JP2016111780A - Manipulated variable calculation device, control method for manipulated variable calculation device, and program - Google Patents

Manipulated variable calculation device, control method for manipulated variable calculation device, and program Download PDF

Info

Publication number
JP2016111780A
JP2016111780A JP2014245787A JP2014245787A JP2016111780A JP 2016111780 A JP2016111780 A JP 2016111780A JP 2014245787 A JP2014245787 A JP 2014245787A JP 2014245787 A JP2014245787 A JP 2014245787A JP 2016111780 A JP2016111780 A JP 2016111780A
Authority
JP
Japan
Prior art keywords
operation amount
power
power system
calculation
calculation formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014245787A
Other languages
Japanese (ja)
Inventor
章弘 大井
Akihiro Oi
章弘 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014245787A priority Critical patent/JP2016111780A/en
Publication of JP2016111780A publication Critical patent/JP2016111780A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To calculate a manipulated variable for a manipulation target facility of a power system by performing optimal tidal current calculation while taking voltage stability of the entire power system into account.SOLUTION: A manipulated variable calculation device is configured to calculate the manipulated variable for the manipulation target facility that the power system includes. The manipulated variable calculation device is characterized in comprising: an acquisition part which acquires a first calculation formula for calculating cost with manipulation to the manipulation target facility, a second calculation formula for calculating a load margin that is a power increase amount to stability limit power that is a power demand at the time when a voltage in the power system becomes unstable, and a restriction condition during operation of the manipulation target facility; and a manipulated variable calculation part for calculating the manipulated variable for the manipulation target facility while satisfying the restriction condition and in such a manner that a predetermined index value calculated from the first calculation formula and the second calculation formula becomes a predetermined value.SELECTED DRAWING: Figure 1

Description

本発明は、操作量算出装置、操作量算出装置の制御方法及びプログラムに関する。   The present invention relates to an operation amount calculation device, a control method for an operation amount calculation device, and a program.

電力系統の運転計画を策定する際に最適潮流計算を用いることが広く行われている。最適潮流計算は、発電設備や変圧器、調相設備、送配電線などの電力系統の構成要素が有する運用時の制約の範囲内で、電力需要に応じた発電を行う際の燃料費コストや送電ロスなどの所定の評価指標を最大あるいは最小にするように、発電設備などの操作対象設備に対する操作量を計算する手法である。   It is widely used to calculate the optimal power flow when formulating power system operation plans. The optimal power flow calculation is based on the fuel cost and cost when generating power according to the power demand within the limits of operation of power system components such as power generation equipment, transformers, phase adjustment equipment, and transmission and distribution lines. This is a technique for calculating an operation amount for an operation target facility such as a power generation facility so as to maximize or minimize a predetermined evaluation index such as a power transmission loss.

燃料費コストや送電ロスなどの評価指標を算出するための式を目的関数として与え、電力系統の運用制約を制約条件として与え、操作対象設備に対する操作量を目的関数の状態変数として与えたとき、最適潮流計算は制約条件付き最適化問題となる(例えば特許文献1を参照)。   When formulas for calculating evaluation indices such as fuel cost cost and power transmission loss are given as objective functions, operation constraints of the power system are given as constraint conditions, and the operation amount for the operation target equipment is given as a state variable of the objective function, Optimal power flow calculation is an optimization problem with constraints (see, for example, Patent Document 1).

また、この最適潮流計算を行う際に、過渡安定性に関する条件を制約条件に加えることで、電力系統に故障が発生した場合の運用継続性を考慮しながら電力系統の各構成要素に対する操作量を計算する技術が開発されている(例えば特許文献2を参照)。   In addition, when performing this optimal power flow calculation, by adding conditions related to transient stability to the constraints, the amount of operation for each component of the power system can be reduced while taking into account operational continuity when a failure occurs in the power system. A calculation technique has been developed (see, for example, Patent Document 2).

過渡安定性は、電力系統の設備故障等による外乱発生時に発電設備の同期運転が安定的に継続できる度合いを示す指標であり、特に設備の単一故障に対する安定性を考慮して算出される指標である。   Transient stability is an index that indicates the degree to which the synchronous operation of the power generation facility can be stably continued in the event of a disturbance due to an equipment failure in the power system. It is.

一方で、電力系統は、電力系統に何らかのじょう乱があった場合に電圧が変動する。この場合に電力系統の電圧が新たな平衡点に落ち着く能力あるいはそれに関連した性質を、電力系統の電圧安定性という。   On the other hand, the voltage of the power system fluctuates when there is some disturbance in the power system. In this case, the ability of the power system voltage to settle to a new equilibrium point or a property related thereto is referred to as voltage stability of the power system.

電力系統の電圧安定性を解析するいくつかの手法が開発されているが(例えば非特許文献1を参照)、電力系統のPV特性を調べることによって解析することも可能である。PV特性は、電力系統内の負荷の有効電力Pと電圧Vとの関係を示す特性であり、横軸に有効電力Pを対応させ、縦軸に電圧Vを対応させた2次元座標平面上にプロットした複数の点の軌跡により構成される所謂PVカーブあるいはPV曲線で表現される。   Several methods for analyzing the voltage stability of the power system have been developed (see, for example, Non-Patent Document 1), but it is also possible to analyze by examining the PV characteristics of the power system. The PV characteristic is a characteristic indicating the relationship between the active power P and the voltage V of the load in the power system, and is on a two-dimensional coordinate plane in which the horizontal axis corresponds to the active power P and the vertical axis corresponds to the voltage V. It is expressed by a so-called PV curve or PV curve constituted by the locus of a plurality of plotted points.

そして、このPVカーブを用いることにより、運転点における現在の電力需要から、電力需要の上限値(安定限界電力)までの差である負荷余裕を計算することができる(例えば特許文献3を参照)。   Then, by using this PV curve, it is possible to calculate a load margin that is a difference from the current power demand at the operating point to the upper limit value (stability limit power) of the power demand (see, for example, Patent Document 3). .

特開2006−174564号公報JP 2006-174564 A 特開2001−339861号公報JP 2001-339861 A 特開2011−115024号公報JP 2011-1115024 A

餘利野直人、外3名共著、「電力潮流多根に基づく最近接サドルノード分岐点の近似手法−新しい電圧安定性の監視・制御手法の提案−」、電学論B、No. 119、Vol. 4、pp.507-515、1999年Naoto Ashino and three other authors, "Approximation method of nearest saddle node bifurcation point based on power flow multiple roots-Proposal of new monitoring and control method of voltage stability", Electrical Engineering B, No. 119, Vol. 4, pp.507-515, 1999

しかしながら、PV特性は個々の負荷について算出されるものであるため、最適潮流計算を行って電力系統の運転計画を生成する際に、電力系統の電圧安定性を考慮に入れることは困難であった。   However, since the PV characteristics are calculated for each load, it is difficult to take into account the voltage stability of the power system when performing an optimal power flow calculation and generating an operation plan of the power system. .

