JP2016109561A - Cure degree measurement device and cure degree measurement method - Google Patents

Cure degree measurement device and cure degree measurement method Download PDF

Info

Publication number
JP2016109561A
JP2016109561A JP2014247419A JP2014247419A JP2016109561A JP 2016109561 A JP2016109561 A JP 2016109561A JP 2014247419 A JP2014247419 A JP 2014247419A JP 2014247419 A JP2014247419 A JP 2014247419A JP 2016109561 A JP2016109561 A JP 2016109561A
Authority
JP
Japan
Prior art keywords
peak top
degree
top wavelength
sample
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014247419A
Other languages
Japanese (ja)
Other versions
JP6417906B2 (en
Inventor
晶子 古賀
Akiko Koga
晶子 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2014247419A priority Critical patent/JP6417906B2/en
Priority to CN201510834232.1A priority patent/CN105675552B/en
Publication of JP2016109561A publication Critical patent/JP2016109561A/en
Application granted granted Critical
Publication of JP6417906B2 publication Critical patent/JP6417906B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cure degree measurement device and a cure degree measurement method that are capable of measuring a cure degree of an adhesive in a non destructive manner, and uses a peak top wavelength of fluorescent light to confirm the cure degree, thereby enabling the measurement of the cure degree to be performed even in a case when the adhesive has variation in a film thickness.SOLUTION: The cure degree measurement device is provided with a peak top wavelength calculation part that calculates a peak top wavelength on the basis of fluorescent spectral data, and a cure degree calculation part that calculates the cure degree on the basis of the peak top wavelength calculated by the peak top wavelength calculation part. The cure degree measurement device uses the peak top wavelength calculation part to calculate a peak top wavelength of a measurement sample before curing with a cure degree of 0% and a peak top wavelength of the measurement sample after complete curing with a cure degree of 100% and uses the cure degree calculation part to obtain a relational expression between each peak top wavelength and the cure degree. The cure degree measurement device introduces, in the relational expression, a peak top wavelength of a cure degree measurement sample with an unknown cure degree to calculate the cure degree of the sample corresponding to the peak top wavelength.SELECTED DRAWING: Figure 1

Description

本発明は、蛍光を利用して硬化型接着剤の硬化度を測定する硬化度測定装置及び硬化度測定方法に関する。   The present invention relates to a curing degree measuring apparatus and a curing degree measuring method for measuring the curing degree of a curable adhesive using fluorescence.

接着剤の硬化度を測定する方法として、FT−IRを使用する方法(特許文献1〜3)や、DSCを使用する方法が提案されている(特許文献4、5)。   As methods for measuring the degree of cure of the adhesive, methods using FT-IR (Patent Documents 1 to 3) and methods using DSC (Patent Documents 4 and 5) have been proposed.

特開昭62−103540号公報Japanese Patent Laid-Open No. 62-103540 特開2007−137041号公報JP 2007-137041 A 特開2007−248431号公報JP 2007-248431 A 特開2005−26234号公報JP 2005-26234 A 特開2012−54582号公報JP 2012-54582 A 特開2013−160753号公報JP 2013-160753 A

特許文献1〜3の方法は、接着剤の硬化に伴う化学構造の変化をモニターでき、有用な方法であるが、FT−IRのピークを読み取り、何れのピークが変化するのかを、材料ごとに考察する必要がある。
また、接着剤のように薄い膜であると、基材のピークも読み取ってしまうことがあり、肝心な接着剤のピークの読み取りが困難になる場合もある。
The methods of Patent Documents 1 to 3 are useful methods that can monitor changes in the chemical structure associated with the curing of the adhesive, but read the FT-IR peak and determine which peak changes for each material. It is necessary to consider.
In addition, when the film is thin like an adhesive, the peak of the base material may be read, and it may be difficult to read the peak of the important adhesive.

特許文献4、5の方法では、高感度のDSCを用いても1mgのサンプルが必要であるため、汎用性が低い。例えば、製品上の接着剤の硬化度を測定する場合などにおいては、完全に接着している基材から、1mgのサンプルをかき集めなければならず、容易に実施できない。特許文献6では紫外線を照射し、硬化度を測定しているが、蛍光量でモニターしている。しかしながら、蛍光量は膜厚にも依存する。よって、硬化度を正しくみるには膜厚が均一である必要がある。   In the methods of Patent Documents 4 and 5, since a 1 mg sample is required even when a highly sensitive DSC is used, the versatility is low. For example, when measuring the degree of cure of an adhesive on a product, a 1 mg sample must be collected from a substrate that is completely adhered, and cannot be easily implemented. In Patent Document 6, ultraviolet rays are irradiated and the degree of cure is measured, but the amount of fluorescence is monitored. However, the amount of fluorescence also depends on the film thickness. Therefore, the film thickness needs to be uniform in order to correctly determine the degree of cure.

本発明の課題は、従来技術の問題であるIRのような基材ピークを読み取る不確実さをなくし、さらにサンプルのかき集めを不要にし、非破壊で接着剤の硬化度を測定できる。さらに、蛍光のピークトップ波長で硬化度を確認するため、接着剤の膜厚のばらつきがある場合でも硬化度を測定できる新規な硬化度測定装置及び硬化度測定方法を提供することにある。   An object of the present invention is to eliminate the uncertainty of reading a substrate peak such as IR, which is a problem of the prior art, further eliminates the need for collecting samples, and measures the degree of cure of the adhesive in a non-destructive manner. Another object of the present invention is to provide a novel degree-of-curing-degree measuring apparatus and degree-of-curing-measuring method capable of measuring the degree of hardening even when there is a variation in the film thickness of the adhesive in order to confirm the degree of hardening at the peak top wavelength of fluorescence.

