wall 25. The peripheral wall 24 and the bottom wall 25 are configured by pressing a magnetic metal, for example, a stainless material of SUS430. The annular member 27 is a plate-like member that is similarly made of a stainless material such as SUS430, and is assembled to the upper end inner wall side of the peripheral wall 24.

具体的には、周壁24の上端内面側に切欠き段部24cを形成し、該切欠き段部24cに環状部材27が圧入されている。このような圧入以外の組み付け構造でも勿論よい。また近接部8として本例のように周壁24と別体の環状部材27を組み付けるのではなく、周壁24の上側領域を内側に屈曲させて構成したものでもよい。また、後述の第3実施形態のように、周壁24の途中部内側に近接部8を設けたものでもよい。   Specifically, a notch step 24c is formed on the inner surface of the upper end of the peripheral wall 24, and an annular member 27 is press-fitted into the notch step 24c. Of course, an assembly structure other than such press fitting may be used. Further, the proximity portion 8 may be configured by bending the upper region of the peripheral wall 24 inward rather than assembling the annular member 27 separately from the peripheral wall 24 as in this example. Moreover, the thing which provided the proximity | contact part 8 inside the middle part of the surrounding wall 24 like 3rd Embodiment mentioned later may be used.

周壁24は全周にわたり略均一な高さ(上下方向の高さ)、厚み(径方向の厚み)を有しており、上側から見た平面視で角のない連続した曲面、特に略円形(本例では真円形)の円筒体とされている。すなわち周壁24の全面に切欠きや穴がなく全周にわたって均一厚み、均一高さとされている。また、近接部8(環状部材27)についても、同じく全周にわたり略均一な厚み(上下方向の厚み)、略均一な突出長さ(径方向の長さ)に設定され、平面視真円形のマグネット5の側面5aと近接部8の内側端部8a(突出先端部)との隙間は、全周にわたって均一となるように構成されている。   The peripheral wall 24 has a substantially uniform height (height in the vertical direction) and thickness (a thickness in the radial direction) over the entire circumference, and is a continuous curved surface having no corners when viewed from above, particularly a substantially circular shape (particularly, In this example, it is a perfect circular cylinder. That is, the entire surface of the peripheral wall 24 has no notches and holes, and has a uniform thickness and a uniform height over the entire circumference. Further, the proximity portion 8 (annular member 27) is also set to a substantially uniform thickness (vertical thickness) and a substantially uniform protruding length (radial length) over the entire circumference, and has a true circular shape in plan view. The gap between the side surface 5a of the magnet 5 and the inner end portion 8a (protruding tip portion) of the proximity portion 8 is configured to be uniform over the entire circumference.

近接部8の突出長さは、マグネット5の形状、寸法に応じて、前記のごとく均一隙間となるように設定される。このように均一隙間とすることで近接部8及び周壁24により周方向に均一で効率的な磁気回路が形成される。近接部8が本例のように全周に連続した構造ではなく複数の近接部8を設けたものでは、各近接部8の内側端部8a(突出先端)と対向するマグネット側面5aとの隙間がすべて等しくなるように設定すればよい。   The protruding length of the proximity portion 8 is set so as to be a uniform gap as described above according to the shape and dimensions of the magnet 5. By forming the uniform gap in this way, a uniform and efficient magnetic circuit is formed in the circumferential direction by the proximity portion 8 and the peripheral wall 24. In the case where a plurality of proximity portions 8 are provided instead of a structure in which the proximity portions 8 are continuous over the entire circumference as in this example, a gap between the inner end portion 8a (protruding tip) of each proximity portion 8 and the magnet side surface 5a facing each other. Should be set so that they are all equal.

近接部8の内側端部8aは、マグネット5の側面5aの下端よりも上側の領域に隙間を介して対向している。これによりマグネット5の下面との間の磁力線のショートカットが防止される。図2では双方の下端位置が同じ高さ位置に描かれているが、振動により互いに軸方向に相対移動するストロークの範囲内において少なくとも近接部内側端部8aの下端位置がマグネット側面5aの下端よりも上側の位置に維持されることが好ましい。   The inner end portion 8a of the proximity portion 8 is opposed to a region above the lower end of the side surface 5a of the magnet 5 via a gap. Thereby, the shortcut of the magnetic force line between the lower surfaces of the magnet 5 is prevented. In FIG. 2, both lower end positions are drawn at the same height position, but at least the lower end position of the proximal inner end 8 a is at least lower than the lower end of the magnet side surface 5 a within the range of the stroke that moves relative to each other in the axial direction by vibration. Is also preferably maintained in the upper position.

尚、周壁24及び近接部8は本例のように平面視真円形のものに限定されず、略楕円形のものや、均一性は低下するが四角形その他の多角形や異形のものでも勿論よく、一部に切欠きや穴があってもよい。また、いずれも全周に存在する必要はなく、底壁25から周方向に沿って断続的に立ち上がる複数の周壁を設けたものや、周壁から内側に突出する複数の近接部を設けたものでもよい。このように周壁や近接部を連続的ではなく複数断続的に設ける場合には、均等な間隔で設けることが好ましい。   Note that the peripheral wall 24 and the adjacent portion 8 are not limited to a circular shape in plan view as in this example, but may be of an approximately elliptic shape or a rectangular shape or other polygonal shape or irregular shape although the uniformity is reduced. , Some may have notches and holes. In addition, it is not necessary for all of them to be present on the entire circumference, and those provided with a plurality of peripheral walls that rise intermittently from the bottom wall 25 in the circumferential direction, or those provided with a plurality of proximity portions protruding inward from the peripheral wall. Good. As described above, when a plurality of peripheral walls and adjacent portions are provided intermittently rather than continuously, it is preferable to provide them at equal intervals.

内側筒状部20の底壁25中央部には、磁性材料よりなるヨーク4を固定するための貫通した取付穴20cが穿設されている。そして、略円柱状のヨーク4が前記取付穴20cに底部をカシメ止めして固定されている。勿論、溶接固定などその他の固定方法によりヨーク4を底壁25に立設してもよい。また、本例のように別途形成したヨーク4を固定する代わりに、後述する第2実施形態と同様、削り出しや鋳造によって筒状本体2(内側筒状部20)と一体的に形成したものでもよい。   A through hole 20c is formed in the center of the bottom wall 25 of the inner cylindrical portion 20 so as to fix the yoke 4 made of a magnetic material. A substantially cylindrical yoke 4 is fixed to the mounting hole 20c by caulking the bottom. Of course, the yoke 4 may be erected on the bottom wall 25 by other fixing methods such as welding. Further, instead of fixing the separately formed yoke 4 as in this example, the cylindrical body 2 (inner cylindrical portion 20) is integrally formed by machining or casting as in the second embodiment described later. But you can.

外側被覆部21は、内側筒状部20の外面側に設けられ、且つ振動板3を固定する固定部23を備える。具体的には、インサート成形により内側筒状部20の外面側に合成樹脂材料を用いて成形される同じく有底の筒状部であり、上端の外周部に前記固定部23として複数のフランジが突設され、該フランジ(固定部23)の上面間に振動板3が架設される。   The outer covering portion 21 includes a fixing portion 23 that is provided on the outer surface side of the inner cylindrical portion 20 and fixes the diaphragm 3. Specifically, it is a similarly bottomed tubular part formed by synthetic resin material on the outer surface side of the inner tubular part 20 by insert molding, and a plurality of flanges are provided as the fixing parts 23 on the outer peripheral part of the upper end. The diaphragm 3 is installed between the upper surfaces of the flanges (fixing portions 23).

外側被覆部21の成形は内側筒状部20の底面にあらかじめヨーク4を固定した状態で行われる。したがって内側筒状部20の取付穴20cから下方に突出しているヨーク4の固定部分(カシメ部分)も外側被覆部21を構成する合成樹脂に埋められ、ヨーク4の組み付け強度が向上する。   The outer covering portion 21 is formed in a state where the yoke 4 is fixed to the bottom surface of the inner cylindrical portion 20 in advance. Accordingly, the fixed portion (crimped portion) of the yoke 4 protruding downward from the mounting hole 20c of the inner cylindrical portion 20 is also buried in the synthetic resin constituting the outer covering portion 21, and the assembly strength of the yoke 4 is improved.