本発明はこのような課題を鑑みてなされたものであり、電力系統全体の電圧安定性を考慮しながら最適潮流計算を行って電力系統の操作対象設備に対する操作量を求めることが可能な操作量算出装置、操作量算出装置の制御方法及びプログラムを提供することを一つの目的とする。   The present invention has been made in view of such a problem, and an operation amount capable of obtaining an operation amount for an operation target facility of the power system by performing an optimum power flow calculation in consideration of voltage stability of the entire power system. It is an object to provide a calculation device, a control method for an operation amount calculation device, and a program.

上記課題を解決するための手段の一つは、電力系統が有する操作対象設備に対する操作量を算出する操作量算出装置であって、前記操作対象設備に対する操作に伴うコストを算出するための第1算出式、前記電力系統における電圧が不安定になる時の電力需要である安定限界電力までの電力増加量である負荷余裕を算出するための第2算出式、及び前記操作対象設備の運転時の制約条件を取得する取得部と、前記制約条件を満たしつつ、かつ、前記第1算出式及び前記第2算出式から算出される所定の指標値が所定値になるように、前記操作対象設備に対する操作量を算出する操作量算出部と、を備える。   One of means for solving the above-mentioned problem is an operation amount calculation device that calculates an operation amount for an operation target facility included in an electric power system, and is a first unit for calculating a cost associated with an operation on the operation target facility. A calculation formula, a second calculation formula for calculating a load margin that is a power increase amount up to a stable limit power that is a power demand when the voltage in the power system becomes unstable, and An acquisition unit that acquires a constraint condition, and the operation target facility is satisfied so that a predetermined index value calculated from the first calculation formula and the second calculation formula becomes a predetermined value while satisfying the constraint condition. An operation amount calculation unit that calculates an operation amount.

その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。   In addition, the problems disclosed by the present application and the solutions thereof will be clarified by the description in the column of the embodiment for carrying out the invention and the description of the drawings.

本発明によれば、電力系統全体の電圧安定性を考慮しながら最適潮流計算を行って電力系統の操作対象設備に対する操作量を求めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the optimal power flow calculation can be performed in consideration of the voltage stability of the whole electric power system, and the operation amount with respect to the operation target equipment of an electric power system can be calculated | required.

操作量算出装置の機能構成を示す図である。It is a figure which shows the function structure of the operation amount calculation apparatus. 操作量算出装置のハードウェア構成を示す図である。It is a figure which shows the hardware constitutions of the operation amount calculation apparatus. 操作量算出装置の記憶装置を示す図である。It is a figure which shows the memory | storage device of the operation amount calculation apparatus. 電力系統を示す図である。It is a figure which shows an electric power grid | system. 操作量算出方法の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the operation amount calculation method.

本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。   At least the following matters will become apparent from the description of this specification and the accompanying drawings.

==電力系統==
図4に示すように、電力系統1000は、複数の発電設備1100及び複数の負荷設備1200を有して構成されている。
== Power system ==
As shown in FIG. 4, the power system 1000 includes a plurality of power generation facilities 1100 and a plurality of load facilities 1200.

発電設備1100は、エネルギー源から電力エネルギーを取り出して供給することができる電力源であり、例えば水力発電機や原子力発電機、火力発電機などにより構成される。   The power generation facility 1100 is a power source that can extract and supply power energy from an energy source, and includes, for example, a hydroelectric generator, a nuclear power generator, a thermal power generator, and the like.

また負荷装置1200は、発電設備1100から供給される電力を消費する工場や家庭等における電気機器である。   The load device 1200 is an electrical device in a factory, home, or the like that consumes the power supplied from the power generation facility 1100.

また図4には示されていないが、電力系統1000は、送電線や配電線などの送電線路T、電力の位相を制御する調相設備S、蓄電設備B、変圧器H、開閉器Kなどの様々な設備を有して構成されている。   Although not shown in FIG. 4, the power system 1000 includes a power transmission line T such as a power transmission line and a distribution line, a phase adjusting equipment S that controls the phase of power, a power storage equipment B, a transformer H, a switch K, and the like. It is configured with various facilities.

==操作量算出装置==
本実施形態に係る操作量算出装置100は、電力系統1000が有する発電設備1100(操作対象設備)に対する操作量を算出する情報処理装置である。
== Operation amount calculation device ==
The operation amount calculation device 100 according to the present embodiment is an information processing device that calculates an operation amount for a power generation facility 1100 (operation target facility) included in the power system 1000.

なお本実施形態では、説明の簡単化のために、発電設備1100が操作対象設備である場合を一例として説明するが、操作対象設備は発電設備1100に限られず、上記の調相設備Sや蓄電設備B、変圧器H、開閉器Kなどが含まれてよい。   In this embodiment, for simplification of description, the case where the power generation facility 1100 is an operation target facility will be described as an example. However, the operation target facility is not limited to the power generation facility 1100, and the above-described phase adjustment facility S and power storage Equipment B, transformer H, switch K, etc. may be included.

本実施形態に係る操作量算出装置100の全体構成を図1及び図2に示す。図1は、操作量算出装置100の機能構成を説明するための図であり、図2は、操作量算出装置100のハードウェア構成を説明するための図である。   An overall configuration of the operation amount calculation apparatus 100 according to the present embodiment is shown in FIGS. 1 and 2. FIG. 1 is a diagram for explaining a functional configuration of the operation amount calculating apparatus 100, and FIG. 2 is a diagram for explaining a hardware configuration of the operation amount calculating apparatus 100.

図2に示すように、本実施形態に係る操作量算出装置100は、CPU(Central Processing Unit)110、メモリ120、通信装置130、記憶装置140、入力装置150、出力装置160及び記録媒体読取装置170を有して構成されるコンピュータである。   As illustrated in FIG. 2, the operation amount calculation device 100 according to the present embodiment includes a CPU (Central Processing Unit) 110, a memory 120, a communication device 130, a storage device 140, an input device 150, an output device 160, and a recording medium reading device. The computer is configured to include 170.

CPU110は操作量算出装置100の全体の制御を司るもので、記憶装置140に記憶される本実施形態に係る各種の動作を行うためのコードから構成される制御プログラム600をメモリ120に読み出して実行することにより、操作量算出装置100としての各種機能を実現する。   The CPU 110 is responsible for overall control of the operation amount calculation apparatus 100, and reads out and executes a control program 600 composed of codes for performing various operations according to the present embodiment stored in the storage device 140 to the memory 120. By doing so, various functions as the operation amount calculation apparatus 100 are realized.