また本発明の他の課題は、以下の記載によって明らかとなる。   Other problems of the present invention will become apparent from the following description.

上記課題は、以下の各発明によって解決される。   The above problems are solved by the following inventions.

(請求項1)
硬化度測定サンプルの接着剤部位に、紫外線又は可視光線を照射する照射部と、
前記照射部で照射された紫外線又は可視光線を受けて発光する蛍光を入光するプローブと、
前記プローブから導入された蛍光から蛍光スペクトルデータを読取部と、
該読取部で読み取られた前記蛍光スペクトルデータからピークトップ波長を算出するピークトップ波長算出部と、
該ピークトップ波長算出部で算出されたピークトップ波長から硬化度を算出する硬化度算出部とを備え、
前記ピークトップ波長算出部で、硬化前の硬化度0%の測定サンプルのピークトップ波長と、完全硬化後の硬化度100%の測定サンプルのピークトップ波長とを算出し、
前記硬化度算出部で、前記各々のピークトップ波長と硬化度との下記関係式(1)を求め、

Figure 2016109561

[ここで、式中、Aは未知のサンプルのピークトップ波長(nm)であり、X0%は硬化度0%のサンプルのピークトップ波長(nm)であり、X100%は硬化度100%のサンプルのピークトップ波長(nm)である。]
前記関係式(1)に、硬度が未知の硬化度測定サンプルのピークトップ波長を導入して、該ピークトップ波長に対応する前記サンプルの硬化度を算出することを特徴とする硬化度測定装置。 (Claim 1)
An irradiation part for irradiating ultraviolet rays or visible light to the adhesive part of the sample for measuring the degree of cure;
A probe that receives fluorescence emitted by receiving ultraviolet light or visible light irradiated by the irradiation unit; and
A fluorescence spectrum data reading unit from fluorescence introduced from the probe; and
A peak top wavelength calculation unit for calculating a peak top wavelength from the fluorescence spectrum data read by the reading unit;
A curing degree calculation unit that calculates a curing degree from the peak top wavelength calculated by the peak top wavelength calculation unit,
In the peak top wavelength calculation unit, calculate the peak top wavelength of the measurement sample with a cure degree of 0% before curing and the peak top wavelength of the measurement sample with a cure degree of 100% after complete curing,
In the curing degree calculation unit, the following relational expression (1) between each peak top wavelength and the curing degree is obtained,
Figure 2016109561

[Wherein, A is the peak top wavelength (nm) of an unknown sample, X 0% is the peak top wavelength (nm) of a sample with a cure degree of 0%, and X 100% is the cure degree of 100%. The peak top wavelength (nm) of the sample. ]
A curing degree measuring apparatus that introduces a peak top wavelength of a curing degree measurement sample whose hardness is unknown to the relational expression (1) and calculates a curing degree of the sample corresponding to the peak top wavelength.

(請求項2)
硬化度測定サンプルの接着剤部位に、照射部から紫外線又は可視光線を照射し、
次いで、照射された紫外線又は可視光線を受けて発光する蛍光をプローブに入光し、
次いで、前記プローブから導入された蛍光から蛍光スペクトルデータを読取部で読み取り、
次いで、読み取られた前記蛍光スペクトルデータからピークトップ波長算出部で、硬化前の硬化度0%の測定サンプルのピークトップ波長と、完全硬化後の硬化度100%の測定サンプルのピークトップ波長とを算出し、
前記各々のピークトップ波長と硬化度との下記関係式(1)を硬化度算出部で求め、

Figure 2016109561

[ここで、式中、Aは未知のサンプルのピークトップ波長(nm)であり、X0%は硬化度0%のサンプルのピークトップ波長(nm)であり、X100%は硬化度100%のサンプルのピークトップ波長(nm)である。]
前記関係式(1)に、硬度が未知の硬化度測定サンプルのピークトップ波長を導入して、該ピークトップ波長に対応する前記サンプルの硬化度を算出することを特徴とする硬化度測定方法。 (Claim 2)
Irradiate ultraviolet rays or visible light from the irradiated part to the adhesive part of the sample for measuring the degree of cure,
Next, the probe emits fluorescence that emits light by receiving irradiated ultraviolet light or visible light,
Next, the fluorescence spectrum data is read from the fluorescence introduced from the probe by a reading unit,
Next, the peak top wavelength of the measurement sample with a curing degree of 0% before curing and the peak top wavelength of the measurement sample with a curing degree of 100% after complete curing are calculated by the peak top wavelength calculation unit from the read fluorescence spectrum data. Calculate
The following relational expression (1) between each of the peak top wavelengths and the curing degree is obtained by a curing degree calculation unit,
Figure 2016109561

[Wherein, A is the peak top wavelength (nm) of an unknown sample, X 0% is the peak top wavelength (nm) of a sample with a cure degree of 0%, and X 100% is the cure degree of 100%. The peak top wavelength (nm) of the sample. ]
A curing degree measuring method, wherein a peak top wavelength of a curing degree measurement sample whose hardness is unknown is introduced into the relational expression (1), and a curing degree of the sample corresponding to the peak top wavelength is calculated.

