JP2016114703A - Image formation device - Google Patents

Image formation device Download PDF

Info

Publication number
JP2016114703A
JP2016114703A JP2014252034A JP2014252034A JP2016114703A JP 2016114703 A JP2016114703 A JP 2016114703A JP 2014252034 A JP2014252034 A JP 2014252034A JP 2014252034 A JP2014252034 A JP 2014252034A JP 2016114703 A JP2016114703 A JP 2016114703A
Authority
JP
Japan
Prior art keywords
voltage
voltage output
transfer
output means
recording material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014252034A
Other languages
Japanese (ja)
Other versions
JP6465639B2 (en
Inventor
修一 鉄野
Shuichi Tetsuno
修一 鉄野
真史 片桐
Masashi Katagiri
真史 片桐
大野 健
Takeshi Ono
健 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014252034A priority Critical patent/JP6465639B2/en
Publication of JP2016114703A publication Critical patent/JP2016114703A/en
Application granted granted Critical
Publication of JP6465639B2 publication Critical patent/JP6465639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve a problem such that with a configuration in which a voltage is applied to a discharge member, a high voltage power supply device for the discharge member is necessary and downsizing and low cost of an image formation device is prevented.SOLUTION: An image formation device includes a first high voltage output terminal connected with first high voltage output means and second high voltage output means and a second high voltage output terminal connected with the second high voltage output means. A transfer member is connected with the first high voltage output terminal. The discharge member is connected with the second high voltage output terminal. Based on a voltage applied by the first high voltage output means and a current value detected by a current detection unit, it is determined whether the second high voltage output means applies a voltage to the discharge member or not.SELECTED DRAWING: Figure 2

Description

本発明は、複写機やプリンタ等の電子写真方式の画像形成装置に関する。   The present invention relates to an electrophotographic image forming apparatus such as a copying machine or a printer.

電子写真方式の画像形成装置では、感光ドラムや中間転写体と対向配置された転写部材にトナーと逆極性の電圧を印加することで感光ドラム上や中間転写体上に形成したトナー像を静電的に記録材上に転写する。その後定着装置にて記録材を挟持搬送することで熱と圧力によってトナー像を記録材に定着する。   In an electrophotographic image forming apparatus, a toner image formed on a photosensitive drum or an intermediate transfer member is electrostatically applied by applying a voltage having a polarity opposite to that of the toner to a transfer member disposed opposite to the photosensitive drum or the intermediate transfer member. The image is transferred onto a recording material. Thereafter, the recording material is nipped and conveyed by the fixing device, whereby the toner image is fixed to the recording material by heat and pressure.

転写部材に電圧を印加する方式としては、転写部材に流れる電流(以下、転写電流)を逐次検知し、検知結果を転写部材へと印加する電圧(以下、転写電圧)にフィードバックすることで転写電流を一定に制御する定電流制御方式が知られている。定電流制御方式は転写部材や記録材の電気抵抗によらず良好な転写性を確保し易い。また、転写部材に付着したトナーをクリーニングする技術として、トナーと同極性の電圧を転写部材に印加し、静電気力により転写ローラの表面に付着したトナーを感光ドラム上や中間転写体上に移動させる技術が知られている。   As a method of applying a voltage to the transfer member, the current flowing through the transfer member (hereinafter referred to as transfer current) is sequentially detected, and the detection result is fed back to the voltage applied to the transfer member (hereinafter referred to as transfer voltage). There is known a constant current control method for controlling the current constant. The constant current control method is easy to ensure good transferability regardless of the electric resistance of the transfer member or recording material. Also, as a technique for cleaning toner adhering to the transfer member, a voltage having the same polarity as that of the toner is applied to the transfer member, and the toner adhering to the surface of the transfer roller is moved onto the photosensitive drum or intermediate transfer member by electrostatic force. Technology is known.

トナー像を静電的に記録材上に転写する方式では転写時に記録材が帯電し、記録材の転写部からの分離時に記録材と転写部間で生じる放電により転写不良が発生することがある。そのため、特許文献1は、転写部からの分離部付近に除電部材を配置することで、トナーと同極性の電圧を印加することで、記録材の転写部からの分離時に記録材を除電する構成を開示している。   In a system in which a toner image is electrostatically transferred onto a recording material, the recording material is charged during transfer, and a transfer defect may occur due to a discharge generated between the recording material and the transfer portion when the recording material is separated from the transfer portion. . For this reason, Patent Document 1 discloses a configuration in which a neutralizing member is disposed in the vicinity of the separation portion from the transfer portion, and the recording material is neutralized when the recording material is separated from the transfer portion by applying a voltage having the same polarity as the toner. Is disclosed.

特開平5−100593Japanese Patent Laid-Open No. 5-100593

しかしながら、特許文献1の構成では、除電部材に電圧を印加する高圧出力手段と、クリーニングのために転写部材に電圧を印加する高圧出力手段は、同極性の電圧を印加するにも関わらず、複数の高圧出力手段が必要だった。   However, in the configuration of Patent Document 1, there are a plurality of high-voltage output means for applying a voltage to the charge removal member and a high-voltage output means for applying a voltage to the transfer member for cleaning, despite applying the same polarity voltage. High voltage output means was required.

また、除電するために除電部材に印加する電圧と転写するために転写部材に印加する電圧が逆極性であるため、共通の電圧印加手段から除電部材と転写部材に電圧を印加すると、転写部材へ適正な電圧印加を維持することが難しい。   In addition, since the voltage applied to the charge removal member for charge removal and the voltage applied to the transfer member for transfer are opposite in polarity, when a voltage is applied to the charge removal member and the transfer member from the common voltage application means, the voltage is applied to the transfer member. It is difficult to maintain proper voltage application.

よって、本発明では、共通の高圧出力手段から除電部材と転写部材に電圧を印加しても、転写部材へ適正な電圧印加を維持することが可能な画像形成装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an image forming apparatus capable of maintaining an appropriate voltage application to a transfer member even when a voltage is applied to a charge removal member and a transfer member from a common high-voltage output unit. .

上述の課題を解決するために、本発明は、トナー像を担持する像担持体と、前記像担持体上のトナー像を記録材へ転写する転写部を形成する転写部材と、記録材を除電する除電部材と、所定の極性の電圧を出力する第一の高圧出力手段と、前記第一の高圧出力手段とは逆極性の電圧を出力する第二の高圧出力手段と、前記第一の高圧出力手段と前記第二の高圧出力手段に接続された第一の高圧出力端と、第二の高圧出力手段に接続された第二の高圧出力端と、前記第一の高圧出力端に流れる電流を検知する電流検知部と、を有し、前記転写部材が前記第一の高圧出力端に接続され、前記除電部材が前記第二の高圧出力端に接続され、前記第二の高圧出力手段が前記除電部材に前記逆極性の電圧を出力すると前記第一の高圧出力端を介して前記転写部材に前記逆極性の電圧が出力されることを特徴とする。   In order to solve the above-described problems, the present invention provides an image carrier that carries a toner image, a transfer member that forms a transfer portion that transfers the toner image on the image carrier to a recording material, Neutralizing member, first high voltage output means for outputting a voltage of a predetermined polarity, second high voltage output means for outputting a voltage having a polarity opposite to that of the first high voltage output means, and the first high voltage A first high voltage output terminal connected to the output means and the second high voltage output means; a second high voltage output terminal connected to the second high voltage output means; and a current flowing through the first high voltage output terminal. An electric current detection unit for detecting, the transfer member is connected to the first high-voltage output end, the static elimination member is connected to the second high-voltage output end, and the second high-voltage output means When the reverse polarity voltage is output to the static elimination member, the first high voltage output terminal Voltage of the opposite polarity to the copy member, characterized in that is output.

また、上述の課題を解決するため、本発明は、トナー像を担持する像担持体と、前記像担持体上のトナー像を記録材へ転写する転写部を形成する転写部材と、記録材を除電する除電部材と、所定の極性の電圧を出力する第一の高圧出力手段と、前記第一の高圧出力手段とは逆極性の電圧を出力する第二の高圧出力手段と、前記第一の高圧出力手段と前記第二の高圧出力手段に接続された第一の高圧出力端と、第二の高圧出力手段に接続された第二の高圧出力端と、前記第一の高圧出力端に流れる電流を検知する電流検知部と、を有し、前記転写部材が前記第一の高圧出力端に接続され、前記除電部材が前記第二の高圧出力端に接続され、前記第一の高圧出力手段により印加された電圧と前記電流検知部で検知した電流値に基づいて、前記第二の高圧出力手段が前記除電部材へ電圧を印加するか否かを決定することを特徴とする。   In order to solve the above-described problems, the present invention provides an image carrier that carries a toner image, a transfer member that forms a transfer portion that transfers the toner image on the image carrier to a recording material, and a recording material. A neutralizing member for neutralizing, a first high-voltage output means for outputting a voltage of a predetermined polarity, a second high-voltage output means for outputting a voltage having a polarity opposite to that of the first high-voltage output means, and the first A high-voltage output means, a first high-voltage output end connected to the second high-voltage output means, a second high-voltage output end connected to the second high-voltage output means, and the first high-voltage output end A current detection unit for detecting current, wherein the transfer member is connected to the first high-voltage output end, the neutralizing member is connected to the second high-voltage output end, and the first high-voltage output means On the basis of the voltage applied by the current detector and the current value detected by the current detector. Characterized in that the high-voltage output means for determining whether to apply a voltage to said discharging member.

本発明によれば、共通の高圧出力手段から除電部材と転写部材に電圧を印加しても、転写部材へ適正な電圧印加を維持することが可能な画像形成装置を提供することが可能である。   According to the present invention, it is possible to provide an image forming apparatus capable of maintaining an appropriate voltage application to a transfer member even when a voltage is applied to a charge removal member and a transfer member from a common high-voltage output unit. .

本発明を適用可能な画像形成装置の概要を説明する図。1 is a diagram illustrating an outline of an image forming apparatus to which the present invention can be applied. 本発明を適用可能な画像形成装置の高圧電源を説明する図。1 is a diagram illustrating a high-voltage power supply of an image forming apparatus to which the present invention can be applied. 本発明を適用可能な正電圧高圧電源の電流経路を示した図。The figure which showed the electric current path | route of the positive voltage high voltage power supply which can apply this invention. 本発明を適用可能な負電圧高圧電源の電流経路を示した図。The figure which showed the electric current path | route of the negative voltage high voltage power supply which can apply this invention. 本発明を適用可能な第一の実施例の動作を説明する図。The figure explaining operation | movement of the 1st Example which can apply this invention. 本発明を適用可能な第一の実施例の転写定電圧目標値を説明する図。The figure explaining the transcription | transfer constant voltage target value of 1st Example which can apply this invention. 本発明を適用可能な第一の実施例の閾値Kを説明する図。The figure explaining the threshold value K of 1st Example which can apply this invention. 本発明を適用可能な第一の実施例の効果確認結果を説明する図。The figure explaining the effect confirmation result of the 1st example which can apply the present invention. 本発明を適用可能な第二の実施例の動作を説明する図。The figure explaining operation | movement of the 2nd Example which can apply this invention. 本発明を適用可能な第二の実施例の動作の詳細を説明する図。The figure explaining the detail of operation | movement of the 2nd Example which can apply this invention. 本発明を適用可能な第二の実施例の閾値Kを説明する図。The figure explaining the threshold value K of the 2nd Example which can apply this invention. 本発明を適用可能な第三の実施例の動作を説明する図。The figure explaining operation | movement of the 3rd Example which can apply this invention. 本発明を適用可能な第三の実施例の閾値Kを説明する図。The figure explaining the threshold value K of the 3rd Example which can apply this invention.

