JP2016114980A - Vibration generator system - Google Patents

Vibration generator system Download PDF

Info

Publication number
JP2016114980A
JP2016114980A JP2014250919A JP2014250919A JP2016114980A JP 2016114980 A JP2016114980 A JP 2016114980A JP 2014250919 A JP2014250919 A JP 2014250919A JP 2014250919 A JP2014250919 A JP 2014250919A JP 2016114980 A JP2016114980 A JP 2016114980A
Authority
JP
Japan
Prior art keywords
elastic member
transmission member
elastic
operating body
vibration generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014250919A
Other languages
Japanese (ja)
Inventor
宏 涌田
Hiroshi Wakuta
宏 涌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2014250919A priority Critical patent/JP2016114980A/en
Publication of JP2016114980A publication Critical patent/JP2016114980A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration generator system which can suppress vibration caused by plunger lateral pressure generated in a solenoid mechanism, and vibrate an operation body with larger amplitude.SOLUTION: In a vibration generator system, a transmission member 25 is driven in an axial direction by a solenoid mechanism worked as an actuator 20. A first elastic member 31 is fixed to an upper end 26a of a plunger 26 of the transmission member 25, and an operation body 10 is pushed up by the first elastic member 31. Vibration such as lateral swing or rotation deflection of the plunger 26 can be suppressed by separating the plunger 26 from the operation body 10. Elastic coefficient of the first elastic member 31 is made to coincide with those of the second elastic member 35 and the third elastic member 32 so that the operation body 10 can be driven between a plus side and a minus side with a large amplitude.SELECTED DRAWING: Figure 1

Description

本発明は、指で操作を行う操作体に、振動のための衝撃力を与える振動発生装置に関する。   The present invention relates to a vibration generator that applies an impact force for vibration to an operating body that is operated with a finger.

特許文献1には、タッチパッドに衝撃力や振動力を与えて振動させる振動発生装置に関する発明が記載されている。   Patent Document 1 describes an invention relating to a vibration generator that vibrates by applying an impact force or a vibration force to a touch pad.

この振動発生装置は、タッチパッドがバネに支持されてZ軸に沿って移動自在に支持されている。リニアコイルアクチュエータがハウジングに固定されており、その可動部分がタッチパッドに直接に接続されている。リニアコイルアクチュエータによって可動部分が駆動されると、その移動力がタッチパネルに伝達され、タッチパネルが所望の周波数で振動する。   In this vibration generator, a touch pad is supported by a spring and supported so as to be movable along the Z axis. A linear coil actuator is fixed to the housing, and its movable part is directly connected to the touchpad. When the movable part is driven by the linear coil actuator, the moving force is transmitted to the touch panel, and the touch panel vibrates at a desired frequency.

特表2008−516348号公報Special table 2008-516348 gazette

特許文献1に記載された振動発生装置は、アクチュエータの可動部分とタッチパッドとが互いに固定されている。この場合に、可動部分からアクチュエータへ作用する推力の中心と、タッチパッドの重心を完全に一致させることは難しく、アクチュエータで可動部分とタッチパッドとを一体で動作させる際に、アクチュエータの可動部分に軸芯と交差する方向への偏り力が作用するのを避けることができない。アクチュエータの可動部分と固有部分との間には、Z軸方向と直交する向きで通常は数十μm程度の隙間が形成されているため、前記偏り力が作用すると、アクチュエータの可動部分とこれに接続されているタッチパッドに横振れや回転振れが発生しやすくなり、このときに高い周波数の振動音や打突音を発生し、これが操作者にノイズとして聞こえるようになると耳障りになる。   In the vibration generator described in Patent Document 1, the movable part of the actuator and the touch pad are fixed to each other. In this case, it is difficult to make the center of the thrust acting on the actuator from the movable part and the center of gravity of the touchpad completely coincide with each other. It is inevitable that a biasing force in the direction intersecting the axis acts. Since a gap of about several tens of μm is formed between the movable part and the unique part of the actuator in a direction perpendicular to the Z-axis direction, when the biasing force is applied, the movable part of the actuator and this Lateral vibrations and rotational vibrations are likely to occur on the connected touchpad. At this time, high-frequency vibration sounds and impact sounds are generated, which can be annoying if they are heard as noise by the operator.

また、アクチュエータの可動部分と、これに接続されているタッチパッドに横振れや回転振れが発生すると、アクチュエータの可動部分の軸支持部に側圧が作用して、摩耗の原因になる。さらに、タッチパッドをZ軸方向へ移動自在に支持するスラスト軸受などの案内機構が形成されているものでは、この案内機構にも側圧が作用して摩耗が生じやすくなる。   Further, when lateral vibration or rotational vibration occurs in the movable part of the actuator and the touch pad connected to the movable part, side pressure acts on the shaft support part of the movable part of the actuator, causing wear. Furthermore, in the case where a guide mechanism such as a thrust bearing that supports the touch pad so as to be movable in the Z-axis direction is formed, side pressure acts on this guide mechanism, and wear easily occurs.

本発明は上記従来の課題を解決するものであり、操作体を振動させる伝達部材がアクチュエータで駆動されたときに、伝達部材に横振れなどの原因となる側方への力が作用しにくくなる構造の振動発生装置を提供することを目的としている。   The present invention solves the above-described conventional problems, and when a transmission member that vibrates the operating body is driven by an actuator, a lateral force that causes lateral vibration or the like is less likely to act on the transmission member. An object of the present invention is to provide a vibration generator having a structure.