本発明によれば、従来技術の問題であるIRのような基材ピークを読み取る不確実さをなくし、さらにサンプルのかき集めを不要にし、非破壊で接着剤の硬化度を測定でき、かつ接着剤の膜厚に依存しない新規な硬化度測定装置及び硬化度測定方法を提供することができる。   According to the present invention, the uncertainty of reading a substrate peak such as IR, which is a problem of the prior art, is eliminated, the collection of the sample is unnecessary, the degree of cure of the adhesive can be measured nondestructively, and the adhesive It is possible to provide a novel curing degree measuring device and a curing degree measuring method that do not depend on the thickness of the film.

本発明の硬化度測定方法を実施するための硬化度測定装置の一例を説明する図The figure explaining an example of the hardening degree measuring apparatus for enforcing the hardening degree measuring method of this invention 本発明の実施形態に係るPCの機能ブロック図Functional block diagram of a PC according to an embodiment of the present invention 実施例における蛍光スペクトルを示す図The figure which shows the fluorescence spectrum in an Example 比較例におけるFT−IRスペクトルを示す図The figure which shows the FT-IR spectrum in a comparative example

以下に、本発明を実施するための形態について詳しく説明する。   Below, the form for implementing this invention is demonstrated in detail.

図1は、本発明の硬化度測定方法を実施するための硬化度測定装置の一例を説明する図である。   FIG. 1 is a diagram illustrating an example of a curing degree measuring apparatus for carrying out the curing degree measuring method of the present invention.

図1において、1は照射部であり、該照射部1としては、レーザー光源が好ましく用いられる。レーザーは発振される光の波長によって分類することができ、本発明では、可視光線を生成するレーザーや紫外線を生成するレーザーを用いることができる。   In FIG. 1, reference numeral 1 denotes an irradiation unit, and a laser light source is preferably used as the irradiation unit 1. Lasers can be classified according to the wavelength of the oscillated light. In the present invention, a laser that generates visible light or a laser that generates ultraviolet rays can be used.

硬化型の接着剤は、格別限定されず、熱硬化性接着剤でも、シランカップリング剤でもよい。熱硬化性接着剤としては、例えば熱硬化型フェノール樹脂接着剤、熱硬化型エポキシ樹脂接着剤等を用いることができる。シランカップリング剤としては、例えばアミノシラン、ビニルシラン等を用いることができる。   The curable adhesive is not particularly limited, and may be a thermosetting adhesive or a silane coupling agent. As the thermosetting adhesive, for example, a thermosetting phenol resin adhesive, a thermosetting epoxy resin adhesive, or the like can be used. As the silane coupling agent, for example, aminosilane, vinylsilane or the like can be used.

レーザー光源1から発射された紫外線又は可視光線からなる励起光は、光ファイバ2を介して、プローブ3の先端にまで伝播し、出射する。光ファイバ2は励起光を低損失で伝送できるものであれば限定されない。   Excitation light composed of ultraviolet light or visible light emitted from the laser light source 1 propagates to the tip of the probe 3 through the optical fiber 2 and exits. The optical fiber 2 is not limited as long as it can transmit pumping light with low loss.

プローブ3は、硬化型接着剤塗布サンプル4と距離を一定に保つために45度の角度でセットされており、プローブの角が硬化型接着剤塗布サンプル4と接触している必要がある。   The probe 3 is set at an angle of 45 degrees in order to keep the distance from the curable adhesive-coated sample 4 constant, and the corner of the probe needs to be in contact with the curable adhesive-coated sample 4.

プローブ3に内蔵された光ファイバ2から硬化型接着剤塗布サンプル4に励起光が照射されると、硬化型接着剤塗布サンプル4から蛍光が発生する。発光の原理は、たとえば熱硬化型フェノール樹脂接着剤の場合、ベンゼン環や不飽和炭素等の構造に起因し、光照射により電子が励起され、その電子が基底状態に戻る際に蛍光を発する。   When excitation light is applied to the curable adhesive-coated sample 4 from the optical fiber 2 built in the probe 3, fluorescence is generated from the curable adhesive-coated sample 4. The principle of light emission is, for example, in the case of a thermosetting phenol resin adhesive, due to the structure of a benzene ring, unsaturated carbon, etc., electrons are excited by light irradiation, and emit fluorescence when the electrons return to the ground state.

この蛍光は、プローブ3に内蔵された光ファイバ5に入射するが、同時に励起光を取り込むことになる。   This fluorescence is incident on the optical fiber 5 built in the probe 3, but simultaneously takes in the excitation light.

その励起光を除去するために、ロングバスフィルタ6が設けられ、光ファイバ7には硬化度測定用の蛍光のみが通過する。この蛍光は分光器8に導入される。   In order to remove the excitation light, a long bath filter 6 is provided, and only the fluorescence for measuring the degree of cure passes through the optical fiber 7. This fluorescence is introduced into the spectrometer 8.

分光器8では蛍光の光を波長毎に分散させる。分光器8は、図示しないが、入射スリットと回折格子を備える。   The spectroscope 8 disperses the fluorescent light for each wavelength. Although not shown, the spectroscope 8 includes an entrance slit and a diffraction grating.

