JP2016115896A - Manufacturing method of thermoelectric transducer - Google Patents

Manufacturing method of thermoelectric transducer Download PDF

Info

Publication number
JP2016115896A
JP2016115896A JP2014255772A JP2014255772A JP2016115896A JP 2016115896 A JP2016115896 A JP 2016115896A JP 2014255772 A JP2014255772 A JP 2014255772A JP 2014255772 A JP2014255772 A JP 2014255772A JP 2016115896 A JP2016115896 A JP 2016115896A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
sprayed coating
conversion element
hours
thermal spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255772A
Other languages
Japanese (ja)
Other versions
JP6396198B2 (en
Inventor
大地 増住
Daichi Masuzumi
大地 増住
大志郎 野村
Daishiro Nomura
大志郎 野村
永吉 英昭
Hideaki Nagayoshi
英昭 永吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Corp
Original Assignee
Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Corp filed Critical Fuji Corp
Priority to JP2014255772A priority Critical patent/JP6396198B2/en
Publication of JP2016115896A publication Critical patent/JP2016115896A/en
Application granted granted Critical
Publication of JP6396198B2 publication Critical patent/JP6396198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a thermoelectric transducer capable of easily manufacturing a thermoelectric transducer with high power generation performance from a spray coated film manufactured by spraying a calcium cobaltate powder onto a substrate.SOLUTION: In a method of manufacturing a thermoelectric transducer from a spray coated film manufactured by spraying a calcium cobaltate powder onto a substrate, the spray coated film is sintered by maintaining a temperature of exceeding 926°C and less than or equal to 950°C under an ambient atmosphere for longer than or equal to 1 hour and shorter than or equal to 10 hours. The sintering processing is preferably applied to the spray coated film twice or more.SELECTED DRAWING: Figure 1

Description

本発明は、コバルト酸カルシウム(CaCo1228)粉末を基板に溶射して形成した溶射皮膜から熱電変換素子を製造する方法に関する。 The present invention relates to a method for producing a thermoelectric conversion element from a sprayed coating formed by spraying calcium cobaltate (Ca 9 Co 12 O 28 ) powder on a substrate.

耐熱性及び耐酸化性に優れた酸化物系熱電変換材料を用いた熱電変換素子を備えた熱電変換モジュールは、産業炉からの廃熱のように、600℃を超える高温の酸化性雰囲気の熱源から、電力を効率的に取り出す発電装置として期待されている。そこで、酸化物系熱電変換材料を用いて任意形状、任意面積の熱電変換素子を、短時間で、容易に、しかも低コストで製造する方法として、例えば、特許文献1には、酸化物系熱電変換材料粉末を基板に溶射して作製した溶射皮膜を用いて熱電変換素子を形成することが開示されている。 A thermoelectric conversion module including a thermoelectric conversion element using an oxide-based thermoelectric conversion material excellent in heat resistance and oxidation resistance is a heat source in an oxidizing atmosphere having a high temperature exceeding 600 ° C. like waste heat from an industrial furnace. Therefore, it is expected as a power generator that efficiently extracts power. Therefore, as a method for manufacturing a thermoelectric conversion element having an arbitrary shape and area using an oxide thermoelectric conversion material in a short time, easily and at low cost, for example, Patent Document 1 discloses an oxide thermoelectric conversion element. It is disclosed that a thermoelectric conversion element is formed using a sprayed coating produced by spraying a conversion material powder on a substrate.

特開2014−107443号公報JP 2014-107443 A

例えば、コバルト酸カルシウム(CaCo1228)のように、一定温度以上に加熱されると分解する特性を有する酸化物系熱電変換材料粉末を溶射すると、溶射により酸化物系熱電変換材料粉末は2100〜2600℃の溶射フレーム中にさらされるので、酸化物系熱電変換材料に分解が生じて、溶射皮膜の組成が酸化物系熱電変換材料組成から変化するという問題が生じる。また、基板上に形成された溶射皮膜は直ちに冷却されるため、溶射皮膜には微小なクラックが発生し易いという問題がある。このため、溶射皮膜を用いて製造した熱電変換素子では、熱起電力及び電気伝導度の値が小さくなって、発電性能が低下するという問題がある。 For example, when an oxide-based thermoelectric conversion material powder having the property of being decomposed when heated to a certain temperature or more, such as calcium cobaltate (Ca 9 Co 12 O 28 ), the oxide-based thermoelectric conversion material powder is sprayed. Is exposed to a thermal spray flame of 2100 to 2600 ° C., the oxide thermoelectric conversion material is decomposed, resulting in a problem that the composition of the thermal spray coating changes from the oxide thermoelectric conversion material composition. Further, since the sprayed coating formed on the substrate is immediately cooled, there is a problem that minute cracks are likely to occur in the sprayed coating. For this reason, in the thermoelectric conversion element manufactured using the sprayed coating, the value of a thermoelectromotive force and electric conductivity becomes small, and there exists a problem that electric power generation performance falls.

本発明はかかる事情に鑑みてなされたもので、コバルト酸カルシウム粉末(CaCo1228粉末)を基板に溶射して作製した溶射皮膜から、熱起電力と電気伝導度が高い熱電変換素子を容易に製造することが可能な熱電変換素子の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a thermoelectric conversion element having a high thermoelectromotive force and electric conductivity from a sprayed coating produced by spraying calcium cobaltate powder (Ca 9 Co 12 O 28 powder) on a substrate. It is an object of the present invention to provide a method for manufacturing a thermoelectric conversion element that can be easily manufactured.