以下、図面を参照して、本発明の好適な本実施例を例示的に詳しく説明する。ただし、以下の本実施例に記載されている構成部品の寸法、材質、形状、それらの相対配置などは、本発明が適用される装置の構成や各種条件により適宜変更されるべきものである。従って、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。   The preferred embodiments of the present invention will be illustratively described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in the following examples should be changed as appropriate according to the configuration of the apparatus to which the present invention is applied and various conditions. Therefore, unless specifically stated otherwise, the scope of the present invention is not intended to be limited thereto.

(実施例1)
図1(a)は、実施例1の画像形成装置100の構成図である。画像形成装置100は記録用紙である記録材Pを収納するデッキ101を有している。また、画像形成装置100は、デッキ101内の記録材Pの有無を検知するデッキ紙有無センサ102と、デッキ101内の記録材Pのサイズを検知する紙サイズ検知センサ103と、を有している。また、画像形成装置100は、デッキ101から搬送路上へ記録材Pを給紙するピックアップローラ104と、ピックアップローラ104によって給紙された記録材Pを搬送するデッキ給紙ローラ105と、を有している。また、画像形成装置100は、デッキ給紙ローラ105と対をなし、記録材Pの重送を抑制するためのリタードローラ106を有している。そして、画像形成装置100は、デッキ給紙ローラ105の搬送方向における下流側には、デッキ101又は後述する両面反転部からの記録材Pの搬送状態を検知する給紙センサ107を有している。また、画像形成装置100は、記録材Pをさらに下流へと搬送するための給紙搬送ローラ108、記録材Pを印刷タイミングと同期して搬送するレジストローラ対109を有している。更に、画像形成装置100は、レジストローラ対109への記録材Pの搬送状態を検知するレジ前センサ110を有している。
Example 1
FIG. 1A is a configuration diagram of the image forming apparatus 100 according to the first embodiment. The image forming apparatus 100 includes a deck 101 that stores a recording material P that is a recording sheet. The image forming apparatus 100 also includes a deck paper presence sensor 102 that detects the presence or absence of the recording material P in the deck 101, and a paper size detection sensor 103 that detects the size of the recording material P in the deck 101. Yes. The image forming apparatus 100 also includes a pickup roller 104 that feeds the recording material P from the deck 101 onto the transport path, and a deck paper feed roller 105 that transports the recording material P fed by the pickup roller 104. ing. In addition, the image forming apparatus 100 includes a retard roller 106 that is paired with the deck paper feed roller 105 and suppresses double feeding of the recording material P. The image forming apparatus 100 includes a paper feed sensor 107 that detects the conveyance state of the recording material P from the deck 101 or a double-side reversing unit described later on the downstream side in the conveyance direction of the deck paper supply roller 105. . In addition, the image forming apparatus 100 includes a paper feed conveyance roller 108 for conveying the recording material P further downstream, and a registration roller pair 109 for conveying the recording material P in synchronization with the printing timing. Further, the image forming apparatus 100 includes a pre-registration sensor 110 that detects a conveyance state of the recording material P to the registration roller pair 109.

また、レジストローラ対109の搬送方向における下流側には、ビデオコントローラ128から送信された画像情報に基づいてレーザスキャナ部111からレーザ光を発光し、感光ドラム1上にトナー像を形成するプロセスカートリッジ152が配設されている。像担持体である感光ドラム1に対向する位置には、感光ドラム1上に形成されたトナー像を記録材P上に転写するための転写手段(第一の部材)である転写ローラ113が配設されている。また、感光ドラム1に対向する位置には、記録材P上の電荷を除去することで感光ドラム1からの記録材Pの分離を促進するための除電手段(第二の部材)である除電部材114が配設されている。更に、除電部材114の搬送方向における下流側には、搬送ガイド115、定着装置116、定着排紙センサ119、両面フラッパ120が配設されている。定着装置116は、記録材P上に転写されたトナー像を熱定着する。定着排紙センサ119は、定着装置116からの記録材Pの搬送状態を検知する。両面フラッパ120は、定着装置116から搬送されてきた記録材Pの搬送先を、排紙部又は両面反転部に切り替える。   Further, on the downstream side in the conveying direction of the registration roller pair 109, a process cartridge that emits laser light from the laser scanner unit 111 based on image information transmitted from the video controller 128 and forms a toner image on the photosensitive drum 1. 152 is disposed. A transfer roller 113 as a transfer means (first member) for transferring the toner image formed on the photosensitive drum 1 onto the recording material P is disposed at a position facing the photosensitive drum 1 as an image carrier. It is installed. Further, at a position facing the photosensitive drum 1, a static elimination member that is a static elimination means (second member) for accelerating the separation of the recording material P from the photosensitive drum 1 by removing the charge on the recording material P. 114 is arranged. Further, a conveyance guide 115, a fixing device 116, a fixing paper discharge sensor 119, and a double-sided flapper 120 are disposed on the downstream side in the conveyance direction of the charge removal member 114. The fixing device 116 thermally fixes the toner image transferred onto the recording material P. The fixing paper discharge sensor 119 detects the conveyance state of the recording material P from the fixing device 116. The double-sided flapper 120 switches the conveyance destination of the recording material P conveyed from the fixing device 116 to a paper discharge unit or a double-side reversing unit.

排紙部側の下流側には、排紙部の記録材Pの搬送状態を検知する排紙センサ121と、記録材Pを機外へ排紙する排紙ローラ対122が配設されている。一方、両面反転部は、記録材Pの両面に印字するために片面印字が終了した後の記録材Pを表裏反転させ、再度画像形成部へと搬送するために設けられている。両面反転部側には、反転ローラ対123、反転センサ124、Dカットローラ125、両面センサ126、両面搬送ローラ対127が配設されている。反転ローラ対123は、正反転によって記録材Pを搬送路上でスイッチバックさせる。反転センサ124は、反転ローラ対123への記録材Pの搬送状態を検知する。Dカットローラ125は、記録材Pの幅方向の位置を合わせるための不図示の横方向レジスト部から記録材Pを搬送するためのローラである。ここで、記録材Pの幅方向とは、記録材Pの搬送方向に直交する方向(主走査方向でもある)をいう。また、両面センサ126は、両面反転部における記録材Pの搬送状態を検知する。両面搬送ローラ対127は、両面反転部から給紙部へと記録材Pを搬送するためのローラである。高圧電源装置3は、電子写真プロセスで用いる電圧を生成する装置である。高圧電源装置3は、例えば、帯電器23や現像ローラ134、転写ローラ113、除電部材114等に高電圧を印加する。そして、本実施例の画像形成装置100の一連の制御は、エンジンコントローラ4に搭載されたMPU(マイクロプロセッサ)5によって行われる。高圧電源装置3は、転写ローラ113、除電部材114に電圧を印加する電圧発生回路31を備える。   A paper discharge sensor 121 that detects the conveyance state of the recording material P in the paper discharge unit and a paper discharge roller pair 122 that discharges the recording material P to the outside of the apparatus are disposed on the downstream side of the paper discharge unit. . On the other hand, the double-side reversing unit is provided for reversing the recording material P after the single-sided printing is completed in order to print on both sides of the recording material P, and transporting the recording material P again to the image forming unit. A reversing roller pair 123, a reversing sensor 124, a D-cut roller 125, a double-sided sensor 126, and a double-sided conveying roller pair 127 are disposed on the double-side reversing unit side. The reverse roller pair 123 switches back the recording material P on the transport path by forward and reverse. The reverse sensor 124 detects the conveyance state of the recording material P to the reverse roller pair 123. The D-cut roller 125 is a roller for transporting the recording material P from a lateral registration portion (not shown) for aligning the position of the recording material P in the width direction. Here, the width direction of the recording material P refers to a direction (also a main scanning direction) orthogonal to the conveyance direction of the recording material P. The double-sided sensor 126 detects the conveyance state of the recording material P in the double-side reversing unit. The duplex conveying roller pair 127 is a roller for conveying the recording material P from the duplex reversing unit to the sheet feeding unit. The high-voltage power supply device 3 is a device that generates a voltage used in the electrophotographic process. The high-voltage power supply device 3 applies a high voltage to, for example, the charger 23, the developing roller 134, the transfer roller 113, the charge removal member 114, and the like. A series of control of the image forming apparatus 100 of this embodiment is performed by an MPU (microprocessor) 5 mounted on the engine controller 4. The high-voltage power supply device 3 includes a voltage generation circuit 31 that applies a voltage to the transfer roller 113 and the charge removal member 114.

次に本実施例の画像形成装置の転写部と除電部材114について説明する。
図2は本実施例の画像形成装置の転写部と除電部材114、及び高圧電源装置3の模式図である。図2に示すように、本画像形成装置の転写部は、感光ドラム1と感光ドラム1表面に押圧され転写ニップ部Nを形成する転写ローラ113より構成される。感光ドラム1は不図示のモータにより回転駆動され、転写ローラ113は感光ドラム1に対して従動回転する。転写ニップ部Nでは記録材を挟持搬送しつつ電圧発生回路である転写・除電電圧発生回路31から転写ローラ113に印加される転写電圧により、感光ドラム1表面のトナー像を記録材に転写する。転写電圧は、所定極性の電圧であり、印加する電圧値に関しては後述する。ここでは、トナーの正規の極性を負極性とし、その逆極性である正極性を所定の極性の電圧とする。転写ローラ113は、鉄、SUS等の芯金上にNBRとエピクロルヒドリンゴムを主成分とする発泡スポンジ状の中抵抗の弾性層を形成したゴムローラである。
Next, the transfer unit and the charge removal member 114 of the image forming apparatus of this embodiment will be described.
FIG. 2 is a schematic diagram of the transfer unit, the charge removal member 114, and the high-voltage power supply device 3 of the image forming apparatus according to the present exemplary embodiment. As shown in FIG. 2, the transfer unit of the image forming apparatus includes a photosensitive drum 1 and a transfer roller 113 that is pressed against the surface of the photosensitive drum 1 to form a transfer nip N. The photosensitive drum 1 is rotationally driven by a motor (not shown), and the transfer roller 113 is driven to rotate with respect to the photosensitive drum 1. In the transfer nip portion N, the toner image on the surface of the photosensitive drum 1 is transferred to the recording material by the transfer voltage applied to the transfer roller 113 from the transfer / discharge voltage generating circuit 31 which is a voltage generating circuit while nipping and conveying the recording material. The transfer voltage is a voltage having a predetermined polarity, and a voltage value to be applied will be described later. Here, the normal polarity of the toner is a negative polarity, and the positive polarity that is the opposite polarity is a voltage of a predetermined polarity. The transfer roller 113 is a rubber roller in which a foamed sponge-like medium resistance elastic layer mainly composed of NBR and epichlorohydrin rubber is formed on a core metal such as iron or SUS.

除電部材114は、転写ニップ部Nの記録材排出側に、即ち、記録材の移動方向に対し転写ローラ113の下流に配設される。転写・除電電圧発生回路31から印加される除電電圧により、転写ニップ部Nを通過した記録材を除電する。除電電圧は、転写ローラ113に印加する転写電圧と逆極性の電圧であり、本画像形成装置では除電電圧としてー1000Vを印加する。   The neutralizing member 114 is disposed on the recording material discharge side of the transfer nip N, that is, downstream of the transfer roller 113 with respect to the moving direction of the recording material. The recording material that has passed through the transfer nip N is neutralized by the neutralizing voltage applied from the transfer / static voltage generating circuit 31. The static elimination voltage is a voltage having a polarity opposite to that of the transfer voltage applied to the transfer roller 113. In the present image forming apparatus, -1000 V is applied as the static elimination voltage.