なお、レーザー光源、プローブ、ロングパスフィルタ、分光器は、遮光条件下に設けられることが好ましく、図示しない暗箱内に設置されていることが好ましい。クラス3B以上のレーザーを使用する際には特に暗箱のサンプル出し入れ部(不図示)に、セイフティドアスイッチが設けられることが好ましく、ドアを開けると、光照射が自動的に遮断され作業者の安全を確保できるようにすることが好ましい。   The laser light source, the probe, the long pass filter, and the spectroscope are preferably provided under light shielding conditions, and are preferably installed in a dark box (not shown). When using a laser of class 3B or higher, it is preferable to provide a safety door switch at the sample taking-in / out part (not shown) of the dark box. When the door is opened, the light irradiation is automatically shut off and the operator is safe. Is preferably ensured.

次に、分光器8に導入された蛍光は、波長分散されてPC9に送られる。   Next, the fluorescence introduced into the spectroscope 8 is wavelength-dispersed and sent to the PC 9.

以下、PC9の構成を図2に基づいて説明する。図2は、本発明の実施態様に係るPC9の機能ブロック図であり、図2に示すように、PC9は、読取部91と、ピークトップ波長算出部92と、硬化度演算部93とを備える。   Hereinafter, the configuration of the PC 9 will be described with reference to FIG. FIG. 2 is a functional block diagram of the PC 9 according to the embodiment of the present invention. As shown in FIG. 2, the PC 9 includes a reading unit 91, a peak top wavelength calculation unit 92, and a curing degree calculation unit 93. .

次に、読取部91は、波長分散された蛍光から蛍光スペクトルデータを読み取る。   Next, the reading unit 91 reads fluorescence spectrum data from the wavelength-dispersed fluorescence.

次いで、ピークトップ波長算出部92は、読取部91で読み取られた蛍光スペクトルデータからピークトップ波長を算出する。ピークトップの求め方は最大値を求める、微分して求めるなど、どの手法を使ってもよい。   Next, the peak top wavelength calculation unit 92 calculates the peak top wavelength from the fluorescence spectrum data read by the reading unit 91. Any method may be used for obtaining the peak top, such as obtaining the maximum value or differentiating.

具体的には、ピークトップ波長算出部92は、硬化前の硬化度0%の測定サンプルのピークトップ波長と、完全硬化後の硬化度100%の測定サンプルのピークトップ波長を算出する。   Specifically, the peak top wavelength calculation unit 92 calculates the peak top wavelength of a measurement sample having a degree of cure of 0% before curing and the peak top wavelength of a measurement sample having a degree of cure of 100% after complete curing.

次いで、硬化度算出部93は、算出された二つのピークトップ波長と、各々に対応する硬化度(0%、100%)から下記関係式(1)を求める。これより未知のサンプルの硬化度を求めることが可能である。   Next, the curing degree calculation unit 93 obtains the following relational expression (1) from the calculated two peak top wavelengths and the corresponding curing degrees (0%, 100%). From this, it is possible to determine the degree of cure of an unknown sample.

Figure 2016109561
Figure 2016109561

ここで、前記関係式(1)において、Aは未知のサンプルのピークトップ波長(nm)であり、X0%は硬化度0%のサンプルのピークトップ波長(nm)であり、X100%は硬化度100%のサンプルのピークトップ波長(nm)である。また、硬化が飽和しない場合はある一定の波長を硬化度100%と設定することも可能である。
この点は後述の実施例によって例証されている。
Here, in the relational expression (1), A is a peak top wavelength (nm) of an unknown sample, X 0% is a peak top wavelength (nm) of a sample having a curing degree of 0%, and X 100% is It is a peak top wavelength (nm) of a sample having a curing degree of 100%. In addition, when the curing does not saturate, it is possible to set a certain wavelength as a curing degree of 100%.
This is illustrated by the examples described below.

硬化度未知のサンプルについて、ピークトップ波長と硬化度(%)の間に関係式を簡単に作成できるので、ピークトップ波長を測定できれば、硬化度(%)は測定できる。   Since a relational expression can be easily created between the peak top wavelength and the degree of cure (%) for a sample with an unknown degree of cure, the degree of cure (%) can be measured if the peak top wavelength can be measured.

本発明では、焼付け前の硬化型接着剤(即ち、未硬化の硬化型接着剤)を、硬化度0%のサンプルとし、完全に焼付けを行った硬化型接着剤(即ち、硬化を飽和させた硬化型接着剤、または硬化が飽和しない場合はある一定に硬化させた接着剤)を、硬化度100%のサンプルとして、各々のサンプルについて、ピークトップ波長を算出している。   In the present invention, the curable adhesive before baking (that is, the uncured curable adhesive) was used as a sample having a curing degree of 0%, and the curable adhesive that was completely baked (that is, the curing was saturated). The peak top wavelength is calculated for each sample using a curable adhesive or an adhesive cured to a certain degree when the curing does not saturate as a sample having a curing degree of 100%.

焼き付け条件(温度や時間など)を変えて、種々の硬化度のサンプルについても、ピークトップ波長さえわかれば、関係式に基づき、硬化度(%)が判明する。   By changing the baking conditions (temperature, time, etc.), the degree of cure (%) can be determined based on the relational expression as long as the peak top wavelength is known.