前記目的に沿う本発明に係る熱電変換素子の製造方法は、コバルト酸カルシウム粉末を基板に溶射して作製した溶射皮膜から熱電変換素子を製造する方法において、
前記溶射皮膜を、926℃を超え950℃以下の大気雰囲気下で、1時間以上10時間未満保持する焼成処理を行う。
The method for producing a thermoelectric conversion element according to the present invention in accordance with the above object is a method for producing a thermoelectric conversion element from a thermal spray coating produced by thermal spraying calcium cobaltate powder on a substrate.
A baking treatment is performed in which the thermal spray coating is held for 1 hour to less than 10 hours in an air atmosphere of more than 926 ° C. and less than 950 ° C.

本発明に係る熱電変換素子の製造方法において、前記溶射皮膜に前記焼成処理を2回以上繰り返し行うことが好ましい。
これによって、溶射皮膜から形成される熱電変換素子の熱起電力と電気伝導度を更に向上させることができる。
In the method for manufacturing a thermoelectric conversion element according to the present invention, it is preferable to repeat the baking treatment twice or more on the sprayed coating.
Thereby, the thermoelectromotive force and electrical conductivity of the thermoelectric conversion element formed from the thermal spray coating can be further improved.

本発明に係る熱電変換素子の製造方法においては、溶射皮膜を焼成処理すると、溶射時にコバルト酸カルシウム(CaCo1228)の分解により生成し、溶射皮膜内を構成しているCaCo1228粒子同士の間に分散しているCaCoを溶射皮膜の表面に移動させて、溶射皮膜内のCaCo含有率を低下させることができる。これにより、溶射皮膜内のCaCo1228含有率が向上し、この溶射皮膜から形成される熱電変換素子の熱起電力を向上させることが可能になる。また、溶射皮膜を焼成処理すると、溶射皮膜を構成するCaCo1228粒子間の焼結が促進されて、溶射皮膜中に発生している微小なクラックを消失させることができる。これにより、溶射皮膜から形成される熱電変換素子の電気伝導度を向上させることが可能になる。
その結果、溶射皮膜から形成される熱電変換素子の発電性能を向上させることができる。
In the method for manufacturing a thermoelectric conversion element according to the present invention, when the thermal spray coating baking treatment, during spraying produced by the decomposition of calcium cobaltate (Ca 9 Co 12 O 28) , constitutes the inside of the thermal spray coating Ca 9 Co Ca 3 Co 2 O 6 dispersed between 12 O 28 particles can be moved to the surface of the thermal spray coating to reduce the Ca 3 Co 2 O 6 content in the thermal spray coating. Thereby, the Ca 9 Co 12 O 28 content in the thermal spray coating is improved, and the thermoelectromotive force of the thermoelectric conversion element formed from the thermal spray coating can be improved. In addition, when the sprayed coating is fired, sintering between Ca 9 Co 12 O 28 particles constituting the sprayed coating is promoted, and minute cracks generated in the sprayed coating can be eliminated. Thereby, it becomes possible to improve the electrical conductivity of the thermoelectric conversion element formed from a sprayed coating.
As a result, the power generation performance of the thermoelectric conversion element formed from the sprayed coating can be improved.

コバルト酸カルシウムの溶射皮膜を930℃で焼成処理して製造した熱電変換素子の熱起電力と電気伝導度にそれぞれ及ぼす焼成時間の影響を示すグラフである。It is a graph which shows the influence of the baking time which each exerts on the thermoelectromotive force and electrical conductivity of the thermoelectric conversion element manufactured by baking the thermal spray coating of a calcium cobaltate at 930 degreeC. コバルト酸カルシウムの溶射皮膜のX線回折による組成分析結果を示す説明図であって、(A)は溶射後、(B)は930℃の大気雰囲気で2時間、5時間の焼成処理を行った後、(C)は930℃の大気雰囲気で10時間、40時間の焼成処理を行った後、(D)は930℃の大気雰囲気で60時間の焼成処理を行った後の溶射皮膜のX線回折パターンである。It is explanatory drawing which shows the compositional analysis result by the X ray diffraction of the thermal spray coating of a calcium cobaltate, Comprising: (A) was after thermal spraying, (B) performed the baking process for 2 hours and 5 hours by 930 degreeC air | atmosphere atmosphere. Thereafter, (C) was subjected to a baking treatment for 10 hours and 40 hours in an air atmosphere at 930 ° C., and (D) was an X-ray of the sprayed coating after being subjected to a baking treatment for 60 hours in an air atmosphere at 930 ° C. It is a diffraction pattern. 930℃で5時間の焼成処理を繰り返したコバルト酸カルシウムの溶射皮膜を用いて製造した熱電変換素子の熱起電力及び電気伝導度にそれぞれ及ぼす焼成処理の繰り返し回数の影響を示すグラフである。It is a graph which shows the influence of the repetition frequency of a baking process which each has on the thermoelectromotive force and electrical conductivity of the thermoelectric conversion element manufactured using the thermal spray coating of the calcium cobaltate which repeated the baking process for 5 hours at 930 degreeC. コバルト酸カルシウムの溶射皮膜のX線回折による組成分析結果を示す説明図であって、(A)は930℃で5時間の焼成処理を2回繰り返した後、(B)は930℃で10時間の焼成処理を行った後の溶射皮膜のX線回折パターンである。It is explanatory drawing which shows the compositional analysis result by the X-ray diffraction of the thermal spray coating of a calcium cobaltate, Comprising: (A) repeats baking processing for 5 hours at 930 degreeC twice, (B) is 10 hours at 930 degreeC. It is an X-ray-diffraction pattern of the sprayed coating after performing this baking processing.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る熱電変換素子の製造方法では、酸化物系熱電変換材料であるコバルト酸カルシウム粉末(CaCo1228粉末)を、アルミナ基板(耐熱性、絶縁性、低熱伝導性を備えた基板の一例)に高速フレーム溶射して作製した溶射皮膜を、926℃を超え950℃以下の大気雰囲気下で、1時間以上10時間未満保持する焼成処理を行うことにより、熱電変換素子を製造している。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
In the method for manufacturing a thermoelectric conversion element according to an embodiment of the present invention, calcium oxide powder (Ca 9 Co 12 O 28 powder) that is an oxide-based thermoelectric conversion material is used as an alumina substrate (heat resistance, insulation, low heat). An example of a conductive substrate) is subjected to a firing process in which a thermal spray coating produced by high-speed flame spraying is held in an air atmosphere of more than 926 ° C. and less than 950 ° C. for 1 hour or more and less than 10 hours. Manufactures conversion elements. Details will be described below.