また本発明は、伝達部材を操作体から分離して動作させた構造であっても、操作体に所定の振動を作用させることが可能な振動発生装置を提供することを目的としている。   It is another object of the present invention to provide a vibration generating device capable of causing a predetermined vibration to act on the operating body even when the transmission member is separated from the operating body and operated.

本発明は、操作体と、アクチュエータと、前記アクチュエータで発せられた力を前記操作体に伝達する伝達部材と、が設けられた振動発生装置において、
前記操作体は相反する方向である第1の方向と第2の方向へ移動自在に支持され、前記アクチュエータは、前記伝達部材を前記第1の方向へ駆動するものであり、
前記伝達部材と前記操作体の少なくとも一方に第1の弾性部材が固定され、前記伝達部材が前記アクチュエータによって前記第1の方向へ駆動されたときに、その駆動力が前記第1の弾性部材を介して前記操作体に伝達されることを特徴とするものである。
The present invention relates to a vibration generator provided with an operating body, an actuator, and a transmission member that transmits a force generated by the actuator to the operating body.
The operating body is supported movably in a first direction and a second direction which are opposite directions, and the actuator drives the transmission member in the first direction,
A first elastic member is fixed to at least one of the transmission member and the operating body, and when the transmission member is driven in the first direction by the actuator, the driving force is applied to the first elastic member. It is transmitted to the operating body through the above.

本発明は、前記伝達部材が第2の方向へ移動したときに圧縮させられる第2の弾性部材が設けられているものである。   The present invention is provided with a second elastic member that is compressed when the transmission member moves in the second direction.

本発明の振動発生装置は、前記伝達部材が第1の方向へ移動したときに圧縮させられる第3の弾性部材が設けられているものである。   The vibration generator of the present invention is provided with a third elastic member that is compressed when the transmission member moves in the first direction.

本発明の振動発生装置は、前記第1の弾性部材と前記第2の弾性部材との合成弾性係数と、前記第1の弾性部材と前記第3の弾性部材との合成弾性係数とがほぼ一致していることが好ましい。   In the vibration generator of the present invention, the combined elastic coefficient of the first elastic member and the second elastic member and the combined elastic coefficient of the first elastic member and the third elastic member are approximately one. It is preferable to do it.

本発明の振動発生装置は、前記伝達部材が第2の方向へ移動しているときに、前記第1の弾性部材と前記操作体との間、または前記伝達部材と前記第1の弾性部材との間に隙間が形成され、
前記伝達部材が第1の方向へ移動しているときに、前記伝達部材と前記第2の弾性部材との間に隙間が形成されるものである。
When the transmission member is moving in the second direction, the vibration generator according to the present invention is provided between the first elastic member and the operating body, or between the transmission member and the first elastic member. A gap is formed between
A gap is formed between the transmission member and the second elastic member when the transmission member is moving in the first direction.

本発明の振動発生装置は、前記第1の弾性部材と前記第2の弾性部材は、反発係数が0.3〜0.8であることが好ましい。   In the vibration generator of the present invention, it is preferable that the first elastic member and the second elastic member have a restitution coefficient of 0.3 to 0.8.

なお、本発明では、前記第2の弾性部材が、前記伝達部材が第2の方向へ移動したことを検知する検知装置であってもよい。   In the present invention, the second elastic member may be a detection device that detects that the transmission member has moved in the second direction.

本発明は、アクチュエータで駆動される伝達部材と操作体とが連結されていないため、操作体の質量の偏りなどが伝達部材に直接に作用しなくなり、伝達部材と操作体に横振れや回転振れが発生しにくくなり、ノイズを低減できる。また、伝達部材の軸受け部に大きな側圧が作用するのを防止できるようになる。   In the present invention, since the transmission member driven by the actuator and the operation body are not coupled, the mass deviation of the operation body does not directly act on the transmission member, so that the transmission member and the operation body have lateral vibration and rotational vibration. Is less likely to occur and noise can be reduced. In addition, it is possible to prevent a large lateral pressure from acting on the bearing portion of the transmission member.

本発明は、伝達部材と操作体とが分離された構造であっても、第1の弾性部材と第2の弾性部材および第3の弾性部材を設け、これら弾性部材の弾性係数や反発係数を最適化することにより、操作部材に大きな振幅の振動を与えることが可能になる。   The present invention provides the first elastic member, the second elastic member, and the third elastic member even if the transmission member and the operation body are separated, and the elastic coefficient and restitution coefficient of these elastic members are set. By optimizing, it becomes possible to give a large amplitude vibration to the operating member.

