JP2016112534A5 - - Google Patents

Download PDF

Info

Publication number
JP2016112534A5
JP2016112534A5 JP2014255463A JP2014255463A JP2016112534A5 JP 2016112534 A5 JP2016112534 A5 JP 2016112534A5 JP 2014255463 A JP2014255463 A JP 2014255463A JP 2014255463 A JP2014255463 A JP 2014255463A JP 2016112534 A5 JP2016112534 A5 JP 2016112534A5
Authority
JP
Japan
Prior art keywords
concentration
stage
fluid
elements
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014255463A
Other languages
Japanese (ja)
Other versions
JP6555567B2 (en
JP2016112534A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2014255463A priority Critical patent/JP6555567B2/en
Priority claimed from JP2014255463A external-priority patent/JP6555567B2/en
Priority to PCT/JP2015/085394 priority patent/WO2016098862A1/en
Publication of JP2016112534A publication Critical patent/JP2016112534A/en
Publication of JP2016112534A5 publication Critical patent/JP2016112534A5/ja
Application granted granted Critical
Publication of JP6555567B2 publication Critical patent/JP6555567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明の第2の側面は、以下の素子配列によっても例示される。すなわち、この素子配列では、素子段として、他の素子段より1列短い半整数段と半整数段よりも1列長い整数
段とが交互に配置され、かつ流体の流れの横断方向には半整数段の各素子が整数段の素子と素子との間に位置するようにずれて配置される形態で素子が配置される。そして、最上流を除く整数段において両端の素子のうちの一方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で一方の端の素子のそれぞれの高濃度出口から流体が流入するように接続される。また、整数段において両端の素子のうちの他方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で他方の端の素子のそれぞれの低濃度出口から流体が流入するように接続される。そして、最上流を除く半整数段において両端を含む各素子の入口は、前段である整数段での流体の流れの横断方向に一方の側に半整数段とずれて配置された素子の低濃度出口と、前段である整数段での流体の流れの横断方向に他方の側にずれて配置された素子の高濃度出口とに接続される。また、最上流を除く整数段において両端を除く各素子の入口は、前段である半整数段での流体の流れの横断方向に一方の側に整数段とずれて配置された素子の低濃度出口と、前段である半整数段での流体の流れの横断方向に他方の側にずれて配置された素子の高濃度出口とに接続される。
The second aspect of the present invention is also exemplified by the following element arrangement. That is, in this element arrangement, half-integer stages shorter by one row than other element stages and integer stages longer by one row than half-integer stages are alternately arranged as element stages, and half in the transverse direction of the fluid flow. The elements are arranged in such a manner that each element in the integer stage is arranged so as to be positioned between the elements in the integer stage. And, in the integer stage excluding the most upstream, the entrance of the element at one end of the elements at both ends is one half-integer stage and one integer stage arranged upstream of the integer stage by one element and two elements. It is connected so that fluid may flow in from the high concentration outlet of each of the end elements. In addition, the entrance of the element at the other end of the elements at both ends in the integer stage is the half integer stage and the element at the other end in the half stage and the integer stage arranged upstream of the integer stage by one element and two elements. It connects so that a fluid may flow in from each low concentration exit. The inlet of each element including both ends in the half-integer stage excluding the most upstream is a low concentration of the element arranged on the one side in the transverse direction of the fluid flow in the preceding integer stage and shifted from the half-integer stage. It is connected to the outlet and the high concentration outlet of the element arranged to be shifted to the other side in the transverse direction of the fluid flow in the integer stage which is the preceding stage. In addition, the inlet of each element excluding both ends in the integer stage excluding the most upstream is the low concentration outlet of the element arranged on the one side in the transverse direction of the fluid flow in the half-integer stage which is the preceding stage. And the high-concentration outlet of the element arranged to be shifted to the other side in the transverse direction of the fluid flow in the half-integer stage which is the preceding stage.