本例では内側筒状部20と同様、周壁2cの一部を為す全周にわたる周壁26を有する有底の筒状である。ただし、このような構造以外に、例えばフランジ(固定部23)の箇所のみ壁を有するものや、フランジ(固定部23)が形成される上端側のみに筒状に被覆されているものでもよい。外側被覆部21は磁気回路を構成しないので、内側筒状部20の周壁24のように周方向に均等な周壁としなくても磁気漏れの低減や効率化に殆ど影響しないためである。   In this example, similarly to the inner cylindrical portion 20, it is a bottomed cylindrical shape having a peripheral wall 26 that forms a part of the peripheral wall 2 c and extends around the entire circumference. However, other than such a structure, for example, one having a wall only at the flange (fixed portion 23) or one covered only in the upper end side where the flange (fixed portion 23) is formed may be used. This is because the outer covering portion 21 does not constitute a magnetic circuit, and therefore, even if the outer peripheral portion 21 does not have a uniform peripheral wall in the circumferential direction like the peripheral wall 24 of the inner cylindrical portion 20, it hardly affects the reduction or efficiency of magnetic leakage.

また、インサート成形により成形されるものに限らず、例えば外側被覆部21として別途合成樹脂により筒状に成形した部材を内側筒状部20の外側に組み付けて構成することもできる。さらに、後述の第3実施形態のように振動板3の取り付け構造を変更し、外側被覆部を省略することもできる。   Moreover, it is not restricted to what is shape | molded by insert molding, For example, the member separately shape | molded by the synthetic resin as the outer coating | coated part 21 at the cylindrical shape can also be assembled | attached and comprised to the outer side of the inner cylindrical part 20. Furthermore, the mounting structure of the diaphragm 3 can be changed as in a third embodiment described later, and the outer covering portion can be omitted.

振動板3は、筒状本体2の上端部、具体的には上記外側被覆部21のフランジ(固定部23)の上面に、取付ネジ7により固定される環状の枠部30と、枠部30の内側に隙間s1を介して配される振動部31と、該振動部31を枠部30に対して軸方向(筒状本体2の軸方向)に相対移動可能に連結している連結部32とより構成されている。枠部30が固定される固定部23の上面の高さは、内側筒状部20の上端面22と同じか、より高い位置となるように設定されており、したがって振動板3は略フラットでよい。   The diaphragm 3 includes an annular frame portion 30 fixed to the upper end portion of the cylindrical main body 2, specifically, the upper surface of the flange (fixing portion 23) of the outer covering portion 21, and the frame portion 30. And a connecting portion 32 for connecting the vibrating portion 31 to the frame portion 30 so as to be movable relative to the frame portion 30 in the axial direction (the axial direction of the cylindrical main body 2). And is made up of. The height of the upper surface of the fixing portion 23 to which the frame portion 30 is fixed is set to be the same as or higher than the upper end surface 22 of the inner cylindrical portion 20, and therefore the diaphragm 3 is substantially flat. Good.

振動板3は非磁性体、例えばSUS304のステンレスやカーボン材などより構成されている。したがって、振動板3は磁気回路を構成しないが、振動板3の下面に固定されるマグネット5は磁性体の内側筒状部20の近接部8に囲まれており、マグネット5からの磁束は近接部8に効率よく捕捉されるのである。   The diaphragm 3 is made of a non-magnetic material such as SUS304 stainless steel or carbon material. Therefore, although the diaphragm 3 does not constitute a magnetic circuit, the magnet 5 fixed to the lower surface of the diaphragm 3 is surrounded by the proximity portion 8 of the inner cylindrical portion 20 of the magnetic material, and the magnetic flux from the magnet 5 is in proximity. The part 8 is captured efficiently.

勿論、振動板3は内側筒状部20と同じようにSUS430のような磁性体材料で構成してもよい。この場合には振動板3が磁気回路を構成するため、本例のように振動部31の外周縁の形状を内側筒状部20の周壁24の上端外側縁部に沿った形状で、当該外側縁部よりも内側となるように設定することで、外周縁31aから内側筒状部20の周壁24にスムーズに磁束の流れが形成され、内側筒状部20よりも外側に磁気が漏れてしまうことを抑制することができる。ただし、SUS304等の非磁性ステンレス材やカーボン材に比べて振動材としての機械的特性(バネ特性)が低下してしまう。   Of course, the diaphragm 3 may be made of a magnetic material such as SUS430 in the same manner as the inner cylindrical portion 20. In this case, since the diaphragm 3 constitutes a magnetic circuit, the outer peripheral edge of the vibrating portion 31 is shaped along the upper outer edge of the peripheral wall 24 of the inner cylindrical portion 20 as in this example, By setting the inner side of the edge, the magnetic flux smoothly flows from the outer peripheral edge 31a to the peripheral wall 24 of the inner cylindrical part 20, and the magnetism leaks to the outer side of the inner cylindrical part 20. This can be suppressed. However, mechanical characteristics (spring characteristics) as a vibration material are deteriorated as compared with nonmagnetic stainless steel materials such as SUS304 and carbon materials.

振動部31には、図示しない振動伝達部材を取り付ける取付穴31bが設けられており、骨伝導スピーカとして利用する場合は振動部31の振動が振動伝達部材を通じて人体の頭皮等に伝達される。それにより人体の頭蓋骨内の鼓膜や耳小骨に異常のある難聴者でも、蝸牛や聴覚神経が正常であれば確実に音を聞くことが出来る。   The vibration part 31 is provided with a mounting hole 31b for attaching a vibration transmission member (not shown). When used as a bone conduction speaker, the vibration of the vibration part 31 is transmitted to the scalp of the human body through the vibration transmission member. As a result, even a hearing-impaired person who has an abnormality in the tympanic membrane or ear ossicles in the skull of the human body can reliably hear the sound if the cochlea and the auditory nerve are normal.

マグネット5は、内側筒状部20の内周面と略相似する平面視略円形(真円)の円柱形状であり、振動板3の下面3cのうち、内側筒状部20と略同軸になる位置(振動部31の略中央位置)に固定されるとともに、下面側がヨーク4の上端面4aに隙間を介して対向するように配置されている。これにより、磁気回路を構成するマグネット5、ヨーク4、内側筒状部20がすべて同軸状に配置され、磁束の流れが均一となる効率のよい磁気回路が形成される。   The magnet 5 has a substantially circular (perfect circle) cylindrical shape in plan view that is substantially similar to the inner peripheral surface of the inner cylindrical portion 20, and is substantially coaxial with the inner cylindrical portion 20 in the lower surface 3 c of the diaphragm 3. It is fixed at a position (substantially the center position of the vibration part 31), and the lower surface side is disposed so as to face the upper end surface 4a of the yoke 4 via a gap. Thereby, the magnet 5, the yoke 4, and the inner cylindrical portion 20 constituting the magnetic circuit are all arranged coaxially, and an efficient magnetic circuit in which the flow of magnetic flux is uniform is formed.

マグネット5の形状は、このような円柱形状以外に三角柱形状、五角柱形状その他の種々なる形状が採用できる。マグネット5の軸方向の寸法(厚さ)が薄いと近接部8を通じて磁束がループしてしまい効率が低下するため、好ましくは少なくとも近接部8の同方向の寸法(厚さ)よりも厚い寸法とされる。   As the shape of the magnet 5, a triangular prism shape, a pentagonal prism shape, and other various shapes can be adopted in addition to such a cylindrical shape. If the dimension (thickness) in the axial direction of the magnet 5 is thin, the magnetic flux loops through the proximity part 8 and the efficiency is lowered. Therefore, the dimension is preferably at least larger than the dimension (thickness) in the same direction of the proximity part 8. Is done.

ボイスコイル6は、ヨーク4の外周面上、又は筒状本体2の内側筒状部20の底面上に固定されている。ボイスコイル6のコイル線の両端部は、筒状本体2の底面の貫通孔2dを通じて外部に引き出され、外部からボイスコイル6に対してサウンド信号等が入力される。   The voice coil 6 is fixed on the outer peripheral surface of the yoke 4 or on the bottom surface of the inner cylindrical portion 20 of the cylindrical main body 2. Both end portions of the coil wire of the voice coil 6 are drawn to the outside through the through hole 2 d on the bottom surface of the cylindrical body 2, and a sound signal or the like is input to the voice coil 6 from the outside.