本発明の実施の形態の振動発生装置の断面図、Sectional drawing of the vibration generator of embodiment of this invention, 図1に示す振動発生装置が動作した状態を示す断面図、Sectional drawing which shows the state which the vibration generator shown in FIG. 1 operate | moved, 図1に示す振動発生装置の等価モデルを示す説明図、Explanatory drawing which shows the equivalent model of the vibration generator shown in FIG. 図1に示す振動発生装置の振動波形を示す線図、A diagram showing a vibration waveform of the vibration generator shown in FIG. 図1に示す振動発生装置の振動波形を示す線図、A diagram showing a vibration waveform of the vibration generator shown in FIG. アクチュエータにおける吸引力と側圧との関係を示す線図、A diagram showing the relationship between suction force and lateral pressure in the actuator,

図1と図2に示す振動発生装置1は、基板3上にブラケット4が固定されており、基板3とブラケット4とでベース2が構成されている。   In the vibration generator 1 shown in FIGS. 1 and 2, a bracket 4 is fixed on a substrate 3, and the substrate 3 and the bracket 4 constitute a base 2.

ブラケット4の上部に複数の案内軸5が固定されており、操作体10が案内軸5に案内されて、Z方向(上下方向)に進退自在に支持されている。操作体10は複数の案内軸5で案内されているため、水平姿勢を維持して上下に移動自在である。ブラケット4と操作体10の間に付勢ばね6が設けられ、この付勢ばね6によって、操作体10はZ軸に沿って上方へ向けて付勢されている。   A plurality of guide shafts 5 are fixed to the upper part of the bracket 4, and the operating body 10 is guided by the guide shafts 5 and supported so as to be movable back and forth in the Z direction (vertical direction). Since the operating body 10 is guided by the plurality of guide shafts 5, it can move up and down while maintaining a horizontal posture. A biasing spring 6 is provided between the bracket 4 and the operating body 10, and the operating body 10 is biased upward along the Z axis by the biasing spring 6.

操作体10は、操作基材11とその上に設置された操作ノブ12とが固定されて構成されている。操作基材11は金属製または合成樹脂製であり、複数の案内軸5によってZ方向へ往復移動自在に支持されている。操作ノブ12は合成樹脂材料で形成されており、その表面12aまたは裏面12bに静電センサーなどの座標入力装置が搭載されており、操作者の指40が操作ノブ12のどの位置に触れたのかを検知できるようになっている。   The operation body 10 is configured by fixing an operation base material 11 and an operation knob 12 installed thereon. The operation base 11 is made of metal or synthetic resin and is supported by a plurality of guide shafts 5 so as to be reciprocally movable in the Z direction. The operation knob 12 is made of a synthetic resin material, and a coordinate input device such as an electrostatic sensor is mounted on the front surface 12a or the back surface 12b, and the position of the operation knob 12 touched by the operator's finger 40. Can be detected.

ブラケット4の天井板4aの下面にアクチュエータ20が固定されている。このアクチュエータ20は一軸駆動アクチュエータであり、ソレノイド機構である。一軸アクチュエータとしては、ソレノイド機構の他にリニアコイルを使用したものであってもよい。   An actuator 20 is fixed to the lower surface of the ceiling plate 4 a of the bracket 4. The actuator 20 is a uniaxial drive actuator and is a solenoid mechanism. As a single axis actuator, a linear coil may be used in addition to the solenoid mechanism.

ソレノイド機構であるアクチュエータ20の固定部は、磁性金属材料で形成された内側ヨーク21と外側ヨーク22、ならびに両ヨーク21,22の内部に保持された励磁コイル23とで構成されている。アクチュエータ20の可動部は、伝達部材25を有している。伝達部材25は、内側ヨーク21を貫通してZ軸方向へ進退移動するプランジャ26と、内側ヨーク21に吸引される可動ヨーク27と、可動ヨーク27の下端部に固定された付勢部28と、下端部に形成された押圧部29とから構成されている。   The fixed portion of the actuator 20 which is a solenoid mechanism is composed of an inner yoke 21 and an outer yoke 22 made of a magnetic metal material, and an exciting coil 23 held inside the yokes 21 and 22. The movable part of the actuator 20 has a transmission member 25. The transmission member 25 includes a plunger 26 that moves forward and backward in the Z-axis direction through the inner yoke 21, a movable yoke 27 that is attracted to the inner yoke 21, and a biasing portion 28 that is fixed to the lower end of the movable yoke 27. The pressing portion 29 is formed at the lower end portion.

プランジャ26は金属シャフトである。ブラケット4の上面にスラスト軸受7が固定されており、プランジャ26はスラスト軸受7に摺動自在に支持されている。スラスト軸受7は金属製で潤滑油を含んだ含浸軸受で構成されている。   The plunger 26 is a metal shaft. A thrust bearing 7 is fixed to the upper surface of the bracket 4, and the plunger 26 is slidably supported by the thrust bearing 7. The thrust bearing 7 is made of an impregnated bearing made of metal and containing lubricating oil.

伝達部材25を構成するプランジャ26の上部先端26aに第1の弾性部材31が固定されている。第1の弾性部材31は、合成ゴムや合成発泡樹脂などで形成されており、圧縮方向へ弾性変形可能である。図1は、アクチュエータ20の励磁コイル23に通電されていない状態を示している。このとき、伝達部材25が下降しており、第1の弾性部材31と操作基材11との間に微小な隙間δ1が形成されている。なお、第1の弾性部材31が操作基材11の下面に固定されており、第1の弾性部材31とプランジャ26の上部先端26aとの間に隙間δ1が形成されていてもよい。   A first elastic member 31 is fixed to the upper end 26 a of the plunger 26 constituting the transmission member 25. The first elastic member 31 is made of synthetic rubber or synthetic foamed resin, and can be elastically deformed in the compression direction. FIG. 1 shows a state where the excitation coil 23 of the actuator 20 is not energized. At this time, the transmission member 25 is lowered, and a minute gap δ1 is formed between the first elastic member 31 and the operation base material 11. The first elastic member 31 may be fixed to the lower surface of the operation base material 11, and a gap δ1 may be formed between the first elastic member 31 and the upper tip 26a of the plunger 26.