次に高圧電源装置3の内部に搭載された転写・除電電圧発生回路31の内部構成について説明する。図2に示すように、転写・除電電圧発生回路31は、第二の電圧印加手段である負電圧高圧電源31b、第一の電圧印加手段である正電圧高圧電源31a、電流検知部である電流検知回路31cで構成されている。   Next, the internal configuration of the transfer / static discharge voltage generating circuit 31 mounted inside the high voltage power supply device 3 will be described. As shown in FIG. 2, the transfer / discharge voltage generating circuit 31 includes a negative voltage high voltage power supply 31b as a second voltage application means, a positive voltage high voltage power supply 31a as a first voltage application means, and a current as a current detection unit. The detection circuit 31c is configured.

正電圧高圧電源31aは、所定の極性(正極性)の電圧を生成する。転写正電圧は、記録材にトナー像とは逆極性(正極性)の電荷を付与して感光ドラム1上のトナー像を記録材上に転写させるときに出力する。   The positive voltage high voltage power supply 31a generates a voltage having a predetermined polarity (positive polarity). The positive transfer voltage is output when a charge having a polarity (positive polarity) opposite to that of the toner image is applied to the recording material and the toner image on the photosensitive drum 1 is transferred onto the recording material.

負電圧高圧電源31bは、負極の転写負電圧と負極の除電電圧を生成する。転写負電圧は、トナー像転写後の転写ローラ113表面の転写残トナーを感光ドラム1側に回収させてクリーニングするときに出力する。除電電圧は、転写ニップ部Nを通過した記録材を除電するときに出力する。電流検知回路31cは、正電圧高圧電源31bから出力された電流を検知する回路である。   The negative voltage high voltage power supply 31b generates a negative transfer negative voltage and a negative charge removal voltage. The transfer negative voltage is output when the transfer residual toner on the surface of the transfer roller 113 after the toner image is transferred is collected and cleaned on the photosensitive drum 1 side. The neutralization voltage is output when the recording material that has passed through the transfer nip N is neutralized. The current detection circuit 31c is a circuit that detects the current output from the positive voltage high-voltage power supply 31b.

正電圧高圧電源31aの構成を以下に説明する。正電圧高圧電源31aは、負電圧高圧電源31bと同様に、昇圧トランス310と一次駆動回路312と整流平滑素子(313、314)を具備している。さらに、正電圧高圧電源31aはスイッチング素子から成る一次駆動回路312により一次巻線に交流電力を供給されることによって、二次巻線に交流高圧を発生させる。二次巻線に発生した交流高圧は、整流素子であるダイオード313と高圧コンデンサ314によって正の直流高圧として整流される。ここで、抵抗311は、正電圧高圧電源31aのブリーダ抵抗である。そして、負電圧高圧電源31bと正電圧高圧電源31bは、互いに直列に接続されており、各々発生した直流高圧は、お互いのブリーダ抵抗(316、311)を介して、転写ローラ113に供給される。電圧検知回路325は、転写ローラ113に印加されている直流高圧を抵抗分圧して、MPU5へフィードバック(不図示)する。MPU5は、電圧検知回路325のフィードバックを基に、正電圧高圧電源の定電圧制御を行う。正電圧高圧電源31aの出力は、第一の高圧出力端40aに接続された転写ローラ113に出力される。   The configuration of the positive voltage high voltage power supply 31a will be described below. Similar to the negative voltage high voltage power supply 31b, the positive voltage high voltage power supply 31a includes a step-up transformer 310, a primary drive circuit 312 and rectifying / smoothing elements (313, 314). Further, the positive voltage high voltage power supply 31a generates AC high voltage in the secondary winding by supplying AC power to the primary winding by the primary drive circuit 312 composed of a switching element. The AC high voltage generated in the secondary winding is rectified as a positive DC high voltage by the diode 313 and the high voltage capacitor 314 which are rectifier elements. Here, the resistor 311 is a bleeder resistor of the positive voltage high voltage power supply 31a. The negative voltage high voltage power supply 31b and the positive voltage high voltage power supply 31b are connected in series with each other, and the generated DC high voltage is supplied to the transfer roller 113 via each bleeder resistor (316, 311). . The voltage detection circuit 325 divides the DC high voltage applied to the transfer roller 113 by resistance and feeds back to the MPU 5 (not shown). The MPU 5 performs constant voltage control of the positive voltage high voltage power supply based on the feedback of the voltage detection circuit 325. The output of the positive voltage high voltage power supply 31a is output to the transfer roller 113 connected to the first high voltage output terminal 40a.

図3は、正電圧高圧電源31aの電流経路を示した図である。正電圧高圧電源31aの出力はオン状態であり、負電圧高圧電源31bの出力はオフ状態である。   FIG. 3 is a diagram showing a current path of the positive voltage high voltage power supply 31a. The output of the positive voltage high voltage power supply 31a is in the on state, and the output of the negative voltage high voltage power supply 31b is in the off state.

正電圧高圧電源31aから正極の転写正電圧を転写ローラ113に印加した場合に流れる電流経路は、経路334、336から構成される。経路334は、正電圧高圧電源31aからの正電流が、転写ローラ113、記録材を経由して感光ドラム1のGND(不図示)に流れる経路である。経路336は、電流検知回路31cのGNDからの正電流が、電流検知回路31cのオペアンプ321及び抵抗322、抵抗316を経由して正電圧高圧電源31aに戻る経路である。   A current path that flows when a positive transfer positive voltage is applied to the transfer roller 113 from the positive voltage high-voltage power supply 31 a includes paths 334 and 336. A path 334 is a path through which a positive current from the positive voltage high voltage power supply 31a flows to the GND (not shown) of the photosensitive drum 1 via the transfer roller 113 and the recording material. The path 336 is a path through which the positive current from the GND of the current detection circuit 31c returns to the positive voltage high-voltage power supply 31a via the operational amplifier 321, the resistor 322, and the resistor 316 of the current detection circuit 31c.

ダイオード320は、経路336によって逆方向電圧が印加されている状態であるため、感光ドラム1のGND(不図示)から記録材、除電部材114、ダイオード320を経由して正電圧高圧電源31aに戻る負電流の経路が存在しない。より詳細に説明すると、抵抗316が10MΩ、経路336に流れる電流値が20uAとすると、抵抗316の両端では200Vの電圧降下が生じる。ダイオード320のアノード側の電圧は、後述する電流検知回路31cのオペアンプ321の負極入力は数V程度であるため、おおよそ−200Vになる。一方、ダイオード320のカソード側の電圧は、負電圧高圧電源31bの出力がオフ状態なのでオペアンプ321の負極入力とほぼ同電位であり数V程度である。したがって、ダイオード320は、逆方向電圧が印加されている状態となる。   Since the reverse voltage is applied to the diode 320 through the path 336, the diode 320 returns from the GND (not shown) of the photosensitive drum 1 to the positive voltage high voltage power supply 31a via the recording material, the charge removal member 114, and the diode 320. There is no negative current path. More specifically, assuming that the resistance 316 is 10 MΩ and the current value flowing through the path 336 is 20 uA, a voltage drop of 200 V occurs at both ends of the resistance 316. The voltage on the anode side of the diode 320 is approximately −200 V because the negative input of the operational amplifier 321 of the current detection circuit 31 c described later is about several volts. On the other hand, the voltage on the cathode side of the diode 320 is approximately the same potential as the negative input of the operational amplifier 321 and is about several volts because the output of the negative voltage high voltage power supply 31b is off. Therefore, the diode 320 is in a state where a reverse voltage is applied.

以上、ダイオード320によって、感光ドラム1のGND(不図示)から記録材、除電部材114、ダイオード320を経由して正電圧高圧電源31aに戻る負電流の経路が存在しない。そのため、経路334に流れる電流と経路336に流れる電流が一致し、転写ローラ113に流れる正極の転写正電圧を電流検知回路31cで検知することが可能となる。また、プロセス部材に流れない電流経路として、正電圧高圧電源31aから抵抗311を経由して正電圧高圧電源31aに戻る経路335がある。   As described above, there is no negative current path from the GND (not shown) of the photosensitive drum 1 to the positive voltage high voltage power supply 31a via the recording material, the charge removal member 114, and the diode 320 by the diode 320. Therefore, the current flowing in the path 334 and the current flowing in the path 336 coincide with each other, and the positive transfer positive voltage flowing in the transfer roller 113 can be detected by the current detection circuit 31c. Further, as a current path that does not flow to the process member, there is a path 335 that returns from the positive voltage high-voltage power supply 31a to the positive voltage high-voltage power supply 31a via the resistor 311.

負電圧高圧電源31bの構成を以下に説明する。負電圧高圧電源31bは、昇圧トランス315とMPU5からの制御信号により昇圧トランス315を駆動する一次駆動回路317と整流平滑素子(319、320)を具備している。昇圧トランス315は、スイッチング素子から成る一次駆動回路317により一次巻線に交流電力を供給されることによって、二次巻線に交流高圧を発生させる。二次巻線に発生した交流高圧は、整流素子であるダイオード318と高圧コンデンサ319によって負の直流高圧として整流される。ここで、抵抗316は、負電圧高圧電源31bのブリーダ抵抗である。電圧検知回路326は、負電圧高圧電源31bの直流高圧を抵抗分圧して、MPU5へフィードバック(不図示)する。MPU5は、電圧検知回路326のフィードバックを基に、負電圧高圧電源31bの定電圧制御を行う。ダイオード320のカソード電圧は、除電部材114へ負電圧高圧電源の負の直流高圧を供給し、ダイオード320のアノード電圧は、抵抗311を介して、転写ローラ113へ負電圧高圧電源の負の直流高圧を供給する。負電圧高圧電源31bの出力は、第二の高圧出力端40bに接続された転写ローラ113に出力される。   The configuration of the negative voltage high voltage power supply 31b will be described below. The negative voltage high voltage power supply 31b includes a primary drive circuit 317 that drives the step-up transformer 315 by a control signal from the step-up transformer 315 and the MPU 5, and a rectifying / smoothing element (319, 320). The step-up transformer 315 generates AC high voltage in the secondary winding when AC power is supplied to the primary winding by the primary drive circuit 317 including a switching element. The AC high voltage generated in the secondary winding is rectified as a negative DC high voltage by the diode 318 and the high voltage capacitor 319 which are rectifying elements. Here, the resistor 316 is a bleeder resistor of the negative voltage high voltage power supply 31b. The voltage detection circuit 326 divides the DC high voltage of the negative voltage high voltage power supply 31b by resistance and feeds back to the MPU 5 (not shown). The MPU 5 performs constant voltage control of the negative voltage high voltage power supply 31b based on the feedback of the voltage detection circuit 326. The cathode voltage of the diode 320 supplies the negative DC high voltage of the negative voltage high voltage power supply to the static elimination member 114, and the anode voltage of the diode 320 supplies the negative DC high voltage of the negative voltage high voltage power supply to the transfer roller 113 via the resistor 311. Supply. The output of the negative voltage high voltage power supply 31b is output to the transfer roller 113 connected to the second high voltage output terminal 40b.

図4は、負電圧高圧電源31bの電流経路を示した図である。正電圧高圧電源31aの出力はオフ状態であり、負電圧高圧電源31bの出力はオン状態である。   FIG. 4 is a diagram showing a current path of the negative voltage high voltage power supply 31b. The output of the positive voltage high voltage power supply 31a is in an off state, and the output of the negative voltage high voltage power supply 31b is in an on state.

負電圧高圧電源31bから負極の転写負電圧を転写ローラ113に印加した場合に流れる電流経路は、経路330、333から構成される。経路330は、感光ドラム1のGND(不図示)からの負電流が、記録材、転写ローラ113、抵抗311、ダイオード320を経由して負電圧高圧電源31bに至る経路である。経路333は、負電圧高圧電源31bからの電流が、電流検知回路31cの抵抗322及びオペアンプ321を経由して、電流検知回路31cのGNDに流れる経路である。   A current path that flows when a negative transfer negative voltage is applied to the transfer roller 113 from the negative voltage high-voltage power supply 31 b includes paths 330 and 333. A path 330 is a path through which a negative current from GND (not shown) of the photosensitive drum 1 reaches the negative voltage high voltage power supply 31b via the recording material, the transfer roller 113, the resistor 311 and the diode 320. A path 333 is a path through which the current from the negative voltage high voltage power supply 31b flows to the GND of the current detection circuit 31c via the resistor 322 and the operational amplifier 321 of the current detection circuit 31c.