例えば、詳細は後述するが、CPU110により制御プログラム600が実行され、メモリ120や通信装置130、記憶装置140等のハードウェア機器と協働することにより、取得部101や、操作量算出部102などが実現される。   For example, although the details will be described later, the control program 600 is executed by the CPU 110 and cooperates with hardware devices such as the memory 120, the communication device 130, and the storage device 140, thereby obtaining the acquisition unit 101, the operation amount calculation unit 102, and the like. Is realized.

メモリ120は例えば半導体記憶装置により構成することができる。   The memory 120 can be configured by a semiconductor memory device, for example.

通信装置130は、ネットワークカードなどのネットワークインタフェースである。通信装置130は、インターネットやLAN(Local Area Network)などのネットワークを介して他のコンピュータからデータを受信し、受信したデータを記憶装置140やメモリ120に記憶する。また通信装置130は、記憶装置140やメモリ120に記憶されているデータを、ネットワークを介して他のコンピュータへ送信する。   The communication device 130 is a network interface such as a network card. The communication device 130 receives data from another computer via a network such as the Internet or a LAN (Local Area Network), and stores the received data in the storage device 140 or the memory 120. Further, the communication device 130 transmits data stored in the storage device 140 or the memory 120 to another computer via the network.

入力装置150は、キーボードやマウス、マイク等の装置であり、操作量算出装置100の操作者による情報の入力を受け付けるための装置である。出力装置160は、LCD(Liquid Crystal Display)やプリンタ、スピーカ等の装置であり、情報を出力するための装置である。   The input device 150 is a device such as a keyboard, a mouse, and a microphone, and is a device for accepting input of information by an operator of the operation amount calculation device 100. The output device 160 is a device such as an LCD (Liquid Crystal Display), a printer, or a speaker, and is a device for outputting information.

記憶装置140は、例えばハードディスク装置や半導体記憶装置等により構成することができる。記憶装置140は、各種プログラムやデータ、テーブル等を記憶するための記憶領域を提供する装置である。図3には、記憶装置140に制御プログラム600及びデータ記憶部700が記憶されている様子を示す。   The storage device 140 can be constituted by, for example, a hard disk device or a semiconductor storage device. The storage device 140 is a device that provides a storage area for storing various programs, data, tables, and the like. FIG. 3 shows a state where the control program 600 and the data storage unit 700 are stored in the storage device 140.

なお、制御プログラム600は、記録媒体読取装置170を用いて、記録媒体(各種の光ディスクや磁気ディスク、半導体メモリ等)800から記憶装置140に読み出すことで、操作量算出装置100に格納されるようにすることもできるし、通信装置130を介して通信可能に接続される他のコンピュータから取得することで、操作量算出装置100に格納されるようにすることもできる。   The control program 600 is stored in the manipulated variable calculation device 100 by reading it from the recording medium (various optical disks, magnetic disks, semiconductor memory, etc.) 800 to the storage device 140 using the recording medium reader 170. It can also be stored in the manipulated variable calculation device 100 by obtaining from another computer that is communicably connected via the communication device 130.

またデータ記憶部700には、後述する操作量算出部102によって参照される目的関数や制約条件、系統情報などが記憶されている。これらの詳細については後述する。   The data storage unit 700 also stores objective functions, constraint conditions, system information, and the like that are referred to by the operation amount calculation unit 102 described later. Details of these will be described later.

次に、図1に示すように、本実施形態に係る操作量算出装置100は、取得部101、操作量算出部102の各機能ブロックを備えて構成されている。   Next, as illustrated in FIG. 1, the operation amount calculation apparatus 100 according to the present embodiment includes the functional blocks of an acquisition unit 101 and an operation amount calculation unit 102.

取得部101は、電力系統1000の構成及び各構成要素の電気的特性を表す系統情報を、入力装置150、あるいは通信装置130から取得して、データ記憶部700に記憶する。   The acquisition unit 101 acquires system information representing the configuration of the power system 1000 and the electrical characteristics of each component from the input device 150 or the communication device 130 and stores the system information in the data storage unit 700.

系統情報は、例えば、送電線路Tの長さや線路インピーダンス、負荷設備1200の位置や有効電力及び無効電力、発電設備1100の位置や燃料費係数(円/kWh等の指標)、有効電力及び無効電力、電力系統1000内の蓄電設備Bの位置や有効電力や無効電力、調相設備Sの位置や容量、ノード電圧に対する上下限値等を含む。   The system information includes, for example, the length and line impedance of the transmission line T, the position and active power and reactive power of the load facility 1200, the position and fuel cost coefficient (index such as yen / kWh) of the power generation facility 1100, active power and reactive power. , The position of the power storage facility B in the power system 1000, active power and reactive power, the position and capacity of the phase adjusting facility S, the upper and lower limit values for the node voltage, and the like.

また取得部101は、操作量算出装置100が最適潮流計算を行う際に用いる目的関数や、発電設備1100等の電力系統1000の各操作対象設備の運転時の制約条件を、入力装置150あるいは通信装置130から取得して、データ記憶部700に記憶する。   The acquisition unit 101 also inputs the objective function used when the manipulated variable calculation device 100 performs the optimum power flow calculation and the constraint conditions during operation of each operation target facility of the power system 1000 such as the power generation facility 1100, the input device 150 or the communication. Obtained from the device 130 and stored in the data storage unit 700.

詳細は後述するが、本実施形態に係る目的関数には、発電設備1100の発電コスト(操作対象設備に対する操作に伴うコスト)を算出するための第1算出式、及び電力系統1000における電圧が不安定になる時の電力需要である安定限界電力までの電力増加量である負荷余裕を算出するための第2算出式が含まれる。   Although the details will be described later, the objective function according to the present embodiment includes a first calculation formula for calculating the power generation cost of the power generation facility 1100 (cost associated with the operation on the operation target facility) and the voltage in the power system 1000. A second calculation formula for calculating the load margin that is the amount of power increase up to the stability limit power that is the power demand when becoming stable is included.

この目的関数は、電力系統1000に関する所定の指標値を算出するものであり、本実施形態では、一例として、発電コストと、負荷余裕の逆数に所定の係数を乗じた値と、の和を算出するものとしている。なお、上記指標値を算出する際の第1算出式は一例であり、発電コストの他にも、例えば、送電ロスや無効電力損失(遅れ)、二酸化炭素(CO2)排出量、あるいはこれらを組み合わせた値を算出するものであってもよい。   This objective function is to calculate a predetermined index value related to the power system 1000. In this embodiment, as an example, the sum of a power generation cost and a value obtained by multiplying the reciprocal of the load margin by a predetermined coefficient is calculated. I am going to do it. The first calculation formula for calculating the index value is an example. In addition to the power generation cost, for example, transmission loss, reactive power loss (delay), carbon dioxide (CO2) emissions, or a combination thereof The calculated value may be calculated.