以上に説明した本発明の硬化度測定装置及び硬化度測定方法によれば、硬化型接着剤の硬化度を、光照射することにより簡単に、測定対象を非破壊でも測定できる。   According to the curing degree measuring apparatus and the curing degree measuring method of the present invention described above, the degree of cure of the curable adhesive can be measured easily and non-destructively by light irradiation.

蛍光測定は、従来用いられていたFT−IRやDSCと比較して、機器分析等の高い専門知識を要さず、手軽に実施できるメリットがある。   Compared with conventionally used FT-IR and DSC, the fluorescence measurement has an advantage that it can be easily carried out without requiring high expertise such as instrumental analysis.

従って、本発明の硬化度測定装置及び硬化度測定方法によれば、例えば、硬化型接着剤として接着剤を用いた焼付け工程などに、容易に組み込むことができ、当該工程内で容易に硬化度を確認できる。接着剤を硬化させた後の製品から、接着剤の硬化度を知ることができ、焼付けが正常に行われたかの判断にもなる。   Therefore, according to the curing degree measuring apparatus and the curing degree measuring method of the present invention, for example, it can be easily incorporated into a baking process using an adhesive as a curable adhesive, and the curing degree can be easily incorporated in the process. Can be confirmed. The degree of cure of the adhesive can be known from the product after the adhesive has been cured, and it can be judged whether or not the baking has been performed normally.

本発明によれば、例えば、オイルシール、ガスケット、バルブ、ダストカバーなどのような熱硬化型接着剤を使用する自動車部品等の部品の製造管理を好適に行うことができる。   According to the present invention, it is possible to suitably perform production management of parts such as automobile parts using a thermosetting adhesive such as an oil seal, a gasket, a valve, and a dust cover.

また、これらに限定されず、例えば、タイヤ、靴、ベルト、医療関係製品、塗料などのような熱硬化型接着剤を使用する多岐にわたる産業全般において、製造管理を好適に行うことができる。   Moreover, it is not limited to these, For example, manufacture control can be performed suitably in the wide variety of industries which use thermosetting adhesives, such as a tire, shoes, a belt, a medical-related product, a coating material.

また、蛍光スペクトルの取得、あるいはピークトップ波長の取得には、公知の蛍光測定装置を用いることもできる。   A known fluorescence measuring device can also be used for acquiring the fluorescence spectrum or the peak top wavelength.

以下に、本発明の実施例について説明するが、本発明はかかる実施例により限定されない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

実施例1
1.関係式の作成実験
下記の測定例1と8から、関係式を求める。
Example 1
1. Relational Expression Creation Experiment From the following measurement examples 1 and 8, a relational expression is obtained.

<測定例1>
関係式の算出に際し、膜厚の違いによる熱影響を避けるために、スピンコーターを利用し、基材の表面にフェノール樹脂系接着剤(固形分濃度20wt%のロードファーイースト社製ケムロック202A)を均一に塗布し、室温(30℃)で乾燥した後、250℃、6.5分焼付けを行った。
<Measurement Example 1>
In calculating the relational expression, in order to avoid the thermal effect due to the difference in film thickness, a spin coater is used, and a phenol resin adhesive (Chemlock 202A manufactured by Road Far East Co., Ltd. having a solid content concentration of 20 wt%) is applied to the surface of the substrate. After uniformly coating and drying at room temperature (30 ° C.), baking was performed at 250 ° C. for 6.5 minutes.

かかる焼付け条件により得られた接着剤の硬化度を、硬化度100%としてピークトップ波長を測定する。
このピークトップ波長以上のピークトップが得られた場合は、硬化度100%としている。
The peak top wavelength is measured with the degree of cure of the adhesive obtained under such baking conditions as 100% cure.
When a peak top of this peak top wavelength or more is obtained, the degree of cure is 100%.

その後、焼付け後の接着剤に、図1に示す硬化度測定装置を用いて405nmの励起光を照射し、それにより発光した蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Then, the adhesive after baking was irradiated with excitation light of 405 nm using the curing degree measuring apparatus shown in FIG. 1, and the spectrum of the emitted fluorescence was thereby obtained. The result is shown in FIG. The peak top wavelength is shown in Table 1.

<測定例8>
測定例1において、室温乾燥(30℃)した後、焼付けを行わなかった。即ち、この場合の硬化度を0%とする。
<Measurement Example 8>
In Measurement Example 1, baking was not performed after room temperature drying (30 ° C.). That is, the curing degree in this case is set to 0%.

その後、測定例1と同様に、接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

上記の測定例1と8から、関係式(1)のX0%及びX100%が得られる。 From the above measurement examples 1 and 8, X 0% and X 100% of the relational expression (1) are obtained.

2.未知の硬化度(%)の測定と算出
<測定例2>
測定例1の条件を、室温乾燥した後、230℃、6.5分焼付けに変えた。
2. Measurement and calculation of unknown degree of cure (%) <Measurement Example 2>
The condition of Measurement Example 1 was changed to baking at 230 ° C. for 6.5 minutes after drying at room temperature.

その後、測定例1と同様に、焼付け後の接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive after baking was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

関係式(1)より、測定例2のピークトップ波長から、硬化度は100%となる。   From the relational expression (1), the curing degree is 100% from the peak top wavelength of Measurement Example 2.