負電圧高圧電源31bから負極の除電電圧を除電部材114に印加した場合に流れる電流経路は、経路331、333から構成される。経路331は、感光ドラム1のGND(不図示)からの負電流が、記録材、除電部材114を経由して負電圧高圧電源31bに至る経路である。経路333については、負電圧高圧電源31bから負極の転写負電圧を転写ローラ113に印加した場合と同様であるため説明を省略する。   A current path that flows when a negative charge removal voltage is applied to the charge removal member 114 from the negative voltage high-voltage power supply 31 b includes paths 331 and 333. A path 331 is a path through which a negative current from GND (not shown) of the photosensitive drum 1 reaches the negative voltage high-voltage power supply 31b via the recording material and the charge removal member 114. Since the path 333 is the same as the case where a negative transfer negative voltage is applied to the transfer roller 113 from the negative voltage high voltage power supply 31b, the description is omitted.

また、プロセス部材に流れない電流経路として、負電圧高圧電源31bから抵抗316を経由して負電圧高圧電源31bに戻る経路332がある。   Further, as a current path that does not flow to the process member, there is a path 332 that returns from the negative voltage high voltage power supply 31b to the negative voltage high voltage power supply 31b via the resistor 316.

次に、電流検知回路31cについて説明する。電流検知回路31cは、昇圧トランス315に接続されたオペアンプ321、抵抗322、323、324を具備しており、オペアンプ321の出力をMPU5へフィードバックしている。   Next, the current detection circuit 31c will be described. The current detection circuit 31c includes an operational amplifier 321 and resistors 322, 323, and 324 connected to the step-up transformer 315, and feeds back the output of the operational amplifier 321 to the MPU 5.

オペアンプ321の正極入力には、電源電圧Vccが抵抗323、324によって抵抗分圧された電圧:Vtが入力されている。Vtの電圧値は、オペアンプ321の定格を考慮し、数V程度に設定されている。ここで、オペアンプ321は、R322による負帰還回路を構成しているため、オペアンプ321の正極入力と負極入力の電位差は0Vとなる。すなわち、オペアンプ321の正極入力と負極入力は、Vtが入力された状態となる。   A voltage: Vt obtained by dividing the power supply voltage Vcc by resistors 323 and 324 is input to the positive input of the operational amplifier 321. The voltage value of Vt is set to about several volts in consideration of the rating of the operational amplifier 321. Here, since the operational amplifier 321 constitutes a negative feedback circuit by R322, the potential difference between the positive input and the negative input of the operational amplifier 321 becomes 0V. That is, the positive input and the negative input of the operational amplifier 321 are in a state where Vt is input.

正電圧高圧電源31aの出力がオンすると、転写ローラ113に電圧が発生するとともに、電流が流れる。このとき、電流経路は、前述した経路334、336となるため、転写ローラ113に流れる電流と同じレベルの電流が抵抗322に流れる。これにより、抵抗322の両端に電圧が発生し、オペアンプ321の出力:Visnsは下記の電圧レベルになる。
Visns=Vt+R322×Io ・・・(式1)
When the output of the positive voltage high voltage power supply 31a is turned on, a voltage is generated in the transfer roller 113 and a current flows. At this time, since the current paths are the paths 334 and 336 described above, a current having the same level as the current flowing through the transfer roller 113 flows through the resistor 322. As a result, a voltage is generated across the resistor 322, and the output of the operational amplifier 321: Visns is at the following voltage level.
Visns = Vt + R322 × Io (Formula 1)

ここで、R322は抵抗322の抵抗値、Ioは転写ローラ113に流れる電流値である。Visnsの電圧レベルと転写ローラ113に流れる電流の関係は、MPU4内の記憶装置内(不図示)に予め記憶されている。   Here, R322 is a resistance value of the resistor 322, and Io is a current value flowing through the transfer roller 113. The relationship between the voltage level of Visns and the current flowing through the transfer roller 113 is stored in advance in a storage device (not shown) in the MPU 4.

以上、説明した本実施例の高圧電源構成により、除電部材114へ負極性の除電電圧を印加する負電圧高圧電源と転写ローラ113へ負電圧を印加する負電圧高圧電源を共通化でき、除電電圧用の負電圧高圧電源を削減できる。   As described above, the configuration of the high-voltage power supply according to the present embodiment described above makes it possible to share a negative voltage high-voltage power supply that applies a negative charge removal voltage to the charge removal member 114 and a negative voltage high-voltage power supply that applies a negative voltage to the transfer roller 113. The negative voltage high voltage power supply can be reduced.

さらに、除電部材114は転写ローラ113の近傍に配置されており記録材への転写タイミングと除電タイミングは略重複するため、負電圧高圧電源から転写ローラ113と除電部材114へ負電圧を印加するタイミングを略同一にすることができる。   Further, since the charge removal member 114 is disposed in the vicinity of the transfer roller 113 and the transfer timing to the recording material and the charge removal timing substantially overlap, the timing at which a negative voltage is applied from the negative voltage high voltage power source to the transfer roller 113 and the charge removal member 114. Can be made substantially the same.

しかしながら、除電部材114と転写ローラ113の負電圧高圧電源を共通化したことで以下に説明する課題が発生する。   However, since the negative voltage high-voltage power supply for the static elimination member 114 and the transfer roller 113 is made common, the problems described below occur.

本実施例の画像形成装置では除電電圧を印加する場合、転写ローラ113に正極の転写正電圧を印加し感光ドラム1上のトナー像を記録材上に転写させつつ、除電部材114に負極の除電電圧を印加し記録材を除電する場合がある。そのため、正電圧高圧電源31a、負電圧高圧電源31bの出力は共にオン状態となる。この時、正電圧高圧電源31a、負電圧高圧電源31bの重畳電圧は、正電圧高圧電源31aの出力電圧と同極性となる。   In the image forming apparatus according to the present exemplary embodiment, when a neutralization voltage is applied, a positive transfer positive voltage is applied to the transfer roller 113 to transfer the toner image on the photosensitive drum 1 onto the recording material, and a neutralization neutralization is applied to the neutralization member 114. In some cases, the recording material is neutralized by applying a voltage. Therefore, both the outputs of the positive voltage high voltage power supply 31a and the negative voltage high voltage power supply 31b are turned on. At this time, the superimposed voltage of the positive voltage high voltage power supply 31a and the negative voltage high voltage power supply 31b has the same polarity as the output voltage of the positive voltage high voltage power supply 31a.

このとき、正電圧高圧電源31aの電流と負電圧高圧電源31bの電流が転写ローラ113に同時に流れる。したがって、図3と図4に示す経路330、331、333、334、336全てに電流が流れる。転写ローラ113に流れる電流は、経路330、334の電流の和であり、電流検知回路31cに流れる電流は、経路333、336に流れる電流の和である。経路334と経路336の電流は同じであるが、経路330と333に流れる電流は異なる。   At this time, the current of the positive voltage high voltage power supply 31 a and the current of the negative voltage high voltage power supply 31 b flow through the transfer roller 113 simultaneously. Therefore, a current flows through all the paths 330, 331, 333, 334, and 336 shown in FIGS. The current flowing through the transfer roller 113 is the sum of the currents of the paths 330 and 334, and the current flowing through the current detection circuit 31 c is the sum of the currents flowing through the paths 333 and 336. The currents in the paths 334 and 336 are the same, but the currents flowing in the paths 330 and 333 are different.

従って、本実施例の電源構成では、負電圧高圧電源31bと正電圧高圧電源31aを同時に出力すると転写ローラ113に流れる転写電流を電流検知回路322が正しく検知できなくなる。そのため、除電部材114へ電圧を印加している間は転写電流の定電流制御が実施できず良好な転写性を得られない場合がある。   Therefore, in the power supply configuration of this embodiment, if the negative voltage high voltage power supply 31b and the positive voltage high voltage power supply 31a are simultaneously output, the current detection circuit 322 cannot correctly detect the transfer current flowing through the transfer roller 113. For this reason, the constant current control of the transfer current cannot be performed while the voltage is applied to the charge removal member 114, and good transferability may not be obtained.

また、除電部材114へ除電電圧を印加すると記録材の抵抗が低い場合に除電部材114へ除電電圧を印加すると、記録材を介して転写ローラ113から除電部材114へと転写電流がリークする恐れがある。   In addition, when a static elimination voltage is applied to the static eliminator 114 and the recording material has a low resistance, if a static eliminator is applied to the static eliminator 114 when the recording material has a low resistance, the transfer current may leak from the transfer roller 113 to the static eliminator 114 via the recording material. is there.

そこで、記録材一面目への転写時の転写電圧と転写電流から転写部のインピーダンスを算出し、算出したインピーダンスが予め設定した閾値より大きい場合にのみ記録材二面目への転写時に除電電圧印加を実施する。   Therefore, the impedance of the transfer part is calculated from the transfer voltage and transfer current at the time of transfer to the first surface of the recording material, and only when the calculated impedance is larger than a preset threshold value, the neutralization voltage is applied at the time of transfer to the second surface of the recording material. carry out.

図5に示すフローチャートに基づいて、本実施例の特徴となる動作の詳細を説明する。画像形成装置が画像信号を受け取ってプリントが開始されると、まずS101にて環境センサ6の温度と湿度の検知結果から空気中の水分量M(g/m)を算出する。そして、S102にて転写時に転写電圧を一定値で制御(以下、転写定電圧制御)する際の転写電圧の目標値(以下、転写定電圧目標値)を算出する。図6に示すように転写定電圧目標値は水分量M(g/m)を元に算出され、水分量Mが5(g/m)未満の低湿環境では2000Vとする。また、水分量が20(g/m)以上の高湿環境では500V、水分量が5(g/m)以上、20(g/m)未満の環境では、5(g/m)未満の場合の転写定電圧目標値である2000Vと20(g/m)以上の場合の転写定電圧目標値である500Vを水分量Mに応じて線形補間した値として算出される。 Based on the flowchart shown in FIG. 5, the detail of the operation | movement used as the characteristic of a present Example is demonstrated. When the image forming apparatus receives an image signal and starts printing, first, in step S101, the moisture content M (g / m 3 ) in the air is calculated from the temperature and humidity detection results of the environmental sensor 6. In step S102, a transfer voltage target value (hereinafter, transfer constant voltage target value) when the transfer voltage is controlled at a constant value (hereinafter referred to as transfer constant voltage control) during transfer is calculated. Transfer constant voltage target value as shown in FIG. 6 is calculated based on the water content M (g / m 3), the water content M is to 2000V is 5 (g / m 3) than the low-humidity environment. In a high humidity environment where the water content is 20 (g / m 3 ) or more, 500 V, and in an environment where the water content is 5 (g / m 3 ) or more and less than 20 (g / m 3 ), 5 (g / m 3). ) Is a value obtained by linearly interpolating 2000 V, which is a transfer constant voltage target value in the case of less than 20), and 500 V, which is a transfer constant voltage target value in the case of 20 (g / m 3 ) or more, in accordance with the amount of moisture M.