次に、操作量算出部102は、系統情報、制約条件及び目的関数を用いて、制約条件を満たしつつ目的関数の値を所定値(例えば最小値あるいは最大値)にするように、発電設備1100に対する操作量を算出する。   Next, the operation amount calculation unit 102 uses the system information, the constraint condition, and the objective function to generate the power generation facility 1100 so that the value of the objective function is a predetermined value (for example, the minimum value or the maximum value) while satisfying the constraint condition. The operation amount for is calculated.

つまり操作量算出部102は、目的関数、制約条件、及び系統情報を用いて、電力系統1000の運用状態がより好ましい状態になるような、発電設備1100に対する操作量を計算する。操作量算出部102は、数理計画法などの最適化手法を用いて最適潮流計算を行うことで、最適解を計算する。   That is, the operation amount calculation unit 102 uses the objective function, the constraint condition, and the system information to calculate the operation amount for the power generation facility 1100 so that the operation state of the power system 1000 becomes a more preferable state. The operation amount calculation unit 102 calculates an optimal solution by performing an optimal power flow calculation using an optimization method such as mathematical programming.

続いて、本実施形態に係る操作量算出装置100が行う最適潮流計算について説明する。   Next, the optimum power flow calculation performed by the operation amount calculation device 100 according to the present embodiment will be described.

本実施形態に係る操作量算出装置100は、上述した発電コストを算出するための第1算出式と、負荷余裕を算出するための第2算出式と、を目的関数に含めるように定式化して最適潮流計算を行う。   The manipulated variable calculation device 100 according to the present embodiment is formulated such that the first calculation formula for calculating the power generation cost and the second calculation formula for calculating the load margin are included in the objective function. Calculate the optimal power flow.

このような態様により、電力系統1000全体の電圧安定性を考慮しながら最適潮流計算を行って電力系統1000の発電設備1100に対する操作量を算出することが可能となる。   By such an aspect, it becomes possible to calculate the amount of operation with respect to the power generation facility 1100 of the power system 1000 by performing the optimal power flow calculation in consideration of the voltage stability of the entire power system 1000.

なお、電力系統1000の電圧安定性を考慮して最適潮流計算を行うに当たり、電力系統1000の電圧が不安定になるまでの電力需要の増加の仕方である負荷増加シナリオは、電力系統1000が有する各負荷設備1200の電力需要増加量を要素とするベクトルとして表現することができるが、このような負荷増加シナリオは数多く存在する。そのため上記最適潮流計算を行う際には、まず負荷増加シナリオを特定する必要がある。   Note that the power system 1000 has a load increase scenario that is a method of increasing power demand until the voltage of the power system 1000 becomes unstable in performing the optimum power flow calculation considering the voltage stability of the power system 1000. Although it can be expressed as a vector having the power demand increase amount of each load facility 1200 as an element, there are many such load increase scenarios. Therefore, when performing the above-mentioned optimal power flow calculation, it is necessary to specify a load increase scenario first.

本実施形態においては、負荷余裕が小さい負荷増加シナリオ程、より早く電力系統1000の電圧崩壊に至ることから、一例として、負荷余裕が最小となるような負荷増加シナリオを想定して最適潮流計算を行う。すなわち、電力系統1000が有する複数の負荷設備1200の現時点での電力需要と、これらの複数の負荷設備1200の電力需要が増大した場合に電力系統1000の電圧が最も早く不安定になる時の電力需要と、の差分を負荷余裕とするような負荷増加シナリオを想定して最適潮流計算を行う。このような、より警戒すべき負荷増加シナリオを想定して最適潮流計算を行うことにより、電力系統1000の電圧安定性に関してより安全性を向上させるように、発電設備1100に対する操作量を算出することが可能となる。   In the present embodiment, the load increase scenario with a smaller load margin leads to the voltage collapse of the power system 1000 earlier, so as an example, the optimum power flow calculation is performed assuming a load increase scenario with the smallest load margin. Do. That is, the current power demand of the plurality of load facilities 1200 included in the power system 1000 and the power when the voltage of the power system 1000 becomes unstable most quickly when the power demand of the plurality of load facilities 1200 increases. The optimal power flow calculation is performed assuming a load increase scenario in which the difference between demand and load is a margin. By calculating the optimum power flow assuming such a load increase scenario that should be warned, the operation amount for the power generation facility 1100 is calculated so as to improve the safety with respect to the voltage stability of the power system 1000. Is possible.

なお、この時の負荷余裕は、電力系統1000が有する複数の負荷設備1200の現時点での電力需要と、これらの複数の負荷設備1200の電力需要が増大した場合に電力系統1000の電圧が最も早く不安定になる時の電力需要と、の差分により算出される。   Note that the load margin at this time is that the current power demand of the plurality of load facilities 1200 included in the power system 1000 and the voltage of the power system 1000 is the earliest when the power demand of the plurality of load facilities 1200 increases. It is calculated by the difference between the power demand when it becomes unstable.

上記の負荷増加シナリオにおける負荷余裕の最小値は、式(1)〜式(4)の解として求めることができる。   The minimum value of the load margin in the above load increase scenario can be obtained as a solution of equations (1) to (4).

minimize F(x, v) (1)
subject to g1(v) = 0 (2)
J(v)Tw = 0 (3)
|w| ≠ 0 (4)
ここで、xは電力系統1000の運転点における電圧ベクトルであり、vは安定限界電圧(電圧崩壊点)における電圧ベクトル、F (x,v)は電圧xから指定した負荷増加シナリオで安定限界電圧vに至るまでの負荷余裕の大きさ、g1(v)は安定限界電圧vにおける潮流方程式、J(v)は安定限界電圧vに対するg1(v)のヤコビアン行列、wはヤコビアン行列の左固有ベクトルである。
minimize F (x, v) (1)
subject to g 1 (v) = 0 (2)
J (v) T w = 0 (3)
| w | ≠ 0 (4)
Where x is the voltage vector at the operating point of the power system 1000, v is the voltage vector at the stability limit voltage (voltage collapse point), and F (x, v) is the stability limit voltage in the load increase scenario specified from the voltage x. The load margin up to v, g 1 (v) is the power flow equation at the stability limit voltage v, J (v) is the Jacobian matrix of g 1 (v) with respect to the stability limit voltage v, and w is the left of the Jacobian matrix It is an eigenvector.