次に、図4〜図8に基づき、本発明の第2実施形態を説明する。   Next, a second embodiment of the present invention will be described based on FIGS.

本実施形態の骨伝導デバイス1は、図4〜図6に示すように、外側被覆部21が周壁24の外側にのみ被覆されており、底壁25への被覆は省略され、該底壁25の外面(下面)が露出している。内側筒状部20をインサートして合成樹脂材により成形される点は上記第1実施形態と同じである。   As shown in FIGS. 4 to 6, in the bone conduction device 1 of the present embodiment, the outer covering portion 21 is covered only on the outer side of the peripheral wall 24, and the covering of the bottom wall 25 is omitted. The outer surface (lower surface) of is exposed. The point which inserts the inner cylindrical part 20 and is shape | molded by a synthetic resin material is the same as the said 1st Embodiment.

第1実施形態ではヨーク4をカシメ固定し、底壁25を被覆する外側被覆部21によってヨークの組み付け強度を向上させる意味があったが、本例ではヨーク4が組み付けではなく、内側筒状部20の底壁25中央部に削り出しや鋳造によって一体的に形成されている。したがって、外側被覆部21で底壁25を被覆しなくても強度面で問題は生じなく、材料の削減、軽量化が可能な構造とされている。勿論、インサート成形により成形されるものに限らず、例えば別途合成樹脂により筒状に成形した部材を周壁24の外側に組み付けて構成することもできる。   In the first embodiment, the yoke 4 is fixed by caulking, and the outer covering portion 21 covering the bottom wall 25 has the meaning of improving the assembling strength of the yoke. However, in this example, the yoke 4 is not assembled, but the inner cylindrical portion. It is integrally formed by cutting or casting at the center of the bottom wall 25 of 20. Therefore, even if the bottom wall 25 is not covered with the outer covering portion 21, there is no problem in terms of strength, and the structure can be reduced in material and weight. Of course, it is not limited to the one formed by insert molding, and for example, a member that is separately molded into a cylindrical shape by a synthetic resin may be assembled to the outside of the peripheral wall 24.

また、振動板3は、第1実施形態では振動部31を真円形としているが、本例では連結部32、32を結ぶ方向に長く、少なくともマグネット5の外径以上の幅を持った異形形状とされている。そして、枠部30も取付ネジ7で固定される部位を除いてこれにほぼ沿った形状とされ、さらに、外側被覆部21の周壁26も平面視で枠部30の外形にほぼ沿った形状とされている。このように振動部31を平面視細長く構成し、枠部30及び外側被覆部21をこれに対応する必要最小の構造とすることで、ドライバ全体を小型化できるとともに、振動部31は連結部32、32を結ぶ方向の長さが維持されるので良好な振動特性も維持できる構造となる。   Further, in the first embodiment, the diaphragm 3 has the vibrating portion 31 in a perfect circle, but in this example, the diaphragm 3 is long in the direction connecting the connecting portions 32 and 32 and has a deformed shape having a width equal to or larger than the outer diameter of the magnet 5. It is said that. The frame 30 also has a shape substantially along this except for the portion fixed by the mounting screw 7, and the peripheral wall 26 of the outer covering portion 21 also has a shape substantially along the outline of the frame 30 in plan view. Has been. In this way, the vibrating part 31 is configured to be elongated in plan view, and the frame part 30 and the outer covering part 21 have the minimum necessary structure corresponding thereto, whereby the entire driver can be reduced in size, and the vibrating part 31 is connected to the connecting part 32. , 32 is maintained in the direction of linking, so that a good vibration characteristic can be maintained.

また、振動部31下面へのマグネット5の取り付け構造は、本例では合成樹脂材によりマグネット5を側面から保持して振動部31下面に取り付けるホルダー部9が成形されている。より具体的には、振動部31のマグネット5が取り付けられる領域周辺に上下貫通する連通穴31cを形成しておき、振動板3とマグネット5を金型内にインサートして合成樹脂により成形される。ホルダー部9は連通穴31cを通じて振動部31の上下にわたって一体成形されており、マグネット5を振動部31の下面側に強固に保持している。   In addition, in this example, the attachment structure of the magnet 5 to the lower surface of the vibration portion 31 is formed by holding the magnet 5 from the side surface by a synthetic resin material and attaching the holder portion 9 to the lower surface of the vibration portion 31. More specifically, a communication hole 31c that penetrates up and down is formed around the region of the vibration portion 31 where the magnet 5 is attached, and the vibration plate 3 and the magnet 5 are inserted into a mold and molded with synthetic resin. . The holder portion 9 is integrally formed over and below the vibration portion 31 through the communication hole 31 c, and firmly holds the magnet 5 on the lower surface side of the vibration portion 31.

平面視真円形のマグネット5の側面5aと近接部8の内側端部8a(突出先端部)との隙間は、全周にわたって均一となるように構成されているが、本例では間にマグネット5を保持している後述の合成樹脂製のホルダー部9が介在することとなる。   The gap between the side surface 5a of the magnet 5 that is truly circular in plan view and the inner end 8a (protruding tip) of the proximity portion 8 is configured to be uniform over the entire circumference. The holder 9 made of synthetic resin, which will be described later, is held.

近接部8の突出長さは、あくまでもマグネット5の側面5aの位置から均一の距離となるように設定される。このように均一な距離とすることで、ホルダー部9の形状にかかわらず、近接部8及び周壁24により周方向に均一で効率的な磁気回路が形成される。複数の近接部8を設けたものでは、各近接部8の内側端部8a(突出先端)と対向するマグネット側面5aとの距離がすべて等しくなるように設定すればよい。   The protruding length of the proximity portion 8 is set to be a uniform distance from the position of the side surface 5a of the magnet 5 to the last. By setting the uniform distance in this way, a uniform and efficient magnetic circuit is formed in the circumferential direction by the proximity portion 8 and the peripheral wall 24 regardless of the shape of the holder portion 9. In the case where a plurality of proximity portions 8 are provided, the distance between the inner end portion 8a (protruding tip) of each proximity portion 8 and the magnet side surface 5a facing each other may be set equal.

また、マグネット5は下面側が縮径した円錐台形状とされている。したがって、下面側の近接部8との距離が広がり、磁場のショートカットが起きにくい構造とされている。同じようにショートカットを防止するための構造としては、図7に示すように、近接部8のマグネット側面5aに対向する内側端部の下側部位に切欠き部8bを設け、マグネット5の下面との距離を広げるような構成も好ましい。このような切欠き部8bを設けるとともにマグネット5の下面側を縮径すれば更に確実にショートカットを防止することができる。   The magnet 5 has a truncated cone shape whose diameter is reduced on the lower surface side. Therefore, the distance to the proximity portion 8 on the lower surface side is widened, and a structure in which a shortcut of the magnetic field does not easily occur. Similarly, as a structure for preventing a shortcut, as shown in FIG. 7, a notch portion 8 b is provided at a lower portion of the inner end portion facing the magnet side surface 5 a of the proximity portion 8. It is also preferable to increase the distance. If such a notch 8b is provided and the lower surface side of the magnet 5 is reduced in diameter, a shortcut can be prevented more reliably.

また、図8に示すようにマグネット5上面に電磁鋼板41を設けることがこのましい実施形態である。すなわちマグネット5と振動板の振動部31との間に電磁鋼板41が介装される形態である。これにより、マグネット5上面側の磁束が電磁鋼板41を通じて近接部8に効率よく導かれ、外部への磁気漏れもより少なくなり、効率的な磁気回路が形成される。   Moreover, as shown in FIG. 8, it is a preferable embodiment to provide an electromagnetic steel plate 41 on the upper surface of the magnet 5. That is, the electromagnetic steel plate 41 is interposed between the magnet 5 and the vibrating portion 31 of the diaphragm. As a result, the magnetic flux on the upper surface side of the magnet 5 is efficiently guided to the proximity portion 8 through the electromagnetic steel plate 41, the magnetic leakage to the outside is further reduced, and an efficient magnetic circuit is formed.