そして転写定電圧目標値の算出後、S103にて閾値Kを算出する。閾値Kは記録材P二面目への転写時に除電電圧を印加するか否かを判定する際に使用さる。図7に示すように、閾値Kは水分量Mを元に算出され、水分量が5(g/m)未満の低湿環境では200、水分量が20(g/m)以上の高湿環境では50、水分量が5(g/m)以上、20(g/m)未満の環境では、5(g/m)未満の場合の設定値である200と20(g/m)以上の場合の設定値である50を水分量Mに応じて線形補間した値として算出される。以上、S101からS103が本実施例の画像形成装置の転写前動作である。 After calculating the transfer constant voltage target value, the threshold value K is calculated in S103. The threshold value K is used when determining whether or not to apply a static elimination voltage when transferring to the second surface of the recording material P. As shown in FIG. 7, the threshold value K is calculated based on the moisture content M, and is 200 in a low humidity environment with a moisture content of less than 5 (g / m 3 ), and a high humidity with a moisture content of 20 (g / m 3 ) or more. In an environment where the water content is 50 (g / m 3 ) or more and less than 20 (g / m 3 ), the set values are 200 and 20 (g / m 3 ). 3 ) It is calculated as a value obtained by linearly interpolating 50, which is a set value in the above case, according to the amount of moisture M. As described above, S101 to S103 are the pre-transfer operations of the image forming apparatus according to the present exemplary embodiment.

前述したS101からS103の転写開始前動作の終了後、S104にてこれから実施するプリントが一面目プリントか否かを判定し、一面目プリントであると判定された場合には、以下の転写動作を実施する。   After the above-described pre-transfer start operation from S101 to S103, it is determined in S104 whether or not the print to be performed is the first print, and if it is determined that the print is the first print, the following transfer operation is performed. carry out.

まず、S105にてレジ前センサが検出する記録材Pの先端位置を元に転写部へ記録材Pが到達したか否かを判定する。S105にて転写部へ記録材Pが到達したと判定された場合は、S106に移行し転写定電流制御を開始する。ここで、転写定電流制御とは転写部材に流れる転写電流が一定になるように転写電圧を制御する方式であり、転写定電流制御時の転写電流の目標値(以下、転写定電流目標値)は10μAである。   First, in S105, it is determined whether or not the recording material P has reached the transfer portion based on the leading end position of the recording material P detected by the pre-registration sensor. If it is determined in S105 that the recording material P has reached the transfer portion, the process proceeds to S106, and constant transfer current control is started. Here, the transfer constant current control is a method for controlling the transfer voltage so that the transfer current flowing through the transfer member is constant, and the transfer current target value during the transfer constant current control (hereinafter referred to as the transfer constant current target value). Is 10 μA.

転写定電流制御開始後は、S107に移行し転写部のインピーダンスR1の算出を開始し、次にS108にてR1の平均値R1Ave.の算出を開始する。R1は30msec毎に電流検知回路31cが検知する転写電流と、その時に正電圧高圧電源31aが出力している転写電圧から算出される。R1Ave.はそれまでに算出したR1の積算値をそれまでのR1の算出回数で除することで算出する。 After the start of the transfer constant current control, the process proceeds to S107, where the calculation of the impedance R1 of the transfer portion is started, and then the average value R1 Ave. The calculation of is started. R1 is calculated from the transfer current detected by the current detection circuit 31c every 30 msec and the transfer voltage output by the positive voltage high-voltage power supply 31a at that time. R1 Ave. Is calculated by dividing the integrated value of R1 calculated so far by the number of R1 calculations so far.

その後、S109にてレジ前センサが検出する記録材Pの後端位置を元に記録材Pが転写部から排出されたか否かを判定する。S109にて転写部から記録材Pが排出されたと判定された場合は、S110に移行してR1の算出を終了した後、S111にてR1Ave.の算出を終了し、S112にて転写定電流制御を終了する。以上、S104からS112までの動作が本実施例における一面目プリント時の転写動作である。 Thereafter, in S109, it is determined whether the recording material P is discharged from the transfer portion based on the rear end position of the recording material P detected by the pre-registration sensor. If it is determined in step S109 that the recording material P has been discharged from the transfer portion, the process proceeds to step S110 to finish calculating R1, and then in step S111, R1 Ave. The transfer constant current control is terminated in S112. As described above, the operation from S104 to S112 is the transfer operation at the time of printing the first page in this embodiment.

一面目プリントの転写動作終了後は、S113で今回画像形成装置に入力されたプリントが終了したか否かを判定し、プリントがまだ終了していないと判定された場合にはS104に戻る。プリントが終了したと判定された場合には画像形成装置のプリント動作を終了する。   After the transfer operation of the first-side print is completed, it is determined in S113 whether or not the print input this time to the image forming apparatus has been completed. If it is determined that the print has not been completed, the process returns to S104. When it is determined that the printing is finished, the printing operation of the image forming apparatus is finished.

一面目プリントが終了しS104に戻った後、これから実施するプリントが一面目プリントではない、すなわち二面目プリントであると判定された場合には、以下の転写動作を実行する。まず、S114に移行し直前の一面目プリント時に算出したR1Ave.がS103で算出した閾値K以上であるか否かの判定を行う。S114でR1Ave.がK以上であると判定された場合にはS115に移行し、S114でR1Ave.がK未満であると判定された場合にはS121へ移行する。 After the first side print is completed and the process returns to S104, if it is determined that the print to be performed is not the first side print, that is, the second side print, the following transfer operation is executed. First, the process proceeds to S114, and R1 Ave. Is greater than or equal to the threshold value K calculated in S103. In S114, R1 Ave. Is determined to be greater than or equal to K, the process proceeds to S115, and R1 Ave. Is determined to be less than K, the process proceeds to S121.

先に、S115に移行した場合の二面目プリント時の転写動作について説明する。S115にて転写部へ記録材Pが到達したか否かを判定し、S115にて転写部へ記録材が到達したと判定された場合は、S116に移行しS102で算出した転写定電圧目標値で転写定電圧制御を開始する。また、転写定電圧制御を開始後、S117にて除電電圧の印加を開始する。その後、S118にて記録材Pが転写部から排出されたか否かを判定し、記録材Pが排出されたと判定された場合は、S119にて除電電圧の印加を終了した後、S120にて転写定電圧制御を終了する。以上、S113からS120までの動作が、本実施例におけるR1Ave.が閾値K以上であった場合の二面目プリント時の転写動作である。 First, the transfer operation at the time of printing on the second side when the process proceeds to S115 will be described. In step S115, it is determined whether or not the recording material P has reached the transfer portion. If it is determined in step S115 that the recording material has reached the transfer portion, the process proceeds to step S116 and the transfer constant voltage target value calculated in step S102. To start transfer constant voltage control. In addition, after starting the transfer constant voltage control, application of the static elimination voltage is started in S117. Thereafter, in S118, it is determined whether or not the recording material P has been discharged from the transfer portion. If it is determined that the recording material P has been discharged, the application of the static elimination voltage is terminated in S119, and then the transfer is performed in S120. Ends constant voltage control. As described above, the operations from S113 to S120 are the same as R1 Ave. Is a transfer operation at the time of printing the second side when the value is equal to or greater than the threshold value K.

次に、S121へ移行した場合の二面目プリント時の転写動作について説明する。S121にて転写部へ記録材Pが到達したか否かを判定し、S121にて転写部へ記録材が到達したと判定された場合は、S122に移行し15μAを目標値として転写定電流制御を開始する。その後、S123にて記録材Pが転写部から排出されたか否かを判定し、記録材Pが排出されたと判定された場合は、S124にて転写定電流制御を終了する。以上、S121からS124までの動作が、本実施例におけるR1が閾値K未満であった場合の二面目プリント時の転写動作である。   Next, the transfer operation at the time of printing on the second side when the process proceeds to S121 will be described. In S121, it is determined whether or not the recording material P has reached the transfer portion. If it is determined in S121 that the recording material has reached the transfer portion, the process proceeds to S122, and a constant transfer current control is performed with 15 μA as a target value. To start. Thereafter, in S123, it is determined whether or not the recording material P is discharged from the transfer portion. If it is determined that the recording material P is discharged, the transfer constant current control is ended in S124. As described above, the operation from S121 to S124 is a transfer operation at the time of second-side printing when R1 in this embodiment is less than the threshold value K.

二面目プリントの転写動作終了後は、S113で今回画像形成装置に入力されたプリントが終了したか否かを判定し、プリントが終了していない場合にはS104に戻り、これまで説明した動作を再び実施する。S113にてプリントが終了したと判定された場合には、画像形成装置のプリント動作を終了する。   After the second-side print transfer operation is completed, it is determined in S113 whether or not the print input this time to the image forming apparatus has been completed. If the print has not been completed, the process returns to S104, and the operations described so far are performed. Perform again. If it is determined in S113 that printing has ended, the printing operation of the image forming apparatus is ended.

本実施例では、算出したR1Ave.が予め設定した閾値Kより大きい場合にのみ二面目への転写時に除電電圧印加を実施する。 In this example, the calculated R1 Ave. Is applied at the time of transfer to the second surface only when is greater than a preset threshold value K.

まず、記録材一面目への転写時の転写電圧と転写電流から転写部のインピーダンスR1を算出したことで、記録材Pを含めた状態でのR1が算出されるため、R1の値から記録材の抵抗値を予想することができる。また、R1からR1Ave.を算出することで転写部のインピーダンスをより精度よく算出することができる。 First, since the impedance R1 of the transfer portion is calculated from the transfer voltage and transfer current at the time of transfer to the first surface of the recording material, R1 in the state including the recording material P is calculated. Can be predicted. Also, R1 to R1 Ave. Can be calculated with higher accuracy.

そして、記録材は抵抗が大きい場合に帯電し易いため、算出したR1Ave.が予め設定した閾値Kより大きい場合にのみ二面目への転写時に除電電圧印加を行うことを決定する。その構成によって、記録材の帯電とそれに伴う転写不良が発生する可能性がある場合でのみ除電電圧の印加を実施できるため、不要な除電電圧の印加とそれに伴う転写不良の発生を抑制できる。 Since the recording material is easily charged when the resistance is large, the calculated R1 Ave. It is determined that the static elimination voltage application is performed at the time of transfer to the second surface only when is greater than a preset threshold value K. With this configuration, the neutralization voltage can be applied only when there is a possibility of charging of the recording material and the associated transfer failure. Therefore, the application of an unnecessary neutralization voltage and the associated transfer failure can be suppressed.

本実施例の効果を確認するため、以下の実験を実施した。30℃、80%の高温高湿環境に24時間放置した本実施例の画像形成装置で、単色ハーフトーンの両面プリントを実施し、二面目プリント時に発生した画像不良と転写不良を確認した。ここで、画像不良とは記録材の転写部からの分離時に記録材と転写ローラ113や感光ドラム1間で生じる放電によって発生したトナー像上の放電痕のことである。また、転写不良とは転写電圧が適正でなかったり、転写電流がリークしたりすることで発生する感光ドラム1から記録材へのトナー像の転写不良のことである。   In order to confirm the effect of this example, the following experiment was conducted. With the image forming apparatus of this example that was allowed to stand in a high temperature and high humidity environment of 30 ° C. and 80% for 24 hours, single-color halftone double-sided printing was performed, and image defects and transfer defects that occurred during second-side printing were confirmed. Here, the image defect is a discharge mark on the toner image generated by a discharge generated between the recording material and the transfer roller 113 or the photosensitive drum 1 when the recording material is separated from the transfer portion. Further, the transfer failure is a transfer failure of the toner image from the photosensitive drum 1 to the recording material, which occurs when the transfer voltage is not appropriate or the transfer current leaks.

プリントに使用した記録材は60(g/m)の薄紙で、30℃、80%の高温高湿環境に24時間放置した放置紙とパッケージを開けた直後の開直紙を用意した。高湿環境では放置紙は吸湿するため低抵抗紙となり、開直紙は吸湿していないため高抵抗紙となる。 The recording material used for printing was a thin paper of 60 (g / m 2 ), and left paper left in a high temperature and high humidity environment of 30 ° C. and 80% for 24 hours and open paper immediately after opening the package were prepared. In a high humidity environment, the left paper absorbs moisture and becomes a low resistance paper, and the open paper does not absorb moisture and becomes a high resistance paper.