式(1)は目的関数(負荷余裕)であり、式(2)は潮流方程式、式(3)と式(4)は、電圧崩壊点における条件式であり、式(1)〜式(4)をみたす負荷余裕F (x,v)が最小の負荷余裕となる。   Expression (1) is an objective function (load margin), Expression (2) is a power flow equation, Expressions (3) and (4) are conditional expressions at the voltage collapse point, and Expressions (1) to (4) ) Satisfying the load margin F (x, v) is the minimum load margin.

そしてこのように算出される負荷余裕F (x,v)は、電力系統1000に対する操作量uによっても変化する。   The load margin F (x, v) calculated in this way also varies depending on the operation amount u for the power system 1000.

そのため本実施形態に係る操作量算出装置100は、最適潮流計算によって電力系統1000に対する操作量uを算出する際に、なるべく負荷余裕F (x,v)が大きくなるような操作量uを算出する。これにより、電力系統1000の電圧安定性に関してより安全性を向上させるように、発電設備1100に対する操作量uを算出することが可能となる。   For this reason, the operation amount calculation apparatus 100 according to the present embodiment calculates the operation amount u such that the load margin F (x, v) is as large as possible when calculating the operation amount u for the power system 1000 by the optimal power flow calculation. . Thereby, it becomes possible to calculate the manipulated variable u for the power generation facility 1100 so as to improve the safety with respect to the voltage stability of the power system 1000.

具体的には、操作量算出装置100は、式(5)〜式(11)のように非線形最適化問題として与えられる最適化問題を解くことにより、最適潮流計算を行う。   Specifically, the manipulated variable calculation device 100 performs optimal power flow calculation by solving an optimization problem given as a nonlinear optimization problem as in Expressions (5) to (11).

Minimize f ( x, u, z ) + a×1/F''(x, u, v) (5)
Subject to g1(x, u, z) = 0 (6)
g2(x, u, z) = 0 (7)
h(x, u, z) ≦ 0 (8)
g1(v, u, z) = 0 (9)
J(v)Tw = 0 (10)
|w| ≠ 0 (11)
ここで、xは電力系統1000の運転点における電圧ベクトル、vは安定限界電圧(電圧崩壊点)における電圧ベクトル、uは操作量、zは操作量uにより従属的に決まる変数(発電設備1100の無効電力や変圧器タップ値など)、aは所定の係数である。
Minimize f (x, u, z) + a × 1 / F '' (x, u, v) (5)
Subject to g 1 (x, u, z) = 0 (6)
g 2 (x, u, z) = 0 (7)
h (x, u, z) ≤ 0 (8)
g 1 (v, u, z) = 0 (9)
J (v) T w = 0 (10)
| w | ≠ 0 (11)
Here, x is a voltage vector at the operating point of the electric power system 1000, v is a voltage vector at the stability limit voltage (voltage collapse point), u is an operation amount, z is a variable that is dependent on the operation amount u (the power generation facility 1100). Reactive power, transformer tap value, etc.), a is a predetermined coefficient.

式(5)は目的関数、式(6)は運転点における潮流方程式で表される等式制約、式(7)は潮流方程式以外の等式制約(変圧器等の特性、SVC(Static Var Compensator)などの制御ロジック)、式(8)は不等式制約(電圧の指定値、送電線路Tの潮流値等)、式(9)は電圧崩壊点における潮流方程式で表される等式制約、J(v)は安定限界電圧vに対するg1(v)のヤコビアン行列、wはヤコビアン行列の左固有ベクトルである。 Equation (5) is the objective function, Equation (6) is the equation constraint expressed by the tidal equation at the operating point, Equation (7) is the equation constraint other than the tidal equation (characteristics of transformers, SVC (Static Var Compensator) )), Equation (8) is an inequality constraint (specified value of voltage, power flow value of transmission line T, etc.), equation (9) is an equation constraint expressed by a power flow equation at the voltage collapse point, J ( v) is the Jacobian matrix of g 1 (v) with respect to the stability limit voltage v, and w is the left eigenvector of the Jacobian matrix.

式(5)に示すように、本実施形態に係る目的関数は、燃料費コストや発電コスト等の運用状態を算出するための第1算出式f(x,u,z)と、式(1)〜式(4)を満たす負荷余裕(すなわち負荷余裕の最小値)を算出するための第2算出式F''(x,u,v)の逆数に所定の係数aを乗じた式と、の和を含む。   As shown in Expression (5), the objective function according to the present embodiment includes a first calculation expression f (x, u, z) for calculating an operation state such as fuel cost cost and power generation cost, and Expression (1). ) To formula (4) satisfying the formula (4), that is, a formula obtained by multiplying the reciprocal of the second formula F ″ (x, u, v) by a predetermined coefficient a for calculating the load margin (that is, the minimum value of the load margin); Including the sum of

なお、F''(x,u,v)は、式(12)で表すことができる。   Note that F ″ (x, u, v) can be expressed by Expression (12).

F''( x, u, v) = min F'(x, u, v ) (12)
ここで、F'(x, u, v )は、式(1)に記載されているF(x,v )を、操作量uを変数に含むように拡張したものである。
F ″ (x, u, v) = min F ′ (x, u, v) (12)
Here, F ′ (x, u, v) is an extension of F (x, v) described in equation (1) so that the manipulated variable u is included in the variable.

そして操作量算出装置100は、式(6)〜式(11)で示される制約条件を満たしつつ、式(5)で示される目的関数により算出される所定の指標値(第1算出式により算出される発電コストと、第2算出式により算出される負荷余裕の逆数に所定の係数を乗じた値と、の和)を最小とするように、発電設備1100に対する操作量uを求める。   The manipulated variable calculation device 100 satisfies a constraint condition expressed by the equations (6) to (11) and calculates a predetermined index value (calculated by the first calculation equation) calculated by the objective function expressed by the equation (5). The operation amount u for the power generation facility 1100 is obtained so as to minimize the sum of the generated power cost and the value obtained by multiplying the reciprocal of the load margin calculated by the second calculation formula by a predetermined coefficient.

このように、本実施形態に係る目的関数は、第2算出式F''(x,u,v)により算出される負荷余裕の逆数を用いて所定の指標値が算出されるように構成されているため、本実施形態に係る操作量算出装置100は、電力系統1000の電圧安定性をより向上させるような操作量uを算出することが可能になる。   As described above, the objective function according to the present embodiment is configured such that the predetermined index value is calculated using the reciprocal of the load margin calculated by the second calculation formula F ″ (x, u, v). Therefore, the operation amount calculation apparatus 100 according to the present embodiment can calculate the operation amount u that further improves the voltage stability of the power system 1000.