なお、図2および図3の素子配列と比較して、図4および図5の素子配列は、以下の共通点、相違点を有する。
(共通点)
図4の素子配列は、図2と同様、少なくとも1つの入口と2つの出口とを有し、入り口から流入する流体の成分濃度を偏在させて、流入した流体の平均濃度よりも高濃度の流体を高濃度出口から流出させ、流入した流体の平均濃度よりも低濃度の流体を低濃度出口から流出させる素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列して接続した素子配列といえる。
(相違点)
ただし、図4および図5においては、最上流を除く各整数段の両端の素子(半整数段の両端の素子は特別扱いが不要なので含まない)のうちの一方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で一方の端の素子のそれぞれの高濃度出口から流体が流入するように接続される。また、各整数段の両端の素子のうちの他方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で他方の端の素子のそれぞれの低濃度出口から流体が流入するように接続される。
Compared with the element arrangements in FIGS. 2 and 3, the element arrangements in FIGS. 4 and 5 have the following common points and differences.
(Common point)
The element arrangement of FIG. 4 has at least one inlet and two outlets, as in FIG. 2, and the concentration of components flowing in from the inlet is unevenly distributed, so that the concentration of the fluid is higher than the average concentration of the flowing-in fluid. Is connected to the flow direction of the fluid by arranging multiple element stages in parallel in the direction of the fluid flow. It can be said that this is an element arrangement.
(Difference)
However, in FIG. 4 and FIG. 5, the entrance of the element at one end of the elements at both ends of each integer stage excluding the most upstream (the elements at both ends of the half integer stage are not included because special treatment is not necessary) The half-integer stage and the integer stage that are arranged upstream of the integer stage by one element and two elements are connected so that fluid flows from the respective high-concentration outlets of the elements at one end. In addition, the elements at the other end of the elements at both ends of each integer stage have half-integer stages and integer elements arranged at the upstream of the integer stage by one element and two elements upstream of the integer stage. The fluids are connected so as to flow in from the respective low concentration outlets.

図4および図5の素子配列は、最上流を除く各整数段の両端のうち、一方の端(第0列、高濃度端部)の素子の入口は、2段上流の整数段の同じ一方の端(第0列、高濃度端部
)の素子の高濃度出口および1段上流の半整数段の同じ一方の端(第1/2列)の素子の高
濃度出口から流体が流入するように接続される。つまり、図4および図5では、最上流を除く整数段において両端の素子のうちの一方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で一方の端の素子のそれぞれの高濃度出口から流体が流入するように接続されるといえる。
4 and FIG. 5, the inlet of the element at one end (0th row, high concentration end portion) of both ends of each integer stage excluding the most upstream is the same one of the integer stages upstream of the second stage. So that fluid flows in from the high concentration outlet of the element at the end (0th row, high concentration end) and the high concentration outlet of the element at the same one end (1/2 row) of the half integer stage upstream of the first stage Connected to. That is, in FIG. 4 and FIG. 5, the entrance of one of the elements at both ends in the integer stage except the most upstream is a half integer arranged upstream of the integer stage by one element and two elements. It can be said that the fluid flows in from the high concentration outlet of each element at one end in the stage and the integer stage.

また、最上流を除く各整数段の両端のうち、他方の端(第M−1列、低濃度端部)の素子の入口は、2段上流の整数段の同じ他方の端(第M−1列、低濃度端部)の素子の低濃度出口および1段上流の半整数段の同じ他方の端(第M−2+1/2列)の素子の低濃度出口から流体が流入するように接続される。つまり、図4および図5では、最上流を除く整数段において両端の素子のうちの他方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で他方の端の素子のそれぞれの低濃度出口から流体が流入するように接続されるといえる。 In addition, among the ends of each integer stage except the most upstream, the other end (M-1th row, low concentration end) of the element entrance is the same other end (M-th) of the integer stage upstream of the second stage. The fluid flows in from the low concentration outlet of the element in the first row, the low concentration end) and from the low concentration outlet of the element in the other half end of the half integer stage upstream of the first stage (the M−2 + 1/2 column). Connected to. That is, in FIG. 4 and FIG. 5, in the integer stage except the most upstream, the inlet of the other end of the elements at both ends is a half integer arranged upstream of the integer stage by one element and two elements. It can be said that the fluid flows in from the low concentration outlets of the elements at the other end in the stage and the integer stage.

(モデル2のまとめ)
以上述べたように、図4に例示した素子配列では、最上流を除く整数段において両端の素子のうちの高濃度端部の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で高濃度端部の素子のそれぞれの高濃度出口から流体が流入するように接続される。その結果、数29の第1式を満たす仮想素子x(-1,j) を境界の外側に設けた構造と等価な回路となる。また、整数段において両端の素子のうちの低濃度端部の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で低濃度端部の素子のそれぞれの低濃度出口から流体が流入するように接続される。その結果、数29の第2式を満たす仮想素子を境界の外側に設けた構造と等価な回路となる。したがって、図4の素子配列は、素子配列の各段の両側の境界条件の設定を容易とし、数27、数30、および数31のような連続体近似を得ることができ、これにより数32の平衡濃度分布を求めることが可能となる。したがって、モデル2の素子配列は、濃度変化の理論解析、各段の望ましい列数、望ましい段数の把握を容易とする。
(Summary of model 2)
As described above, in the element arrangement illustrated in FIG. 4, the entrance of the high-concentration end element among the elements at both ends in the integer stage excluding the most upstream is one element and two elements than the integer stage. The half-integer stage and the integer stage arranged upstream are connected so that the fluid flows from the respective high-concentration outlets of the elements at the high-concentration end. As a result, the circuit is equivalent to a structure in which virtual elements x (-1, j) satisfying the first expression of Equation 29 are provided outside the boundary. In addition, the entrance of the low-concentration end element among the elements at both ends in the integer stage is the half-integer stage and the integer stage arranged at one element and two elements upstream of the integer stage. The fluid is connected so as to flow from each low concentration outlet of the element. As a result, a circuit equivalent to a structure in which a virtual element satisfying the second expression of Formula 29 is provided outside the boundary is obtained. Therefore, the element arrangement of FIG. 4 facilitates setting of boundary conditions on both sides of each stage of the element arrangement, and can obtain a continuum approximation such as Equation 27, Equation 30, and Equation 31, thereby obtaining Equation 32. It is possible to obtain the equilibrium concentration distribution of Therefore, the element arrangement of the model 2 facilitates the theoretical analysis of the density change, and the grasp of the desired number of rows and the desired number of steps in each stage.