また、15℃、10%の低温低湿環境に放置した本実施例の画像形成装置で、単色ハーフトーンの両面プリントを実施し、二面目プリント時に発生した画像不良と転写不良を確認した。プリントに使用した記録材は60(g/m)の薄紙で、15℃、10%の低温低湿環境に24時間放置した放置紙とパッケージを開けた直後の開直紙を用意した。低湿環境では放置紙Zは水分が奪われるため高抵抗紙となり、開直紙は水分を奪われていないため低抵抗紙となる。 In addition, single-sided halftone double-sided printing was performed with the image forming apparatus of this example that was left in a low-temperature and low-humidity environment at 15 ° C. and 10%, and image defects and transfer defects that occurred during the second-side printing were confirmed. The recording material used for printing was a thin paper of 60 (g / m 2 ), and left paper left in a low temperature and low humidity environment of 15 ° C. and 10% for 24 hours and open paper immediately after opening the package were prepared. In the low-humidity environment, the leaving paper Z becomes a high resistance paper because moisture is taken away, and the open paper becomes a low resistance paper because moisture is not taken away.

さらに、同様の効果確認実験を以下の比較例についても実施した。   Furthermore, the same effect confirmation experiment was implemented also about the following comparative examples.

(比較例1)
本実施例の画像形成装置に対し、除電部材114を負電圧高圧原電31bとは接続せず、除電部材114専用の負電圧高圧電源31bを有し、除電電圧をR1Ave.によらず毎回二面目転写時に印加する画像形成装置。
(Comparative Example 1)
In the image forming apparatus of the present embodiment, the neutralizing member 114 is not connected to the negative voltage high voltage generator 31b, the negative voltage high voltage power source 31b dedicated to the neutralizing member 114 is provided, and the neutralizing voltage is set to R1 Ave. Regardless of the image forming apparatus, it is applied every time the second surface is transferred.

(比較例2)
本実施例の画像形成装置に対し、除電部材114を負電圧高圧原電31bとは接続せず、除電部材114用の負電圧高圧電源31bを有さない画像形成装置。
(Comparative Example 2)
In contrast to the image forming apparatus of the present embodiment, the image forming apparatus does not have the negative voltage high voltage power source 31b for the charge eliminating member 114 without connecting the charge eliminating member 114 to the negative voltage high voltage source 31b.

図8は本実施例と各比較例の効果確認実験の結果である。図8の表中の○、△、×はそれぞれ二面目転写時に発生した画像不良と転写不良の発生有無とそのレベルであり、表中の「有り」と「無し」の表記はそれぞれ二面目転写時における除電電圧印加の有無を示している。   FIG. 8 shows the result of the effect confirmation experiment of the present embodiment and each comparative example. In the table of FIG. 8, O, Δ, and X are the image defect and the occurrence / non-occurrence level of the image defect that occurred during the transfer of the second surface, respectively, and the “present” and “absent” notations in the table are the second surface transfer, respectively. The presence / absence of application of a static elimination voltage at the time is shown.

図8に示すように、本実施例では画像不良や転写不良が発生しなかった。一方、比較例1では低湿環境の開直紙と高湿環境の放置紙でレベルの悪い転写不良が発生した。これは、本実施例では低湿環境の開直紙と高湿環境の放置紙で除電電圧が印加されなかったのに対し、比較例1では低湿環境の開直紙と高湿環境の放置紙で除電電圧が印加されたためである。   As shown in FIG. 8, no image defect or transfer defect occurred in this example. On the other hand, in Comparative Example 1, a poor transfer level occurred in the low-humidity environment open paper and the high-humidity environment paper. In the present example, the neutralization voltage was not applied between the open paper in the low humidity environment and the left paper in the high humidity environment, whereas in Comparative Example 1, the open paper in the low humidity environment and the left paper in the high humidity environment. This is because a static elimination voltage is applied.

比較例1では、低湿環境の開直紙と高湿環境の放置紙はそれぞれ各環境において相対的に抵抗の低い紙であるため、紙を介して転写電流が除電部材114へとリークし転写不良が発生し易かった。   In Comparative Example 1, since the open paper in the low humidity environment and the left-side paper in the high humidity environment are papers having relatively low resistance in each environment, the transfer current leaks to the static eliminator 114 through the paper, resulting in transfer failure. It was easy to occur.

また、本実施例では画像不良や転写不良の発生がなかったのに対し、比較例1では低湿環境の放置紙と高湿環境の開直紙でも転写不良が発生した。これは、比較例1のような転写定電圧目標値を環境によらず一定の1000Vにするような転写定電圧制御では、記録材の抵抗や転写部のインピーダンスに転写電圧を追従させることができず転写不良が発生し易かったためである。   Further, in this example, there was no occurrence of image failure or transfer failure, whereas in Comparative Example 1, transfer failure occurred even in a low humidity environment left-sided paper and a high humidity environment open paper. This is because the transfer voltage can be made to follow the resistance of the recording material and the impedance of the transfer part in the transfer constant voltage control in which the transfer constant voltage target value is set to a constant 1000 V regardless of the environment as in Comparative Example 1. This is because a transfer defect was likely to occur.

それに対し、本実施例では水分量M(g/m)が小さいほど転写定電圧目標値が大きく算出されるようにしたことで、記録材や転写ローラ113が水分を放出して高抵抗化する低湿環境ほど転写定電圧目標値が大きくなる。その結果、記録材の抵抗や転写部のインピーダンスの変動に転写電圧を追従させることができるため転写不良が発生しなかった。 In contrast, in this embodiment, the smaller the amount of moisture M (g / m 3 ), the larger the constant transfer voltage target value is calculated, so that the recording material and the transfer roller 113 release moisture to increase the resistance. The lower the humidity environment, the larger the transfer constant voltage target value. As a result, the transfer voltage can be made to follow the resistance of the recording material and the impedance of the transfer portion, so that no transfer failure occurred.

また、本実施例では画像不良や転写不良の発生がなかったのに対し、比較例2では低湿環境の放置紙と高湿環境の開直紙でレベルの悪い画像不良が発生した。これは、本実施例では低湿環境の放置紙と高湿環境の開直紙で除電電圧を印加されたのに対し、比較例2では低湿環境の放置紙と高湿環境の開直紙で除電電圧を印加されなかったためである。   Further, in this embodiment, no image defect or transfer defect occurred, whereas in Comparative Example 2, an image defect with a poor level occurred in the low humidity environment left paper and the high humidity environment open paper. In this example, the neutralization voltage was applied to the low humidity environment left paper and the high humidity environment open paper, whereas in Comparative Example 2, the low humidity environment left paper and the high humidity environment open paper were neutralized. This is because no voltage was applied.

比較例2では、転写部からの分離時に帯電した紙と感光ドラム1間で放電が生じトナー像の画像不良が発生した。それに対し、本実施例では低湿環境の放置紙と高湿環境の開直紙において除電電圧を印加したことで、転写時に帯電した紙を十分に除電できる。そのため、分離時に紙と転写ローラ113間で放電が生じることが無く画像不良は発生しなかった。   In Comparative Example 2, a discharge occurred between the charged paper and the photosensitive drum 1 at the time of separation from the transfer portion, and an image defect of the toner image occurred. On the other hand, in this embodiment, by applying a static elimination voltage to the left-side paper in a low-humidity environment and the open paper in a high-humidity environment, the paper charged during transfer can be sufficiently neutralized. For this reason, no discharge occurred between the paper and the transfer roller 113 during separation, and no image defect occurred.

以上説明したように、本実施例によれば、記録材一面目への転写時の転写電圧と転写電流から算出したインピーダンスR1Ave.が予め設定した閾値より大きい場合にのみ記録材二面目への転写時に除電電圧印加を実施する。その構成により、不要な除電電圧印加とそれに伴う転写不良の発生を抑制できる。 As described above, according to the present embodiment, the impedance R1 Ave. calculated from the transfer voltage and transfer current at the time of transfer to the first surface of the recording material. Is applied at the time of transfer to the second surface of the recording material only when is larger than a preset threshold value. With this configuration, it is possible to suppress unnecessary static elimination voltage application and the accompanying transfer failure.

また、本実施例では除電電圧の目標電圧を一定にしたが、前述したように記録材の抵抗が高い方が記録材は帯電し易いため、R1Ave.が大きいほど除電電圧の目標電圧を高くしても良い。 Further, in this embodiment, the target voltage of the static elimination voltage is made constant. However, as described above, the recording material is more easily charged when the resistance of the recording material is higher, so that the R1 Ave. The target voltage of the static elimination voltage may be increased as the value of increases.

(実施例2)
本実施例の画像形成装置の構成は、実施例1と同様であるため説明は省略する。
(Example 2)
Since the configuration of the image forming apparatus of the present embodiment is the same as that of the first embodiment, description thereof is omitted.

本実施例の特徴は、実施例1に対し記録材が転写ニップ部Nに挟持されていない状態での転写部のインピーダンスR0とその平均値R0Ave.を算出する動作を追加する。さらにR1Ave.からR0Ave.を差し引いた値が閾値Kよりも大きい場合にのみ二面目転写時に除電電圧を印加するように二面目転写時の除電電圧印加条件を変更したことである。 The feature of this embodiment is that the transfer portion impedance R0 and its average value R0 Ave. in the state where the recording material is not sandwiched between the transfer nip portion N and the average value R0 Ave. Add an operation to calculate. Furthermore, R1 Ave. To R0 Ave. That is, the neutralization voltage application condition at the time of the second surface transfer is changed so that the neutralization voltage is applied at the time of the second surface transfer only when the value obtained by subtracting is greater than the threshold value K.

図9に示すように、R0とR0Ave.の算出は、S202の転写定電圧目標値を算出した後にS203として実施する。図10はR0とR0Ave.の算出動作の詳細を示したもので、S2031からS2038が図9のS203のR0とR0Ave.の算出動作に当たる。図10に示すように、R0とR0Ave.の算出動作として、まずS2031にて転写電流15μAを目標値として転写定電流制御を開始する。次に、S2032にて電流検知回路で検知する転写電流が15μA以上になったと判定されると、S2033にてR0の算出を開始した後、S2034にてR0の平均値であるR0Ave.の算出を開始する。ここで、R0は30msec毎に電流検知回路が検知する転写電流と、その時に出力している転写電圧から算出され、R0Ave.はそれまでに算出したR1の積算値をそれまでのR1の算出回数で除することで算出する。そして、S2035にてR0の算出回数が100回に到達したと判定されると、S2036にてR0の算出を終了した後、S2037にてR0Ave.の算出を終了する。その後S2038にて転写定電流制御を終了し、S204の閾値Kの算出へと移行する。 As shown in FIG. 9, R0 and R0 Ave. This calculation is performed as S203 after the transfer constant voltage target value in S202 is calculated. 10 shows R0 and R0 Ave. FIG. 9 shows the details of the calculation operation of S2031, S2031 to S2038 are R0 and R0 Ave. This is the calculation operation. As shown in FIG. 10, R0 and R0 Ave. First, in step S2031, transfer constant current control is started with a transfer current of 15 μA as a target value. Next, when it is determined in S2032 that the transfer current detected by the current detection circuit has become 15 μA or more, R0 calculation is started in S2033, and then R0 Ave. The calculation of is started. Here, R0 is calculated from the transfer current detected by the current detection circuit every 30 msec and the transfer voltage output at that time, and R0 Ave. Is calculated by dividing the integrated value of R1 calculated so far by the number of R1 calculations so far. If it is determined in S2035 that the number of R0 calculations has reached 100, R0 calculation ends in S2036, and then R0 Ave. The calculation of is terminated. Thereafter, the transfer constant current control is terminated in S2038, and the process proceeds to calculation of the threshold value K in S204.