また式(5)〜式(11)を満たす操作量uを求めることにより、電力系統1000における発電コストと電圧安定性とのバランスが最適となるような操作量uを求めることが可能となるが、係数aを変更することにより、最適なバランス点を調整することができる。すなわち、aの値をより大きくした場合には、発電コストよりも電圧安定性をより重視した(負荷余裕がより大きくなるような)操作量uを求めることができる一方で、aの値をより小さくした場合には、電圧安定性よりも発電コストをより重視した(発電コストがより低くなるような)操作量uを求めることができる。このような態様により、電力系統1000の運用状態や運用方針に応じて、柔軟に、適切な操作量uの値を求めることが可能となる。   Further, by obtaining the manipulated variable u that satisfies the equations (5) to (11), it is possible to obtain the manipulated variable u that optimizes the balance between the power generation cost and the voltage stability in the power system 1000. The optimum balance point can be adjusted by changing the coefficient a. That is, when the value of a is made larger, it is possible to obtain an operation amount u that places more importance on voltage stability than power generation cost (so that the load margin becomes larger), while the value of a is made more When the value is reduced, it is possible to obtain an operation amount u in which the power generation cost is more important than the voltage stability (so that the power generation cost is lower). According to such an aspect, it is possible to flexibly obtain an appropriate value of the operation amount u according to the operation state and operation policy of the power system 1000.

次に、本実施形態に係る操作量算出装置100の処理の流れを、図5に示すフローチャートを参照しながら説明する。   Next, the process flow of the operation amount calculation apparatus 100 according to the present embodiment will be described with reference to the flowchart shown in FIG.

まず操作量算出装置100は、電力系統1000の構成及び各構成要素の電気的特性を表す系統情報や目的関数、制約条件を、入力装置150、あるいは通信装置130を通じて他のコンピュータから取得して、データ記憶部700に記憶する(S1000)。   First, the operation amount calculation device 100 acquires system information, objective functions, and constraint conditions representing the configuration of the power system 1000 and the electrical characteristics of each component from another computer through the input device 150 or the communication device 130, and The data is stored in the data storage unit 700 (S1000).

続いて操作量算出装置100は、上記の制約条件を満たしつつ、かつ、目的関数から算出される所定の指標値が所定値(例えば最小値)になるように最適潮流計算を行い、電力系統1000の発電設備1100に対する最適な操作量uを求める(S1010)。   Subsequently, the operation amount calculation apparatus 100 performs the optimum power flow calculation so that the predetermined index value calculated from the objective function becomes a predetermined value (for example, the minimum value) while satisfying the above-described constraints, and the power grid 1000 The optimum operation amount u for the power generation facility 1100 is obtained (S1010).

そして操作量算出装置100は、上記のようにして求めた結果である操作量uを出力装置160や通信可能に接続された他のコンピュータに出力する(S1020)。   Then, the operation amount calculation device 100 outputs the operation amount u, which is the result obtained as described above, to the output device 160 or another computer that is communicably connected (S1020).

なお、上記実施形態では、負荷余裕を算出するための第2算出式F''(x,u,v)を式(5)の目的関数に含めるようにしているが、以下に記すように、制約条件に含めるようにすることも可能である。その場合は、操作量算出装置100は、式(14)〜式(20)で示される制約条件を満たしつつ、式(13)で示される目的関数によって算出される指標値(第1算出式f ( x, u, z )により算出される発電コスト)を最小とするように、発電設備1100に対する操作量uを求める。   In the above embodiment, the second calculation formula F ″ (x, u, v) for calculating the load margin is included in the objective function of the formula (5), but as described below, It can also be included in the constraint conditions. In that case, the manipulated variable calculation device 100 satisfies the constraint conditions indicated by the equations (14) to (20), and the index value (first calculation equation f) calculated by the objective function indicated by the equation (13). The operation amount u for the power generation facility 1100 is obtained so as to minimize (the power generation cost calculated by (x, u, z)).

Minimize f ( x, u, z ) (13)
Subject to g1(x, u, z) = 0 (14)
g2(x, u, z) = 0 (15)
h(x, u, z) ≦ 0 (16)
g1(v, u, z) = 0 (17)
J(v)Tw = 0 (18)
|w| ≠ 0 (19)
F''(x, u, v)≧F''(x0,u0,v0) (20)
ここで、式(14)〜式(19)は、式(6)〜式(11)と同じである。また式(20)は、電力系統1000における負荷余裕が、ある基準時点における負荷余裕(例えば24時間前の同時刻における負荷余裕)F''(x0,u0,v0)よりも小さくならないようにするための制約である。
Minimize f (x, u, z) (13)
Subject to g 1 (x, u, z) = 0 (14)
g 2 (x, u, z) = 0 (15)
h (x, u, z) ≤ 0 (16)
g 1 (v, u, z) = 0 (17)
J (v) T w = 0 (18)
| w | ≠ 0 (19)
F '' (x, u, v) ≧ F '' (x0, u0, v0) (20)
Here, Expressions (14) to (19) are the same as Expressions (6) to (11). Further, the equation (20) prevents the load margin in the power system 1000 from becoming smaller than the load margin at a certain reference time (for example, the load margin at the same time 24 hours ago) F ″ (x0, u0, v0). It is a restriction for.

x0は、上記基準時点における電力系統1000の運転点における電圧ベクトル、v0は、上記基準時点における安定限界電圧(電圧崩壊点)の電圧ベクトル、u0は、上記基準時点における操作量を表す。   x0 is a voltage vector at the operating point of the electric power system 1000 at the reference time point, v0 is a voltage vector of a stability limit voltage (voltage collapse point) at the reference time point, and u0 is an operation amount at the reference time point.

なお、式(13)〜式(20)を用いて操作量uを求める場合は、操作量uが一意に定まらない場合があるが、そのような場合は、例えば、式(13)〜式(20)を満たす操作量uの候補を出力装置160に表示して、操作量算出装置100のオペレータにいずれか一つを選択させるようにすればよい。あるいは、式(20)を満たす負荷余裕の値が最大となる時の操作量uを求めるようにしてもよい。   In addition, when calculating | requiring the operation amount u using Formula (13)-Formula (20), the operation amount u may not be decided uniquely, but in such a case, for example, Formula (13)-Formula ( 20) A candidate for the operation amount u satisfying 20) may be displayed on the output device 160 so that the operator of the operation amount calculation device 100 selects one of them. Or you may make it obtain | require the operation amount u when the value of the load margin which satisfy | fills Formula (20) becomes the maximum.