コバルト酸カルシウム(CaCo1228)は、炭酸カルシウム(CaCo)と酸化コバルト(Co)の混合物を900〜930℃の大気雰囲気中で5〜30時間焼成を行って固相反応により合成した。合成したコバルト酸カルシウムを粉砕した後、スプレードライヤー装置を用いて造粒し、粒径が106μm以下の造粒物を、溶射用のコバルト酸カルシウム粉末とした。そして、高速フレーム溶射に使用する溶射ガンには、コバルト酸カルシウム粉末を溶媒中に分散させて作製したスラリーの状態で供給した。なお、高速フレーム溶射は、溶射フレーム温度を2100〜2600℃の範囲に、溶射速度(溶射ガンから送り出される粉末の速度)を1800〜2000m/秒の範囲にそれぞれ設定して行った。また、溶射距離(溶射ガンとアルミナ基板の距離)は、100〜300mmの範囲において、アルミナ基板及び溶射皮膜が破損しない範囲で任意に設定可能である。 Calcium cobaltate (Ca 9 Co 12 O 28 ) is a solid phase obtained by baking a mixture of calcium carbonate (CaCo 3 ) and cobalt oxide (Co 3 O 4 ) in an air atmosphere at 900 to 930 ° C. for 5 to 30 hours. Synthesized by reaction. After the synthesized calcium cobaltate was pulverized, it was granulated using a spray dryer, and a granulated product having a particle size of 106 μm or less was used as a calcium cobaltate powder for thermal spraying. A spray gun used for high-speed flame spraying was supplied in the form of a slurry prepared by dispersing calcium cobaltate powder in a solvent. The high-speed flame spraying was performed by setting the spray flame temperature in the range of 2100 to 2600 ° C. and the spraying speed (the speed of the powder delivered from the spray gun) in the range of 1800 to 2000 m / sec. Further, the spraying distance (distance between the spraying gun and the alumina substrate) can be arbitrarily set within the range of 100 to 300 mm so that the alumina substrate and the sprayed coating are not damaged.

溶射皮膜の焼成処理は、電気炉(焼成炉の一例)内に溶射皮膜が形成されたアルミナ基板をセットして、大気雰囲気中で926℃を超え950℃以下の範囲に設定した焼成温度まで一定の昇温速度で加熱し、1時間以上10時間未満の範囲に設定した焼成時間だけ保持した後、一定の降温速度で冷却することにより行った。なお、昇温速度及び降温速度は、溶射皮膜がアルミナ基板から剥離したり、き裂が生じたりしない範囲でそれぞれ任意に設定できる。 The thermal treatment of the sprayed coating is constant up to the firing temperature set in the range of more than 926 ° C and less than 950 ° C in an air atmosphere by setting the alumina substrate on which the sprayed coating is formed in an electric furnace (an example of a firing furnace) This was performed by heating at a heating rate of 1 mm and holding for a firing time set in a range of 1 hour or more and less than 10 hours, and then cooling at a constant cooling rate. The rate of temperature rise and the rate of temperature fall can be arbitrarily set within a range in which the sprayed coating is not peeled off from the alumina substrate or cracks are generated.

溶射ガンに供給されたコバルト酸カルシウム粉末は、2100℃以上の溶射フレーム中に吹き込まれるので、コバルト酸カルシウム粉末の一部が分解してCaCoが生成する。このため、形成された溶射皮膜内(溶射皮膜内を構成しているCaCo1228粒子同士の間)には、CaCoが分散している。そこで、溶射皮膜を焼成処理すると、溶射皮膜内に分散していたCaCoを溶射皮膜の表面に移動させることができ、溶射皮膜内のCaCoの含有率を低下(溶射皮膜を構成しているCaCo1228の含有率を相対的に向上)させることができ、溶射皮膜から形成される熱電変換素子の熱起電力を向上させることが可能になる。このため、溶射皮膜から形成される熱電変換素子の発電性能を向上させることができる。 Since the calcium cobaltate powder supplied to the thermal spray gun is blown into a thermal spray frame at 2100 ° C. or higher, a part of the calcium cobaltate powder is decomposed to produce Ca 3 Co 2 O 6 . For this reason, Ca 3 Co 2 O 6 is dispersed in the formed sprayed coating (between Ca 9 Co 12 O 28 particles constituting the sprayed coating). Therefore, when the sprayed coating is fired, Ca 3 Co 2 O 6 dispersed in the sprayed coating can be moved to the surface of the sprayed coating, and the content of Ca 3 Co 2 O 6 in the sprayed coating is reduced. (The content of Ca 9 Co 12 O 28 constituting the thermal spray coating can be relatively improved), and the thermoelectromotive force of the thermoelectric conversion element formed from the thermal spray coating can be improved. For this reason, the electric power generation performance of the thermoelectric conversion element formed from a sprayed coating can be improved.