その他の構造については、基本的には上記第1実施形態と同様であり、同一構造については同一符号を付してその説明は省略する。   The other structures are basically the same as those in the first embodiment, and the same structures are denoted by the same reference numerals and description thereof is omitted.

次に、図9〜図11に基づき、本発明の第3実施形態を説明する。   Next, a third embodiment of the present invention will be described with reference to FIGS.

本実施形態の骨伝導ドライバ1は、外側被覆部21を省略するとともに、振動板3を内側筒状部20の周壁内側に支持させたものである。具体的には、内側筒状部20の周壁24上端部内面に凹溝24dが設けられ、該凹溝24dに振動板3の枠部30が嵌め込まれることで振動板3が支持されている。また、周壁24内面の凹溝24dより下方の位置には、近接部8としての環状部材27が圧入により取り付けられる切欠き段部24cが設けられている。   In the bone conduction driver 1 of the present embodiment, the outer covering portion 21 is omitted, and the diaphragm 3 is supported on the inner peripheral wall of the inner cylindrical portion 20. Specifically, a concave groove 24d is provided on the inner surface of the upper end of the peripheral wall 24 of the inner cylindrical portion 20, and the diaphragm 3 is supported by fitting the frame portion 30 of the diaphragm 3 into the concave groove 24d. Further, at a position below the concave groove 24d on the inner surface of the peripheral wall 24, a notch step portion 24c to which the annular member 27 as the proximity portion 8 is attached by press fitting is provided.

このように本実施形態では外側被覆部21を省略し、振動板3を筒状本体2に取り付けるための取付ネジ7も省略できるので、材料コストを低減でき、軽量化、小型化が可能になるとともに組み付けも容易であり、製造コストを低減することができる。内側筒状部20は、ヨーク4と一体的に形成される底壁25と筒状の周壁24とがそれぞれ別体で形成され、互いに組み付けられている。   As described above, in this embodiment, the outer covering portion 21 is omitted, and the mounting screw 7 for attaching the diaphragm 3 to the cylindrical main body 2 can also be omitted. Therefore, the material cost can be reduced, and the weight and size can be reduced. At the same time, assembly is easy, and the manufacturing cost can be reduced. In the inner cylindrical portion 20, a bottom wall 25 and a cylindrical peripheral wall 24 that are formed integrally with the yoke 4 are formed separately from each other and assembled to each other.

底壁25のヨーク4周囲の上面には、ボイスコイル6を載置する合成樹脂製の環状板28が介装されている。具体的にはヨーク4を有する底壁25と周壁24は別体で形成され、周壁24の端部に底壁25を圧入して嵌合させる際にその間に環状板28が装着される。環状板28は回路基板であり、ボイスコイル6はこの環状の回路基板に実装されることで生産性を高めることが可能とされている。すなわちボイスコイル6の末端はこの環状板28の回路パターンに直接接続されている。   A synthetic resin annular plate 28 on which the voice coil 6 is placed is interposed on the upper surface of the bottom wall 25 around the yoke 4. Specifically, the bottom wall 25 having the yoke 4 and the peripheral wall 24 are formed separately, and when the bottom wall 25 is press-fitted into the end of the peripheral wall 24 and fitted, the annular plate 28 is attached therebetween. The annular plate 28 is a circuit board, and the voice coil 6 is mounted on the annular circuit board so that productivity can be improved. That is, the end of the voice coil 6 is directly connected to the circuit pattern of the annular plate 28.

また振動板3は、連結部32は中心側の振動部から外側の枠部30に向けて渦巻き状に周方向に斜めに湾曲して延設されている。これにより連結部32の長さが確保され、振動ストロークが確保でき、小型化しても振動能力を維持することができるように構成されている。   In the diaphragm 3, the connecting portion 32 extends in a spiral manner from the center-side vibrating portion toward the outer frame portion 30 in an oblique manner in the circumferential direction. Thereby, the length of the connecting portion 32 is ensured, the vibration stroke can be secured, and the vibration capacity can be maintained even if the size is reduced.

その他の構造については、基本的には上記第1実施形態と同様であり、同一構造については同一符号を付してその説明は省略する。   The other structures are basically the same as those in the first embodiment, and the same structures are denoted by the same reference numerals and description thereof is omitted.

次に、図12及び図13に基づき、本発明の第4実施形態を説明する。   Next, based on FIG.12 and FIG.13, 4th Embodiment of this invention is described.

本実施形態の骨伝導ドライバ1は、第2実施形態の骨伝導ドライバ1におけるヨーク4を省略し、代わりにマグネット5を下方に長く構成したものであり、マグネット下端面5bは筒状本体2の底面2b(内側筒状部20の底壁25)に隙間を介して対向し、マグネット下端面5bと近接部8の内側端部8aとの磁束のショートカットの心配もないことからマグネット5の形状は円錐形ではなく円柱形状とされている。   The bone conduction driver 1 according to the present embodiment is configured by omitting the yoke 4 in the bone conduction driver 1 according to the second embodiment, and instead configuring the magnet 5 to be long downward, and the magnet lower end surface 5b is formed on the cylindrical body 2. The shape of the magnet 5 is such that it faces the bottom surface 2b (the bottom wall 25 of the inner cylindrical portion 20) via a gap, and there is no worry of a magnetic flux shortcut between the magnet lower end surface 5b and the inner end portion 8a of the proximity portion 8. It is not a conical shape but a cylindrical shape.

ボイスコイル6はマグネット5の周りに配置されている。本例ではヨーク付きに比べて出力は落ちるがさらなる小型化(薄型化)が可能となる構造である。また、図13に示すように、内側筒状部20の底壁25からはヨーク4を省略しつつ、マグネット5と振動板3の振動部31との間にヨーク4Aを介装したものも好ましい実施形態である。これによれば、図12のものに比べて、マグネット5上面側の磁束をより効率よく近接部8に導き、外部への磁気漏れをより少なくして効率的な磁気回路を形成することができる。その他は、基本的には上記第2実施形態と同様であり、同一構造については同一符号を付してその説明は省略する。   The voice coil 6 is disposed around the magnet 5. In this example, the output is lower than that with a yoke, but the structure can be further downsized (thinned). Further, as shown in FIG. 13, it is also preferable that the yoke 4A is interposed between the magnet 5 and the vibration part 31 of the diaphragm 3 while omitting the yoke 4 from the bottom wall 25 of the inner cylindrical part 20. It is an embodiment. According to this, compared with the thing of FIG. 12, the magnetic flux of the magnet 5 upper surface side can be guide | induced to the proximity | contact part 8 more efficiently, magnetic leakage to the outside can be decreased, and an efficient magnetic circuit can be formed. . Others are basically the same as in the second embodiment, and the same reference numerals are given to the same structures, and the description thereof is omitted.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

以下、本発明の実施例1〜9、比較例1〜7の各モデルについて、音圧レベル、磁束密度分布をコンピュータシミュレーションで計算した解析結果について説明する。   Hereinafter, analysis results obtained by calculating the sound pressure level and the magnetic flux density distribution by computer simulation for each of the models of Examples 1 to 9 and Comparative Examples 1 to 7 of the present invention will be described.

(実施例1〜3、比較例1、2)
まず、上述の第1実施形態の構成に係る実施例1〜3、及びその比較例1、2の各モデルの解析結果について説明する。
(Examples 1 to 3, Comparative Examples 1 and 2)
First, analysis results of each model of Examples 1 to 3 and Comparative Examples 1 and 2 according to the configuration of the first embodiment will be described.