外側ヨーク22と、伝達部材25の付勢部28との間に、第3の弾性部材32が介在している。第3の弾性部材32は、第1の弾性部材31と同様に、合成ゴムや合成発泡樹脂などのような圧縮方向へ弾性変形可能な材料で形成されている。図1に示すように、励磁コイル23に通電されていないときは、第2の弾性部材32で発揮される与圧fによって、伝達部材25が下降した状態で動かないように下向きに付勢されている。なお、第3の弾性部材32が付勢部28に固定されて、その上部が外側ヨーク22の下面に固定されることなく当接する構造であってもよい。   A third elastic member 32 is interposed between the outer yoke 22 and the urging portion 28 of the transmission member 25. Similar to the first elastic member 31, the third elastic member 32 is formed of a material that can be elastically deformed in the compression direction, such as synthetic rubber or synthetic foamed resin. As shown in FIG. 1, when the excitation coil 23 is not energized, the pressure f exerted by the second elastic member 32 urges the transmission member 25 downward so as not to move in the lowered state. ing. The third elastic member 32 may be fixed to the biasing portion 28 and the upper portion thereof may be in contact with the lower surface of the outer yoke 22 without being fixed.

ベース2の基板3の上に第2の弾性部材35が設けられている。第2の弾性部材35は、第1の弾性部材31と同様に、合成ゴムや合成発泡樹脂などのような圧縮方向へ弾性変形可能な材料で形成されている。この実施の形態では、第2の弾性部材35が検知装置であり、内部に対向する接点や対向する電極が設けられている。伝達部材25が図1に示す姿勢からさらに下向きに移動すると、伝達部材25の押圧部29によって第2の弾性部材35が押され、内部の接点どうしが接触して切替え信号が発せられ、または内部の電極が接近して電極間の静電容量が変化し、この変化によって切替え信号が発せられる。   A second elastic member 35 is provided on the substrate 3 of the base 2. Similar to the first elastic member 31, the second elastic member 35 is formed of a material that can be elastically deformed in the compression direction, such as synthetic rubber or synthetic foamed resin. In this embodiment, the second elastic member 35 is a detection device, and is provided with contacts and electrodes facing each other. When the transmission member 25 moves further downward from the posture shown in FIG. 1, the second elastic member 35 is pushed by the pressing portion 29 of the transmission member 25, the internal contacts come into contact with each other, and a switching signal is generated. As the electrodes approach, the capacitance between the electrodes changes, and a change signal is generated by this change.

なお、本発明では、第2の弾性部材35とスイッチ機構とが別々に構成されて、伝達部材25が下向きに押されたときに、第2の弾性部材35で上向きの弾性力が発揮されると共にスイッチ機構が動作してもよい。   In the present invention, the second elastic member 35 and the switch mechanism are configured separately, and when the transmission member 25 is pushed downward, the second elastic member 35 exerts an upward elastic force. At the same time, the switch mechanism may operate.

図2に示すように、アクチュエータ20の励磁コイル23に通電されると、その電流磁界により内側ヨーク21が磁化され、可動ヨーク27が内側ヨーク21に吸引され、伝達部材25がZ軸に沿って上昇する。このとき、伝達部材25の押圧部29と第2の弾性部材35との間に、第2の隙間δ2が形成される。   As shown in FIG. 2, when the exciting coil 23 of the actuator 20 is energized, the inner yoke 21 is magnetized by the current magnetic field, the movable yoke 27 is attracted to the inner yoke 21, and the transmission member 25 is moved along the Z axis. To rise. At this time, a second gap δ2 is formed between the pressing portion 29 of the transmission member 25 and the second elastic member 35.

図3は、図1と図2に示す振動発生装置1の各部の等価モデルを示している。第1の弾性部材31は、弾性係数k1と減衰係数c1とを有し、第2の弾性部材35は弾性係数k2と減衰係数c2を、第3の弾性部材32は、弾性係数k3と減衰係数c3を有している。図3では、励磁コイル23に通電されていない非励磁状態において、第3の弾性部材32から伝達部材25に対して下向きに与えられる与圧がfで示されている。   FIG. 3 shows an equivalent model of each part of the vibration generator 1 shown in FIGS. The first elastic member 31 has an elastic coefficient k1 and a damping coefficient c1, the second elastic member 35 has an elastic coefficient k2 and a damping coefficient c2, and the third elastic member 32 has an elastic coefficient k3 and a damping coefficient. c3. In FIG. 3, a pressure applied downward from the third elastic member 32 to the transmission member 25 in a non-excitation state in which the excitation coil 23 is not energized is indicated by f.

また、指40も弾性係数kfと減衰係数cfを有するモデルとして表すことが可能である。   The finger 40 can also be represented as a model having an elastic coefficient kf and an attenuation coefficient cf.