ここで、焼成温度を926℃超としたのは、溶射皮膜に焼成処理を施した際に、溶射皮膜内におけるCaCoの移動が顕著となるのが926℃を超える温度域であったことから決定した。一方、焼成温度が950℃を超えると、焼成処理中に溶射皮膜を形成しているCaCo1228の分解によるCaCoの生成が顕著になり、溶射皮膜の表面ではCaCo同士が一体化して溶射皮膜の表面を被覆するようになる。ここで、CaCoの熱起電力は、結晶の方向により大きく変化する異方性を有するので、結晶の方向を揃えることが困難な溶射皮膜では、溶射皮膜の表面がCaCoで被覆されると、熱起電力の低下につながる。このため、焼成温度の上限を950℃とした。 Here, the calcination temperature was over 926 ° C. because when Ca 3 Co 2 O 6 moves in the thermal spray coating, the Ca 3 Co 2 O 6 moves markedly in the temperature range exceeding 926 ° C. It was decided because there was. On the other hand, when the firing temperature exceeds 950 ° C., the formation of Ca 3 Co 2 O 6 due to the decomposition of Ca 9 Co 12 O 28 forming the sprayed coating during the firing treatment becomes significant, and the surface of the sprayed coating is Ca. 3 Co 2 O 6 are integrated to cover the surface of the sprayed coating. Here, since the thermoelectromotive force of Ca 3 Co 2 O 6 has anisotropy that varies greatly depending on the crystal direction, in the case of a sprayed coating in which it is difficult to align the crystal direction, the surface of the sprayed coating is Ca 3 Co When covered with 2 O 6 , it leads to a decrease in thermoelectromotive force. For this reason, the upper limit of the firing temperature was set to 950 ° C.

また、焼成時間を1時間以上としたのは、焼成時間が1時間未満では、溶射皮膜の表面へのCaCoの移動が不十分となって、溶射皮膜内のCaCo含有率を低下させることができないためである。一方、焼成時間を10時間以上にすると、CaCo1228の分解によるCaCoの生成が無視できなくなる。このため、焼成時間を10時間未満とした。 The reason why the firing time is set to 1 hour or longer is that when the firing time is less than 1 hour, the Ca 3 Co 2 O 6 is not sufficiently transferred to the surface of the sprayed coating, and the Ca 3 Co 2 in the sprayed coating is not sufficient. This is because the O 6 content cannot be reduced. On the other hand, if the firing time is 10 hours or longer, the production of Ca 3 Co 2 O 6 due to the decomposition of Ca 9 Co 12 O 28 cannot be ignored. For this reason, baking time was made into less than 10 hours.

溶射皮膜は、アルミナ基板上に形成されると同時に溶射フレームによる加熱が遮断されるため急冷される。このため、溶射皮膜中には微小なクラックが多数導入される可能性が高い。そして、溶射皮膜中に微小なクラックが多数導入されると、溶射皮膜の電気伝導度が低下する。ここで、溶射皮膜を焼成処理すると、溶射皮膜を構成するCaCo1228粒子間の焼結が進行して溶射皮膜中に導入された微小なクラックが消失するので、溶射皮膜の電気伝導度を向上させることが可能になる。このため、溶射皮膜から形成される熱電変換素子の発電性能を向上させることができる。 The thermal spray coating is rapidly cooled because it is formed on the alumina substrate and the heating by the thermal spray frame is interrupted. For this reason, there is a high possibility that many fine cracks are introduced into the sprayed coating. When a large number of minute cracks are introduced into the thermal spray coating, the electrical conductivity of the thermal spray coating decreases. Here, when the sprayed coating is fired, sintering between the Ca 9 Co 12 O 28 particles constituting the sprayed coating proceeds and fine cracks introduced into the sprayed coating disappear. It becomes possible to improve the degree. For this reason, the electric power generation performance of the thermoelectric conversion element formed from a sprayed coating can be improved.

以上のように、溶射皮膜を、926℃を超え950℃以下の大気雰囲気下で、1時間以上10時間未満保持する焼成処理を行うと、CaCo1228の分解を抑制しながら溶射皮膜内のCaCoを溶射皮膜の表面に移動させることができる。そして、この焼成処理を溶射皮膜に対して2回以上繰り返し行うと、溶射皮膜内のCaCo含有量を低減させながら、溶射皮膜を形成しているCaCo1228の焼結を更に進行させることができ、溶射皮膜から形成される熱電変換素子の熱起電力と電気伝導度をより向上させることが可能になる。
そして、焼成処理を繰り返すことで、溶射皮膜の熱的安定性(溶射皮膜の表面へのCaCoの移動が収束することに伴う熱起電力の安定化とCaCo1228粒子の焼結密度の安定化)が向上するので、加熱と冷却が繰り返されても、熱電変換素子の発電性能の劣化防止と耐久性を図ることができる。
As described above, when a firing treatment is performed in which the thermal spray coating is held in an air atmosphere of more than 926 ° C. and lower than 950 ° C. for 1 hour to less than 10 hours, the thermal spray coating is suppressed while suppressing decomposition of Ca 9 Co 12 O 28 Ca 3 Co 2 O 6 can be moved to the surface of the sprayed coating. When this baking treatment is repeated twice or more for the sprayed coating, the Ca 9 Co 12 O 28 forming the sprayed coating is reduced while reducing the Ca 3 Co 2 O 6 content in the sprayed coating. As a result, it is possible to further promote the crystallization, and it is possible to further improve the thermoelectromotive force and electrical conductivity of the thermoelectric conversion element formed from the sprayed coating.
Then, by repeating the firing treatment, thermal stability of the thermal spray coating (stabilization of thermoelectromotive force and Ca 9 Co 12 O 28 as the movement of Ca 3 Co 2 O 6 to the surface of the thermal spray coating converges). Therefore, even if heating and cooling are repeated, deterioration of the power generation performance of the thermoelectric conversion element and durability can be achieved.