Claims (13)

少なくとも1つの入口と2つの出口とを有し、前記入口から流入する流体の成分濃度を偏在させて、前記流入した流体の平均濃度よりも高濃度の流体を高濃度出口から流出させ、前記流入した流体の平均濃度よりも低濃度の流体を低濃度出口から流出させる素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列し、
最上流を除く各素子段において両端の素子のうち一方の端の素子の入口は、1段上流の素子段の同じ一方の端の素子の高濃度出口および前記一方の端の素子よりも他方の側に配置された素子の高濃度出口に接続され、前記両端の素子のうち他方の端の素子の入口は、前記1段上流の素子段の同じ他方の端の素子の低濃度出口および前記他方の端の素子よりも前記一方の側に配置された素子の低濃度出口に接続され、
前記最上流を除く各素子段で前記両端の素子を除く各素子の入口は、1段上流の素子段での流体の流れの横断方向の同一順序位置よりも前記一方の側に配置された素子の低濃度出口と前記1段上流の素子段での流体の流れの横断方向の同一順序位置よりも前記他方の側に配置された素子の高濃度出口とに接続される素子配列。
And having at least one inlet and two outlets, unevenly distributing the component concentration of the fluid flowing in from the inlet, allowing a fluid having a concentration higher than the average concentration of the fluid flowing in to flow out from the high concentration outlet, and A plurality of element stages arranged in parallel with a plurality of elements for allowing a fluid having a concentration lower than the average concentration of the fluid to flow out from the low concentration outlet in a direction of fluid flow;
In each element stage excluding the most upstream, the inlet of one end element among the elements at both ends is the high concentration outlet of the same one end element in the upstream one element stage and the other end than the one end element. And the other end of the elements at both ends is connected to the low concentration outlet of the element at the same other end of the one upstream stage and the other end. Connected to the low concentration outlet of the element arranged on the one side of the element at the end of
In each element stage excluding the most upstream element, the inlets of the elements excluding the elements at both ends are arranged on the one side of the same order position in the transverse direction of the fluid flow in the element stage upstream by one stage. And an element array connected to the high concentration outlet of the element disposed on the other side of the same order position in the transverse direction of the fluid flow in the element stage upstream of the first stage.
少なくとも1つの入口と2つの出口とを有し、前記入口から流入する流体の成分濃度を偏在させて、前記流入した流体の平均濃度よりも高濃度の流体を高濃度出口から流出させ、前記流入した流体の平均濃度よりも低濃度の流体を低濃度出口から流出させる素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列し、
前記素子段として、他の素子段より1列短い半整数段と前記半整数段よりも1列長い整
数段とが交互に配置され、かつ流体の流れの横断方向には前記半整数段の各素子が前記整数段の素子と素子との間に位置するようにずれて配置される形態で素子が配置され、
最上流を除く整数段において両端の素子のうちの一方の端の素子の入口は、当該整数段よりも1素子分および2素子分上流に配列された半整数段および整数段で前記一方の端の素子のそれぞれの高濃度出口から流体が流入するように接続され、前記整数段において両端の素子のうちの他方の端の素子の入口は、当該整数段よりも1素子分および2素子分上
流に配列された半整数段および整数段で前記他方の端の素子のそれぞれの低濃度出口から流体が流入するように接続され、
前記最上流を除く半整数段において両端を含む各素子の入口は、前段である整数段での流体の流れの横断方向に前記一方の側に前記半整数段とずれて配置された素子の低濃度出口と、前段である前記整数段での流体の流れの横断方向に前記他方の側にずれて配置された素子の高濃度出口とに接続され、
前記最上流を除く整数段において両端を除く各素子の入口は、前段である半整数段での流体の流れの横断方向に前記一方の側に前記整数段とずれて配置された素子の低濃度出口と、前段である前記半整数段での流体の流れの横断方向に前記他方の側にずれて配置された素子の高濃度出口とに接続される素子配列。
And having at least one inlet and two outlets, unevenly distributing the component concentration of the fluid flowing in from the inlet, allowing a fluid having a concentration higher than the average concentration of the fluid flowing in to flow out from the high concentration outlet, and A plurality of element stages arranged in parallel with a plurality of elements for allowing a fluid having a concentration lower than the average concentration of the fluid to flow out from the low concentration outlet in a direction of fluid flow;
As the element stages, half-integer stages shorter by one column than other element stages and integer stages longer by one column than the half-integer stages are alternately arranged, and each half-integer stage is arranged in the transverse direction of the fluid flow. The elements are arranged in such a form that the elements are arranged so as to be positioned between the elements of the integer stage and the elements,
In the integer stage excluding the most upstream, the inlet of the element at one end of the elements at both ends is the one end of the half integer stage and the integer stage arranged one element and two elements upstream from the integer stage. are connected from the respective high concentrations outlet of the device so that the fluid flows, an inlet at the other end of the element of the integer stages across the element in the one element and 2 element content upstream than the integer stages Are connected so that fluid flows in from the low concentration outlet of each of the elements at the other end in half integer stages and integer stages arranged in