次に、前記振動発生装置の動作について説明する。
図1に示すように、アクチュエータ20の励磁コイル23に通電されていないときには、伝達部材25が下降し、第3の弾性部材32から伝達部材25に下向きの与圧fが与えられている。このとき、プランジャ26の上部先端26aに固定されている第1の弾性部材31と操作基材11との間に第1の隙間δ1が形成されている。
Next, the operation of the vibration generator will be described.
As shown in FIG. 1, when the excitation coil 23 of the actuator 20 is not energized, the transmission member 25 is lowered and a downward pressure f is applied to the transmission member 25 from the third elastic member 32. At this time, a first gap δ1 is formed between the first elastic member 31 fixed to the upper tip 26a of the plunger 26 and the operation base material 11.

指40を操作ノブ12の表面12aに触れると、操作ノブ12に搭載されている静電センサなどの座標検知装置で、指40の接触が検知される。指40を表面12aに沿って動作させると、座標検知装置によって、指40の接触位置の移動状態が検知される。指40を操作ノブ12の表面12aで移動させると、図示しない表示画面でカーソル表示が移動する。カーソル表示をいずれかのメニュー表示の位置に移動させた後に、操作ノブ12を下向きの力F1で押すことによってメニューの選択決定操作を行うことができる。   When the finger 40 touches the surface 12 a of the operation knob 12, the contact of the finger 40 is detected by a coordinate detection device such as an electrostatic sensor mounted on the operation knob 12. When the finger 40 is moved along the surface 12a, the movement state of the contact position of the finger 40 is detected by the coordinate detection device. When the finger 40 is moved on the surface 12a of the operation knob 12, the cursor display moves on a display screen (not shown). After the cursor display is moved to one of the menu display positions, the menu selection determination operation can be performed by pressing the operation knob 12 with the downward force F1.

図1の状態から指40で操作体10へ下向きの押圧力F1が与えられると、操作体10が案内軸5に案内されて下降するが、操作体10が微小距離δ1だけ下降すると、操作基材11が第1の弾性部材31に当接し、操作体10と共に伝達部材25が下向きに移動させられる。そして、伝達部材25の押圧部29で第2の弾性部材35が押され、第2の弾性部材35の内部の接点が接触し、あるいは電極が接近するなどして切替え信号が生成される。切替え信号が図示しない制御部に与えられると、図示しない駆動回路が始動し、アクチュエータ20の励磁コイル23に駆動電流が与えられる。この駆動電流は短時間のパルス状であり1ショットだけ与えられる。   When the downward pressing force F1 is applied to the operating body 10 with the finger 40 from the state of FIG. 1, the operating body 10 is guided and lowered by the guide shaft 5, but when the operating body 10 is lowered by a minute distance δ1, the operating base 10 is lowered. The material 11 comes into contact with the first elastic member 31, and the transmission member 25 is moved downward together with the operation body 10. Then, the second elastic member 35 is pushed by the pressing portion 29 of the transmission member 25, the contact point inside the second elastic member 35 comes into contact, or the switching signal is generated when the electrode approaches. When the switching signal is supplied to a control unit (not shown), a drive circuit (not shown) is started, and a drive current is supplied to the excitation coil 23 of the actuator 20. This drive current is in the form of a short-time pulse and is given only one shot.

励磁コイル23に通電されると、可動ヨーク27が内側ヨーク21に吸引されて、伝達部材25が持ち上げられ、プランジャ26の上部先端26aに固定された第1の弾性部材31で、操作体10の操作基材11が上向きに突き上げられ、第1の弾性部材31が収縮し且つ第3の弾性部材32が収縮した状態で操作体10に撓みが与えられる。その直後に、励磁コイル23への通電が断たれ、ソレノイド機構の吸引力が解除されると、収縮していた第1の弾性部材31の弾性復元力と、操作体10の撓み弾性力、さらには第3の弾性部材32の弾性復元力によって、伝達部材25が下向きに移動し、伝達部材25の下端の押圧部29で、第2の弾性部材35が収縮させられる。   When the exciting coil 23 is energized, the movable yoke 27 is attracted to the inner yoke 21, the transmission member 25 is lifted, and the first elastic member 31 fixed to the upper tip 26 a of the plunger 26 is used to The operation base 10 is pushed upward, the first elastic member 31 contracts, and the third elastic member 32 contracts, so that the operating body 10 is bent. Immediately after that, when the energization to the exciting coil 23 is cut off and the attraction force of the solenoid mechanism is released, the elastic restoring force of the contracted first elastic member 31, the bending elastic force of the operating body 10, The transmission member 25 is moved downward by the elastic restoring force of the third elastic member 32, and the second elastic member 35 is contracted by the pressing portion 29 at the lower end of the transmission member 25.

その後は、第2の弾性部材35の弾性復元力で伝達部材25が上昇し、第1の弾性部材31が操作基材11の下面に当たって、この動作が繰り返される。励磁コイル23への通電が1ショットであると、操作体10は、図4と図5に示すような減衰振動を発生することになる。この減衰振動が指40に伝達されることで、操作者に切替え信号が生成されたことが知らされる。   Thereafter, the transmission member 25 is raised by the elastic restoring force of the second elastic member 35, the first elastic member 31 hits the lower surface of the operation base material 11, and this operation is repeated. If the excitation coil 23 is energized for one shot, the operating body 10 generates a damped vibration as shown in FIGS. By transmitting this damped vibration to the finger 40, the operator is informed that the switching signal has been generated.