<測定例3>
測定例1の条件を、室温乾燥した後、210℃、6.5分焼付けに変えた。
<Measurement Example 3>
The condition of Measurement Example 1 was changed to baking at 210 ° C. for 6.5 minutes after drying at room temperature.

その後、測定例1と同様に、焼付け後の接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive after baking was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

関係式(1)より、測定例3のピークトップ波長から、硬化度は58%となる。   From the relational expression (1), the curing degree is 58% from the peak top wavelength of Measurement Example 3.

<測定例4>
測定例1の条件を、室温乾燥した後、190℃、6.5分焼付けに変えた。
<Measurement Example 4>
The condition in Measurement Example 1 was changed to baking at 190 ° C. for 6.5 minutes after drying at room temperature.

その後、測定例1と同様に、焼付け後の接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive after baking was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

関係式(1)より、測定例4のピークトップ波長から、硬化度は48%となる。   From the relational expression (1), the curing degree is 48% from the peak top wavelength of Measurement Example 4.

<測定例5>
測定例1の条件を、室温乾燥した後、170℃、6.5分焼付けに変えた。
<Measurement Example 5>
The condition of Measurement Example 1 was changed to baking at 170 ° C. for 6.5 minutes after drying at room temperature.

その後、測定例1と同様に、焼付け後の接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive after baking was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

関係式(1)より、測定例5のピークトップ波長から、硬化度は44%となる。   From the relational expression (1), the curing degree is 44% from the peak top wavelength of Measurement Example 5.

<測定例6>
測定例1の条件を、室温乾燥した後、150℃、6.5分焼付けに変えた。
<Measurement Example 6>
The condition of Measurement Example 1 was changed to baking at 150 ° C. for 6.5 minutes after drying at room temperature.

その後、測定例1と同様に、焼付け後の接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive after baking was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

関係式(1)より、測定例6のピークトップ波長から、硬化度は39%となる。   From the relational expression (1), the curing degree is 39% from the peak top wavelength of Measurement Example 6.

<測定例7>
測定例1の条件を、室温乾燥した後、130℃、6.5分焼付けに変えた。
<Measurement Example 7>
The condition of Measurement Example 1 was changed to baking at 130 ° C. for 6.5 minutes after drying at room temperature.

その後、測定例1と同様に、焼付け後の接着剤に励起光を照射して蛍光のスペクトルを得た。その結果を図3に示す。また、ピークトップ波長を表1に示す。   Thereafter, as in Measurement Example 1, the adhesive after baking was irradiated with excitation light to obtain a fluorescence spectrum. The result is shown in FIG. The peak top wavelength is shown in Table 1.

関係式(1)より、測定例7のピークトップ波長から、硬化度は27%となる。   From the relational expression (1), the curing degree is 27% from the peak top wavelength of Measurement Example 7.

Figure 2016109561
Figure 2016109561

比較例1
測定例1〜8の各接着剤サンプルについて、本発明の硬化度測定に代えてFT−IR測定を行い、スペクトルを得た。その結果を図4に示す。
Comparative Example 1
About each adhesive sample of the measurement examples 1-8, it replaced with the cure degree measurement of this invention, and performed the FT-IR measurement, and obtained the spectrum. The result is shown in FIG.

フェノール樹脂の場合、FT−IRスペクトルにおける1650cm−1に変化が見られるが、測定例6〜8の150℃以下の焼付け温度では変化が見られず、硬化度を正しく測定することができなかった。 In the case of a phenol resin, a change was observed at 1650 cm −1 in the FT-IR spectrum, but no change was observed at the baking temperature of 150 ° C. or lower in Measurement Examples 6 to 8, and the degree of cure could not be measured correctly. .

1:レーザー光源
2:光ファイバ
3:プローブ
4:硬化型接着剤塗布サンプル
5:光ファイバ
6:ロングパスフィルタ
7:光ファイバ
8:分光器
9:PC
91:読取部
92:ピークトップ波長算出部
93:硬化度算出部
1: Laser light source 2: Optical fiber 3: Probe 4: Curing type adhesive coating sample 5: Optical fiber 6: Long pass filter 7: Optical fiber 8: Spectrometer 9: PC
91: Reading unit 92: Peak top wavelength calculating unit 93: Curing degree calculating unit

Claims (2)

硬化度測定サンプルの接着剤部位に、紫外線又は可視光線を照射する照射部と、
前記照射部で照射された紫外線又は可視光線を受けて発光する蛍光を入光するプローブと、
前記プローブから導入された蛍光から蛍光スペクトルデータを読取部と、
該読取部で読み取られた前記蛍光スペクトルデータからピークトップ波長を算出するピークトップ波長算出部と、
該ピークトップ波長算出部で算出されたピークトップ波長から硬化度を算出する硬化度算出部とを備え、
前記ピークトップ波長算出部で、硬化前の硬化度0%の測定サンプルのピークトップ波長と、完全硬化後の硬化度100%の測定サンプルのピークトップ波長とを算出し、
前記硬化度算出部で、前記各々のピークトップ波長と硬化度との下記関係式(1)を求め、
Figure 2016109561