The inlet of each element including both ends in the half integer stage excluding the uppermost stream is lower than the half integer stage arranged on the one side in the transverse direction of the fluid flow in the preceding integer stage. Connected to the concentration outlet and the high concentration outlet of the element arranged shifted to the other side in the transverse direction of the fluid flow in the integer stage which is the preceding stage,
The inlet of each element except for both ends in the integer stage excluding the uppermost stream is a low concentration of elements arranged on the one side in the transverse direction of the fluid flow in the half integer stage which is the preceding stage and shifted from the integer stage. An element arrangement connected to the outlet and the high concentration outlet of the element arranged shifted to the other side in the transverse direction of the fluid flow in the half integer stage which is the preceding stage.
各素子に流入する流体の成分濃度をxとして、前記高濃度出口から流出する高濃度流体
と前記低濃度出口から流出する低濃度流体との濃度差が所定の係数gammaを用いて、2(gamma)x(1-x)と表現されるとき、前記素子段での流体の流れの横断方向の素子数Mが1/(gamma)以上であり、前記流体の流れの方向の素子段の段数NがM/(gamma)以上である請
求項1に記載の素子配列。
The concentration difference between the high-concentration fluid flowing out from the high-concentration outlet and the low-concentration fluid flowing out from the low-concentration outlet is 2 (gamma) using a predetermined coefficient gamma, where x is the component concentration of the fluid flowing into each element. ) x (1-x), the number M of elements in the transverse direction of the fluid flow at the element stage is 1 / (gamma) or more, and the number N of element stages in the fluid flow direction. The element arrangement according to claim 1, wherein is M / (gamma) or more.
各素子に流入する流体の成分濃度をxとして、前記高濃度出口から流出する高濃度流体
と前記低濃度出口から流出する低濃度流体との濃度差が所定の係数gammaを用いて、2(gamma)x(1-x)と表現されるとき、整数段において素子段での流体の流れの横断方向の素子数Mが1/(2gamma)以上であり、前記流体の流れの方向の整数段と半整数段を合わせた素
子段の段数Nが2M/(gamma)-1以上である請求項2に記載の素子配列。
The concentration difference between the high-concentration fluid flowing out from the high-concentration outlet and the low-concentration fluid flowing out from the low-concentration outlet is 2 (gamma) using a predetermined coefficient gamma, where x is the component concentration of the fluid flowing into each element. ) x (1-x), the number M of elements in the transverse direction of the fluid flow in the element stage in the integer stage is 1 / (2 gamma) or more, and the integer stage in the fluid flow direction is The element arrangement according to claim 2, wherein the number N of element stages including the half integer stages is 2 M / (gamma) −1 or more.
少なくとも1つの入口と2つの出口とを有し、前記入り口から流入する流体の成分濃度を偏在させて、前記流入した流体の平均濃度よりも高濃度の流体を高濃度出口から流出させ、前記流入した流体の平均濃度よりも低濃度の流体を低濃度出口から流出させる素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列し、
最上流を除く各素子段の少なくとも両端以外の各素子の入口は、前記各素子段よりも上流側に配置された2個の素子のうちの一方の素子の高濃度出口と他方の素子の低濃度出口とに接続され、
各素子に流入する流体の成分濃度をxとして、前記高濃度出口から流出する高濃度流体
と前記低濃度出口から流出する低濃度流体との濃度差が所定の係数gammaを用いて、2(gamma)x(1-x)と表現されるとき、素子段での流体の流れの横断方向の素子数Mが1/(2gamma)以上であり、前記流体の流れの方向の素子段の段数NがM/(gamma)以上である素子配列。
And having at least one inlet and two outlets, unevenly distributing the component concentration of the fluid flowing in from the inlet, allowing the fluid having a concentration higher than the average concentration of the fluid flowing in to flow out from the high-concentration outlet, and A plurality of element stages arranged in parallel with a plurality of elements for allowing a fluid having a concentration lower than the average concentration of the fluid to flow out from the low concentration outlet in a direction of fluid flow;
The entrance of each element other than at least both ends of each element stage excluding the most upstream is a high-concentration outlet of one of the two elements arranged on the upstream side of each of the element stages, and the lower of the other element. Connected to the concentration outlet,
The concentration difference between the high-concentration fluid flowing out from the high-concentration outlet and the low-concentration fluid flowing out from the low-concentration outlet is 2 (gamma) using a predetermined coefficient gamma, where x is the component concentration of the fluid flowing into each element. ) x (1-x), the number M of elements in the transverse direction of the fluid flow in the element stage is 1 / (2 gamma) or more, and the number N of element stages in the fluid flow direction is An element array that is M / (gamma) or more.