実施例1、2のモデルは、図1〜図3に示す構造であり、振動板を外枠の外径20mm、振動部の外径14mm、厚さ0.5mmとし、筒状本体(内側筒状部)を、外径14.5mm、高さ6.1mm、厚さ1mmのSUS430製とし、近接部の環状部材を内径8mmとし、筒状本体(外側被覆部)を、周壁、底壁の厚さが1.25mmのABS樹脂製とし、ヨークを外径4.5mm、カシメ部を除く高さが3.35mmのSS400製とし、マグネットを外径が7mm、厚さが2mmのN−35材とし、コイルを銅線とした。実施例1は、振動板の材質をSUS304(バネ鋼)製とし、実施例2はSUS430製とした。   The models of Examples 1 and 2 have the structure shown in FIGS. 1 to 3, and the diaphragm has an outer diameter of 20 mm for the outer frame, an outer diameter of the vibrating portion of 14 mm, and a thickness of 0.5 mm. ) Made of SUS430 having an outer diameter of 14.5 mm, a height of 6.1 mm, and a thickness of 1 mm, an annular member in the proximity portion having an inner diameter of 8 mm, and a cylindrical main body (outer covering portion) of the peripheral wall and the bottom wall It is made of ABS resin with a thickness of 1.25 mm, the yoke is made of SS400 with an outer diameter of 4.5 mm, the height excluding caulking part is 3.35 mm, and the magnet is N-35 with an outer diameter of 7 mm and a thickness of 2 mm. The material was copper and the coil was copper wire. In Example 1, the material of the diaphragm was made of SUS304 (spring steel), and Example 2 was made of SUS430.

実施例3のモデルは、図14に示す構造であり、上記実施例2のモデルのコイルとマグネットの隙間を1mm減らし、外側被覆部の底部の厚みを0.5mm減らし、全体としての高さを1.5mm減らしたモデルである。その他の寸法、材質は実施例2のモデルと共通であり、振動板の材質はSUS430製とした。   The model of Example 3 has the structure shown in FIG. 14. The gap between the coil and magnet of the model of Example 2 is reduced by 1 mm, the thickness of the bottom of the outer cover is reduced by 0.5 mm, and the overall height is increased. This is a model reduced by 1.5 mm. Other dimensions and materials are the same as those of the model of Example 2, and the material of the diaphragm is made of SUS430.

比較例1のモデルは、図15に示す構造であり、実施例1のモデルの構造から近接部としての環状部材及びこれを取り付ける内側筒状部の切欠き段部を省略したものである。その他の構造、寸法、材質は実施例1のモデルと共通である。また、比較例2のモデルは、図16に示す構造であり、実施例3のモデルの構造から環状部材及び切欠き段部を省略したものである。その他の構造、寸法、材質は実施例3のモデルと共通である。表1に実施例1〜3、比較例1、2の各モデルを示す図、振動板の材質をまとめている。   The model of Comparative Example 1 has the structure shown in FIG. 15, in which the annular member as the proximity portion and the notch step portion of the inner cylindrical portion to which this is attached are omitted from the structure of the model of Example 1. Other structures, dimensions, and materials are the same as the model of the first embodiment. Moreover, the model of the comparative example 2 is a structure shown in FIG. 16, and an annular member and a notch step part are abbreviate | omitted from the structure of the model of Example 3. FIG. Other structures, dimensions, and materials are the same as the model of the third embodiment. Table 1 summarizes the diagrams showing the models of Examples 1 to 3 and Comparative Examples 1 and 2 and the material of the diaphragm.

実施例1〜3、比較例1、2の各モデルの変位量、音圧レベルの解析結果は表2、表3のとおりである。尚、これらの計算は、株式会社JSOL製のシミュレーションソフト「JMAG」を用いた。具体的には、磁場解析シミュレーションプログラムで各モデルの推力が算出され、この算出された推力を各モデルの振動板に加えた場合の変位量が構造解析シミュレーションで求められる。音圧レベル(SPL)は、算出された変位量を下記式1の振幅値にして音圧に変換することにより求める。   Tables 2 and 3 show analysis results of displacement amounts and sound pressure levels of the models of Examples 1 to 3 and Comparative Examples 1 and 2, respectively. For these calculations, simulation software “JMAG” manufactured by JSOL Corporation was used. Specifically, the thrust of each model is calculated by the magnetic field analysis simulation program, and the displacement amount when the calculated thrust is applied to the diaphragm of each model is obtained by the structural analysis simulation. The sound pressure level (SPL) is determined by converting the calculated displacement amount into an amplitude value of the following equation 1 and converting it into sound pressure.

式1の音圧(P、Pref)は、振幅値として記載されている。音圧レベルを算出するため括弧内で実効値に変換している。各節点の音圧Pは、音圧条件に設定された面の変位速度を用いて算出される。本解析においては、モデルのすべての表面が音圧条件に設定された面である。   The sound pressure (P, Pref) in Equation 1 is described as an amplitude value. In order to calculate the sound pressure level, it is converted into an effective value in parentheses. The sound pressure P at each node is calculated using the displacement speed of the surface set in the sound pressure condition. In this analysis, all surfaces of the model are surfaces set to sound pressure conditions.

表2、表3から分かるように、近接部が無い骨伝導ドライバである比較例1に比べ、近接部を設けた点のみ異なる実施例1のモデルは、すべての周波数で音圧レベルが増大している。同じく近接部が無いモデルである比較例2に比べ、近接部を設けた点のみ異なる実施例3のモデルは、すべての周波数の音圧レベルが増大している。これは本発明に係る実施例1、実施例3では、振動板の下面に設けたマグネットの磁束を近接部が効率よく捕捉し、効率のよい磁気回路が形成されているために、音圧レベルがすべての周波数で増大したと考えられる。   As can be seen from Tables 2 and 3, the model of Example 1, which differs from Comparative Example 1 which is a bone conduction driver without a proximity part, only in that the proximity part is provided, increases the sound pressure level at all frequencies. ing. Similarly, in comparison with Comparative Example 2 which is a model having no proximity portion, the model of Example 3 which is different only in that the proximity portion is provided has increased sound pressure levels at all frequencies. In the first and third embodiments according to the present invention, the proximity portion efficiently captures the magnetic flux of the magnet provided on the lower surface of the diaphragm, and an efficient magnetic circuit is formed. Seems to have increased at all frequencies.

また、振動板の材質のみ異なる実施例1と実施例2の比較において、比較例1との比較ほどの差はないものの、実施例2は実施例1に比べてすべての周波数で音圧レベルが増大しており、振動板を磁性体としたことによる効果と考えられる。ただし、振動板が磁性体である比較例2よりも振動板が非磁性体である実施例1はすべての周波数で音圧レベルが増大しており、振動板を磁性体とする効果よりも近接部による効果が顕著である。   Further, in the comparison between Example 1 and Example 2 in which only the material of the diaphragm is different, there is no difference as compared with Comparative Example 1, but Example 2 has sound pressure levels at all frequencies compared to Example 1. This is considered to be the effect of using the diaphragm as a magnetic material. However, the sound pressure level in Example 1 in which the diaphragm is a non-magnetic material is higher than that in Comparative Example 2 in which the diaphragm is a magnetic material, and is closer than the effect of using the diaphragm as a magnetic material. The effect by the part is remarkable.

図20及び図21に、実施例3及び比較例1の各モデルの磁束密度分布の解析結果を示す。磁束密度分布の計算は、株式会社JSOL製のシミュレーションソフト「JMAG」を用いた。   20 and 21 show the analysis results of the magnetic flux density distribution of each model of Example 3 and Comparative Example 1. FIG. For the calculation of the magnetic flux density distribution, simulation software “JMAG” manufactured by JSOL Corporation was used.

図20の実施例3の磁束密度分布と図21の比較例1の磁束密度分布を比べると、実施例3ではマグネットからの磁束が内側筒状部に効率よく捉えられ、ヨークに磁束が効率よく集中しており、上記のとおり音圧レベルが伸びるという結果に結びついていることが分かる。   Compared with the magnetic flux density distribution of Example 3 in FIG. 20 and the magnetic flux density distribution of Comparative Example 1 in FIG. 21, in Example 3, the magnetic flux from the magnet is efficiently captured by the inner cylindrical portion, and the magnetic flux is efficiently in the yoke. It can be seen that the result is that the sound pressure level increases as described above.

(実施例4〜8、比較例3〜6)
次に、第2実施形態の構成に係る実施例4〜8、及びその比較例3〜6の各モデルの解析結果について説明する。
(Examples 4-8, Comparative Examples 3-6)
Next, analysis results of the models of Examples 4 to 8 and Comparative Examples 3 to 6 according to the configuration of the second embodiment will be described.