次に、図1ないし図3に示す振動発生装置1の作用効果について説明する。
前記振動発生装置1は、伝達部材25を構成するプランジャ26と操作体10とが分離されている。プランジャ26が自由状態で進退動作できるため、プランジャ26と操作体10が連結されていたときのような重心の偏りなどに起因するプランジャ26の横振れや傾き振れあるいは回転振れが発生しにくくなる。
Next, the effect of the vibration generator 1 shown in FIGS. 1 to 3 will be described.
In the vibration generator 1, the plunger 26 constituting the transmission member 25 and the operation body 10 are separated. Since the plunger 26 can move back and forth in a free state, it is difficult for the plunger 26 to be laterally shaken, tilted, or rotated due to the bias of the center of gravity as when the plunger 26 and the operating body 10 are connected.

図6は、ソレノイド機構の特性を示している。横軸は、プランジャとその軸受部とのギャップ、すなわちプランジャの軸芯と直交する向きでの、プランジャと軸受部とのギャップを示し、縦軸がプランジャに対する軸方向の吸引力と、プランジャに作用する側圧を示している。図6に示すように、ソレノイド機構では、前記ギャップをよほど小さくしない限り側圧を低下させることができず、通常は側圧が吸引力の10%程度になる。そのため、プランジャ26と操作体10とが連結されていると、前記側圧により、プランジャ26と操作体10との合計の質量に振れが発生しやすくなり、振動音が発生しやすく、比較的高い周波数のノイズが発生するようになる。しかし、前記実施の形態の振動発生装置1では、プランジャ26と操作体1とが分離されているため、前記側圧によって操作体10に側方への振動力が作用することがなく、前記ノイズを低減しやすくなる。   FIG. 6 shows the characteristics of the solenoid mechanism. The horizontal axis shows the gap between the plunger and its bearing, that is, the gap between the plunger and the bearing in the direction perpendicular to the plunger's axis, and the vertical axis shows the axial suction force against the plunger and acts on the plunger. Indicates the lateral pressure to be applied. As shown in FIG. 6, in the solenoid mechanism, the side pressure cannot be reduced unless the gap is made very small, and the side pressure is normally about 10% of the suction force. Therefore, when the plunger 26 and the operating body 10 are connected, the side pressure tends to cause a shake in the total mass of the plunger 26 and the operating body 10, and a vibration noise is likely to be generated, with a relatively high frequency. Noise will be generated. However, in the vibration generator 1 of the above embodiment, since the plunger 26 and the operating body 1 are separated, a lateral vibration force does not act on the operating body 10 due to the lateral pressure, and the noise is reduced. It becomes easy to reduce.

また、プランジャ26と操作体10とが分離された構造であっても、第1の弾性部材31と第2の弾性部材35および第3の弾性部材32を設けることによって、図4と図5に示すように、操作体10に対してプラス方向とマイナス方向とで、加速度(振幅)が同程度となるような振動を与えることが可能になる。これは、励磁コイル23に通電されて伝達部材25が上向きに吸引され、その後に通電が断たれたときに、第1の弾性部材31と第3の弾性部材32の弾性復元力によって伝達部材25に下向きの力が与えられ、その後は、第2の弾性部材35の弾性力によって、伝達部材25が上向きに突き上げられる動作を実現できるからである。   Further, even if the plunger 26 and the operation body 10 are separated, the first elastic member 31, the second elastic member 35, and the third elastic member 32 are provided in FIGS. As shown, it is possible to give vibration to the operating body 10 such that the acceleration (amplitude) is approximately the same in the plus direction and the minus direction. This is because when the excitation coil 23 is energized and the transmission member 25 is attracted upward, and then the energization is cut off, the transmission member 25 is caused by the elastic restoring force of the first elastic member 31 and the third elastic member 32. This is because a downward force is applied to the second elastic member 35, and thereafter, an operation in which the transmission member 25 is pushed upward by the elastic force of the second elastic member 35 can be realized.

このような動作を行うためには、第1の弾性部材31と前記第2の弾性部材35の反発係数が0.3〜0.8であることが好ましく、第3の弾性部材32の反発係数も0.3〜0.8であることが好ましい。   In order to perform such an operation, the coefficient of restitution of the first elastic member 31 and the second elastic member 35 is preferably 0.3 to 0.8, and the coefficient of restitution of the third elastic member 32 is Is preferably 0.3 to 0.8.

また、第1の弾性部材31と第2の弾性部材35との合成弾性係数と、第1の弾性部材31と第3の弾性部材32との合成弾性係数とがほぼ一致していることが好ましい。ここでの一致とは、互いの合成弾性係数の差がいずれかの合成弾性係数に対して10%以内であることを意味している。合成弾性係数を上記のように設定することによって、図4と図5に示すように、操作体10のプラス側の加速度(振幅)とマイナス側の加速度(振幅)を同程度に設定することが可能になる。また、第1の弾性部材31と第2の弾性部材35および第3の弾性部材32の弾性係数も互いに一致していることが好ましい。   Further, it is preferable that the combined elastic coefficient of the first elastic member 31 and the second elastic member 35 and the combined elastic coefficient of the first elastic member 31 and the third elastic member 32 substantially coincide with each other. . Here, the term “match” means that the difference in mutual synthetic elastic modulus is within 10% of any synthetic elastic modulus. By setting the composite elastic modulus as described above, the plus-side acceleration (amplitude) and minus-side acceleration (amplitude) of the operating body 10 can be set to the same degree as shown in FIGS. It becomes possible. In addition, it is preferable that the elastic coefficients of the first elastic member 31, the second elastic member 35, and the third elastic member 32 also coincide with each other.