前記素子が前記素子段を流れの方向に配列した素子配列の上側および下側から温度勾配が印加されることによって流体の成分濃度を偏在させる素子である場合に、前記係数gammaが、流体の熱拡散定数alphaT、底部と天井部のうちの高温側の温度TH、低温側の温度TL
によって
gamma=alphaT*ln(TH/TL)/4 (ここで、*は乗算を示す)
によって算出される値gammaである請求項3、4または5に記載の素子配列。
When the element is an element that unevenly distributes the component concentration of the fluid by applying a temperature gradient from above and below the element array in which the element stages are arranged in the flow direction, the coefficient gamma is the heat of the fluid. Diffusion constant alphaT, temperature TH on the hot side of the bottom and ceiling, temperature TL on the cold side
By
gamma = alphaT * ln (TH / TL) / 4 (where * indicates multiplication)
The element array according to claim 3, 4 or 5, which is a value gamma calculated by:
平面視で平行四辺形状の底部と、
前記底部において平行四辺形の2組の対辺のうち、一方の対辺において所定幅の開口を形成して立設される一対の開口側壁と、
前記底部において平行四辺形の他方の対辺に立設される一対の非開口側壁と、
を有する下半部、
前記下半部を前記開口側壁を有する辺に平行な軸周りに反転させた形状を有する上半部であって、
前記底部に対向する平面視で平行四辺形状の天井部と、
前記天井部において平行四辺形の2組の対辺のうち、一方の対辺において所定幅の開口を形成して垂下して設けられる一対の開口側壁と、
前記天井部において平行四辺形の他方の対辺から垂下して設けられる一対の非開口側壁と、
を有する上半部、および
前記下半部と上半部とに挟まれ、前記下半部と上半部とが重畳する部分の略中央部に開口を有する隔壁を備える素子。
The bottom of the parallelogram in plan view;
A pair of opening sidewalls that are erected by forming an opening of a predetermined width on one of the two opposite sides of the parallelogram at the bottom,
A pair of non-opening sidewalls erected on the other side of the parallelogram at the bottom;
Lower half, having
An upper half having a shape obtained by inverting the lower half about an axis parallel to the side having the opening side wall;
A parallelogram-shaped ceiling in plan view facing the bottom,
A pair of opening sidewalls provided to hang down by forming an opening of a predetermined width on one of the opposite sides of the parallelogram in the ceiling portion;
A pair of non-opening sidewalls provided to hang from the other opposite side of the parallelogram in the ceiling,
And a partition wall having an opening at a substantially central portion of a portion sandwiched between the lower half portion and the upper half portion and overlapping the lower half portion and the upper half portion.
素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列した素子配列において、前記素子段の両端に配置される素子であって、
平面視で平行四辺形状の底部と、
前記底部において平行四辺形の4つの辺のうち、1つの辺において所定幅の開口を形成して立設される1つの開口側壁と、
前記平行四辺形の残り3つの辺に立設される非開口側壁と、を有する下半部と、
前記下半部を前記開口側壁を有する辺に平行な軸周りに反転させた形状を有する上半部であって、
前記底部に対向する平面視で平行四辺形状の天井部と、
前記天井部において平行四辺形の4つの辺のうち、1つの辺において所定幅の開口を形成して垂下して設けられる1つの開口側壁と、
前記平行四辺形の残り3つの辺から垂下して設けられる3つの非開口側壁と、を有する上半部、および、
前記下半部と上半部とに挟まれ、前記下半部と上半部とが重畳する部分の略中央部に少なくとも第1の開口を有する隔壁を備え、
前記隔壁は、
前記素子の下半部と上流側の素子の上半部との重畳部分または前記素子の上半部と上流側の素子の下半部との重畳部分に前記上流側の素子に連通する第2の開口と、
前記素子の下半部と下流側の素子の上半部との重畳部分または前記素子の上半部と下流側の素子の下半部との重畳部分に前記下流側の素子に連通する第3の開口と、を形成する隔壁を備える素子。
In an element arrangement in which a plurality of element stages in which a plurality of elements are arranged in parallel are arranged in the direction of fluid flow, elements arranged at both ends of the element stage,
The bottom of the parallelogram in plan view;
One opening side wall that is erected by forming an opening having a predetermined width on one side of the four sides of the parallelogram at the bottom;
A non-opening side wall erected on the remaining three sides of the parallelogram, and a lower half,
An upper half having a shape obtained by inverting the lower half about an axis parallel to the side having the opening side wall;
A parallelogram-shaped ceiling in plan view facing the bottom,
One opening side wall provided by hanging down by forming an opening of a predetermined width on one side among the four sides of the parallelogram in the ceiling portion;
An upper half having three non-opening side walls provided depending from the remaining three sides of the parallelogram; and
A partition wall having at least a first opening at a substantially central portion of a portion sandwiched between the lower half portion and the upper half portion and overlapping the lower half portion and the upper half portion,
The partition is
A second portion communicating with the upstream element in a superimposed portion of the lower half portion of the element and the upper half portion of the upstream element or a superimposed portion of the upper half portion of the element and the lower half portion of the upstream element; The opening of
A third portion communicating with the downstream element in a superimposed portion of the lower half portion of the element and the upper half portion of the downstream element or a superimposed portion of the upper half portion of the element and the lower half portion of the downstream element; And an opening.