(実施例1)
炭酸カルシウムと酸化コバルトの混合物を930℃の大気雰囲気中で10時間焼成を行って固相反応によりコバルト酸カルシウム(CaCo1228)を合成した。合成したコバルト酸カルシウムを粉砕した後、スプレードライヤー装置を用いて造粒し、106μmの篩を通過した造粒物を、溶射用のコバルト酸カルシウム粉末(CaCo1228粉末)とした。
そして、コバルト酸カルシウム粉末(CaCo1228粉末)をメタノール中に分散させてスラリーを作製し、このスラリーを溶射ガンに供給しながら、アルミナ基板(縦50mm、横60mm、厚さ0.1mm)上に溶射皮膜(縦15mm、横50mm、厚さ0.05mm)を形成した。なお、高速フレーム溶射は、溶射フレーム温度が2100℃、溶射速度が1800m/秒、溶射距離が250mmの条件で行った。
次いで、電気炉内に溶射皮膜が形成されたアルミナ基板をセットして、大気雰囲気中930℃の焼成温度まで200℃/hrの昇温速度で加熱し、930℃で2、5、10、40、及び60hrの各焼成時間だけ保持した後、200℃/hrの降温速度で冷却する焼成処理を行うことにより、熱電変換素子を製造した。
Example 1
A mixture of calcium carbonate and cobalt oxide was baked for 10 hours in an air atmosphere at 930 ° C., and calcium cobaltate (Ca 9 Co 12 O 28 ) was synthesized by a solid phase reaction. The synthesized calcium cobaltate was pulverized and then granulated using a spray dryer, and the granulated product that passed through a 106 μm sieve was used as a sprayed calcium cobaltate powder (Ca 9 Co 12 O 28 powder).
A calcium cobalt powder (Ca 9 Co 12 O 28 powder) is dispersed in methanol to prepare a slurry, and while supplying this slurry to a spray gun, an alumina substrate (length 50 mm, width 60 mm, thickness 0. 1 mm), a sprayed coating (vertical 15 mm, horizontal 50 mm, thickness 0.05 mm) was formed. The high-speed flame spraying was performed under the conditions of a spray flame temperature of 2100 ° C., a spray velocity of 1800 m / sec, and a spray distance of 250 mm.
Next, an alumina substrate on which a sprayed coating is formed is set in an electric furnace, heated to a firing temperature of 930 ° C. in an air atmosphere at a heating rate of 200 ° C./hr, and 2, 5, 10, 40 at 930 ° C. And after hold | maintaining only for each baking time of 60 hours, the thermoelectric conversion element was manufactured by performing the baking process which cools with the temperature-fall rate of 200 degrees C / hr.

得られた熱電変換素子の一方側を電熱ヒータを用いて大気雰囲気中で800℃に加熱すると共に他方側を空冷して温度差を発生させ、熱起電力(TEMF)と電気伝導度(EC)を測定した。また、溶射後の(焼成処理を行わない、即ち、焼成時間が0時間の)溶射皮膜を用いて作製した熱電変換素子についても熱起電力と電気伝導度を測定した。その結果を図1に示す。また、溶射後の溶射皮膜及び焼成処理(焼成温度が930℃、焼成時間が2、5、10、40、及び60hr)後の溶射皮膜についてX線回折による組成分析を行った。その結果を、図2(A)〜(D)に示す。 One side of the obtained thermoelectric conversion element is heated to 800 ° C. in an air atmosphere using an electric heater, and the other side is air-cooled to generate a temperature difference, so that a thermoelectromotive force (TEMF) and electrical conductivity (EC) are obtained. Was measured. Moreover, the thermoelectromotive force and electrical conductivity were measured also about the thermoelectric conversion element produced using the thermal spray coating (the baking process is not performed, ie, baking time is 0 hour) after thermal spraying. The result is shown in FIG. Moreover, the composition analysis by X-ray diffraction was performed about the sprayed coating after thermal spraying, and the thermal sprayed coating after baking processing (baking temperature is 930 degreeC, baking time is 2, 5, 10, 40, and 60 hours). The results are shown in FIGS.