以上説明したように、本実施形態に係る操作量算出装置100によれば、電力系統1000全体の電圧安定性を考慮しながら最適潮流計算を行って電力系統1000の操作対象設備に対する操作量を求めることが可能となる。   As described above, according to the operation amount calculation apparatus 100 according to the present embodiment, the optimum power flow calculation is performed while considering the voltage stability of the entire power system 1000 to obtain the operation amount for the operation target facility of the power system 1000. It becomes possible.

また本実施形態に係る操作量算出装置100は、負荷余裕が最小となるような負荷増加シナリオを想定して最適潮流計算を行う。すなわち、電力系統1000が有する複数の負荷設備1200の現時点での電力需要と、これらの複数の負荷設備1200の電力需要が増大した場合に電力系統1000の電圧が最も早く不安定になる時の電力需要と、の差分を負荷余裕とするような負荷増加シナリオを想定して最適潮流計算を行う。   Further, the operation amount calculation apparatus 100 according to the present embodiment performs optimal power flow calculation assuming a load increase scenario in which the load margin is minimized. That is, the current power demand of the plurality of load facilities 1200 included in the power system 1000 and the power when the voltage of the power system 1000 becomes unstable most quickly when the power demand of the plurality of load facilities 1200 increases. The optimal power flow calculation is performed assuming a load increase scenario in which the difference between demand and load is a margin.

このような態様により、より警戒すべき負荷増加シナリオを想定して最適潮流計算を行うことができ、電力系統1000の電圧安定性に関してより安全性を向上させるように、操作対象設備に対する操作量を算出することが可能となる。   By such an aspect, it is possible to perform an optimal power flow calculation assuming a load increase scenario that should be more cautious, and to reduce the operation amount for the operation target equipment so as to improve the safety with respect to the voltage stability of the power system 1000. It is possible to calculate.

また本実施形態に係る操作量算出装置100によって目的関数から算出される所定の指標値は、操作対象設備に対する操作に伴うコストと、負荷余裕の逆数に所定の係数を乗じた値と、の和としている。このような態様によって、電力系統1000の電圧安定性を考慮しつつ操作対象設備に対する操作量uを算出することが可能になるとともに、多目的最適化問題を単一目的の最適化問題として処理することが可能となる。   Further, the predetermined index value calculated from the objective function by the operation amount calculation apparatus 100 according to the present embodiment is the sum of the cost associated with the operation on the operation target facility and the value obtained by multiplying the reciprocal of the load margin by a predetermined coefficient. It is said. In this manner, it is possible to calculate the operation amount u for the operation target equipment while considering the voltage stability of the power system 1000, and to handle the multi-objective optimization problem as a single-purpose optimization problem. Is possible.

そして本実施形態に係る操作量算出装置100は、この指標値が最小値になるように、操作対象設備に対する操作量uを算出する。このような態様によって、電力系統1000の電圧安定性をより向上させつつコストを抑制するような、最適な操作量uを算出することが可能になる。   Then, the operation amount calculation apparatus 100 according to the present embodiment calculates the operation amount u for the operation target facility so that the index value becomes the minimum value. By such an aspect, it is possible to calculate an optimal operation amount u that can suppress the cost while further improving the voltage stability of the power system 1000.

なお上述した実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。   The embodiments described above are for facilitating the understanding of the present invention, and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.

100 操作量算出装置
101 取得部
102 操作量算出部
110 CPU
120 メモリ
130 通信装置
140 記憶装置
150 入力装置
160 出力装置
170 記録媒体読取装置
600 制御プログラム
700 系統情報
800 記録媒体
1000 電力系統
1100 発電設備
1200 負荷設備
100 Operation amount calculation device 101 Acquisition unit 102 Operation amount calculation unit 110 CPU
120 Memory 130 Communication Device 140 Storage Device 150 Input Device 160 Output Device 170 Recording Medium Reading Device 600 Control Program 700 System Information 800 Recording Medium 1000 Power System 1100 Power Generation Facility 1200 Load Facility

Claims (6)

電力系統が有する操作対象設備に対する操作量を算出する操作量算出装置であって、
前記操作対象設備に対する操作に伴うコストを算出するための第1算出式、前記電力系統における電圧が不安定になる時の電力需要である安定限界電力までの電力増加量である負荷余裕を算出するための第2算出式、及び前記操作対象設備の運転時の制約条件を取得する取得部と、
前記制約条件を満たしつつ、かつ、前記第1算出式及び前記第2算出式から算出される所定の指標値が所定値になるように、前記操作対象設備に対する操作量を算出する操作量算出部と、
を備えることを特徴とする操作量算出装置。
An operation amount calculation device that calculates an operation amount for an operation target facility of an electric power system,
A first calculation formula for calculating a cost associated with an operation on the operation target facility, and calculating a load margin that is an increase in power up to a stable limit power that is a power demand when the voltage in the power system becomes unstable. An acquisition unit for acquiring a second calculation formula for operation and a constraint condition during operation of the operation target facility;
An operation amount calculation unit that calculates an operation amount for the operation target facility so that the predetermined index value calculated from the first calculation formula and the second calculation formula becomes a predetermined value while satisfying the constraint condition. When,
An operation amount calculation apparatus comprising:
請求項1に記載の操作量算出装置であって、
前記第2算出式によって算出される前記負荷余裕は、前記電力系統が有する複数の負荷設備の現時点での電力需要と、前記複数の負荷設備の電力需要が増大した場合に前記電力系統の電圧が最も早く不安定になる時の電力需要と、の差分である
ことを特徴とする操作量算出装置。
The operation amount calculation device according to claim 1,
The load margin calculated by the second calculation formula is obtained when the current power demand of the plurality of load facilities included in the power system and the voltage of the power system when the power demand of the plurality of load facilities increases. A manipulated variable calculation device characterized by the difference between the power demand at the earliest and unstable time.
請求項1または2に記載の操作量算出装置であって、
前記所定の指標値は、前記コストと、前記負荷余裕の逆数に所定の係数を乗じた値と、の和により算出される
ことを特徴とする操作量算出装置。
The operation amount calculation device according to claim 1 or 2,
The operation amount calculation apparatus, wherein the predetermined index value is calculated by a sum of the cost and a value obtained by multiplying an inverse of the load margin by a predetermined coefficient.
請求項3に記載の操作量算出装置であって、
前記操作量算出部は、前記制約条件を満たしつつ、かつ、前記所定の指標値が最小値になるように、前記操作対象設備に対する操作量を算出する
ことを特徴とする操作量算出装置。
The operation amount calculation device according to claim 3,
The operation amount calculation unit is configured to calculate an operation amount for the operation target facility so that the predetermined index value becomes a minimum value while satisfying the constraint condition.
電力系統が有する操作対象設備に対する操作量を算出する操作量算出装置の制御方法であって、
前記操作量算出装置が、前記操作対象設備に対する操作に伴うコストを算出するための第1算出式、前記電力系統における電圧が不安定になる時の電力需要である安定限界電力までの電力増加量である負荷余裕を算出するための第2算出式、及び前記操作対象設備の運転時の制約条件を取得し、
前記操作量算出装置が、前記制約条件を満たしつつ、かつ、前記第1算出式及び前記第2算出式から算出される所定の指標値が所定値になるように、前記操作対象設備に対する操作量を算出する
ことを特徴とする操作量算出装置の制御方法。
A control method of an operation amount calculation device that calculates an operation amount for an operation target facility of an electric power system,
A first calculation formula for calculating the cost associated with the operation of the operation target equipment by the operation amount calculation device, an amount of power increase up to a stable limit power that is a power demand when the voltage in the power system becomes unstable A second calculation formula for calculating a load margin that is and a constraint condition during operation of the operation target equipment,
The operation amount for the operation target facility is such that the operation amount calculation device satisfies the constraint condition and the predetermined index value calculated from the first calculation formula and the second calculation formula becomes a predetermined value. A control method for an operation amount calculation apparatus, characterized in that
電力系統が有する操作対象設備に対する操作量を算出する操作量算出装置に、
前記操作対象設備に対する操作に伴うコストを算出するための第1算出式、前記電力系統における電圧が不安定になる時の電力需要である安定限界電力までの電力増加量である負荷余裕を算出するための第2算出式、及び前記操作対象設備の運転時の制約条件を取得する手順と、
前記制約条件を満たしつつ、かつ、前記第1算出式及び前記第2算出式から算出される所定の指標値が所定値になるように、前記操作対象設備に対する操作量を算出する手順と、
を実行させるためのプログラム。
In the operation amount calculation device that calculates the operation amount for the operation target equipment of the power system,
A first calculation formula for calculating a cost associated with an operation on the operation target facility, and calculating a load margin that is an increase in power up to a stable limit power that is a power demand when the voltage in the power system becomes unstable. A second calculation formula for acquiring the restriction condition during operation of the operation target equipment,
A procedure for calculating an operation amount for the operation target facility so that a predetermined index value calculated from the first calculation formula and the second calculation formula becomes a predetermined value while satisfying the constraint condition;
A program for running
JP2014245787A 2014-12-04 2014-12-04 Manipulated variable calculation device, control method for manipulated variable calculation device, and program Pending JP2016111780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245787A JP2016111780A (en) 2014-12-04 2014-12-04 Manipulated variable calculation device, control method for manipulated variable calculation device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245787A JP2016111780A (en) 2014-12-04 2014-12-04 Manipulated variable calculation device, control method for manipulated variable calculation device, and program