素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列した素子配列において、前記素子段の両端に配置される素子であって、
前記素子段の両端の一方の端部の素子は、
平面視で平行四辺形状の底部と、
前記底部において平行四辺形の4つの辺のうち、前記一方の端部側の素子配列外周側の辺に立設される非開口側壁と、
前記素子配列外周側の辺を除く3つの辺において所定幅の開口を形成して立設される3つの開口側壁と、を有する下半部、
前記低部を前記素子配列外周側の辺に平行な軸周りに反転させた形状の天井部を有する上半部であって、
前記底部に対向する平面視で平行四辺形状の前記天井部と、
前記天井部において平行四辺形の4つの辺のうち、前記一方の端部側の素子配列外周側の辺の対辺において所定幅の開口を形成して垂下して設けられる1つの開口側壁と、
前記素子配列外周側の辺の対辺を除く残り3つの辺から垂下して設けられる3つの非開口側壁と、を有する上半部、および、
前記上半部と下半部とに挟まれ、前記下半部と上半部とが重畳する部分の略中央部に開口を有する隔壁と、を備える素子。
In an element arrangement in which a plurality of element stages in which a plurality of elements are arranged in parallel are arranged in the direction of fluid flow, elements arranged at both ends of the element stage,
The element at one end of both ends of the element stage is
The bottom of the parallelogram in plan view;
Of the four sides of the parallelogram at the bottom, a non-opening side wall erected on the element array outer peripheral side on the one end side;
A lower half having three opening sidewalls that are erected by forming an opening having a predetermined width on three sides excluding the side on the outer peripheral side of the element array;
An upper half portion having a ceiling portion in a shape in which the lower portion is inverted around an axis parallel to the side on the outer peripheral side of the element array,
The parallelogram-shaped ceiling portion in plan view facing the bottom portion;
Of the four sides of the parallelogram in the ceiling part, one opening side wall provided by hanging down by forming an opening of a predetermined width on the opposite side of the element array outer peripheral side on the one end side;
An upper half having three non-opening side walls provided to hang from the remaining three sides excluding the opposite side of the element array outer peripheral side; and
A device comprising a partition wall sandwiched between the upper half portion and the lower half portion and having an opening at a substantially central portion of a portion where the lower half portion and the upper half portion overlap each other.
平面視で六角形状の底部と、
前記底部において六角形の三対の対辺のうち、一対の対辺上の側面の一部またはすべてを開口させる開口側壁と、他の二対の対辺に立設される二対の非開口側壁と、を有する下半部と、
前記下半部を前記非開口側壁を有する辺に平行な軸周りに反転させた形状を有する上半部であって、
前記底部に対向する平面視で六角形の天井部と、
前記天井部において六角形の三対の対辺のうち、一の対辺下の側面の一部またはすべてを開口させる開口側壁と、他の二対の対辺から垂下して設けられる二対の非開口側壁と、を有する上半部と、を備える素子。
Hexagonal bottom in plan view,
Among the three opposite sides of the hexagon at the bottom, an opening sidewall that opens part or all of the side surfaces on the pair of opposite sides, and two pairs of non-opening sidewalls that are erected on the other two pairs of opposite sides, A lower half having
An upper half having a shape obtained by inverting the lower half about an axis parallel to the side having the non-opening side wall;
A hexagonal ceiling in plan view facing the bottom,
Of the three opposite sides of the hexagon in the ceiling, an opening side wall that opens a part or all of the side surface below the opposite side, and two pairs of non-opening side walls that are provided depending on the other two pairs of opposite sides. And an upper half having the element.
素子の配列を用いた流体の成分分離方法であって、各素子において少なくとも1つの入口と2つの出口とが設けられ、前記素子を並列に複数個配列した素子段が流体の流れの方向に複数段配列され、
前記各素子の入り口から流入する流体の成分濃度を偏在させて、前記流入した流体の平均濃度よりも高濃度の流体を高濃度出口から流出させ、前記流入した流体の平均濃度よりも低濃度の流体を低濃度出口から流出させ、
最上流を除く各素子段において両端の素子のうち一方の端の素子の入口には、1段上流の素子段の同じ一方の端の素子の高濃度出口および前記一方の端の素子よりも他方の側に配置された素子の高濃度出口から流体を流入させ、
前記両端の素子のうち他方の端の素子の入口には、前記1段上流の素子段の同じ他方の端の素子の低濃度出口および前記他方の端の素子よりも前記一方の側に配置された素子の低濃度出口から流体を流入させ、
前記最上流を除く各素子段の前記両端の素子を除く各素子の入口には、1段上流の素子段での流体の流れの横断方向の同一順序位置よりも前記一方の側に配置された素子の低濃度出口と前記1段上流の素子段での流体の流れの横断方向の同一順序位置よりも前記他方の側に配置された素子の高濃度出口とから流体を流入させる流体の成分分離方法。
A fluid component separation method using an array of elements, wherein each element is provided with at least one inlet and two outlets, and a plurality of element stages in which a plurality of the elements are arranged in parallel are arranged in the direction of fluid flow. Arranged in columns
The component concentration of the fluid flowing from the inlet of each element is unevenly distributed, the fluid having a higher concentration than the average concentration of the fluid that has flowed in is discharged from the high concentration outlet, and the concentration of the fluid that is lower than the average concentration of the fluid that has flowed in Let the fluid flow out of the low concentration outlet,