図4と図5は横軸に時間を、縦軸に1ショットの励磁電流を与えたときの操作体10の加速度を示している。この線図は、図3に示す透過モデルに基づいてシミュレーションした結果である。   4 and 5 show the acceleration of the operating tool 10 when the horizontal axis indicates time and the vertical axis indicates one shot of excitation current. This diagram is the result of simulation based on the transmission model shown in FIG.

図4には、伝達部材25ならびに操作体10の質量と各弾性部材の弾性係数によって、固有振動数を75Hzに設定したときの加速度変化を(i)で示し、65Hzに設定したときの加速度変化を(ii)で示している。なお、第1の弾性部材31と第2の弾性部材35および第3の弾性部材32の弾性係数を互いに一致させ、それぞれの弾性部材の反発係数を0.8に設定した。図4から、固有振動数をどのように設定しても、第1の弾性部材31と第2の弾性部材35および第3の弾性部材32を設けることで、操作体10をプラス方向とマイナス方向とで同程度の振幅で駆動できることが解る。   FIG. 4 shows (i) the acceleration change when the natural frequency is set to 75 Hz, and the acceleration change when it is set to 65 Hz, depending on the mass of the transmission member 25 and the operating body 10 and the elastic coefficient of each elastic member. Is indicated by (ii). The elastic coefficients of the first elastic member 31, the second elastic member 35, and the third elastic member 32 were made to coincide with each other, and the restitution coefficient of each elastic member was set to 0.8. From FIG. 4, no matter how the natural frequency is set, by providing the first elastic member 31, the second elastic member 35, and the third elastic member 32, the operating body 10 is moved in the plus direction and the minus direction. It can be seen that driving with the same amplitude is possible.

図5は、第1の弾性部材31と第2の弾性部材35および第3の弾性部材32の弾性係数を互いに一致させ、各弾性部材の反発係数を0.6に設定した。この状態で、プランジャ26とスラスト軸受7とのギャップを、想定できる最小の値である10μmとしたときの操作体10の加速度の変化を(iii)で示し、前記ギャップを想定できる最大値である90μmとしたときの加速度の変化を(iv)で示している。   In FIG. 5, the elastic coefficients of the first elastic member 31, the second elastic member 35, and the third elastic member 32 are made to coincide with each other, and the restitution coefficient of each elastic member is set to 0.6. In this state, the change in the acceleration of the operating body 10 when the gap between the plunger 26 and the thrust bearing 7 is 10 μm, which is the minimum value that can be assumed, is indicated by (iii), and is the maximum value that can assume the gap. The change in acceleration when it is 90 μm is indicated by (iv).

図5では、プランジャと軸受部とのギャップの大小と関係なく、ソレノイド機構によって伝達部材25に与えられる駆動力が、操作体10に対して効果的に伝達されていることを理解できる。   In FIG. 5, it can be understood that the driving force applied to the transmission member 25 by the solenoid mechanism is effectively transmitted to the operating body 10 regardless of the size of the gap between the plunger and the bearing portion.

1 振動発生装置
2 ベース
3 基板
4 ブラケット
5 案内軸
7 スラスト軸受
10 操作体
20 アクチュエータ
23 励磁コイル
25 伝達部材
26 プランジャ
31 第2の弾性部材
32 第3の弾性部材
35 第2の弾性部材
40 指
DESCRIPTION OF SYMBOLS 1 Vibration generator 2 Base 3 Board | substrate 4 Bracket 5 Guide shaft 7 Thrust bearing 10 Operation body 20 Actuator 23 Excitation coil 25 Transmission member 26 Plunger 31 2nd elastic member 32 3rd elastic member 35 2nd elastic member 40 Finger

Claims (7)