実施例4、5のモデルは、図4〜図6に示す構造であり、振動板を、外枠の最大径が21.5mm、振動部の最小径が9.2mm、厚さが0.5mmとし、筒状本体(内側筒状部)を外径13.6mm、高さ5.3mm、周壁の厚さ0.65mm、底壁の厚さ1.0mmのSUS430製とし、近接部の環状部材を内径8.4mm、厚さ1.5mmのSUS430製とし、筒状本体(外側被覆部)を、周壁の厚さが0.3〜1.6mmのABS樹脂製、内側筒状部の底部に一体形成されているヨークを外径4.5mm、高さ2.85mmとし、マグネットを上面の外径が7mm、下面の外径が6mm、厚さが2mmのN−35材よりなる扁平逆円錐台形状とし、コイルを銅線とした。実施例4は、振動板の材質をSUS304(バネ鋼)製とし、実施例5はSUS430製とした。   The models of Examples 4 and 5 have the structures shown in FIGS. 4 to 6, and the diaphragm has a maximum outer frame diameter of 21.5 mm, a minimum vibration portion diameter of 9.2 mm, and a thickness of 0.5 mm. The cylindrical main body (inner cylindrical part) is made of SUS430 having an outer diameter of 13.6 mm, a height of 5.3 mm, a peripheral wall thickness of 0.65 mm, and a bottom wall thickness of 1.0 mm, and an annular member in the proximity part Is made of SUS430 having an inner diameter of 8.4 mm and a thickness of 1.5 mm, and the cylindrical main body (outer covering portion) is made of ABS resin having a peripheral wall thickness of 0.3 to 1.6 mm, and is attached to the bottom of the inner cylindrical portion. The integrally formed yoke has an outer diameter of 4.5 mm and a height of 2.85 mm, and the magnet is a flat inverted cone made of N-35 material having an outer diameter of the upper surface of 7 mm, an outer diameter of the lower surface of 6 mm, and a thickness of 2 mm. It was trapezoidal and the coil was copper wire. In Example 4, the material of the diaphragm was made of SUS304 (spring steel), and Example 5 was made of SUS430.

実施例6、7のモデルは、図7に示す構造であり、上記実施例4、5のモデルのマグネットの下面の外径を上面の外径と同じ7mmとしてその形状を扁平逆円錐台形状から扁平円柱形状に変更し、近接部の環状部材の内周面の下部に切欠き部を設けたモデルである。振動板の材質は実施例6がSUS304、実施例7がSUS430であり、その他の寸法、材質は実施例6又は実施例7のモデルと共通とした。   The models of Examples 6 and 7 have the structure shown in FIG. 7, and the outer diameter of the lower surface of the magnets of the models of Examples 4 and 5 is 7 mm, which is the same as the outer diameter of the upper surface. This is a model in which the shape is changed to a flat cylindrical shape and a notch is provided in the lower part of the inner peripheral surface of the annular member in the proximity portion. The material of the diaphragm is SUS304 in Example 6, and SUS430 in Example 7. Other dimensions and materials are the same as those of the model of Example 6 or Example 7.

実施例8のモデルは、図8に示す構造であり、上記実施例4のモデルのマグネット上面と振動板の間に厚み0.5mmの円板状の電磁鋼板を介装したものであり、寸法的にはマグネット上面側を電磁鋼板の厚み分だけ薄くしたモデルである。振動板の材質は実施例4と同様、SUS304である。その他の寸法、材質も実施例4のモデルと共通である。   The model of Example 8 has the structure shown in FIG. 8, and a disk-shaped electromagnetic steel sheet having a thickness of 0.5 mm is interposed between the magnet upper surface and the diaphragm of the model of Example 4 above. Is a model in which the upper surface of the magnet is made thinner by the thickness of the electromagnetic steel sheet. The material of the diaphragm is SUS304 as in the fourth embodiment. Other dimensions and materials are the same as the model of the fourth embodiment.

比較例3、4のモデルは、図17に示す構造であり、それぞれ実施例4、5のモデルの構造から近接部としての環状部材及びこれを取り付ける内側筒状部の切欠き段部を省略したものである。その他の構造、寸法、材質はそれぞれ実施例4、5のモデルと共通である。   The models of Comparative Examples 3 and 4 have the structure shown in FIG. 17, and the annular member as a proximity portion and the notch step portion of the inner cylindrical portion to which the same is attached are omitted from the structures of the models of Examples 4 and 5, respectively. Is. Other structures, dimensions, and materials are the same as the models of Examples 4 and 5, respectively.

比較例5、6のモデルは、図18に示す構造であり、それぞれ実施例6、7のモデルの構造から環状部材及び切欠き段部を省略したものである。その他の構造、寸法、材質はそれぞれ実施例6、7のモデルと共通である。   The models of Comparative Examples 5 and 6 have the structure shown in FIG. 18, and the annular member and the notch step portion are omitted from the structures of the models of Examples 6 and 7, respectively. Other structures, dimensions, and materials are the same as the models of Examples 6 and 7, respectively.

表4に実施例4〜8、比較例3〜6の各モデルを示す図、振動板の材質をまとめている。実施例4〜8、比較例3〜6の各モデルの音圧レベルの解析結果は表5のとおりである。音圧レベルの算出は上述の実施例1等と同じである。   Table 4 summarizes the diagrams showing the models of Examples 4 to 8 and Comparative Examples 3 to 6, and the materials of the diaphragm. Table 5 shows the analysis results of the sound pressure levels of the models of Examples 4 to 8 and Comparative Examples 3 to 6. The calculation of the sound pressure level is the same as in the first embodiment.

表5から分かるように、実施例4〜7のモデルは、それぞれ近接部が無い点のみ異なる比較例3〜6のモデルに比べ、すべての周波数で音圧レベルが増大している。これは本発明に係る実施例1、実施例3では、振動板の下面に設けたマグネットの磁束を近接部が効率よく捕捉し、効率のよい磁気回路が形成されているために、音圧レベルがすべての周波数で増大したと考えられる。また、実施例8のモデルは、実施例4のモデルに比べて音圧レベルが向上しており、電磁鋼板を介装することでより効率のよい磁気回路が形成されていることがわかる。   As can be seen from Table 5, the models of Examples 4-7 have increased sound pressure levels at all frequencies compared to the models of Comparative Examples 3-6, which differ only in that there is no proximity portion. In the first and third embodiments according to the present invention, the proximity portion efficiently captures the magnetic flux of the magnet provided on the lower surface of the diaphragm, and an efficient magnetic circuit is formed. Seems to have increased at all frequencies. Moreover, the model of Example 8 has an improved sound pressure level compared to the model of Example 4, and it can be seen that a more efficient magnetic circuit is formed by interposing an electromagnetic steel sheet.

図22〜図26に、実施例4〜8の各モデルの磁束密度分布の解析結果を示す。磁束密度分布の計算は上述の実施例1等と同じである。いずれもマグネットからの磁束が内側筒状部に効率よく捉えられ、ヨークに磁束が効率よく集中しており、上記のとおり音圧レベルが伸びるという結果に結びついていることが分かる。   22 to 26 show the analysis results of the magnetic flux density distribution of each model of Examples 4 to 8. FIG. The calculation of the magnetic flux density distribution is the same as in the first embodiment. In either case, it can be seen that the magnetic flux from the magnet is efficiently captured by the inner cylindrical portion, the magnetic flux is efficiently concentrated on the yoke, and the sound pressure level is increased as described above.

(実施例9)
次に、第3実施形態の構成に係る実施例9のモデルの解析結果について説明する。
Example 9
Next, the analysis result of the model of Example 9 according to the configuration of the third embodiment will be described.