Publications (1)

Publication Number Publication Date
JP2016111780A true JP2016111780A (en) 2016-06-20

Family

ID=56125145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245787A Pending JP2016111780A (en) 2014-12-04 2014-12-04 Manipulated variable calculation device, control method for manipulated variable calculation device, and program

Country Status (1)

Country Link
JP (1) JP2016111780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169770A (en) * 2016-07-19 2016-11-30 国网四川省电力公司经济技术研究院 A kind of electric power energy Optimal Configuration Method for water power enrichment area

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187390A (en) * 2002-12-03 2004-07-02 Mitsubishi Electric Corp Monitor and control apparatus for voltage reactive power
JP2011115024A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp System for monitoring voltage and reactive power
JP2014064382A (en) * 2012-09-21 2014-04-10 Hitachi Ltd Power system control apparatus and power system control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004187390A (en) * 2002-12-03 2004-07-02 Mitsubishi Electric Corp Monitor and control apparatus for voltage reactive power
JP2011115024A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp System for monitoring voltage and reactive power
JP2014064382A (en) * 2012-09-21 2014-04-10 Hitachi Ltd Power system control apparatus and power system control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
原田繁実、外2名共著: "最近接潮流限界点の効率的計算方法", 電気学会論文誌B(電力・エネルギー部門誌), vol. No. 120、Vol. 7, JPN6018003539, 2000, JP, pages 931 - 938, ISSN: 0003853524 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106169770A (en) * 2016-07-19 2016-11-30 国网四川省电力公司经济技术研究院 A kind of electric power energy Optimal Configuration Method for water power enrichment area

Similar Documents

Publication Publication Date Title
Frank et al. Optimal power flow: A bibliographic survey I: Formulations and deterministic methods
Nikoobakht et al. Flexible power system operation accommodating uncertain wind power generation using transmission topology control: an improved linearised AC SCUC model
Castillo et al. The unit commitment problem with AC optimal power flow constraints
Zheng et al. Robust reactive power optimisation and voltage control method for active distribution networks via dual time‐scale coordination
Macedo et al. Optimal operation of distribution networks considering energy storage devices
Vrakopoulou et al. Probabilistic security-constrained AC optimal power flow
Frank et al. A primer on optimal power flow: Theory, formulation, and practical examples
JP6244255B2 (en) Voltage stability monitoring apparatus and method
US20160048150A1 (en) Method and apparatus for optimal power flow with voltage stability for large-scale electric power systems
Panciatici et al. Advanced optimization methods for power systems
Marano-Marcolini et al. Exploiting the use of DC SCOPF approximation to improve iterative AC SCOPF algorithms
Nazari et al. Optimal multi-objective D-STATCOM placement using MOGA for THD mitigation and cost minimization
JP6733201B2 (en) Voltage stabilization control device, control method of voltage stabilization control device, and program
Šepetanc et al. Convex polar second-order taylor approximation of AC power flows: A unit commitment study
Liu et al. Bi-level off-policy reinforcement learning for two-timescale volt/var control in active distribution networks
JP2018191482A (en) Optimum tidal current calculation device, optimum tidal current calculation method, and optimum tidal current calculation program
JP6337690B2 (en) Arrangement position calculation device, control method and program for arrangement position calculation device
Rosemberg et al. Assessing the cost of network simplifications in long-term hydrothermal dispatch planning models
Cortés et al. On distributed reactive power and storage control on microgrids
JP2019221045A (en) Power system control device, power system control system, and power system control method
Liao et al. Short-term hydro scheduling considering multiple units sharing a common tunnel and crossing vibration zones constraints
Chatterjee et al. Performance evaluation of novel moth flame optimization (MFO) technique for AGC of hydro system
JP2016111780A (en) Manipulated variable calculation device, control method for manipulated variable calculation device, and program
Olfatinezhad et al. Flexible two‐stage robust model for moving the transmission and reactive power infrastructures expansion planning towards power system integration of renewables
Hu et al. Optimal operating strategies and management for smart microgrid systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180807