JP2016110896A - Film laminate and fuel battery member using the same - Google Patents

Film laminate and fuel battery member using the same Download PDF

Info

Publication number
JP2016110896A
JP2016110896A JP2014248779A JP2014248779A JP2016110896A JP 2016110896 A JP2016110896 A JP 2016110896A JP 2014248779 A JP2014248779 A JP 2014248779A JP 2014248779 A JP2014248779 A JP 2014248779A JP 2016110896 A JP2016110896 A JP 2016110896A
Authority
JP
Japan
Prior art keywords
electrode catalyst
film
electrolyte membrane
adhesive layer
film laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014248779A
Other languages
Japanese (ja)
Other versions
JP6551646B2 (en
Inventor
谷脇 和磨
Kazuma Taniwaki
和磨 谷脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2014248779A priority Critical patent/JP6551646B2/en
Publication of JP2016110896A publication Critical patent/JP2016110896A/en
Application granted granted Critical
Publication of JP6551646B2 publication Critical patent/JP6551646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a film laminate for manufacturing a fuel battery member that can form a high-precision and high-quality electrode catalyst at a predetermined position of both surfaces of an electrolytic film, and a fuel battery member using the same.SOLUTION: In a film laminate for manufacturing a fuel battery member in which an anode electrode catalyst 9 is formed on one surface of an electrolytic film 4 and a cathode electrode catalyst 10 is formed on the other surface, an adhesive layer 3 and a masking film 1 are successively laminated on both the surfaces of the electrolytic film 4, and at an outer peripheral portion of an area in which the anode electrode catalyst 9 or the cathode electrode catalyst 10 is formed, punching portions are formed in the successively laminated adhesive layer 3 and the masking film 1 in the depth direction till the interface to the electrolytic film 4.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池部材製造用のフィルム積層体及びそれを用いた燃料電池部材に関する。   The present invention relates to a film laminate for producing a fuel cell member and a fuel cell member using the same.

近年、環境問題やエネルギー問題の有効な解決策として、燃料電池が注目を浴びている。燃料電池とは、水素などの燃料を酸素などの酸化剤を用いて酸化し、これに伴う化学エネルギーを電気エネルギーに変換する。   In recent years, fuel cells have attracted attention as effective solutions for environmental problems and energy problems. A fuel cell oxidizes a fuel such as hydrogen by using an oxidant such as oxygen and converts chemical energy associated therewith into electric energy.

燃料電池は、電解質の種類によって、アルカリ形、リン酸形、高分子形、溶融炭酸塩形、固体酸化物形などに分類される。高分子形燃料電池(PEFC)は、低温作動、高出力密度であり、小型化・軽量化が可能であることから、携帯用電源、家庭用電源、車載用動力源としての応用が期待されている。   Fuel cells are classified into alkaline, phosphoric acid, polymer, molten carbonate, solid oxide, etc., depending on the type of electrolyte. Polymer fuel cells (PEFC) operate at low temperatures, have high output density, and can be reduced in size and weight, so they are expected to be applied as portable power sources, household power sources, and in-vehicle power sources. Yes.

高分子形燃料電池(PEFC)は、電解質膜である高分子電解質膜を燃料極(アノード)と空気極(カソード)で挟んだ構造となっており、燃料極側に水素を含む燃料ガス、空気極側に酸素を含む酸化剤ガスを供給することで、下記(1)(2)の電気化学反応により発電する。   A polymer fuel cell (PEFC) has a structure in which a polymer electrolyte membrane, which is an electrolyte membrane, is sandwiched between a fuel electrode (anode) and an air electrode (cathode), and a fuel gas containing hydrogen on the fuel electrode side, air By supplying an oxidant gas containing oxygen to the pole side, power is generated by the electrochemical reactions (1) and (2) below.

アノード:H→2H+2e (1)
カソード:1/2O+2H+2e→HO (2)
Anode: H 2 → 2H + + 2e (1)
Cathode: 1 / 2O 2 + 2H + + 2e → H 2 O (2)

アノードおよびカソードは、それぞれ触媒層とガス拡散層の積層構造からなる。アノード側触媒層に供給された燃料ガスは、電極触媒によりプロトンと電子となる(反応1)。プロトンは、アノード側触媒層内の高分子電解質、高分子電解質膜を通り、カソードに移動する。電子は、外部回路を通り、カソードに移動する。カソード側触媒層では、プロトンと電子と外部から供給された酸化剤ガスが反応して水を生成する(反応2)。このように、電子が外部回路を通ることにより発電する。   The anode and cathode each have a laminated structure of a catalyst layer and a gas diffusion layer. The fuel gas supplied to the anode side catalyst layer becomes protons and electrons by the electrode catalyst (reaction 1). Protons move to the cathode through the polymer electrolyte and polymer electrolyte membrane in the anode catalyst layer. The electrons travel through the external circuit to the cathode. In the cathode catalyst layer, protons, electrons, and oxidant gas supplied from the outside react to generate water (reaction 2). In this way, power is generated by electrons passing through an external circuit.

従来、膜電極接合体の製造方法としては、触媒を担持した炭素粒子、高分子電解質及び溶媒からなる触媒層用インクを作製して、触媒層用インクを高分子電解質膜に直接塗工して作製する方法や、電極転写基材またはガス拡散層に塗工した後、高分子電解質膜に熱圧着して作製する方法(特許文献1)が知られている。   Conventionally, as a method for producing a membrane electrode assembly, a catalyst layer ink comprising carbon particles supporting a catalyst, a polymer electrolyte, and a solvent is prepared, and the catalyst layer ink is directly applied to the polymer electrolyte membrane. There are known a method of manufacturing (Patent Document 1), and a method of manufacturing by thermocompression bonding to a polymer electrolyte membrane after coating on an electrode transfer substrate or a gas diffusion layer.

電解質膜への電極触媒形成は、主に電解質膜に直接塗工形成する場合と、一度転写基材に塗工した後に電解質膜に転写する場合の2種類に分けられる。電解質膜に直接塗工する場合、塗工方法にはダイ塗工を用いる場合が多く、アノード電極、カソード電極のそれぞれを形成する。塗工後は減圧乾燥や焼成によって触媒層中の溶剤を十分に除去する。   Electrocatalyst formation on the electrolyte membrane is mainly divided into two types, that is, a case where the electrode catalyst is directly applied to the electrolyte membrane and a case where the electrode catalyst is once applied to the transfer substrate and then transferred to the electrolyte membrane. When coating directly on the electrolyte membrane, die coating is often used as the coating method, and each of the anode electrode and the cathode electrode is formed. After coating, the solvent in the catalyst layer is sufficiently removed by drying under reduced pressure or firing.

転写基材に塗工した後に電解質膜に転写する場合も、転写基材への塗工はダイ塗工を用いる場合が多い。また転写工程には、ロール基材の場合はロール式熱ラミネート方式を使い、シート基材の場合は熱プレス方式を採用するのが一般的である。   Even when the coating is applied to the transfer substrate and then transferred to the electrolyte membrane, die coating is often used for coating the transfer substrate. In the transfer step, a roll-type heat laminating method is generally used in the case of a roll base material, and a heat press method is generally adopted in the case of a sheet base material.

また、電極触媒をある特定の形状に形成する場合、マスク材を使用する方法が一般的である。つまり、電解質膜の両面にマスク材を貼合し、触媒を塗工、または転写した後にマスク材を剥がすことによって、電極触媒を形成することができる。   Moreover, when forming an electrode catalyst in a certain specific shape, the method of using a mask material is common. That is, an electrode catalyst can be formed by sticking a mask material on both surfaces of the electrolyte membrane, and coating or transferring the catalyst, and then removing the mask material.

しかし、両面にマスク材を添付することによって、両面に凹凸が生じるため、ステージに安定して設置することができない。マスキングされていない部分、つまり電解質膜が露呈している部分がステージよりも浮いた状態となってしまう。   However, by attaching a mask material to both sides, irregularities are produced on both sides, and thus it cannot be stably placed on the stage. The part which is not masked, that is, the part where the electrolyte membrane is exposed, is in a state where it floats from the stage.

ステージより浮いた状態で塗工ステージに吸着固定した場合、吸着力により電解質膜が引っ張られ、電解質膜の伸長や、シワ発生の要因となる。なお、この状態で触媒インクを塗工した場合は、溶剤に起因した電解質膜の膨潤が発生し、これも膜変形の大きな要因となる。   When adsorbed and fixed to the coating stage in a state of floating from the stage, the electrolyte membrane is pulled by the adsorbing force, which causes expansion of the electrolyte membrane and generation of wrinkles. Note that when the catalyst ink is applied in this state, the electrolyte membrane swells due to the solvent, which is also a major factor in membrane deformation.

転写法を採用する場合も、塗工と同様に電解質膜の浮きが発生するため、加圧しても圧力が十分伝わらないという問題がある。特にマスク材近傍、つまり電解質膜の外周部分に圧力が伝わりにくく、転写不良発生の要因となる。   Even when the transfer method is employed, the electrolyte membrane floats as in the case of coating, so that there is a problem that the pressure is not sufficiently transmitted even when the pressure is applied. In particular, it is difficult for pressure to be transmitted to the vicinity of the mask material, that is, the outer peripheral portion of the electrolyte membrane, which causes transfer defects.

上記の課題を回避するために、電解質膜の片面のみにマスク材を貼合し、片側の電極形成が終わってから、残りの電極を形成する方法が取られる場合もあるが、裏面を支持するためのフィルムが必要となったり、そのフィルムを剥がすための工程が増えたりするため、生産の観点からは好ましい方法とは言えない。   In order to avoid the above problem, a mask material is bonded only to one surface of the electrolyte membrane, and after the electrode formation on one side is finished, a method of forming the remaining electrode may be taken, but the back surface is supported. Therefore, it is not a preferable method from the viewpoint of production because a film for the purpose is required or a process for peeling the film is increased.

特開2013−201140号公報JP 2013-201340 A

本発明は電解質膜の両面の所定の位置に高精度、高品質な電極触媒を形成することができる燃料電池部材製造用のフィルム積層体及びそれを用いた燃料電池部材の提供を目的とする。   An object of the present invention is to provide a film laminate for producing a fuel cell member capable of forming a highly accurate and high-quality electrode catalyst at predetermined positions on both surfaces of an electrolyte membrane, and a fuel cell member using the same.

本発明の請求項1に係る発明は、電解質膜の一方の面にアノード電極触媒、他方の面にカソード電極触媒が形成された燃料電池部材を製造するためのフィルム積層体であって、
前記電解質膜の両面は、粘着層、マスキングフィルムが順次積層され、
かつ、前記アノード電極触媒またはカソード電極触媒が形成される領域の外周部は、順次積層された前記粘着層、マスキングフィルムが電解質膜の界面まで深さ方向に打抜き部が形成されていることを特徴とするフィルム積層体である。
The invention according to claim 1 of the present invention is a film laminate for producing a fuel cell member in which an anode electrode catalyst is formed on one surface of an electrolyte membrane and a cathode electrode catalyst is formed on the other surface,
On both sides of the electrolyte membrane, an adhesive layer and a masking film are sequentially laminated,
In addition, the outer peripheral portion of the region where the anode electrode catalyst or the cathode electrode catalyst is formed has a punched portion formed in the depth direction to the interface of the electrolyte membrane and the adhesive layer and the masking film that are sequentially stacked. Is a film laminate.

また、請求項2に係る発明は、電解質膜の一方の面にアノード電極触媒、他方の面にカソード電極触媒が形成された燃料電池部材を製造するためのフィルム積層体であって、
前記電解質膜の両面は、それぞれ粘着層、マスキングフィルム、粘着層、第2のマスキングフィルムが順次積層され、
かつ、前記アノード電極触媒またはカソード電極触媒が形成される領域の外周部は、順次積層された前記粘着層、マスキングフィルム、粘着層、第2のマスキングフィルムが電解質膜の界面まで深さ方向に打抜き部が形成されていることを特徴とするフィルム積層体である。
The invention according to claim 2 is a film laminate for producing a fuel cell member in which an anode electrode catalyst is formed on one surface of an electrolyte membrane and a cathode electrode catalyst is formed on the other surface,
On both sides of the electrolyte membrane, an adhesive layer, a masking film, an adhesive layer, and a second masking film are sequentially laminated,
In addition, in the outer peripheral portion of the region where the anode electrode catalyst or the cathode electrode catalyst is formed, the adhesive layer, the masking film, the adhesive layer, and the second masking film that are sequentially laminated are punched in the depth direction to the interface of the electrolyte membrane. The film laminate is characterized in that a portion is formed.

また、請求項3に係る発明は、請求項1または2に記載のフィルム積層体を用いて製造されたことを特徴とする燃料電池部材である。   The invention according to claim 3 is a fuel cell member manufactured using the film laminate according to claim 1 or 2.

本発明の請求項1に係る発明によれば、前記アノード電極触媒またはカソード電極触媒
が形成される領域の外周部(窓枠部)に相当する順次積層された前記粘着層、マスキングフィルムに対して、電解質膜の界面まで深さ方向に打抜き部を形成することで、窓枠部の内部領域を電解質膜の界面から容易に剥離することができる。その結果、前記窓枠部の内部領域に、従来法に比べて容易に、かつ高精度にアノード電極触媒またはカソード電極触媒を形成することができる。
According to the first aspect of the present invention, the adhesive layer and the masking film are sequentially laminated corresponding to the outer peripheral portion (window frame portion) of the region where the anode electrode catalyst or the cathode electrode catalyst is formed. By forming the punched portion in the depth direction up to the electrolyte membrane interface, the internal region of the window frame portion can be easily peeled off from the electrolyte membrane interface. As a result, the anode electrode catalyst or the cathode electrode catalyst can be formed in the inner region of the window frame portion easily and with high accuracy as compared with the conventional method.

また、請求項2に係わる発明によれば、電解質膜の両面にそれぞれ粘着層、マスキングフィルム、粘着層、第2のマスキングフィルムを順次積層することで電解質膜の両面が平坦になる。これにより後工程となるアノード電極触媒またはカソード電極触媒を形成する際に、常盤上に安定して設置することができ、高精度の加工を施すことができる。   According to the invention relating to claim 2, the adhesive film, the masking film, the adhesive layer, and the second masking film are sequentially laminated on both surfaces of the electrolyte membrane, so that both surfaces of the electrolyte membrane become flat. As a result, when forming an anode electrode catalyst or a cathode electrode catalyst, which is a subsequent process, it can be stably placed on a regular plate and high-precision processing can be performed.

また、前記アノード電極触媒またはカソード電極触媒が形成される領域の外周部(窓枠部)に相当する順次積層された前記粘着層、マスキングフィルム、粘着層、第2のマスキングフィルムに対して、電解質膜の界面まで深さ方向に打抜き部を形成することで、窓枠部の内部領域を電解質膜の界面から容易に剥離することができる。その結果、前記窓枠部の内部領域に、従来法に比べて容易に、かつ高精度にアノード電極触媒またはカソード電極触媒を形成することができる。   In addition, an electrolyte is applied to the adhesive layer, the masking film, the adhesive layer, and the second masking film sequentially laminated corresponding to the outer peripheral portion (window frame portion) of the region where the anode electrode catalyst or the cathode electrode catalyst is formed. By forming the punched portion in the depth direction up to the interface of the membrane, the inner region of the window frame portion can be easily peeled from the interface of the electrolyte membrane. As a result, the anode electrode catalyst or the cathode electrode catalyst can be formed in the inner region of the window frame portion easily and with high accuracy as compared with the conventional method.

またさらに、マスキングフィルムを2枚用いるとで、前記アノード電極触媒またはカソード電極触媒を形成する際に、不要の電極触媒が塗布された第2のマスキングフィルムを剥離することで、その下に積層されたもう一方のマスキングフィルムが形成された前記アノード電極触媒及びカソード電極触媒を保護するガスケットとして作用する効果がある。   Furthermore, when two masking films are used, when the anode electrode catalyst or the cathode electrode catalyst is formed, the second masking film coated with an unnecessary electrode catalyst is peeled off and laminated underneath. The other masking film has an effect of acting as a gasket for protecting the anode electrode catalyst and the cathode electrode catalyst.

また、請求項3に係わる発明によれば、請求項1または2に記載のフィルム積層体を用いることで、電解質膜の両面の所定の位置に高精度、高品質な電極触媒を形成することができる。   Further, according to the invention according to claim 3, by using the film laminate according to claim 1 or 2, a high-precision and high-quality electrode catalyst can be formed at predetermined positions on both surfaces of the electrolyte membrane. it can.

上記で説明したように、本発明によれば電解質膜の両面の所定の位置に高精度、高品質な電極触媒を形成することができる燃料電池部材製造用のフィルム積層体及びそれを用いた燃料電池部材を提供することができる。   As described above, according to the present invention, a film laminate for producing a fuel cell member capable of forming a high-precision and high-quality electrode catalyst at predetermined positions on both surfaces of an electrolyte membrane, and a fuel using the same A battery member can be provided.

(a)本発明に係るフィルム積層体の一実施形態を示す平面概略図である。 (b)(a)に記載のAA´位置での断面概略図である。(A) It is a plane schematic diagram showing one embodiment of a film layered product concerning the present invention. (B) It is the cross-sectional schematic in the AA 'position as described in (a). 図1に示すフィルム積層体の製造プロセスの断面概略図である。It is a cross-sectional schematic diagram of the manufacturing process of the film laminated body shown in FIG. 図1に示すフィルム積層体を用いた燃料電池用電極触媒の製造プロセスの断面概略図である。It is a cross-sectional schematic diagram of the manufacturing process of the electrode catalyst for fuel cells using the film laminated body shown in FIG.

本発明に係る燃料電池部材製造用のフィルム積層体及びそれを用いた燃料電池部材について、図に基づき以下に説明する。なお、本発明に係るフィルム積層体は、マスキングフィルムを1枚又は2枚用いる構成が可能であるが、マスキングフィルムがガスケットとして作用する2枚用いた図1に示す構成で説明する。   A film laminate for producing a fuel cell member according to the present invention and a fuel cell member using the same will be described below with reference to the drawings. In addition, although the structure which uses 1 sheet or 2 sheets of masking films is possible for the film laminated body concerning this invention, it demonstrates by the structure shown in FIG. 1 using 2 sheets with which a masking film acts as a gasket.

本発明のフィルム積層体は、電解質膜4の両面にそれぞれ粘着層3、マスキングフィルム1、粘着層3、第2のマスキングフィルム7を順次積層し、アノード電極触媒9またはカソード電極触媒10が形成される領域の外周部は、順次積層された前記粘着3層、マスキングフィルム1、粘着層3、第2のマスキングフィルム7が電解質膜4の界面まで深さ方向に打抜き部(窓枠部)2が形成されていることを特徴とする。   In the film laminate of the present invention, the adhesive layer 3, the masking film 1, the adhesive layer 3, and the second masking film 7 are sequentially laminated on both surfaces of the electrolyte membrane 4 to form the anode electrode catalyst 9 or the cathode electrode catalyst 10. In the outer peripheral portion of the region, the punched portion (window frame portion) 2 is formed in the depth direction to the interface of the electrolyte membrane 4 with the adhesive layer 3, the masking film 1, the adhesive layer 3, and the second masking film 7 sequentially laminated. It is formed.

以下、図2に基づいて本発明のフィルム積層体の製造方法について説明する。   Hereinafter, the manufacturing method of the film laminated body of this invention is demonstrated based on FIG.

図2(a)に示すように、粘着層3を有する打抜き断裁用支持体6の粘着層3の上に、第2のマスキングフィルム7、粘着層3、マスキングフィルム1、粘着層3及びセパレータ5を順次積層する。積層する方法としては公知の方法が利用でき特に限定するものではない。例えば汎用のラミネーターを用いて圧力下で積層することができる。また、各粘着層3は予め粘着層3が形成された打抜き断裁用支持体6、第2のマスキングフィルム7、マスキングフィルム1を用いてもよい。   As shown in FIG. 2A, the second masking film 7, the adhesive layer 3, the masking film 1, the adhesive layer 3, and the separator 5 are formed on the adhesive layer 3 of the punching and cutting support 6 having the adhesive layer 3. Are sequentially stacked. As a method of laminating, a known method can be used and is not particularly limited. For example, it can laminate | stack under pressure using a general purpose laminator. In addition, each adhesive layer 3 may use a punching and cutting support 6, a second masking film 7, and a masking film 1 on which the adhesive layer 3 is formed in advance.

次に、図2(b)に示すように、図3(g)のアノード電極触媒9またはカソード電極触媒10が形成される領域の外周部の位置に、前記セパレータ5側から第2のマスキングフィルム7の底端部まで打抜く。この打抜く方法としては作業効率に優れたトムソン刃やピナクル刃による打抜き方式を用いることが好ましい。   Next, as shown in FIG. 2 (b), a second masking film is formed from the separator 5 side on the outer peripheral portion of the region where the anode electrode catalyst 9 or the cathode electrode catalyst 10 of FIG. 3 (g) is formed. Punch to the bottom end of 7. As the punching method, it is preferable to use a punching method using a Thomson blade or a pinnacle blade excellent in work efficiency.

次に、図2(c)に示すように、セパレータ5を剥離して電解質膜(高分子フィルム)4の一方の面と積層する。   Next, as shown in FIG. 2 (c), the separator 5 is peeled off and laminated on one surface of the electrolyte membrane (polymer film) 4.

次に、図2(d)に示すように、粘着層3を有する打抜き断裁用支持体6を該粘着層3ごと剥離して第2のマスキングフィルム7を露出する。   Next, as shown in FIG. 2D, the punching and cutting support 6 having the adhesive layer 3 is peeled together with the adhesive layer 3 to expose the second masking film 7.

次に、図2(e)に示すように、前記電解質膜の他方の面に、同様にして図2(b)で得た積層体を貼り合せて本発明のフィルム積層体を作製する。   Next, as shown in FIG. 2E, the laminate obtained in FIG. 2B is similarly bonded to the other surface of the electrolyte membrane to produce the film laminate of the present invention.

本発明に係る電解質膜としてはプロトン伝導性を有する高分子電解質膜が好ましく、例えば、フッ素系高分子電解質膜や炭化水素系高分子電解質膜を用いることができるが、電池の出力電圧を高める上ではフッ素系高分子電解質膜がより好ましい。   As the electrolyte membrane according to the present invention, a polymer electrolyte membrane having proton conductivity is preferable. For example, a fluorine-based polymer electrolyte membrane or a hydrocarbon-based polymer electrolyte membrane can be used. Then, a fluorine-based polymer electrolyte membrane is more preferable.

また、マスキングフィルム1及び第2のマスキングフィルム7としては、機械的強度や熱に対する寸法安定性等に優れた物理特性や、耐溶剤性に優れた化学的特性を兼ね備えていれば特に限定するものではないが、膜厚や幅等の選定範囲が広いことやハンドリング、コスト面でポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)フィルムが好ましい。   Further, the masking film 1 and the second masking film 7 are particularly limited as long as they have both physical properties excellent in mechanical strength and dimensional stability against heat, and chemical properties excellent in solvent resistance. However, a polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) film is preferable in terms of wide selection range such as film thickness and width, handling, and cost.

また、粘着層3としては、粘着強度の選定範囲が広く入手し易いアクリル系樹脂からなるものが好ましい。   Moreover, as the adhesion layer 3, what consists of an acrylic resin which has a wide selection range of adhesion strength and is easily available is preferable.

また、断裁用支持体6としては、機械的強度や熱に対する寸法安定性等に優れたものであれば特に限定するものではなく、例えばPETフィルム等が好ましい。   The cutting support 6 is not particularly limited as long as it has excellent mechanical strength, dimensional stability against heat, and the like. For example, a PET film is preferable.

次に、上記で作製した本発明のフィルム積層体を用いた、燃料電池部材の一つである電極触媒の製造プロセスの一実施形態を図3に基づいて説明する。   Next, an embodiment of a process for producing an electrode catalyst, which is one of fuel cell members, using the film laminate of the present invention produced above will be described with reference to FIG.

図には示してないが上記で作製したフィルム積層体を塗工ステージ8に固定する。固定方法としては特に限定するものではないが、ハンドリングや安定性に優れた吸引方式が好ましい。   Although not shown in the figure, the film laminate produced above is fixed to the coating stage 8. Although it does not specifically limit as a fixing method, The suction method excellent in handling and stability is preferable.

図3(a)に示すように、塗工ステージ8にフィルム積層体を固定し、打抜き部(窓枠部)2を電解質膜4から剥離する。   As shown in FIG. 3A, the film laminate is fixed to the coating stage 8, and the punched portion (window frame portion) 2 is peeled from the electrolyte membrane 4.

次に、図3(b)に示すように、アノード電極触媒9を形成するための電極触媒形成用
組成物を、前記フィルム積層体の全面に塗布して乾燥させ、その後、図3(c)に示すように、不要部9aを第2のマスキングフィルム7の下層の粘着層3から剥離して目的とするアノード電極触媒9を形成する。この時、マスキングフィルム1はアノード電極触媒9の外周を取り囲むため、ガスケットとしての作用効果を発揮することができる。これがマスキングフィルムを2枚用いたフィルム積層体のメリットである。
Next, as shown in FIG. 3 (b), an electrode catalyst forming composition for forming the anode electrode catalyst 9 is applied to the entire surface of the film laminate and dried, and thereafter, FIG. 3 (c). As shown in FIG. 4, the unnecessary portion 9a is peeled off from the adhesive layer 3 under the second masking film 7 to form the intended anode electrode catalyst 9. At this time, since the masking film 1 surrounds the outer periphery of the anode electrode catalyst 9, it can exert the effect as a gasket. This is the merit of the film laminate using two masking films.

次に、図3(d)に示すように、図3(c)のフィルム積層体を表裏反転させてアノード電極触媒9側を塗工ステージ8に固定し、図3(a)と同様にして打抜き部(窓枠部)2を電解質膜4から剥離する。   Next, as shown in FIG. 3 (d), the film laminate of FIG. 3 (c) is turned upside down and the anode electrode catalyst 9 side is fixed to the coating stage 8, and the same as in FIG. 3 (a). The punched portion (window frame portion) 2 is peeled off from the electrolyte membrane 4.

その後、図3(b)と同様にして、カソード電極触媒10を形成するための電極触媒形成用組成物を、前記フィルム積層体の全面に塗布して乾燥させた後、図3(c)に示すように、不要部10aを第2のマスキングフィルム7の下層の粘着層3から剥離して目的とするカソード電極触媒10を形成する。そして最後に塗工ステージ8から剥離することで電極触媒を作製できる。なお、図3ではアノード電極触媒9を先に形成する工程を示したが、カソード電極触媒10を先に形成してもよい。   Thereafter, in the same manner as in FIG. 3B, an electrode catalyst-forming composition for forming the cathode electrode catalyst 10 was applied to the entire surface of the film laminate and dried, and then, as shown in FIG. As shown, the unnecessary portion 10a is peeled off from the adhesive layer 3 under the second masking film 7 to form the target cathode electrode catalyst 10. Finally, the electrode catalyst can be produced by peeling from the coating stage 8. Although FIG. 3 shows the step of forming the anode electrode catalyst 9 first, the cathode electrode catalyst 10 may be formed first.

以下、本発明のフィルム積層体について実施例により具体的に説明する。   Hereinafter, the film laminate of the present invention will be specifically described with reference to examples.

打抜き断裁用支持体として微粘着剤付きの厚さ100μmのPET基材の上に、マスキングフィルムとして厚さ50μmのPENフィルム、厚さ15μmの粘着層、厚さ50μmのPETフィルム(セパレータ)をラミネータにて順次積層した。なお、本作業は全てロール基材を使用し、Roll to Roll方式にて作製した。   A laminator with a PEN film with a thickness of 50 μm, an adhesive layer with a thickness of 15 μm, and a PET film (separator) with a thickness of 50 μm as a masking film on a 100 μm-thick PET substrate with a fine adhesive as a support for punching and cutting Were sequentially laminated. In addition, all this work was made by a Roll to Roll method using a roll base material.

次に、上記で作製した積層基材に、トムソン彫刻刃を使って100mm□の打抜き部(窓枠部)を形成した。打抜きはセパレータ側から行い、打抜き断裁用支持材が貫通しない程度まで断裁し、ハーフカット積層体を形成した。   Next, a 100 mm □ punched portion (window frame portion) was formed on the laminated base material produced above using a Thomson engraving blade. Punching was performed from the separator side and cut to such an extent that the punching and cutting support material did not penetrate to form a half-cut laminate.

打ち抜き断裁が完了した後はロールフィルムからシートへ断裁して積層体を得た。その後、上記積層体からセパレータを剥離し、高分子電解質膜の一方の面に手動にて貼合した。   After punching and cutting was completed, the laminate was cut from a roll film to a sheet. Thereafter, the separator was peeled from the laminate and manually bonded to one surface of the polymer electrolyte membrane.

同様にして前記高分子電解質膜の他方の面にも上記積層体を貼合してフィルム積層体を作製した。   Similarly, the laminate was also bonded to the other surface of the polymer electrolyte membrane to produce a film laminate.

上記フィルム積層体の一方の面を塗工ステージにセット(固定)し、打抜き部(窓枠部)の内側を剥離した後、カソードインク(電極触媒形成用組成物)を塗布した。なお、この時の打抜き部(窓枠部)を剥離した後の深さは50μmであり、乾燥後の膜厚が30μmと成るようにカソードインクを塗布した。また、塗布エリアは打抜き部(窓枠部)を中心にして、150mm×150mmとした。   One surface of the film laminate was set (fixed) on the coating stage, the inside of the punched portion (window frame portion) was peeled off, and then the cathode ink (electrode catalyst forming composition) was applied. The depth after peeling the punched portion (window frame portion) at this time was 50 μm, and the cathode ink was applied so that the film thickness after drying was 30 μm. The application area was 150 mm × 150 mm with the punched portion (window frame portion) as the center.

塗工ステージには加温可能なセラミック製のステージを使用した。塗工時は常時100℃にて加温し、塗工後は約5minステージ上に放置することで塗工面を乾燥させた。   A ceramic stage that can be heated was used as the coating stage. During coating, the coating surface was always heated at 100 ° C., and after coating, the coated surface was dried by leaving it on the stage for about 5 minutes.

次に、乾燥後のフィルム積層体の他方の面を塗工ステージに固定して、乾燥後の膜厚が10μmと成るようにアノードインク(電極触媒形成用組成物)を塗布した。なお、乾燥は、カソードと同様、100℃の塗工ステージ上に5min放置することによって実施した。   Next, the other surface of the dried film laminate was fixed to a coating stage, and anode ink (composition for forming an electrode catalyst) was applied so that the film thickness after drying was 10 μm. In addition, drying was implemented by leaving it to stand on a 100 degreeC coating stage for 5 minutes like a cathode.

その後、塗工ステージからフィルム積層体を取り出し、両面のマスキングフィルムであるPENフィルムを剥離して、高分子電解質膜の一方の面にカソード電極触媒、他方の面にアノード電極触媒が形成させたCCM(Catlyst Coated Menbrane 触媒被覆膜)を作製した。   Thereafter, the film laminate is taken out from the coating stage, the PEN film as the masking film on both sides is peeled off, and the cathode electrode catalyst is formed on one side of the polymer electrolyte membrane, and the anode electrode catalyst is formed on the other side. (Catlyst Coated Membrane catalyst-coated membrane) was produced.

実施例で作製したCCMは、シワや撓みの発生がなく、電極の寸法変動も極めて小さかった。また、発電性能を測定した結果、従来の方法で作製したCCMとほぼ同等の性能を示しており、製造方法に起因する不具合が無いことを確認した。   The CCM produced in the examples had no occurrence of wrinkles or deflection, and the dimensional variation of the electrodes was extremely small. Further, as a result of measuring the power generation performance, it was confirmed that the performance was almost the same as that of the CCM produced by the conventional method, and there was no problem caused by the production method.

以上に述べた通り、本発明のフィルム積層体を用いて燃料電池部材CCM、もしくはMEAを作製することによって、シワや撓みの発生が少なく、電極触媒の寸法変動も極めて小さくすることが可能であることが確認できた。   As described above, by producing the fuel cell member CCM or MEA using the film laminate of the present invention, the occurrence of wrinkles and bending is small, and the dimensional variation of the electrode catalyst can be extremely small. I was able to confirm.

本発明のフィルム積層体を用いることによって、シワや撓みの発生が少なく、電極触媒の寸法変動も極めて小さいCCM、もしくはMEAの作製が可能となる。   By using the film laminate of the present invention, it becomes possible to produce a CCM or MEA with little occurrence of wrinkles and flexures and very little dimensional fluctuation of the electrode catalyst.

1・・・ マスクキングフィルム
2・・・ 打抜き部(窓枠部)
3・・・ 粘着層
4・・・ 電解質膜
5・・・ セパレータ
6・・・ 打抜き断裁用支持体
7・・・ 第2のマスキングフィルム
8・・・ 塗工ステージ
9・・・ アノード電極触媒
9a・・ 不要部
10・・ カソード電極触媒
10a・ 不要部
1 ... Mask King film 2 ... Punching part (window frame part)
DESCRIPTION OF SYMBOLS 3 ... Adhesion layer 4 ... Electrolyte membrane 5 ... Separator 6 ... Punching cutting support 7 ... 2nd masking film 8 ... Coating stage 9 ... Anode electrode catalyst 9a · · Unnecessary part 10 · · Cathode electrode catalyst 10a · Unnecessary part

Claims (3)

電解質膜の一方の面にアノード電極触媒、他方の面にカソード電極触媒が形成された燃料電池部材を製造するためのフィルム積層体であって、
前記電解質膜の両面は、粘着層、マスキングフィルムが順次積層され、
かつ、前記アノード電極触媒またはカソード電極触媒が形成される領域の外周部は、順次積層された前記粘着層、マスキングフィルムが電解質膜の界面まで深さ方向に打抜き部が形成されていることを特徴とするフィルム積層体。
A film laminate for producing a fuel cell member in which an anode electrode catalyst is formed on one surface of an electrolyte membrane and a cathode electrode catalyst is formed on the other surface,
On both sides of the electrolyte membrane, an adhesive layer and a masking film are sequentially laminated,
In addition, the outer peripheral portion of the region where the anode electrode catalyst or the cathode electrode catalyst is formed has a punched portion formed in the depth direction to the interface of the electrolyte membrane and the adhesive layer and the masking film that are sequentially stacked. A film laminate.
電解質膜の一方の面にアノード電極触媒、他方の面にカソード電極触媒が形成された燃料電池部材を製造するためのフィルム積層体であって、
前記電解質膜の両面は、それぞれ粘着層、マスキングフィルム、粘着層、第2のマスキングフィルムが順次積層され、
かつ、前記アノード電極触媒またはカソード電極触媒が形成される領域の外周部は、順次積層された前記粘着層、マスキングフィルム、粘着層、第2マスキングフィルムが電解質膜の界面まで深さ方向に打抜き部が形成されていることを特徴とするフィルム積層体。
A film laminate for producing a fuel cell member in which an anode electrode catalyst is formed on one surface of an electrolyte membrane and a cathode electrode catalyst is formed on the other surface,
On both sides of the electrolyte membrane, an adhesive layer, a masking film, an adhesive layer, and a second masking film are sequentially laminated,
And the outer peripheral part of the area | region in which the said anode electrode catalyst or a cathode electrode catalyst is formed is the punching part in the depth direction to the interface of the said adhesion layer, masking film, adhesion layer, and 2nd masking film laminated | stacked one by one. A film laminate characterized in that is formed.
請求項1または2に記載のフィルム積層体を用いて製造されたことを特徴とする燃料電池部材。   A fuel cell member manufactured using the film laminate according to claim 1.
JP2014248779A 2014-12-09 2014-12-09 Film laminate and fuel cell member using the same Active JP6551646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014248779A JP6551646B2 (en) 2014-12-09 2014-12-09 Film laminate and fuel cell member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014248779A JP6551646B2 (en) 2014-12-09 2014-12-09 Film laminate and fuel cell member using the same

Publications (2)

Publication Number Publication Date
JP2016110896A true JP2016110896A (en) 2016-06-20
JP6551646B2 JP6551646B2 (en) 2019-07-31

Family

ID=56124662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014248779A Active JP6551646B2 (en) 2014-12-09 2014-12-09 Film laminate and fuel cell member using the same

Country Status (1)

Country Link
JP (1) JP6551646B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120433A (en) * 2004-10-21 2006-05-11 Honda Motor Co Ltd Manufacturing method of electrode structure for fuel cell
JP2006206805A (en) * 2005-01-31 2006-08-10 Fujimori Kogyo Co Ltd Masking film
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120433A (en) * 2004-10-21 2006-05-11 Honda Motor Co Ltd Manufacturing method of electrode structure for fuel cell
JP2006206805A (en) * 2005-01-31 2006-08-10 Fujimori Kogyo Co Ltd Masking film
JP2007035612A (en) * 2005-06-20 2007-02-08 Matsushita Electric Ind Co Ltd Manufacturing method of membrane-electrode assembly

Also Published As

Publication number Publication date
JP6551646B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
CN102823040A (en) Method for manufacturing fuel cell membrane electrode assembly and apparatus for manufacturing fuel cell membrane electrode assembly
US11075395B2 (en) Fuel cell membrane electrode assembly (MEA) with hexagonal boron nitride thin film
JP5814468B2 (en) Solid oxide fuel cell unit cell manufacturing process
JP2012074235A (en) Membrane electrode assembly and production method therefor
JP2007157438A (en) Manufacturing method of cell of fuel cell and manufacturing equipment of the same
JP2008034274A (en) Fuel cell separator, plate for fuel cell separator constitution, and manufacturing method of fuel cell separator
JP2004247294A (en) Power generation element for fuel cell, its manufacturing method, and fuel cell using power generation element
JP5707825B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP2017068908A (en) Manufacturing method for resin frame-attached electrolyte membrane-electrode structure
JP5836060B2 (en) Manufacturing method of fuel cell
JP6551646B2 (en) Film laminate and fuel cell member using the same
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5461361B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP6891397B2 (en) Manufacturing method of membrane electrode assembly for fuel cells
JP2008047333A (en) Manufacturing method of electrolyte membrane, and manufacturing method of membrane electrode assembly
JP5993987B2 (en) Manufacturing method of fuel cell
JP5137008B2 (en) Manufacturing method of membrane / electrode assembly for fuel cell
JP2008147155A (en) Manufacturing method of fuel cell metal separator
JP2006331861A (en) Method and facility for manufacturing fuel cell
JP6079381B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly manufacturing apparatus
JP2014067483A (en) Method for manufacturing solid polymer fuel cell
JP2017010704A (en) Method for manufacturing electrolyte membrane/electrode structure with resin frame
JP6127598B2 (en) Membrane electrode assembly manufacturing apparatus and membrane electrode assembly manufacturing method
JP5461370B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
JP2008181784A (en) Manufacturing method of membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190618

R150 Certificate of patent or registration of utility model

Ref document number: 6551646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250