図2(A)に示すように、溶射後の溶射皮膜を用いて製造した熱電変換素子からは、CaCo1228を示す回折ピークが検出された。なお、CaCo1228の分解により生成したCaCoはCaCo1228の粒界に存在しているため、回折ピークとして検出されなかったと考えられる。また、溶射後の溶射皮膜を用いて作製した熱電変換素子の表面を走査型電子顕微鏡で観察すると、溶射皮膜に微小なクラックが発生していることが確認された。図1に示すように、溶射直後の溶射皮膜を用いて作製した熱電変換素子の電気伝導度が小さいのは、微小なクラックの影響と考えられる。 As shown in FIG. 2 (A), a diffraction peak indicating Ca 9 Co 12 O 28 was detected from the thermoelectric conversion element manufactured using the sprayed coating after spraying. Incidentally, Ca 3 Co 2 O 6 produced by the decomposition of Ca 9 Co 12 O 28 because that exists at the grain boundaries of Ca 9 Co 12 O 28, is believed to have not been detected as a diffraction peak. Moreover, when the surface of the thermoelectric conversion element produced using the sprayed coating after thermal spraying was observed with a scanning electron microscope, it was confirmed that minute cracks were generated in the sprayed coating. As shown in FIG. 1, the small electrical conductivity of the thermoelectric conversion element produced using the sprayed coating immediately after spraying is considered to be due to the influence of minute cracks.

図2(B)に示すように、焼成時間が2、5時間の焼成処理を行って得られた溶射皮膜からは、CaCo1228を示す回折ピークが検出され、溶射皮膜の表面を走査型電子顕微鏡で観察すると、溶射後に存在していた微小なクラックが解消していること、CaCo1228粒子の表面にはCaCo微小粒子が析出していること、CaCo微小粒子は焼成時間が長くなるほど増加することが、それぞれ確認された。図1に示すように、焼成処理を行った溶射皮膜から作製した熱電変換素子の電気伝導度が上昇したのは、微小なクラックが解消したためと考えられる。 As shown in FIG. 2 (B), a diffraction peak indicating Ca 9 Co 12 O 28 was detected from the sprayed coating obtained by performing the baking treatment for 2 to 5 hours, and the surface of the sprayed coating was observed. When observed with a scanning electron microscope, that the fine cracks were present after spraying has been solved, the surface of Ca 9 Co 12 O 28 particles that Ca 3 Co 2 O 6 fine particles are precipitated, It was confirmed that Ca 3 Co 2 O 6 fine particles increased as the firing time increased. As shown in FIG. 1, the reason why the electrical conductivity of the thermoelectric conversion element produced from the sprayed coating subjected to the firing treatment was increased is because the minute cracks were eliminated.

なお、焼成時間を5時間とする焼成処理を行った溶射皮膜から作製した熱電変換素子の電気伝導度が、焼成時間を2時間とする焼成処理を行った溶射皮膜から作製した熱電変換素子の電気伝導度と比較して低下したのは、溶射皮膜の表面に析出するCaCo微小粒子が増加したためと考えられる。また、焼成時間を5時間とする焼成処理を行った溶射皮膜から作製した熱電変換素子の熱起電力が、焼成時間を2時間とする焼成処理を行った溶射皮膜から作製した熱電変換素子の熱起電力と比較して向上したのは、溶射皮膜内のCaCo含有率が低下したためと考えられる。 In addition, the electric conductivity of the thermoelectric conversion element produced from the thermal spray coating which performed the baking process for 5 hours is the electric conductivity of the thermoelectric conversion element produced from the thermal spray film which performed the baking process for 2 hours. The decrease compared to the conductivity is thought to be due to an increase in Ca 3 Co 2 O 6 fine particles precipitated on the surface of the sprayed coating. Moreover, the thermoelectromotive force of the thermoelectric conversion element produced from the thermal spray coating which performed the baking process for 5 hours is the heat | fever of the thermoelectric conversion element produced from the thermal spray film which performed the baking process for 2 hours. The improvement compared to the electromotive force is thought to be due to a decrease in the Ca 3 Co 2 O 6 content in the sprayed coating.

図2(C)に示すように、焼成時間が10、40時間の焼成処理を行って得られた溶射皮膜を用いて作製した熱電変換素子からは、CaCo1228とCaCoを示す回折ピークがそれぞれ検出された。また、焼成時間が10、40時間の焼成処理を行った溶射皮膜から作製した熱電変換素子の表面を走査型電子顕微鏡で観察すると、溶射皮膜の表面に析出したCaCo微小粒子が互いに融合して、溶射皮膜を被覆していることが確認された。CaCoを示す回折ピークが検出されたのは、溶射皮膜の表面がCaCoで被覆されたことと対応している。 As shown in FIG. 2C, Ca 9 Co 12 O 28 and Ca 3 Co 2 are produced from a thermoelectric conversion element manufactured using a sprayed coating obtained by performing a baking treatment for 10 to 40 hours. A diffraction peak indicating O 6 was detected. Further, when observing the surface of the thermoelectric conversion element manufactured firing time from the thermal spray coating which has undergone the baking treatment at 10, 40 hours with a scanning electron microscope, it was deposited on the surface of the thermal spray coating Ca 3 Co 2 O 6 microparticles It was confirmed that they were fused together and coated with a sprayed coating. The fact that a diffraction peak indicating Ca 3 Co 2 O 6 was detected corresponds to the fact that the surface of the sprayed coating was coated with Ca 3 Co 2 O 6 .