また、図9に示すように、本実施例の画像形成装置ではS215にてR1Ave.からR0Ave.を差し引いた値が閾値Kよりも大きい場合にのみ二面目転写時に除電電圧を印加するように二面目転写時の除電電圧印加の有無を判定する。 As shown in FIG. 9, in the image forming apparatus of this embodiment, R1 Ave. To R0 Ave. Only when the value obtained by subtracting is greater than the threshold value K, it is determined whether or not the neutralization voltage is applied during the second surface transfer so that the neutralization voltage is applied during the second surface transfer.

また、本実施例ではR1Ave.からR0Ave.を差し引いた値と閾値Kとを比較するように二面目転写時の除電電圧印加有無の判定方法を変更したことに伴って、閾値Kの値を図11に示すように変更した。水分量が5(g/m)未満の低湿環境では120、水分量が20(g/m)以上の高湿環境では30とする。また、水分量が5(g/m)以上、20(g/m)未満の環境では、5(g/m)未満の場合の設定値である120と20(g/m)以上の場合の設定値である30を水分量Mに応じて線形補間した値として算出される。
その他の動作は実施例1と同様のため説明は省略する。
In this embodiment, R1 Ave. To R0 Ave. The value of the threshold value K was changed as shown in FIG. 11 in accordance with the change in the method for determining whether or not the neutralization voltage was applied during the second-side transfer so that the value obtained by subtracting the threshold value and the threshold value K were compared. 120 in a low humidity environment with a moisture content of less than 5 (g / m 3 ) and 30 in a high humidity environment with a moisture content of 20 (g / m 3 ) or more. Further, water content of 5 (g / m 3) or more, 20 in (g / m 3) than the environment, 5 (g / m 3) is the setting value of less than 120 and 20 (g / m 3) The set value 30 in the above case is calculated as a value obtained by linear interpolation according to the amount of moisture M.
Since other operations are the same as those in the first embodiment, description thereof is omitted.

この構成により、転写ローラ113や感光ドラム1のインピーダンスが変動しても二面目転写時の除電電圧印加の必要性判定の精度を維持することが可能である。   With this configuration, even when the impedance of the transfer roller 113 or the photosensitive drum 1 fluctuates, it is possible to maintain the accuracy of determining the necessity of applying a static elimination voltage during the second surface transfer.

(実施例3)
本実施例の画像形成装置の構成は、実施例1と同様であるため説明は省略する。
(Example 3)
Since the configuration of the image forming apparatus of the present embodiment is the same as that of the first embodiment, description thereof is omitted.

本実施例の特徴は、プリントする紙種によって閾値Kの設定値を変更したこととである。具体的には、図12に示すようにS302にてこれから実施するプリントのモードを読み込み、S305にて読み込んだプリントモードに応じて水分量M(g/m)に基づいた閾値Kの算出を行う。本実施例の画像形成装置はプリントモードとして、薄紙モード、普通紙モード、厚紙モードを有し、図13に示すように、薄紙モードでは水分量が5(g/m)未満の低湿環境では120、水分量が20(g/m)以上の高湿環境では30とする。また、水分量が5(g/m)以上、20(g/m)未満の環境では、5(g/m)未満の場合の設定値である120と20(g/m)以上の場合の設定値である30を水分量Mに応じて線形補間した値として算出される。 The feature of this embodiment is that the setting value of the threshold value K is changed depending on the paper type to be printed. Specifically, as shown in FIG. 12, the printing mode to be executed in S302 is read, and the threshold value K is calculated based on the moisture amount M (g / m 3 ) according to the printing mode read in S305. Do. The image forming apparatus according to the present embodiment has a thin paper mode, a plain paper mode, and a thick paper mode as print modes. As shown in FIG. 13, the thin paper mode has a moisture content of less than 5 (g / m 3 ) in a low humidity environment. 120, 30 in a high humidity environment with a moisture content of 20 (g / m 3 ) or more. Further, water content of 5 (g / m 3) or more, 20 in (g / m 3) than the environment, 5 (g / m 3) is the setting value of less than 120 and 20 (g / m 3) The set value 30 in the above case is calculated as a value obtained by linear interpolation according to the amount of moisture M.

また、普通紙モードでは水分量が5(g/m)未満の低湿環境では160、水分量が20(g/m)以上の高湿環境では40とする。水分量が5(g/m)以上、20(g/m)未満の環境では、5(g/m)未満の場合の設定値である1600と20(g/m)以上の場合の設定値である40を水分量Mに応じて線形補間した値として算出される。 In the plain paper mode, 160 is set in a low-humidity environment where the water content is less than 5 (g / m 3 ), and 40 is set in a high-humidity environment where the water content is 20 (g / m 3 ) or more. In an environment where the amount of water is 5 (g / m 3 ) or more and less than 20 (g / m 3 ), the set values in the case of less than 5 (g / m 3 ) are 1600 and 20 (g / m 3 ) or more. The set value 40 in this case is calculated as a value obtained by linear interpolation according to the amount of moisture M.

また、厚紙モードでは水分量が5(g/m)未満の低湿環境では200、水分量が20(g/m)以上の高湿環境では50とする。水分量が5(g/m)以上、20(g/m)未満の環境では、5(g/m)未満の場合の設定値である200と20(g/m)以上の場合の設定値である50を水分量Mに応じて線形補間した値として算出される。 In the cardboard mode, the moisture content is set to 200 in a low humidity environment with a moisture content of less than 5 (g / m 3 ) and 50 in a high humidity environment with a moisture content of 20 (g / m 3 ) or more. In an environment where the amount of water is 5 (g / m 3 ) or more and less than 20 (g / m 3 ), the set values in the case of less than 5 (g / m 3 ) are 200 and 20 (g / m 3 ) or more. In this case, the set value 50 is calculated as a value obtained by linear interpolation according to the amount of moisture M.

以上説明したように、プリントモード毎に閾値Kを設定し紙種による帯電し易さに応じて除電電圧印加の判定条件を変更することで、不要な除電電圧印加とそれに伴う転写不良を発生させることのない画像形成装置を提供できる。   As described above, by setting the threshold value K for each print mode and changing the determination condition for applying the charge removal voltage according to the ease of charging depending on the paper type, unnecessary charge removal voltage application and accompanying transfer failure are generated. An image forming apparatus can be provided.

また、本実施例ではプリントモードに応じて転写定電圧目標値を変更しなかったが、前述したように普通紙や厚紙は薄紙と比較して一面目の定着装置の通紙による水分率の低下が小さい。そのため、一面目の定着装置通紙後に高抵抗化しづらいため、転写定電圧目標値を坪量の大きなプリントモードほど小さく設定しても良い。   In this embodiment, the transfer constant voltage target value was not changed in accordance with the print mode. However, as described above, the moisture content decreases due to the sheet passing through the fixing device on the first surface of plain paper and thick paper compared to thin paper. Is small. For this reason, since it is difficult to increase the resistance after the fixing device on the first surface is passed, the target value of the transfer constant voltage may be set smaller as the printing mode has a larger basis weight.

また、本実施例ではプリントモードに応じて除電電圧を変更しなかったが、坪量の大きなプリントモードほど除電電圧を小さく設定しても良い。   In this embodiment, the neutralization voltage is not changed according to the print mode. However, the neutralization voltage may be set smaller as the print mode has a larger basis weight.

(その他の実施例)
本発明は、図1(b)で説明する画像形成装置においても適用可能である。図1(b)の画像形成装置は、複数の像担持体(感光ドラム)と、中間転写体(中間転写ベルト)を有する点で図1(a)の画像形成装置と相違する。図1(b)では画像形成部の符号にa、b、c、dの添え字を付している。なお、添え字a、b、c、dは、必要な場合を除き省略する。
(Other examples)
The present invention is also applicable to the image forming apparatus described with reference to FIG. The image forming apparatus in FIG. 1B is different from the image forming apparatus in FIG. 1A in that it includes a plurality of image carriers (photosensitive drums) and an intermediate transfer body (intermediate transfer belt). In FIG. 1B, subscripts a, b, c, and d are added to the reference numerals of the image forming unit. Subscripts a, b, c, and d are omitted unless necessary.

図1(b)は、中間転写体(以下、中間転写ベルトという)140を有する画像形成装置である。中間転写ベルト140は、ローラ141、142、143により張架されている。画像形成装置100では、画像形成時には、一次転写電源(不図示)から転写ローラ113に印加された転写電圧によって、現像器112により現像された感光ドラム1上のトナー像が中間転写ベルト140上(中間転写体上)に順次重畳して転写される。その後、二次転写正電源(不図示)から転写手段(第一の部材)である二次転写ローラ144に正極性の転写電圧が印加され、中間転写ベルト140上のトナー像が記録材Pに転写される。記録材Pに転写されず、中間転写ベルト140上に残ったトナーは、中間転写ベルトクリーニング正電源(不図示)から中間転写ベルトクリーニングブラシ145に印加された正極性の電圧により、中間転写ベルトクリーニングブラシ145に一時的に回収される。以下、中間転写ベルトクリーニング正電源を単にクリーニング正電源といい、除去手段(第二の部材)である中間転写ベルトクリーニングブラシ145を単にクリーニングブラシ145という。   FIG. 1B shows an image forming apparatus having an intermediate transfer member (hereinafter referred to as an intermediate transfer belt) 140. The intermediate transfer belt 140 is stretched by rollers 141, 142, and 143. In the image forming apparatus 100, at the time of image formation, the toner image on the photosensitive drum 1 developed by the developing device 112 is transferred onto the intermediate transfer belt 140 (by a transfer voltage applied to the transfer roller 113 from a primary transfer power source (not shown). The images are sequentially superimposed and transferred onto the intermediate transfer member. Thereafter, a positive transfer voltage is applied from a secondary transfer positive power source (not shown) to the secondary transfer roller 144 as a transfer means (first member), and the toner image on the intermediate transfer belt 140 is applied to the recording material P. Transcribed. The toner not transferred to the recording material P but remaining on the intermediate transfer belt 140 is subjected to intermediate transfer belt cleaning by a positive voltage applied to the intermediate transfer belt cleaning brush 145 from an intermediate transfer belt cleaning positive power source (not shown). It is temporarily collected by the brush 145. Hereinafter, the intermediate transfer belt cleaning positive power source is simply referred to as a cleaning positive power source, and the intermediate transfer belt cleaning brush 145 serving as a removing unit (second member) is simply referred to as a cleaning brush 145.

一方、クリーニングプロセス時には、二次転写ローラ144に印加された負極性の電圧により、二次転写ローラ144に付着したトナーは、中間転写ベルト140上に転写され、二次転写ローラ144から除去される。また、クリーニングブラシ145に印加された負極性の電圧により、クリーニングブラシ145に一時的に回収され溜まったトナーは、中間転写ベルト140上に吐き出される。その後、中間転写ベルト140上に吐き出されたトナーは、中間転写ベルト140上から感光ドラム1に転写され(即ち、逆転写され)、感光ドラム1内のクリーナー容器(不図示)に回収される。   On the other hand, during the cleaning process, the toner attached to the secondary transfer roller 144 is transferred onto the intermediate transfer belt 140 by the negative voltage applied to the secondary transfer roller 144 and removed from the secondary transfer roller 144. . The toner temporarily collected and collected by the cleaning brush 145 is discharged onto the intermediate transfer belt 140 by the negative voltage applied to the cleaning brush 145. Thereafter, the toner discharged onto the intermediate transfer belt 140 is transferred from the intermediate transfer belt 140 to the photosensitive drum 1 (that is, reversely transferred) and collected in a cleaner container (not shown) in the photosensitive drum 1.