実施例9のモデルは、図9〜図11に示す構造であり、振動板を、厚みが0.2mm、外枠の外径が8.1mm、内径が7.3mm、振動部の外径が4mm、連結部の長さが約4.3mm、幅が0.35〜0.5mmのSUS304(バネ鋼)製とし、筒状本体(内側筒状部)を外径9mm、高さ4.2mm、周壁厚さ0.6mm、底壁厚さ0.5mmのSUS430製とし、近接部の環状部材を内径4.2mm、厚さ0.5mmのSUS430製とし、内側筒状部の底部に一体形成されているヨークを外径4mm、高さ2.1mmとし、マグネットを外径が4mm、厚さが1mmのN−35材とし、合成樹脂製の環状板の厚みを0.5mmとし、コイルを銅線とした。   The model of Example 9 has the structure shown in FIGS. 9 to 11, and the diaphragm has a thickness of 0.2 mm, an outer diameter of the outer frame of 8.1 mm, an inner diameter of 7.3 mm, and an outer diameter of the vibration part. It is made of SUS304 (spring steel) with a length of 4 mm, a connecting part length of about 4.3 mm, and a width of 0.35 to 0.5 mm. The cylindrical main body (inner cylindrical part) has an outer diameter of 9 mm and a height of 4.2 mm. SUS430 with a peripheral wall thickness of 0.6mm and a bottom wall thickness of 0.5mm, and an annular member at the proximal portion made of SUS430 with an inner diameter of 4.2mm and a thickness of 0.5mm, integrated with the bottom of the inner cylindrical part The yoke has an outer diameter of 4 mm and a height of 2.1 mm, the magnet is an N-35 material having an outer diameter of 4 mm and a thickness of 1 mm, the thickness of the synthetic resin annular plate is 0.5 mm, and the coil is Copper wire was used.

表6に実施例9のモデルを示す図、振動板の材質を示す。実施例9のモデルの音圧レベルの解析結果は表7のとおりである。音圧レベルの算出は上述の実施例1等と同じである。   Table 6 shows a model of Example 9 and the material of the diaphragm. The analysis result of the sound pressure level of the model of Example 9 is as shown in Table 7. The calculation of the sound pressure level is the same as in the first embodiment.

表7から分かるように、実施例9のモデルは、小型であるにもかかわらず十分な音圧レベルが得られている。これは、振動板の下面に設けたマグネットの磁束を近接部が効率よく捕捉し、効率のよい磁気回路が形成されているためと考えられる。図27に、実施例9のモデルの磁束密度分布の解析結果を示す。磁束密度分布の計算は上述の実施例1等と同じである。マグネットからの磁束は内側筒状部に効率よく捉えられ、ヨークに磁束が効率よく集中しており、上記のとおり音圧レベルが伸びるという結果に結びついていることが分かる。   As can be seen from Table 7, the model of Example 9 has a sufficient sound pressure level despite its small size. This is presumably because the proximity portion efficiently captures the magnetic flux of the magnet provided on the lower surface of the diaphragm, and an efficient magnetic circuit is formed. In FIG. 27, the analysis result of the magnetic flux density distribution of the model of Example 9 is shown. The calculation of the magnetic flux density distribution is the same as in the first embodiment. It can be seen that the magnetic flux from the magnet is efficiently captured by the inner cylindrical portion, the magnetic flux is efficiently concentrated on the yoke, and the sound pressure level is increased as described above.

(実施例10、11、比較例7)
次に、第4実施形態の構成に係る実施例10、11、及びその比較例7の各モデルの解析結果について説明する。
(Examples 10 and 11, Comparative Example 7)
Next, analysis results of the models of Examples 10 and 11 and the comparative example 7 according to the configuration of the fourth embodiment will be described.

実施例10のモデルは、図12に示す構造であり、振動板を、外枠の最大径が21.5mm、振動部の最小径が9.2mm、厚さが0.5mmのSUS304(バネ鋼)製とし、筒状本体(内側筒状部)を外径13.6mm、高さ5.3mm、周壁の厚さ0.65mm、底壁の厚さ1mmのSUS430製とし、近接部の環状部材を内径5mm、厚さ1mmのSUS430製とし、筒状本体(外側被覆部)を、周壁の厚さが0.3〜1.6mmのABS樹脂製とし、マグネットを外径が4mm、厚さ(高さ)が4.25mmのN−35材よりなる円柱形状とし、コイルを銅線とした。   The model of Example 10 has the structure shown in FIG. 12, and the diaphragm is made of SUS304 (spring steel with a maximum outer frame diameter of 21.5 mm, a minimum vibration section diameter of 9.2 mm, and a thickness of 0.5 mm. ) Made of SUS430 having an outer diameter of 13.6 mm, a height of 5.3 mm, a peripheral wall thickness of 0.65 mm, and a bottom wall thickness of 1 mm, and an annular member in the proximity portion Is made of SUS430 having an inner diameter of 5 mm and a thickness of 1 mm, the cylindrical main body (outer covering portion) is made of ABS resin having a peripheral wall thickness of 0.3 to 1.6 mm, and the magnet has an outer diameter of 4 mm and a thickness ( The height was a cylindrical shape made of N-35 material with a 4.25 mm height, and the coil was a copper wire.

実施例11のモデルは、図13に示す構造であり、実施例10のモデルとの違いは、マグネット上面側と振動板との間に円柱状のSUS430製のヨークを介装した点である。マグネットの厚さ(高さ)とヨークの高さ(厚さ)の比は1:2であり、合計高さは実施例10のマグネット高さと同じである。ヨークの外径はマグネットと同様4mmとした。その他の寸法、材質は実施例10と同じである。   The model of Example 11 has the structure shown in FIG. 13, and the difference from the model of Example 10 is that a cylindrical yoke made of SUS430 is interposed between the upper surface of the magnet and the diaphragm. The ratio of the magnet thickness (height) to the yoke height (thickness) is 1: 2, and the total height is the same as the magnet height of the tenth embodiment. The outer diameter of the yoke was 4 mm, similar to the magnet. Other dimensions and materials are the same as those in the tenth embodiment.

比較例7のモデルは、図19に示す構造であり、実施例10のモデルの構造から近接部としての環状部材及びこれを取り付ける内側筒状部の切欠き段部を省略したものである。その他の構造、寸法、材質は実施例10のモデルと共通である。   The model of Comparative Example 7 has the structure shown in FIG. 19, in which the annular member as the proximity portion and the notch step portion of the inner cylindrical portion to which this is attached are omitted from the structure of the model of Example 10. Other structures, dimensions, and materials are the same as the model of the tenth embodiment.

表8に実施例10、11、比較例7の各モデルを示す図、振動板の材質をまとめている。実施例10、11、比較例7の各モデルの音圧レベルの解析結果は表9のとおりである。音圧レベルの算出は上述の実施例1等と同じである。   Table 8 summarizes the diagrams showing the models of Examples 10 and 11 and Comparative Example 7 and the material of the diaphragm. Table 9 shows the analysis results of the sound pressure levels of the models of Examples 10 and 11 and Comparative Example 7. The calculation of the sound pressure level is the same as in the first embodiment.

表9から分かるように、実施例10のモデルは近接部が無い点のみ異なる比較例7のモデルに比べ、すべての周波数で音圧レベルが増大している。これは本発明に係る実施例10では、振動板の下面に設けたマグネットの磁束を近接部が効率よく捕捉し、効率のよい磁気回路が形成されているために、音圧レベルがすべての周波数で増大したと考えられる。
実施例11のモデルは、実施例10のモデルに比べて音圧レベルが向上しており、マグネットのみとするよりもマグネット上側にヨークを介装することでより効率のよい磁気回路が形成されていることがわかる。
As can be seen from Table 9, the sound pressure level of the model of Example 10 is increased at all frequencies as compared to the model of Comparative Example 7 that differs only in that there is no proximity portion. In the tenth embodiment according to the present invention, since the proximity portion efficiently captures the magnetic flux of the magnet provided on the lower surface of the diaphragm and an efficient magnetic circuit is formed, the sound pressure level is at all frequencies. It is thought that it increased by.
The model of Example 11 has an improved sound pressure level compared to the model of Example 10, and a more efficient magnetic circuit is formed by interposing a yoke on the upper side of the magnet than using only the magnet. I understand that.

図28、図29に、それぞれ実施例10、実施例11のモデルの磁束密度分布の解析結果を示す。磁束密度分布の計算は上述の実施例1等と同じである。マグネットからの磁束が内側筒状部に効率よく捉えられ、上記のとおり音圧レベルが伸びるという結果に結びついていることが分かる。   28 and 29 show the results of analyzing the magnetic flux density distributions of the models of Example 10 and Example 11, respectively. The calculation of the magnetic flux density distribution is the same as in the first embodiment. It can be seen that the magnetic flux from the magnet is efficiently captured by the inner cylindrical portion, and the sound pressure level is increased as described above.

1 骨伝導デバイス
2 筒状本体
2b 底面
2c 周壁
2d 貫通孔
3 振動板
3c 下面
4、4A ヨーク
4a 上端面
5 マグネット
5a 側面
5b 下端面
6 ボイスコイル
7 取付ネジ
8 近接部
8a 内側端部
8b 切欠き部
9 ホルダー部
20 内側筒状部
20c 取付穴
21 外側被覆部
22 上端面
23 固定部
24 周壁
24c 段部
24d 凹溝
25 底壁
26 周壁
27 環状部材
28 環状板
30 枠部
31 振動部
31a 外周縁
31b 取付穴
31c 連通穴
32 連結部
41 電磁鋼板
s1 隙間
DESCRIPTION OF SYMBOLS 1 Bone conduction device 2 Cylindrical main body 2b Bottom face 2c Perimeter wall 2d Through-hole 3 Diaphragm 3c Lower face 4, 4A Yoke 4a Upper end surface 5 Magnet 5a Side surface 5b Lower end surface 6 Voice coil 7 Mounting screw 8 Proximity part 8a Inner end part 8b Notch Part 9 Holder part 20 Inner cylindrical part 20c Mounting hole 21 Outer covering part 22 Upper end surface 23 Fixed part 24 Peripheral wall 24c Step part 24d Groove 25 Bottom wall 26 Peripheral wall 27 Annular member 28 Annular plate 30 Frame part 31 Vibration part 31a Outer peripheral edge 31b Mounting hole 31c Communication hole 32 Connecting part 41 Electrical steel sheet s1 Clearance

Claims (5)

磁性材料よりなる有底の筒状本体と、
前記筒状本体の上端部又は内壁部に渡設される振動板と、
前記振動板の上下面のうち筒状本体の内側底面に対向する下面側に固定されるマグネットと、
前記筒状本体の内側底面に立設され、上端が前記マグネットの下端面に隙間を介して対向するヨークと、
前記筒状本体内における前記ヨークの周りに配置されるボイスコイルとよりなり、
前記筒状本体に、前記マグネットの側面に向けて内側に延び、該側面に隙間を介して対向する磁性材料よりなる近接部を設けてなることを特徴とする骨伝導デバイス。
A bottomed cylindrical body made of a magnetic material;
A diaphragm provided on an upper end portion or an inner wall portion of the cylindrical body;
A magnet fixed to the lower surface side facing the inner bottom surface of the cylindrical body among the upper and lower surfaces of the diaphragm;
A yoke which is erected on the inner bottom surface of the cylindrical main body and whose upper end faces the lower end surface of the magnet via a gap;
A voice coil arranged around the yoke in the cylindrical body,
A bone conduction device, wherein the cylindrical main body is provided with a proximity portion made of a magnetic material that extends inward toward the side surface of the magnet and faces the side surface through a gap.
前記近接部の内側端部が、マグネット側面の下端よりも上側の領域に前記隙間を介して対向している請求項1記載の骨伝導デバイス。   The bone conduction device according to claim 1, wherein an inner end portion of the proximity portion is opposed to a region above a lower end of a side surface of the magnet via the gap. 前記マグネットと振動板下面との間に、電磁鋼板よりなる板材を介在させてなる請求項1又は2記載の骨伝導デバイス。   The bone conduction device according to claim 1 or 2, wherein a plate made of an electromagnetic steel plate is interposed between the magnet and the lower surface of the diaphragm. 磁性材料よりなる有底の筒状本体と、
前記筒状本体の上端部又は内壁部に渡設される振動板と、
前記振動板の上下面のうち筒状本体の内側底面に対向する下面側に固定され、その下端面が前記筒状本体の内側底面に隙間を介して対向するマグネットと、
前記筒状本体内における前記マグネットの周りに配置されるボイスコイルとよりなり、
前記筒状本体に、前記マグネットの側面に向けて内側に延び、該側面に隙間を介して対向する磁性材料よりなる近接部を設けてなることを特徴とする骨伝導デバイス。
A bottomed cylindrical body made of a magnetic material;
A diaphragm provided on an upper end portion or an inner wall portion of the cylindrical body;
A magnet that is fixed to the lower surface side facing the inner bottom surface of the cylindrical main body of the upper and lower surfaces of the diaphragm, and whose lower end surface is opposed to the inner bottom surface of the cylindrical main body via a gap,
It consists of a voice coil arranged around the magnet in the cylindrical body,
A bone conduction device, wherein the cylindrical main body is provided with a proximity portion made of a magnetic material that extends inward toward the side surface of the magnet and faces the side surface through a gap.
前記マグネットと振動板下面との間に、ヨークを介在させてなる請求項4記載の骨伝導デバイス。   The bone conduction device according to claim 4, wherein a yoke is interposed between the magnet and the lower surface of the diaphragm.
JP2014255617A 2014-12-17 2014-12-17 Bone conduction device Active JP6238302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255617A JP6238302B2 (en) 2014-12-17 2014-12-17 Bone conduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255617A JP6238302B2 (en) 2014-12-17 2014-12-17 Bone conduction device

Publications (2)

Publication Number Publication Date
JP2016116177A true JP2016116177A (en) 2016-06-23
JP6238302B2 JP6238302B2 (en) 2017-11-29

Family

ID=56142393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255617A Active JP6238302B2 (en) 2014-12-17 2014-12-17 Bone conduction device

Country Status (1)

Country Link
JP (1) JP6238302B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218709A1 (en) * 2020-04-29 2021-11-04 深圳市韶音科技有限公司 Acoustic device, and magnetic circuit assembly thereof
WO2022056952A1 (en) * 2020-09-15 2022-03-24 瑞声声学科技(深圳)有限公司 Bone conduction apparatus
WO2022265179A1 (en) * 2021-06-17 2022-12-22 대홍테크뉴(주) Linear speaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859699A (en) * 1981-10-03 1983-04-08 Matsushita Electric Ind Co Ltd Electromagnetic electroacoustic transducer
JP2007074693A (en) * 2005-09-08 2007-03-22 Goldendance Co Ltd Bone conductive speaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859699A (en) * 1981-10-03 1983-04-08 Matsushita Electric Ind Co Ltd Electromagnetic electroacoustic transducer
JP2007074693A (en) * 2005-09-08 2007-03-22 Goldendance Co Ltd Bone conductive speaker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218709A1 (en) * 2020-04-29 2021-11-04 深圳市韶音科技有限公司 Acoustic device, and magnetic circuit assembly thereof
WO2022056952A1 (en) * 2020-09-15 2022-03-24 瑞声声学科技(深圳)有限公司 Bone conduction apparatus
WO2022265179A1 (en) * 2021-06-17 2022-12-22 대홍테크뉴(주) Linear speaker

Also Published As

Publication number Publication date
JP6238302B2 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
CN101924974B (en) Speaker
EP3570559A1 (en) High-quality electromagnetic speaker having improved accuracy of air gap
US20040218778A1 (en) Loudspeaker suspension for achieving very long excursion
KR100592925B1 (en) Multi-functional type vibration actuator
JP5061202B2 (en) Speaker magnetic flux collection system
US10516945B2 (en) High power microspeaker with sub-diaphragm
JP6238302B2 (en) Bone conduction device
KR200443212Y1 (en) Bone conduction speaker apparatus having double coil structure
JP6295764B2 (en) Bone conduction device
JP2008092560A (en) Electroacoustic transducer
JP2005323054A (en) Bone conduction speaker
JP2607796Y2 (en) Magnetic circuit for speaker
CN219181668U (en) High-performance thin loudspeaker
JP2007104541A (en) Electric/acoustic transducer
CN110199527A (en) Loudspeaker
JP6256139B2 (en) Bone conduction device
WO2020087756A1 (en) Sounding device and processing method therefor as well as earphone
JP2020088435A (en) Bone conduction speaker
US20220295188A1 (en) Highly compliant electro-acoustic miniature transducer
JP4366203B2 (en) Speaker
JP2001169386A (en) Radiation diaphragm and high frequency transducer
JP3053925U (en) Magnetic circuit for speaker
KR20230099216A (en) Laminated structure of metal diaphragm and film diaphragm
JP2009141521A (en) Magnetic gap structure and dynamic speaker
JP6256066B2 (en) Magnetic circuit of electrodynamic speaker and electrodynamic speaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171025

R150 Certificate of patent or registration of utility model

Ref document number: 6238302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250