図1に示すように、焼成時間が10時間の焼成処理を行って得られた溶射皮膜から作製した熱電変換素子は、焼成時間が5時間の焼成処理を行って得られた溶射皮膜から作製した熱電変換素子と比べて電気伝導度に変化は見られないが、熱起電力の低下がみられた。これは、熱起電力に結晶方向の異方性を有するCaCoが、溶射皮膜の表面を被覆しているためと考えられる。
一方、焼成時間が40時間の焼成処理を行った溶射皮膜から作製した熱電変換素子を走査型電子顕微鏡で観察すると、CaCo1228粒子同士の間隙が小さくなり、焼結密度の向上が見られた。図1に示すように、焼成時間が40時間の焼成処理を行った溶射皮膜から作製した熱電変換素子の電気伝導度が、焼成時間が10時間の焼成処理を行った溶射皮膜から作製した熱電変換素子の電気伝導度と比較して向上がみられたのは、溶射皮膜の焼結密度が向上したためと考えられる。
As shown in FIG. 1, the thermoelectric conversion element produced from the thermal spray coating obtained by performing the firing process for 10 hours was produced from the thermal spray coating obtained by performing the firing process for 5 hours. Although there was no change in electrical conductivity as compared with the thermoelectric conversion element, a decrease in thermoelectromotive force was observed. This is presumably because Ca 3 Co 2 O 6 having anisotropy in the crystal direction in the thermoelectromotive force covers the surface of the sprayed coating.
On the other hand, when a thermoelectric conversion element produced from a sprayed coating that has been fired for 40 hours is observed with a scanning electron microscope, the gap between Ca 9 Co 12 O 28 particles is reduced, and the sintered density is improved. It was seen. As shown in FIG. 1, the electric conductivity of the thermoelectric conversion element produced from the thermal spray coating subjected to the firing treatment for 40 hours is the thermoelectric conversion produced from the thermal spray coating subjected to the firing treatment for 10 hours. The improvement in the electrical conductivity of the device is considered to be due to an improvement in the sintered density of the sprayed coating.

図2(D)に示すように、焼成時間を60時間とする焼成処理を行って得られた熱電変換素子からは、CaCo1228とAlCoの存在を示す回折ピークが検出され、CaCoを示す回折ピークは検出されなかった。AlCoの回折ピークが検出されたのは、アルミナ基板とCaCoが反応したことによる。図1に示すように、AlCoが生成したため、熱電変換素子の熱起電力と電気伝導度が低下した。 As shown in FIG. 2D, a diffraction peak indicating the presence of Ca 9 Co 12 O 28 and AlCo 2 O 4 was detected from the thermoelectric conversion element obtained by performing the baking treatment with a baking time of 60 hours. And no diffraction peak indicating Ca 3 Co 2 O 6 was detected. The reason why the diffraction peak of AlCo 2 O 4 was detected was that the alumina substrate and Ca 3 Co 2 O 6 reacted. As shown in FIG. 1, since AlCo 2 O 4 was generated, the thermoelectromotive force and electrical conductivity of the thermoelectric conversion element were lowered.

(実施例2)
実施例1と同様の方法で溶射皮膜を形成し、930℃で5時間の焼成処理を2〜4回それぞれ繰り返した溶射皮膜を用いて熱電変換素子を作製した。
そして、各熱電変換素子毎に、実施例1と同様の方法で熱起電力と電気伝導度を測定した。その結果を図3に示す。なお、図3には、930℃で5時間の焼成処理を1回行って作製した溶射皮膜を用いて製造した熱電変換素子の熱起電力と電気伝導度の測定結果を合わせて示している。また、焼成処理を2回繰り返した溶射皮膜についてX線回折による組成分析を行った。その結果を図4(A)に示す。
(Example 2)
A thermal spray coating was formed in the same manner as in Example 1, and a thermoelectric conversion element was produced using the thermal spray coating in which the baking treatment at 930 ° C. for 5 hours was repeated 2 to 4 times.
And for each thermoelectric conversion element, the thermoelectromotive force and electric conductivity were measured by the same method as in Example 1. The result is shown in FIG. FIG. 3 also shows the measurement results of the thermoelectromotive force and electrical conductivity of a thermoelectric conversion element manufactured using a thermal spray coating produced by performing a baking process at 930 ° C. for 5 hours once. Moreover, the composition analysis by X-ray diffraction was performed about the sprayed coating which repeated the baking process twice. The result is shown in FIG.

図3に示すように、930℃で5時間の焼成処理を繰り返すと、処理回数の増加に応じて熱起電力及び電気伝導度にそれぞれ向上が見られた。また、図4(A)に示すように、930℃で5時間の焼成処理を2回繰り返して、合計10時間分の加熱を行った場合の溶射皮膜のX線回折パターンでは、図4(B)に示す930℃で10時間の焼成処理を1回行った場合の溶射皮膜のX線回折パターンと比較して、CaCoの回折ピークが検出されていない。従って、CaCo1228の熱分解が抑制される焼成条件で繰り返し焼成処理を行うことで、溶射皮膜内のCaCo含有量を低減させながら、溶射皮膜を形成しているCaCo1228の焼結を進行させることができ、熱電変換素子の熱起電力と電気伝導度をより向上できることが確認できた。 As shown in FIG. 3, when the baking treatment at 930 ° C. for 5 hours was repeated, the thermoelectromotive force and the electrical conductivity were improved according to the increase in the number of treatments. Further, as shown in FIG. 4 (A), in the X-ray diffraction pattern of the sprayed coating when the baking treatment at 930 ° C. for 5 hours is repeated twice and the heating for a total of 10 hours is performed, FIG. ), The diffraction peak of Ca 3 Co 2 O 6 is not detected as compared with the X-ray diffraction pattern of the sprayed coating when the baking treatment at 930 ° C. for 10 hours is performed once. Therefore, the thermal spray coating is formed while reducing the Ca 3 Co 2 O 6 content in the thermal spray coating by repeatedly performing the firing process under the firing conditions that suppress thermal decomposition of Ca 9 Co 12 O 28 . It was confirmed that the sintering of Ca 9 Co 12 O 28 can proceed and the thermoelectromotive force and electrical conductivity of the thermoelectric conversion element can be further improved.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.