[ここで、式中、Aは未知のサンプルのピークトップ波長(nm)であり、X0%は硬化度0%のサンプルのピークトップ波長(nm)であり、X100%は硬化度100%のサンプルのピークトップ波長(nm)である。]
前記関係式(1)に、硬度が未知の硬化度測定サンプルのピークトップ波長を導入して、該ピークトップ波長に対応する前記サンプルの硬化度を算出することを特徴とする硬化度測定装置。
An irradiation part for irradiating ultraviolet rays or visible light to the adhesive part of the sample for measuring the degree of cure;
A probe that receives fluorescence emitted by receiving ultraviolet light or visible light irradiated by the irradiation unit; and
A fluorescence spectrum data reading unit from fluorescence introduced from the probe; and
A peak top wavelength calculation unit for calculating a peak top wavelength from the fluorescence spectrum data read by the reading unit;
A curing degree calculation unit that calculates a curing degree from the peak top wavelength calculated by the peak top wavelength calculation unit,
In the peak top wavelength calculation unit, calculate the peak top wavelength of the measurement sample with a cure degree of 0% before curing and the peak top wavelength of the measurement sample with a cure degree of 100% after complete curing,
In the curing degree calculation unit, the following relational expression (1) between each peak top wavelength and the curing degree is obtained,
Figure 2016109561

[Wherein, A is the peak top wavelength (nm) of an unknown sample, X 0% is the peak top wavelength (nm) of a sample with a cure degree of 0%, and X 100% is the cure degree of 100%. The peak top wavelength (nm) of the sample. ]
A curing degree measuring apparatus that introduces a peak top wavelength of a curing degree measurement sample whose hardness is unknown to the relational expression (1) and calculates a curing degree of the sample corresponding to the peak top wavelength.
硬化度測定サンプルの接着剤部位に、照射部から紫外線又は可視光線を照射し、
次いで、照射された紫外線又は可視光線を受けて発光する蛍光をプローブに入光し、
次いで、前記プローブから導入された蛍光から蛍光スペクトルデータを読取部で読み取り、
次いで、読み取られた前記蛍光スペクトルデータからピークトップ波長算出部で、硬化前の硬化度0%の測定サンプルのピークトップ波長と、完全硬化後の硬化度100%の測定サンプルのピークトップ波長とを算出し、
前記各々のピークトップ波長と硬化度との下記関係式(1)を硬化度算出部で求め、
Figure 2016109561

[ここで、式中、Aは未知のサンプルのピークトップ波長(nm)であり、X0%は硬化度0%のサンプルのピークトップ波長(nm)であり、X100%は硬化度100%のサンプルのピークトップ波長(nm)である。]
前記関係式(1)に、硬度が未知の硬化度測定サンプルのピークトップ波長を導入して、該ピークトップ波長に対応する前記サンプルの硬化度を算出することを特徴とする硬化度測定方法。
Irradiate ultraviolet rays or visible light from the irradiated part to the adhesive part of the sample for measuring the degree of cure,
Next, the probe emits fluorescence that emits light by receiving irradiated ultraviolet light or visible light,
Next, the fluorescence spectrum data is read from the fluorescence introduced from the probe by a reading unit,
Next, the peak top wavelength of the measurement sample with a curing degree of 0% before curing and the peak top wavelength of the measurement sample with a curing degree of 100% after complete curing are calculated by the peak top wavelength calculation unit from the read fluorescence spectrum data. Calculate
The following relational expression (1) between each of the peak top wavelengths and the curing degree is obtained by a curing degree calculation unit,
Figure 2016109561

[Wherein, A is the peak top wavelength (nm) of an unknown sample, X 0% is the peak top wavelength (nm) of a sample with a cure degree of 0%, and X 100% is the cure degree of 100%. The peak top wavelength (nm) of the sample. ]
A curing degree measuring method, wherein a peak top wavelength of a curing degree measurement sample whose hardness is unknown is introduced into the relational expression (1), and a curing degree of the sample corresponding to the peak top wavelength is calculated.
JP2014247419A 2014-12-05 2014-12-05 Curing degree measuring apparatus and curing degree measuring method Active JP6417906B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014247419A JP6417906B2 (en) 2014-12-05 2014-12-05 Curing degree measuring apparatus and curing degree measuring method
CN201510834232.1A CN105675552B (en) 2014-12-05 2015-11-25 Curing degree measuring device and curing degree measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247419A JP6417906B2 (en) 2014-12-05 2014-12-05 Curing degree measuring apparatus and curing degree measuring method

Publications (2)

Publication Number Publication Date
JP2016109561A true JP2016109561A (en) 2016-06-20
JP6417906B2 JP6417906B2 (en) 2018-11-07

Family

ID=56122104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247419A Active JP6417906B2 (en) 2014-12-05 2014-12-05 Curing degree measuring apparatus and curing degree measuring method

Country Status (2)

Country Link
JP (1) JP6417906B2 (en)
CN (1) CN105675552B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524099A (en) * 2017-06-19 2020-08-13 ドイチェ・ツェントルム・フューア・ルフト−ウント・ラウムファート・エー.ファウ Method and device for inspecting bonding surfaces

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111413245B (en) * 2020-04-07 2022-11-22 佛山市儒林化工有限公司 Method for measuring solid content of UV irradiation metal printing coating
CN112630258B (en) * 2020-12-17 2023-04-28 南通恒华粘合材料科技有限公司 Method for detecting solidification of moisture-curing reaction type polyurethane hot melt adhesive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030890A1 (en) * 1994-05-05 1995-11-16 Spectra Group Limited, Inc. Fluorescence method for determining properties of a polymer coating or film
US5598005A (en) * 1995-02-15 1997-01-28 The United States Of America As Represented By The Secretary Of The Commerce Non-destructive method for determining the extent of cure of a polymerizing material and the solidification of a thermoplastic polymer based on wavelength shift of fluroescence
US5633313A (en) * 1995-04-24 1997-05-27 Board Of Trustees Operating Michigan State University Method and apparatus for in situ, non-invasive polymer cure determination
JP2015141038A (en) * 2014-01-27 2015-08-03 富士通株式会社 Cured state of resin monitoring device and cured state of resin monitoring method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651011A (en) * 1985-06-03 1987-03-17 At&T Technologies, Inc. Non-destructive method for determining the extent of cure of a polymer
JP4185939B2 (en) * 2006-03-15 2008-11-26 オムロン株式会社 UV curable resin state estimation method
JP5056308B2 (en) * 2007-09-21 2012-10-24 オムロン株式会社 Curing state measuring device
CN101435772B (en) * 2008-12-12 2011-03-23 三星高新电机(天津)有限公司 Epoxide-resin glue curing degree and hardness detecting and analyzing method
KR101605670B1 (en) * 2009-01-28 2016-03-23 스미또모 가가꾸 가부시키가이샤 Method for estimating state of ultraviolet rays curing resin and process for preparing the same
CN102841052A (en) * 2011-06-24 2012-12-26 日本板硝子株式会社 Apparatus and method for measuring degree of cure of adhesive agent
US20130092846A1 (en) * 2011-10-18 2013-04-18 Uwm Research Foundation, Inc. Fiber-optic sensors for real-time monitoring
CN102661930B (en) * 2012-04-27 2015-08-26 沈阳航空航天大学 A kind of method for quick for thermosets degree of cure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995030890A1 (en) * 1994-05-05 1995-11-16 Spectra Group Limited, Inc. Fluorescence method for determining properties of a polymer coating or film
JPH10503838A (en) * 1994-05-05 1998-04-07 スペクトラ グループ リミテッド インク Fluorescence method for characterizing polymer coatings or thin films
US5598005A (en) * 1995-02-15 1997-01-28 The United States Of America As Represented By The Secretary Of The Commerce Non-destructive method for determining the extent of cure of a polymerizing material and the solidification of a thermoplastic polymer based on wavelength shift of fluroescence
US5633313A (en) * 1995-04-24 1997-05-27 Board Of Trustees Operating Michigan State University Method and apparatus for in situ, non-invasive polymer cure determination
JP2015141038A (en) * 2014-01-27 2015-08-03 富士通株式会社 Cured state of resin monitoring device and cured state of resin monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020524099A (en) * 2017-06-19 2020-08-13 ドイチェ・ツェントルム・フューア・ルフト−ウント・ラウムファート・エー.ファウ Method and device for inspecting bonding surfaces
JP7046988B2 (en) 2017-06-19 2022-04-04 ドイチェ・ツェントルム・フューア・ルフト-ウント・ラウムファート・エー.ファウ Methods and devices for inspecting joint surfaces

Also Published As

Publication number Publication date
CN105675552A (en) 2016-06-15
CN105675552B (en) 2020-03-06
JP6417906B2 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6417906B2 (en) Curing degree measuring apparatus and curing degree measuring method
Neves et al. New insights into the degradation mechanism of cellulose nitrate in cinematographic films by Raman microscopy
US20140273240A1 (en) Method and system for detecting exposure of composites to high-temperature
EP3139158B1 (en) Analysis method and x-ray photoelectron spectroscope
JP2006281208A (en) Real time control based on spectroscope for microwave assisted chemical reaction
CN109580569A (en) The detection device of coating slurry
Mirschel et al. Simultaneous in-line monitoring of the conversion and the coating thickness in UV-cured acrylate coatings by near-infrared reflection spectroscopy
Maiwald et al. Portable shifted excitation Raman difference spectroscopy for on‐site soil analysis
WO2020135544A1 (en) Fluorescence spectrum testing device and testing method
Gomez et al. Linseed oil as a model system for surface enhanced Raman spectroscopy detection of degradation products in artworks
Sivan et al. Crossover from nonthermal to thermal photoluminescence from metals excited by ultrashort light pulses
KR20170114994A (en) System and method for measuring stress using the passive sensor
JP2007248431A (en) Method for measuring hardening degree of hardening resin
Davenport et al. Non-dispersive ultra-violet spectroscopic detection of formaldehyde gas for indoor environments
US9671379B2 (en) Systems and methods for analyzing contaminants in flowing atmospheric air
Anedda et al. Time resolved ultraviolet photoluminescence of mesoporous silica
DE102015200648A1 (en) Method for determining the degree of crosslinking of a polyethylene compound
KR101242699B1 (en) Method for measuring spreaded quantity of coating layer
CN110346346B (en) Raman gas detection method based on compressed sensing correlation algorithm
WO2004044656A3 (en) Method for washing an optical lens
JP6051296B2 (en) Method for evaluating weather resistance of polymer materials
TWI644093B (en) Optical device and method for determining an optical property of specimen
JP6066582B2 (en) Detection device
Schlag et al. Extended non-destructive testing for surface quality assessment
CN109406492B (en) Device capable of measuring Raman spectrum of substance under strong fluorescent background

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180924

R150 Certificate of patent or registration of utility model

Ref document number: 6417906

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250