In each element stage except for the most upstream, the inlet of the element at one end among the elements at both ends is the high concentration outlet of the element at the same one end of the element stage upstream and the other than the element at the one end Fluid flows from the high concentration outlet of the element placed on the side of
At the inlet of the element at the other end of the elements at both ends, the low concentration outlet of the element at the same other end of the element stage upstream of the first stage and the element at the one end rather than the element at the other end are arranged. Fluid from the low concentration outlet of
At the entrance of each element excluding the elements at both ends of each element stage except the most upstream, it is arranged on the one side with respect to the same sequential position in the transverse direction of the fluid flow in the element stage upstream by one stage. Separation of fluid components from which fluid flows in from the low concentration outlet of the element and the high concentration outlet of the element arranged on the other side of the same order position in the transverse direction of the fluid flow in the element stage upstream of the first stage Method.
前記複数段の素子段において流体の流れの方向に順次成分濃度を偏在させて、濃度分布を形成し、
最下流の素子段で高濃度領域の流体と低濃度領域の流体とに分けて取り出す請求項11に記載の流体の成分分離方法。
In the plurality of element stages, the concentration of components is unevenly distributed sequentially in the direction of fluid flow to form a concentration distribution,
The fluid component separation method according to claim 11, wherein the fluid component is separated into a high-concentration region fluid and a low-concentration region fluid at the most downstream element stage.
少なくとも1つの入口と2つの出口とを有し、前記入口から流入する流体の成分濃度を偏在させて、前記流入した流体の平均濃度よりも高濃度の流体を高濃度出口から流出させ、前記流入した流体の平均濃度よりも低濃度の流体を低濃度出口から流出させる素子を並列に複数個配列した素子段を流体の流れの方向に複数段配列し、
最上流を除く各素子段において両端の素子のうち一方の端の素子の入口には1段上流の素子段の同じ一方の端の素子の高濃度出口および前記一方の端の素子よりも他方の側に配置された素子の高濃度出口を接続し、前記両端の素子のうち他方の端の素子の入口には前記1段上流の素子段の同じ他方の端の素子の低濃度出口および前記他方の端の素子よりも前記一方の側に配置された素子の低濃度出口を接続し、
前記最上流を除く各素子段の前記両端の素子を除く各素子の入口には1段上流の素子段での流体の流れの横断方向の同一順序位置よりも前記一方の側に配置された素子の低濃度出口と前記1段上流の素子段での流体の流れの横断方向の同一順序位置よりも前記他方の側に配置された素子の高濃度出口とを接続する素子配列の製造方法。
And having at least one inlet and two outlets, unevenly distributing the component concentration of the fluid flowing in from the inlet, allowing a fluid having a concentration higher than the average concentration of the fluid flowing in to flow out from the high concentration outlet, and A plurality of element stages arranged in parallel with a plurality of elements for allowing a fluid having a concentration lower than the average concentration of the fluid to flow out from the low concentration outlet in a direction of fluid flow;
In each of the element stages except the most upstream, the high-concentration outlet of the element at one end of the element stage upstream of the element at one end of the elements at both ends and the other element than the element at the one end A high-concentration outlet of the element arranged on the side, and the other end of the elements at both ends is connected to the low-concentration outlet of the same other end of the element stage upstream of the one stage and the other Connecting the low concentration outlet of the element disposed on the one side of the element at the end of
Elements arranged at the one side of the inlet of each element excluding the elements at both ends of the element stage except the most upstream than the same sequential position in the transverse direction of the fluid flow in the element stage upstream by one stage And a high concentration outlet of an element arranged on the other side of the same order position in the transverse direction of the fluid flow in the element stage upstream of the first stage.
JP2014255463A 2014-12-17 2014-12-17 Element array, element, fluid component separation method, and element array manufacturing method Active JP6555567B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014255463A JP6555567B2 (en) 2014-12-17 2014-12-17 Element array, element, fluid component separation method, and element array manufacturing method
PCT/JP2015/085394 WO2016098862A1 (en) 2014-12-17 2015-12-17 Element array, element, component separation method for fluid, and method for manufacturing element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014255463A JP6555567B2 (en) 2014-12-17 2014-12-17 Element array, element, fluid component separation method, and element array manufacturing method

Publications (3)

Publication Number Publication Date
JP2016112534A JP2016112534A (en) 2016-06-23
JP2016112534A5 true JP2016112534A5 (en) 2018-03-22
JP6555567B2 JP6555567B2 (en) 2019-08-07

Family

ID=56126745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014255463A Active JP6555567B2 (en) 2014-12-17 2014-12-17 Element array, element, fluid component separation method, and element array manufacturing method

Country Status (2)

Country Link
JP (1) JP6555567B2 (en)
WO (1) WO2016098862A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6967255B2 (en) * 2016-05-31 2021-11-17 学校法人東海大学 Method for separating water containing hydrogen isotopes

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52132000A (en) * 1976-04-27 1977-11-05 Saga Daigakuchiyou Method of continuously desalting and concentrating mixed aqueous solution of caustic soda and sodium chloride
JPS5843131B2 (en) * 1976-07-29 1983-09-24 旭化成株式会社 Gas separation and concentration method
JP4192061B2 (en) * 2003-09-16 2008-12-03 本田技研工業株式会社 Ammonia synthesis reactor and ammonia synthesis system
WO2007074906A1 (en) * 2005-12-28 2007-07-05 Kawamura Institute Of Chemical Research Microfluid device and method of separating substances

Similar Documents

Publication Publication Date Title
KR101710769B1 (en) Fluid control device
US2998234A (en) Gas/liquid contacting apparatus
ES2686332T3 (en) Use of down beams to support adjacent transverse flow trays within a mass transfer column
ES2699255T3 (en) A liquid mixing manifold and a method for its use
JP2015515263A5 (en)
RU2016116989A (en) DEVICE FOR CHANGING THE FORM OF A JET OF FLUID PRODUCTS AND APPLICATION OF THIS DEVICE
ES2697199T3 (en) Mass transfer plate
JP2016112534A5 (en)
US2911198A (en) Pellet type heat exchanger
WO2015120956A3 (en) Valve arrangement for applying fluid media to surfaces
MX2017008494A (en) Aperture layout for vapor-liquid contact tray.
MX2019007752A (en) Contact tray having picketed liquid flow barriers and method involving same.
EP2716990A3 (en) Ceiling or wall-mounted apparatus for introducing cooled or heated air into a room
US9625221B2 (en) Liquid distribution device utilizing packed distribution troughs and a mass transfer column and process involving same
JPH04227001A (en) Device for collecting and mixing liquid in counter-flow column
US2424248A (en) Contacting apparatus
HRP20220561T1 (en) Apparatus for dividing horticultural products
EP1956330A2 (en) Heat exchanger
JP6555567B2 (en) Element array, element, fluid component separation method, and element array manufacturing method
SA518392066B1 (en) Inlet Vane Device and Vessel Containing Same
JP2016510259A5 (en)
EP3085241A3 (en) Tempering apparatus for chocolate and creme mass
SE528995C2 (en) Vacuum vessels for the treatment of oils and the use of the vacuum vessels
US3047278A (en) Exchange device for the contact of gases and liquids
US2523835A (en) Shaft furnace