Claims (2)

コバルト酸カルシウム粉末を基板に溶射して作製した溶射皮膜から熱電変換素子を製造する方法において、
前記溶射皮膜を、926℃を超え950℃以下の大気雰囲気下で、1時間以上10時間未満保持する焼成処理を行うことを特徴とする熱電変換素子の製造方法。
In a method of manufacturing a thermoelectric conversion element from a sprayed coating prepared by spraying calcium cobaltate powder on a substrate,
A method for producing a thermoelectric conversion element, comprising performing a baking treatment for holding the sprayed coating in an air atmosphere of more than 926 ° C. and not more than 950 ° C. for 1 hour or more and less than 10 hours.
請求項1記載の熱電変換素子の製造方法において、前記溶射皮膜に前記焼成処理を2回以上繰り返し行うことを特徴とする熱電変換素子の製造方法。 The method for manufacturing a thermoelectric conversion element according to claim 1, wherein the firing treatment is repeatedly performed twice or more on the sprayed coating.
JP2014255772A 2014-12-18 2014-12-18 Method for manufacturing thermoelectric conversion element Expired - Fee Related JP6396198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014255772A JP6396198B2 (en) 2014-12-18 2014-12-18 Method for manufacturing thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255772A JP6396198B2 (en) 2014-12-18 2014-12-18 Method for manufacturing thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2016115896A true JP2016115896A (en) 2016-06-23
JP6396198B2 JP6396198B2 (en) 2018-09-26

Family

ID=56142053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255772A Expired - Fee Related JP6396198B2 (en) 2014-12-18 2014-12-18 Method for manufacturing thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP6396198B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320095A (en) * 2000-03-03 2001-11-16 Tohoku Techno Arch Co Ltd Oxide thermoelectric material
JP2003179272A (en) * 2001-12-13 2003-06-27 Toyota Central Res & Dev Lab Inc Thermoelectric converting material and its usage
JP2008270410A (en) * 2007-04-18 2008-11-06 Ishikawa Pref Gov Thermoelectric transducer, thermoelectric transducing module, and method for manufacturing the module
JP2014107443A (en) * 2012-11-28 2014-06-09 Fuji Corp Thermoelectric conversion device and manufacturing method therefor
JP2016513369A (en) * 2013-02-14 2016-05-12 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Thermoelectric materials and devices containing graphene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320095A (en) * 2000-03-03 2001-11-16 Tohoku Techno Arch Co Ltd Oxide thermoelectric material
JP2003179272A (en) * 2001-12-13 2003-06-27 Toyota Central Res & Dev Lab Inc Thermoelectric converting material and its usage
JP2008270410A (en) * 2007-04-18 2008-11-06 Ishikawa Pref Gov Thermoelectric transducer, thermoelectric transducing module, and method for manufacturing the module
JP2014107443A (en) * 2012-11-28 2014-06-09 Fuji Corp Thermoelectric conversion device and manufacturing method therefor
JP2016513369A (en) * 2013-02-14 2016-05-12 ザ・ユニバーシティ・オブ・マンチェスターThe University Of Manchester Thermoelectric materials and devices containing graphene

Also Published As

Publication number Publication date
JP6396198B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
Ganguly et al. Structural, dielectric and electrical properties of BaFe0. 5Nb0. 5O3 ceramic prepared by solid-state reaction technique
KR101516990B1 (en) Manufacturing method of aluminium nitride
Wang et al. Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study
Yang et al. Powder synthesis and properties of LiTaO3 ceramics
TWI656667B (en) Thermoelectric materials and their manufacturing method
CN104810464B (en) Thermoelectric material and thermoelectric element including it
CN104209524A (en) Preparation method of flexible pyroelectric film
El Horr et al. Microstructure of single-phase cobalt and manganese oxide spinel Mn3− xCoxO4 ceramics
Chen et al. Potassium–Sodium Niobate‐Based Lead‐Free Piezoelectric Ceramic Coatings by Thermal Spray Process
TWI555243B (en) Thermoelectric materials and their manufacturing method
Sun et al. Impact of fast microwave sintering on the grain growth, dielectric relaxation and piezoelectric properties on Ba0. 18Ca0. 02Ti0. 09Zr0. 10O3 lead-free ceramics prepared by different methods
Bobić et al. Lead-free BaBi4Ti4O15 ceramics: Effect of synthesis methods on phase formation and electrical properties
Kinemuchi et al. Thermoelectric Properties of Rare Earth-Doped SrTiO 3 Nanocubes
EP3677562B1 (en) Aluminum nitride sintered compact
JP6396198B2 (en) Method for manufacturing thermoelectric conversion element
KR20180022384A (en) Manufacturing method of Bi-Sb-Te alloy-sintered body for thermoelectric material
TWI535080B (en) Thermoelectric materials
JP2018162185A (en) Magnesium oxide powder and method for producing the same
KR20090063541A (en) Room temperature conducting dense thick film prepared by aerosol deposition and preparation method thereof
TWI536621B (en) Method for manufacturing thermoelectric materials
JP2016155727A (en) Polyhedron-shaped aluminum nitride powder and method for manufacturing the same
JP2016530717A (en) Method for manufacturing thermoelectric material
Sangsubun Fabrication and characterization of bismuth sodium titanate ceramics by high-energy ball milling technique
Nakamura et al. Fabrication and properties of thermoelectric oxide thick films deposited with aerosol deposition method
TW201532969A (en) Thermoelectric materials and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees