JP2016109615A - 流量計 - Google Patents

流量計 Download PDF

Info

Publication number
JP2016109615A
JP2016109615A JP2014249041A JP2014249041A JP2016109615A JP 2016109615 A JP2016109615 A JP 2016109615A JP 2014249041 A JP2014249041 A JP 2014249041A JP 2014249041 A JP2014249041 A JP 2014249041A JP 2016109615 A JP2016109615 A JP 2016109615A
Authority
JP
Japan
Prior art keywords
flow
pipe
fluid
flow sensor
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014249041A
Other languages
English (en)
Inventor
池 信一
Shinichi Ike
信一 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2014249041A priority Critical patent/JP2016109615A/ja
Publication of JP2016109615A publication Critical patent/JP2016109615A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】流体の流量を正確に測定可能な流量計を提供すること。
【解決手段】本発明の一側面に係る流量計は、流体が流通する複数の分流路が形成された配管と、前記配管の外壁に配置されるフローセンサであって、いずれかの分流路を流通する流体の流量を測定するフローセンサと、を備え、前記フローセンサが配置される分流路の最狭幅が当該分流路を流れる流体の層流状態を維持可能な限界幅以下である、流量計。
【選択図】図1

Description

本発明は、流体の流量を正確に測定可能な流量計に関する。
従来、ガスや空気等の被測定流体の流量変化を検出するフローセンサとして、少なくとも1つの温度センサ及び熱源が組み込まれてなる半導体モジュールを有する、液体用のフローセンサにおいて、液体を導くパイプを具備し、前記半導体モジュールは前記パイプの外面に設けられており、前記温度センサ及び前記熱源は前記パイプの外面と熱的接触していることを特徴とするフローセンサが知られていた(特許文献1)。
特表2003−532099号公報
ここで、特許文献1のフローセンサにおいて、流体の速度分布は、配管径に応じて変化する。たとえば、配管径が大きくなると、フローセンサ近傍の流体の速度分布勾配が小さくなり、単に配管径を大きくしても流体の正確な流量を測定することができないおそれがある。また、配管径を大きくしていけば流体の流量レンジを上げることができるが、単に配管径を大きくすると、流体の流れが乱れやすく、流体の流量測定の精度が悪化するおそれがある。
そこで、本発明は、流体の流量を正確に測定可能な流量計を提供することを目的の一つとする。
上記課題を解決するために、本発明の一側面に係る流量計は、流体が流通する複数の分流路が形成された配管と、前記配管の外壁に配置されるフローセンサであって、いずれかの分流路を流通する流体の流量を測定するフローセンサと、を備え、前記フローセンサが配置される分流路の最狭幅が当該分流路を流れる流体の層流状態を維持可能な限界幅以下である、流量計。
本発明によれば、フローセンサが配置される分流路の最狭幅が当該分流路を流れる流体の層流状態を維持可能な限界幅以下であることによって、フローセンサが配置される分流路を流れる流体の流量を正確に測定可能な流量計を提供することができる。
本発明の第1実施形態に係る流量計の側面断面図である。 図1のI−I方法から見た断面図である。 本発明の第1実施形態に係るフローセンサの構成例を示す斜視図である。 本発明の第1実施形態に係るフローセンサの図2のII−II方向から見た断面図である。 本発明の第1実施形態に係る流量計の断面図の例を示す図である。同図(a)は、図2に示す流量計の断面図、すなわち、図1のI−I方法から見た断面図である。同図(b)は、同図(a)に示す流量計の配管径よりも大きい配管径の配管を備える流量計の断面図である。 本発明の第2実施形態に係る流量計の断面図の例を示す図である。同図(a)は、配管の軸心に対して垂直な断面が略四角形状の配管を備える流量計の断面図の例を示す図である。同図(b)は、同図(a)に示す流量計の配管の配管径よりも大きい配管径の配管を備える流量計の断面図である。同図(c)は、同図(b)に示す流量計の配管の配管径は同じであるが、当該配管の分流路と異なる分流路(格子状の分流路を含む)の配管を備える流量計の断面図である。
以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。即ち、本発明は、その趣旨を逸脱しない範囲で種々変形(各実施形態を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。
(発明原理)
上記したとおり、流体の速度分布は、配管径に応じて変化する。たとえば、配管径が大きくなると、フローセンサ近傍の流体の速度分布勾配が小さくなるため、流体の流速に対するセンサが検出する流体の速度は低下する。このように、単に配管径を大きくしても流体の正確な流量を測定することができないおそれがある。
また、配管径を大きくしていけば流体の流量レンジを上げることができるが、単に配管径を大きくすると、流体が層流(流速の方向がそろった規則的な流れ)状態から乱流(流体の各小部分が不規則にまじりあい、乱れを含むような流れ)状態に遷移しやすくなるため、流体の流量測定の精度が悪化するおそれがある。
そこで、本願発明者は、鋭意研究の結果、流体が流通する複数の分流路が形成された配管と、いずれかの分流路を流通する流体の流量を測定するフローセンサと、を備えることで、フローセンサが配置される分流路を流れる流体の速度分布勾配が大きく、フローセンサの検出感度が高い流量計であって、フローセンサが配置される分流路を流れる流体の流速分布を一定に保つことができる流量計を開発した。
そして、フローセンサが配置される分流路を流れる流体の流速分布を一定に保つためには、フローセンサが配置される分流路を流れる流体が層流状態を維持可能なように、流量計を構成する必要がある。
ここで、レイノルズ数Reにより層流状態と乱流状態とが規定されている。たとえば、円管内の流体では、Reが2000より小さい場合は層流であり、Reが4000より大きい場合は乱流となる。また、2000以上4000以下の領域では、流体の状態は不安定であって、遷移域と呼ばれる。一般に、流体の状態が層流から乱流に変化するときのレイノルズ数を臨界レイノルズ数という。臨界レイノルズ数は、一般に円管内の流体の場合、約2000である。よって、たとえば、レイノルズ数が2000以下の流体は、層流状態であることがわかる。
つぎに、臨界レイノルズ数Reは以下の(1)式で求められる。Vは、フローセンサが配置される分流路を流れる流体の流速(m/sec)であり、dは、フローセンサが配置される分流路の最狭幅(m)であって、後述する図2においては、「d」で示す長さであり、νは、流体の動粘度(m2/sec)である。

Re=(V・d)/ν・・・(1)
ここで、仮に、フローセンサの流速測定範囲が最大0.5(m/s)とすると、フローセンサが配置される分流路を流れる流体の層流状態を維持可能な限界幅dは、(1)式を変形した、(2)式に、V=0.5、d=2000、νとして、たとえば水の動粘度1.004×10-6(20℃)を代入すると、約4mmとなる。

d=(Re・ν)/V・・・(2)

以上より、フローセンサが配置される分流路の最狭幅が、たとえば約4mm以下であれば、フローセンサが配置される分流路を流れる流体の層流状態を維持することが可能であり、フローセンサが配置される分流路を流れる流体の流量を正確に測定可能な流量計を提供することができる。
なお、本実施形態においては、フローセンサの流速測定範囲が最大0.5(m/s)と仮定したが、フローセンサの流速測定範囲は、フローセンサの設計や能力などによって様々な値を取りうるので、この値に限定されない。また、臨界レイノルズ数についても、2000に限定されるわけでなく、2000より小さい値として1500などが採用されてもよい。
以下、上記原理に鑑み本発明の各実施形態を説明する。第1実施形態では、円管型の配管を備える流量計について説明する。第2実施形態では、配管の軸心に対して垂直な断面が略四角形状の配管を備える流量計について説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る流量計の側面断面図である。図2は、図1のI−I方法から見た断面図である。図1および図2に示すように、流量計1は、例示的に、配管11と、配管11内を流れる流体の流量を測定するフローセンサ51と、を備えて構成されている。
円管状の配管11内には、配管11の軸心に沿って流体の流れを分割する円筒状の仕切板31Aが同心円上に配置されている。また、図1においては不図示であるが、図2に示すように、配管11内には、円筒状の仕切板31Aの外側の流体の流れをさらに分割する仕切板31Bが、配置されている。配管11内に仕切板31A,Bが配置されることで、配管11には、流体が流通する、仕切板31A内側に設けられた分流路21Rおよび仕切板31A外側に設けられた複数の分流路22R〜25Rが形成される。
フローセンサ51は、いずれかの分流路を流通する流体の流量を測定する。フローセンサ51は、たとえば、図2に示すように、分流路24Rに設置され、分流路21R〜25Rのうち分流路24Rを流通する流体の流量を測定する。なお、フローセンサ51は、いずれかの分流路を流通する流体の流量を測定することができればよく、図1および図2の例では、配管11の外壁に設置されている。
図3は、本発明の第1実施形態に係るフローセンサの構成例を示す斜視図である。図4は、本発明の第1実施形態に係るフローセンサの図2のII−II方向から見た断面図である。図3及び図4に示すように、フローセンサ51は、キャビティ102が設けられた基板101と、基板101上にキャビティ102を覆うように配置された絶縁膜103と、絶縁膜103に設けられたヒータ104と、ヒータ104より上流側に設けられた上流側測温抵抗素子105と、ヒータ104より下流側に設けられた下流側測温抵抗素子106と、上流側測温抵抗素子105より上流側に設けられた周囲温度センサ107と、を有している。
絶縁膜103のキャビティ102を覆う部分は、断熱性のダイアフラムを構成している。周囲温度センサ107は、配管11を流通する被測定流体の温度を測定する。ヒータ104は、キャビティ102を覆う絶縁膜103の略中心に配置されており、配管11を流通する被測定流体を、周囲温度センサ107が計測した温度よりも一定温度高くなるように加熱する。上流側測温抵抗素子105はヒータ104より上流側の温度を検出するために用いられ、下流側測温抵抗素子106はヒータ104より下流側の温度を検出するために用いられる。
上記のとおり、本実施形態では、フローセンサ51は、配管11の外壁に接して配置されており、配管11の肉厚は、熱伝導の障害に殆どならない程度に薄いので、ヒータ105に加えられた熱は管状部材11内を流れる被測定流体に及ぼされ、被測定流体の温度が上流側測温抵抗素子105や下流側測温抵抗素子106によって検出されるようになっている。ここで、配管11内における被測定流体の流量が零の場合、ヒータ104で加えられた熱は、上流方向と下流方向へ対称的に拡散する。従って、上流側測温抵抗素子105の温度と下流側測温抵抗素子106の温度は等しくなり、上流側測温抵抗素子105の電気抵抗と下流側測温抵抗素子106の電気抵抗は等しくなる。これに対し、配管11内における被測定流体が上流側から下流側へと流通している場合、ヒータ104で加えられた熱は下流方向に運ばれる(運搬効果)。従って、上流側測温抵抗素子105の温度よりも下流側測温抵抗素子106の温度が高くなり、上流側測温抵抗素子105の電気抵抗と下流側測温抵抗素子106の電気抵抗との間に差が生じる。この電気抵抗の差は、配管11内を流通する被測定流体の速度や流量と相関関係があることが知られている。このため、上流側測温抵抗素子105の電気抵抗と下流側測温抵抗素子106の電気抵抗との差に基づいて、配管11内を流通する被測定流体の速度や流量を測定(算出)することができる。
なお、基板101の材料としては、シリコン(Si)等が使用可能である。絶縁膜103の材料としては、酸化ケイ素(SiO2)等が使用可能である。キャビティ102は、異方性エッチング等により形成される。また、ヒータ104、上流側測温抵抗素子105、下流側測温抵抗素子106及び周囲温度センサ107の各々の材料としては、白金(Pt)等が使用可能であり、これらは、リソグラフィ法等により形成可能である。
図5は、本発明の第1実施形態に係る流量計の断面図の例を示す図である。図5(a)は、図2に示す流量計の断面図、すなわち、図1のI−I方法から見た断面図である。図5(b)は、図5(a)に示す流量計の配管径よりも大きい配管径の配管を備える流量計の断面図である。図5(a)および(b)に示すように、図5(a)の流量計1Aと、図5(b)の流量計1Bと、は配管径に大きな違いがあるが、フローセンサ51が配置される分流路24Rの最狭幅d1が共通しており、当該最狭幅d1が当該分流路24Rを流れる流体の層流状態を維持可能な限界幅以下となるように構成されている。この場合、流量計1Aおよび流量計1Bのいずれを採用しても、フローセンサ51が配置される分流路24Rを流れる流体の流速分布を一定に保つことができ、流体の流量を正確に測定可能である。
なお、本実施形態においては、配管11の軸心に対して垂直な断面が円形の配管11を備える流量計1Aおよび1Bを挙げて説明を行ったが、上記断面が楕円形状である流量計であってもよい。
(効果)
第1実施形態によれば、フローセンサが配置される分流路の最狭幅が当該分流路を流れる流体の層流状態を維持可能な限界幅以下であることによって、配管径の大きさによらずフローセンサが配置される分流路を流れる流体の流量を正確に測定可能な流量計を提供することができる。
(第2実施形態)
図6は、本発明の第2実施形態に係る流量計の断面図の例を示す図である。特に、図6(a)は、配管の軸心に対して垂直な断面が略四角形状の配管を備える流量計の断面図の例を示す図である。図6(b)は、図6(a)に示す流量計の配管の配管径よりも大きい配管径の配管を備える流量計の断面図である。図6(c)は、図6(b)に示す流量計の配管の配管径は同じであるが、当該配管の分流路と異なる分流路(格子状の分流路を含む)の配管を備える流量計の断面図である。以下では、第1実施形態と異なる点について特に説明し、他の点については説明を省略する。
図6(a)に示すように、流量計1Cの配管11内には、薄板上の仕切板31が3枚、等間隔に配置されている。そして、当該仕切板31が配置されることによって、配管11内には、4つの分流路41R〜44Rが形成される。フローセンサ51は、分流路41Rに設置され、分流路41R〜44Rのうち分流路41Rを流通する流体の流量を測定する。
図6(b)に示すように、流量計1Dは、流量計1Cの配管11の配管径よりも大きい配管径の配管11を備える。また、流量計1Dの配管11内には、薄板上の仕切板31が4枚、垂直方向に等間隔に配置されている。そして、当該仕切板31が配置されることによって、配管11内には、5つの分流路41R〜45Rが形成される。フローセンサ51は、分流路41Rに設置され、分流路41R〜45Rのうち分流路41Rを流通する流体の流量を測定する。
図6(c)に示すように、流量計1Eは、流量計1Dの配管11の配管径と同一の配管径の配管11を備える。また、流量計1Eの配管11内には、流量計1Dの配管11内と同様に、薄板状の仕切板31により分流路41Rが形成されており、配管11において上記分流路41Rの上方には、複数の薄板状の仕切板31により複数の格子状の分流路46Rが形成されている。
図6(a)乃至(c)に示すように、流量計1Cと、流量計1D又は流量計1Eと、は配管径に大きな違いがあるが、フローセンサ51が配置される分流路41Rの最狭幅d2が共通しており、当該最狭幅d2が当該分流路41Rを流れる流体の層流状態を維持可能な限界幅以下となるように構成されている。
また、図6(b)および(c)に示すように、流量計1Dの配管11の分流路42R〜45Rと、流量計1Eの配管11の分流路46Rと、はそれらの形状が大きく異なっているが、フローセンサ51が配置される分流路41Rの最狭幅d2が共通しており、当該最狭幅d2が当該分流路41Rを流れる流体の層流状態を維持可能な限界幅以下となるように構成されている。
このように、流量計1C乃至流量計1Eのいずれを採用しても、フローセンサ51が配置される分流路41Rを流れる流体の流速分布を一定に保つことができ、流体の流量を正確に測定可能である。
なお、本実施形態においては、配管11の軸心に対して垂直な断面が略四角形状の配管11を備える流量計1C乃至1Eを挙げて説明を行ったが、上記断面には特に制限はなく、上記断面が他の多角形状である流量計であってもよい。
(効果)
第2実施形態によれば、配管11の軸心に対して垂直な断面が多角形状の配管11を備える流量計においても、フローセンサが配置される分流路の最狭幅が当該分流路を流れる流体の層流状態を維持可能な限界幅以下であることによって、配管径の大きさによらずフローセンサが配置される分流路を流れる流体の流量を正確に測定可能な流量計を提供することができる。
(他の実施形態)
本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するものではない。本発明はその趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。
上記各実施形態において、配管11内に、配管11の軸心に沿って流体の流れを分割する円筒状の仕切板31Aが同心円上に配置される例、薄板状の仕切板31が配置される例などを説明したが、仕切板31の形状に特に制限はなく、たとえば、螺旋状であってもよい。また、上記実施形態において、仕切板31が複数配置される例を説明したが、仕切板31の枚数(個数)に特に制限はなく、一以上であればよい。
なお、流量計1、1Aおよび1Bの配管11に形成される分流路22R〜25R、流量計1Cの配管11に形成される各分流路41R〜44R、流量計1Dの配管11に形成される各分流路41R〜45R、および流量計1Eの配管11に形成される各分流路46Rのそれぞれは仕切板によって必ずしも等分されている必要はない。
また、各実施形態において、フローセンサ51は、配置された分流路を流通する流体のみの流量を測定するように構成されている。これは、たとえば、フローセンサ51が複数の分流路を流れる流体の流量を同時に測定しようとすると、各分流路を流れる流体の流量を正確に測定することが困難だからであり、上記のとおり構成されていれば、測定対象の流体の流量を正確に測定することができる。
1,1A〜E 流量計
11 配管
21R〜25R 分流路
31,31A,31B 流路部材
41R〜46R 分流路
51 フローセンサ
101 基板
102 キャビティ
103 絶縁膜
104 ヒータ
105 上流側測温抵抗素子
106 下流側測温抵抗素子
107 周囲温度センサ

Claims (2)

  1. 流体が流通する複数の分流路が形成された配管と、
    前記配管の外壁に配置されるフローセンサであって、いずれかの分流路を流通する流体の流量を測定するフローセンサと、を備え、
    前記フローセンサが配置される分流路の最狭幅が当該分流路を流れる流体の層流状態を維持可能な限界幅以下である、
    流量計。
  2. 前記限界幅は、以下の式で導出される、請求項1に記載の流量計。

    d=(Re・ν)/V

    d:限界幅
    Re:臨界レイノルズ数
    V:流体の最大流速
    ν:流体の動粘度
JP2014249041A 2014-12-09 2014-12-09 流量計 Pending JP2016109615A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249041A JP2016109615A (ja) 2014-12-09 2014-12-09 流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249041A JP2016109615A (ja) 2014-12-09 2014-12-09 流量計

Publications (1)

Publication Number Publication Date
JP2016109615A true JP2016109615A (ja) 2016-06-20

Family

ID=56123754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249041A Pending JP2016109615A (ja) 2014-12-09 2014-12-09 流量計

Country Status (1)

Country Link
JP (1) JP2016109615A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods
WO2021086699A1 (en) * 2019-10-28 2021-05-06 Edwards Lifesciences Corporation In-line intravenous flow probe utilizing thermal mass flow characterization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801872B1 (en) 2019-08-06 2020-10-13 Surface Solutions Inc. Methane monitoring and conversion apparatus and methods
WO2021086699A1 (en) * 2019-10-28 2021-05-06 Edwards Lifesciences Corporation In-line intravenous flow probe utilizing thermal mass flow characterization

Similar Documents

Publication Publication Date Title
JP5556850B2 (ja) 微小流量センサ
JP5652315B2 (ja) 流量測定装置
US20090164163A1 (en) Integrated micromachined thermal mass flow sensor and methods of making the same
US6945106B2 (en) Mass flowmeter
CN104215286B (zh) 流量计
CN109084853B (zh) 一种轴向多声道式超声流量测量装置
JP2019035640A (ja) 熱式流量計
JP2009524058A (ja) 段付き取入口を有する縮小口径渦流量計
JP5336640B1 (ja) 熱式流量計
JP2016109615A (ja) 流量計
US10605636B2 (en) Flowmeter
Arlit et al. Flow rate measurement in flows with asymmetric velocity profiles by means of distributed thermal anemometry
JP2009014533A (ja) 熱式流量計
JP2020020736A (ja) 層流型差圧流量計
JP2009288085A (ja) 熱式流量計
JPH11211525A (ja) フローセンサを利用した流量計
Hua et al. Local wall shear stress measurements with a thin plate submerged in the sublayer in wall turbulent flows
RU2644457C1 (ru) Устройство для измерения объемного расхода газа
JP2019082346A (ja) 熱式流量計
JP2020106473A (ja) 熱式流量計
JP2023165580A (ja) 熱線式流量計
Tan et al. Characteristics of on-wall in-tube thermal flexible mass-flow sensors
JP5580396B2 (ja) 流体センサ及び流体測定装置
Schomburg et al. Flow Sensors
JP5273950B2 (ja) 流量計