このような画像形成装置においても、中間転写ベルト10から記録材を分離するために除電部材114と二次転写ローラ144に負極性の電圧を印加する負極性高圧電源を共通化することで、実施例1と同様の効果がある。   Even in such an image forming apparatus, in order to separate the recording material from the intermediate transfer belt 10, a negative high voltage power source that applies a negative voltage to the neutralizing member 114 and the secondary transfer roller 144 is used in common. The same effect as Example 1 is obtained.

1 像担持体
113 転写部材
114 除電部材
3 高圧電源装置
31a 正極性高圧電源
32b 負極性高圧電源
DESCRIPTION OF SYMBOLS 1 Image carrier 113 Transfer member 114 Static elimination member 3 High voltage power supply device 31a Positive high voltage power supply 32b Negative high voltage power supply

Claims (10)

トナー像を担持する像担持体と、前記像担持体上のトナー像を記録材へ転写する転写部を形成する転写部材と、記録材を除電する除電部材と、所定の極性の電圧を出力する第一の高圧出力手段と、前記第一の高圧出力手段とは逆極性の電圧を出力する第二の高圧出力手段と、前記第一の高圧出力手段と前記第二の高圧出力手段に接続された第一の高圧出力端と、第二の高圧出力手段に接続された第二の高圧出力端と、前記第一の高圧出力端に流れる電流を検知する電流検知部と、を有し、
前記転写部材が前記第一の高圧出力端に接続され、前記除電部材が前記第二の高圧出力端に接続され、前記第二の高圧出力手段が前記除電部材に前記逆極性の電圧を出力すると前記第一の高圧出力端を介して前記転写部材に前記逆極性の電圧が出力されることを特徴とする画像形成装置。
An image carrier that carries a toner image, a transfer member that forms a transfer portion that transfers the toner image on the image carrier to a recording material, a static elimination member that neutralizes the recording material, and outputs a voltage of a predetermined polarity The first high voltage output means, the second high voltage output means for outputting a voltage having a polarity opposite to that of the first high voltage output means, the first high voltage output means and the second high voltage output means. A first high-voltage output end, a second high-voltage output end connected to the second high-voltage output means, and a current detection unit that detects a current flowing through the first high-voltage output end,
When the transfer member is connected to the first high-voltage output end, the static elimination member is connected to the second high-voltage output end, and the second high-voltage output means outputs the reverse polarity voltage to the static elimination member. The image forming apparatus, wherein the reverse polarity voltage is output to the transfer member via the first high-voltage output end.
前記除電部材へ出力される電圧は、少なくとも前記第二の高圧出力手段が出力する電圧を一定値にすることを特徴とする請求項1に記載の画像形成装置。   The image forming apparatus according to claim 1, wherein the voltage output to the charge removal member is a constant value at least as the voltage output from the second high voltage output unit. 前記除電部材への電圧を出力する場合、前記第一の高圧出力手段が出力する電圧と前記第二の高圧出力手段が出力する電圧をともに一定値にすることを特徴とする請求項1又は請求項2に記載の画像形成装置。   2. The voltage output from the first high-voltage output means and the voltage output from the second high-voltage output means are both set to a constant value when outputting the voltage to the static elimination member. Item 3. The image forming apparatus according to Item 2. 前記除電部材への電圧を出力する場合、前記第一の高圧出力手段が前記転写部材へ出力する電圧と前記第二の高圧出力手段が前記転写部材へ出力する電圧の重畳電圧が、前記第一の高圧出力手段が出力する電圧と同極性であることを特徴とする請求項1から請求項3のいずれか一項に記載の画像形成装置。   When outputting the voltage to the static elimination member, the superimposed voltage of the voltage output from the first high voltage output means to the transfer member and the voltage output from the second high voltage output means to the transfer member is the first voltage. The image forming apparatus according to any one of claims 1 to 3, wherein the image forming apparatus has the same polarity as a voltage output from the high-voltage output means. 記録材に転写されたトナー像を記録材に定着するための定着手段を有し、前記定着手段によって一面目にトナー像が定着された記録材を反転させて二面目にトナー像を前記転写部において転写する場合、
前記一面目に対するトナー像を転写する際に前記第一の高圧出力手段により印加された電圧と前記電流検知部で検知した電流値に基づいて、前記二面目に対するトナー像を転写する際に前記第二の高圧出力手段が前記除電部材へ電圧を印加するか否かを決定することを特徴とする請求項1から請求項4のいずれか一項に記載の画像形成装置。
A fixing unit configured to fix the toner image transferred to the recording material to the recording material; the recording material having the toner image fixed on the first surface by the fixing unit is reversed; When transferring in
Based on the voltage applied by the first high-voltage output means when transferring the toner image for the first surface and the current value detected by the current detector, the first image is transferred when transferring the toner image for the second surface. 5. The image forming apparatus according to claim 1, wherein two high-voltage output units determine whether to apply a voltage to the charge removal member.
前記一面目に対するトナー像を転写する際に前記第一の高圧出力手段により印加された電圧と前記電流検知部で検知した電流値に基づいて算出される値が閾値よりも大きい場合のみ、前記二面目に対するトナー像を転写する際に前記第二の高圧出力手段が前記除電部材へ電圧を印加することを特徴とする請求項5に記載の画像形成装置。   Only when the value calculated based on the voltage applied by the first high-voltage output means and the current value detected by the current detection unit when transferring the toner image on the first surface is larger than a threshold, the second 6. The image forming apparatus according to claim 5, wherein the second high-voltage output means applies a voltage to the charge removal member when transferring the toner image to the face. 前記二面目に対するトナー像を転写する際に前記第二の高圧出力手段が前記除電部材へ電圧を印加する場合、前記第一の高圧出力手段が印加する電圧は定電圧であることを特徴とする請求項6に記載の画像形成装置。   When the second high voltage output means applies a voltage to the charge removal member when transferring the toner image to the second surface, the voltage applied by the first high voltage output means is a constant voltage. The image forming apparatus according to claim 6. トナー像を担持する像担持体と、前記像担持体上のトナー像を記録材へ転写する転写部を形成する転写部材と、記録材を除電する除電部材と、所定の極性の電圧を出力する第一の高圧出力手段と、前記第一の高圧出力手段とは逆極性の電圧を出力する第二の高圧出力手段と、前記第一の高圧出力手段と前記第二の高圧出力手段に接続された第一の高圧出力端と、第二の高圧出力手段に接続された第二の高圧出力端と、前記第一の高圧出力端に流れる電流を検知する電流検知部と、を有し、前記転写部材が前記第一の高圧出力端に接続され、前記除電部材が前記第二の高圧出力端に接続され、
前記第一の高圧出力手段により印加された電圧と前記電流検知部で検知した電流値に基づいて、前記第二の高圧出力手段が前記除電部材へ電圧を印加するか否かを決定することを特徴とする画像形成装置。
An image carrier that carries a toner image, a transfer member that forms a transfer portion that transfers the toner image on the image carrier to a recording material, a static elimination member that neutralizes the recording material, and outputs a voltage of a predetermined polarity The first high voltage output means, the second high voltage output means for outputting a voltage having a polarity opposite to that of the first high voltage output means, the first high voltage output means and the second high voltage output means. A first high-voltage output end, a second high-voltage output end connected to the second high-voltage output means, and a current detection unit that detects a current flowing through the first high-voltage output end, A transfer member is connected to the first high-voltage output end, and the static elimination member is connected to the second high-voltage output end;
Based on the voltage applied by the first high-voltage output means and the current value detected by the current detection unit, the second high-voltage output means determines whether to apply a voltage to the static elimination member. An image forming apparatus.
記録材に転写されたトナー像を記録材に定着するための定着手段を有し、
前記定着手段によって一面目にトナー像が定着された記録材を反転させて二面目にトナー像を前記転写部において転写する場合において、前記第二の高圧出力手段が前記除電部材へ電圧を印加することが可能であることを特徴とする請求項8に記載の画像形成装置。
A fixing means for fixing the toner image transferred to the recording material to the recording material;
When the recording material on which the toner image is fixed on the first surface by the fixing unit is reversed and the toner image is transferred to the transfer surface on the second surface, the second high-voltage output unit applies a voltage to the charge eliminating member. The image forming apparatus according to claim 8, wherein:
記録材が挟持されていない状態での前記第一の高圧出力手段により印加された電圧と前記電流検知部で検知した電流値から算出した値が閾値よりも大きい場合のみ前記第二の高圧出力手段が前記除電部材へ電圧を出力することを特徴とする請求項9に記載の画像形成装置。   The second high voltage output means only when the value calculated from the voltage applied by the first high voltage output means and the current value detected by the current detection unit when the recording material is not sandwiched is larger than a threshold value. The image forming apparatus according to claim 9, wherein a voltage is output to the charge removal member.
JP2014252034A 2014-12-12 2014-12-12 Image forming apparatus Active JP6465639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252034A JP6465639B2 (en) 2014-12-12 2014-12-12 Image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252034A JP6465639B2 (en) 2014-12-12 2014-12-12 Image forming apparatus

Publications (2)

Publication Number Publication Date
JP2016114703A true JP2016114703A (en) 2016-06-23
JP6465639B2 JP6465639B2 (en) 2019-02-06

Family

ID=56141780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252034A Active JP6465639B2 (en) 2014-12-12 2014-12-12 Image forming apparatus

Country Status (1)

Country Link
JP (1) JP6465639B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066536A (en) * 1998-08-20 2000-03-03 Canon Inc Image forming device
JP2000330388A (en) * 1999-05-18 2000-11-30 Fuji Xerox Co Ltd Image forming device
JP2004044658A (en) * 2002-07-10 2004-02-12 Bosch Automotive Systems Corp Automatic transmission device for vehicle
US20070092310A1 (en) * 2005-10-26 2007-04-26 Mitsuji Tsujita Image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066536A (en) * 1998-08-20 2000-03-03 Canon Inc Image forming device
JP2000330388A (en) * 1999-05-18 2000-11-30 Fuji Xerox Co Ltd Image forming device
JP2004044658A (en) * 2002-07-10 2004-02-12 Bosch Automotive Systems Corp Automatic transmission device for vehicle
US20070092310A1 (en) * 2005-10-26 2007-04-26 Mitsuji Tsujita Image forming device

Also Published As

Publication number Publication date
JP6465639B2 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
JP6135051B2 (en) Fixing apparatus and image forming apparatus
US9891560B2 (en) Image forming system
US8886069B2 (en) Image forming apparatus
JP2013044787A (en) Image forming apparatus
JP5487134B2 (en) Image forming apparatus
JP2012096880A (en) Sheet feeder and image forming device
JP4993060B2 (en) Image forming apparatus
JP5058649B2 (en) Fixing device control apparatus and image forming apparatus
JP6355376B2 (en) Image forming apparatus
JP2008134393A (en) Image forming apparatus
JP6465639B2 (en) Image forming apparatus
JP5294815B2 (en) Image forming apparatus
US9274458B2 (en) Image formation device
JP2010112993A (en) Image forming apparatus
JP2006220976A (en) Transfer device and image forming apparatus
JP2008083608A (en) Image forming apparatus
JP6003678B2 (en) Image forming apparatus
JP2012088377A (en) Image forming apparatus
JP2012220870A (en) Image forming apparatus
JP2004110010A (en) Image forming apparatus
JP2004045866A (en) Apparatus and method for forming multi-color image
JP2007171425A (en) Image forming apparatus
JP2012086913A (en) Image forming apparatus
JP2022178430A (en) Image forming device and charging bias adjustment method
JP2009014870A (en) Image forming device and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190108

R151 Written notification of patent or utility model registration

Ref document number: 6465639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151