操作体と、アクチュエータと、前記アクチュエータで発せられた力を前記操作体に伝達する伝達部材と、が設けられた振動発生装置において、
前記操作体は相反する方向である第1の方向と第2の方向へ移動自在に支持され、前記アクチュエータは、前記伝達部材を前記第1の方向へ駆動するものであり、
前記伝達部材と前記操作体の少なくとも一方に第1の弾性部材が固定され、前記伝達部材が前記アクチュエータによって前記第1の方向へ駆動されたときに、その駆動力が前記第1の弾性部材を介して前記操作体に伝達されることを特徴とする振動発生装置。
In a vibration generator provided with an operating body, an actuator, and a transmission member that transmits a force generated by the actuator to the operating body,
The operating body is supported movably in a first direction and a second direction which are opposite directions, and the actuator drives the transmission member in the first direction,
A first elastic member is fixed to at least one of the transmission member and the operating body, and when the transmission member is driven in the first direction by the actuator, the driving force is applied to the first elastic member. The vibration generating device is transmitted to the operating body via the vibration generator.
前記伝達部材が第2の方向へ移動したときに圧縮させられる第2の弾性部材が設けられている請求項1記載の振動発生装置。   The vibration generator according to claim 1, further comprising a second elastic member that is compressed when the transmission member moves in the second direction. 前記伝達部材が第1の方向へ移動したときに圧縮させられる第3の弾性部材が設けられている請求項2記載の振動発生装置。   The vibration generator according to claim 2, further comprising a third elastic member that is compressed when the transmission member moves in the first direction. 前記第1の弾性部材と前記第2の弾性部材との合成弾性係数と、前記第1の弾性部材と前記第3の弾性部材との合成弾性係数とがほぼ一致している請求項3記載の振動発生装置。   The synthetic elastic modulus of the first elastic member and the second elastic member and the synthetic elastic modulus of the first elastic member and the third elastic member substantially coincide with each other. Vibration generator. 前記伝達部材が第2の方向へ移動しているときに、前記第1の弾性部材と前記操作体との間、または前記伝達部材と前記第1の弾性部材との間に隙間が形成され、
前記伝達部材が第1の方向へ移動しているときに、前記伝達部材と前記第2の弾性部材との間に隙間が形成される請求項2ないし4のいずれかに記載の振動発生装置。
When the transmission member is moving in the second direction, a gap is formed between the first elastic member and the operating body, or between the transmission member and the first elastic member,
5. The vibration generating device according to claim 2, wherein a gap is formed between the transmission member and the second elastic member when the transmission member is moving in the first direction.
前記第1の弾性部材と前記第2の弾性部材は、反発係数が0.3〜0.8である請求項2ないし5のいずれかに記載の振動発生装置。   The vibration generating device according to claim 2, wherein the first elastic member and the second elastic member have a coefficient of restitution of 0.3 to 0.8. 前記第2の弾性部材は、前記伝達部材が第2の方向へ移動したことを検知する検知装置である請求項2ないし6のいずれかに記載の振動発生装置。   The vibration generating device according to claim 2, wherein the second elastic member is a detection device that detects that the transmission member has moved in the second direction.
JP2014250919A 2014-12-11 2014-12-11 Vibration generator system Pending JP2016114980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250919A JP2016114980A (en) 2014-12-11 2014-12-11 Vibration generator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250919A JP2016114980A (en) 2014-12-11 2014-12-11 Vibration generator system

Publications (1)

Publication Number Publication Date
JP2016114980A true JP2016114980A (en) 2016-06-23

Family

ID=56141915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250919A Pending JP2016114980A (en) 2014-12-11 2014-12-11 Vibration generator system

Country Status (1)

Country Link
JP (1) JP2016114980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225309A1 (en) * 2016-12-16 2018-06-21 Gebrüder Frei GmbH & Co. KG One-axis operating unit for safety-relevant applications
CN113302003A (en) * 2019-03-26 2021-08-24 株式会社东海理化电机制作所 Input device
DE112021001423T5 (en) 2020-03-04 2022-12-29 Alps Alpine Co., Ltd. INPUT DEVICE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016225309A1 (en) * 2016-12-16 2018-06-21 Gebrüder Frei GmbH & Co. KG One-axis operating unit for safety-relevant applications
DE102016225309B4 (en) 2016-12-16 2021-12-23 Gebrüder Frei GmbH & Co. KG One-axis control unit for safety-relevant applications
CN113302003A (en) * 2019-03-26 2021-08-24 株式会社东海理化电机制作所 Input device
DE112021001423T5 (en) 2020-03-04 2022-12-29 Alps Alpine Co., Ltd. INPUT DEVICE

Similar Documents

Publication Publication Date Title
JP6386952B2 (en) Electronic device and vibration control method
US10315518B2 (en) Haptic feedback device for a motor vehicle
JP6301412B2 (en) Haptic actuator, electronic device, and method for generating haptic feedback
US10097072B2 (en) Linear vibrator
JP2019170118A (en) Vibration actuator and electronic apparatus
JP5782917B2 (en) Operation input device
JP2013097438A (en) Tactile sense presentation device
JP2021058863A (en) Control device
KR20210059627A (en) Vibration actuator and vibration presenting device
JP2016114980A (en) Vibration generator system
KR20190020735A (en) Haptic Feedback Actuator, Electronic Device Utilizing It, and How It Works
JP2015027661A (en) Tactile type solenoid and attachment structure of the same
JP2015070730A (en) Vibration actuator
US10540012B2 (en) Input device with an input component moved by an actuator, with mechanical tuning for generating an improved haptic feedback
JP2015084630A (en) Linear drive device, electronic device using the same, and body wearable item using the same
KR20140078531A (en) Piezo Actuator
US10217332B2 (en) Haptic actuator including damper body and related methods
JP2017126178A (en) Inertia drive controller
JP2019188285A (en) Response force generating device, and on-vehicle display device including the same
US20210200314A1 (en) Tactile fedback by a longitudinally moved magnetic hammer
US10055951B2 (en) Electronic device including sound level based driving of haptic actuator and related methods
JP2016007558A (en) Linear drive device, electronic apparatus using linear drive device and body
JP7274609B2 (en) Operating device
JP2018196255A (en) Vibration generation device and input device with vibration mechanism
JP2017004263A (en) Haptic feedback device