JP2016109348A - Terminal point detection method for vacuum drying and vacuum drying device - Google Patents

Terminal point detection method for vacuum drying and vacuum drying device Download PDF

Info

Publication number
JP2016109348A
JP2016109348A JP2014246677A JP2014246677A JP2016109348A JP 2016109348 A JP2016109348 A JP 2016109348A JP 2014246677 A JP2014246677 A JP 2014246677A JP 2014246677 A JP2014246677 A JP 2014246677A JP 2016109348 A JP2016109348 A JP 2016109348A
Authority
JP
Japan
Prior art keywords
vacuum
drying
value
pressure
end point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014246677A
Other languages
Japanese (ja)
Other versions
JP6513379B2 (en
Inventor
剛 吉元
Go Yoshimoto
剛 吉元
陽一 大日向
Yoichi Ohinata
陽一 大日向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2014246677A priority Critical patent/JP6513379B2/en
Priority to TW104138775A priority patent/TWI613409B/en
Priority to KR1020150173158A priority patent/KR20160068693A/en
Publication of JP2016109348A publication Critical patent/JP2016109348A/en
Application granted granted Critical
Publication of JP6513379B2 publication Critical patent/JP6513379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a drying terminal point to be detected as fast as possible even if a pressure within a drying tank is measured by a first vacuum meter such as a barrier membrane pressure gauge and a second vacuum meter such as Pirani vacuum meter and the like when a vacuum frozen drying is carried out, and when a time in which a difference between the measured indicated values at the first vacuum meter and the second vacuum meter is small and converged is judged as a drying terminal point, the drying terminal point can be detected as fast as possible even if a pressure in the drying tank is varied in reference to the type or volume of items to be dried.SOLUTION: A terminal point detection method of vacuum drying in accordance with this invention is carried out in such a way that when a pressure measured by the second vacuum meter 5b is once turned to increase while a pressure in the drying tank is being decreased as an interior of the drying tank 1 is drawn in vacuum, an index value is calculated under application of one inflection point and another inflection point when it is turned to descend and this calculated index value is judged while being converted to the measured indicated value of the second vacuum meter.SELECTED DRAWING: Figure 2

Description

本発明は、被乾燥物が配置された乾燥槽内を真空引きし、被乾燥物から気化した水蒸気を排気すると共にコールドトラップに吸着させながら被乾燥物を乾燥する乾燥工程にて被乾燥物の乾燥終点を検知する真空乾燥の終点検知方法及び真空乾燥装置に関する。   The present invention evacuates the inside of the drying tank in which the object to be dried is disposed, exhausts the water vapor evaporated from the object to be dried, and dries the object to be dried while adsorbing it to the cold trap. The present invention relates to a vacuum drying end point detection method and a vacuum drying apparatus for detecting a drying end point.

この種の真空乾燥の終点検知方法は例えば特許文献1で知られている。このものは、乾燥工程の際、乾燥槽内の圧力を、ガス種により測定指示値の影響を受けず、全圧測定が可能な隔膜圧力計などの第1の真空計と、ガス種により測定指示値に差が発生し、全圧測定が可能なピラニ真空計などの第2の真空計とで測定する。そして、第1及び第2の両真空計での測定指示値の差が小さく収束する時点を乾燥終点と判断している。然し、上記従来例の方法を用いて乾燥終点を検知しようとしても何時までも乾燥終点を検知できない場合があることが判明した。   This type of end point detection method for vacuum drying is known, for example, from Patent Document 1. In this method, during the drying process, the pressure in the drying tank is measured by the gas type and the first vacuum gauge such as a diaphragm pressure gauge that can measure the total pressure without being affected by the measurement instruction value depending on the gas type. A difference occurs in the indicated value, and measurement is performed with a second vacuum gauge such as a Pirani vacuum gauge capable of measuring the total pressure. Then, the point in time when the difference between the measurement instruction values in the first and second vacuum gauges is small and converges is determined as the drying end point. However, it has been found that there are cases where the end point of drying cannot be detected by any time even if an attempt is made to detect the end point of drying using the method of the conventional example.

そこで、本発明の発明者らは、鋭意研究を重ね、薬品や食品等の被乾燥物が配置された乾燥槽内を(場合によっては、被乾燥物を加熱しながら)真空引きしたとき、被乾燥物の種類や量によっては第2の真空計の測定指示値が上昇と下降を繰り返すことに起因していることを知見するのに至った。これは、被乾燥物から気化する水蒸気の量が多くなると、コールドトラップの凝縮管での水蒸気の凝集量が多くなって、そのときの凝集熱で凝縮管内を循環する冷媒の温度が上昇し、これに伴って凝縮管の温度が上昇することでコールドトラップの吸着能力が一旦低下し、乾燥槽内の圧力が上昇する。他方、吸着能力が一旦低下すると、凝縮管での水蒸気の凝集量が少なくなることで冷媒の温度が低下し、これに伴って凝縮管での水蒸気の凝集量が再び多くなって乾燥槽内の圧力が下降する。そして、これらを繰り返すことで乾燥槽内が圧力変動し、このとき、ガス種(水蒸気)により測定指示値に差が発生する第2の真空計が特に影響を受けて、その測定指示値が大幅に変動するためと考えられる。   Therefore, the inventors of the present invention have conducted extensive research and have evacuated the inside of a drying tank (to be dried in some cases while heating) to be dried such as chemicals and foods. It came to know that depending on the kind and amount of the dried material, the measurement indication value of the second vacuum gauge was caused to repeat rising and falling. This is because when the amount of water vapor evaporated from the material to be dried increases, the amount of water vapor condensing in the condenser tube of the cold trap increases, and the temperature of the refrigerant circulating in the condensing tube rises due to the heat of aggregation at that time, Along with this, the temperature of the condensing tube rises, so that the adsorption capacity of the cold trap once decreases, and the pressure in the drying tank increases. On the other hand, once the adsorption capacity is reduced, the amount of water vapor condensed in the condensing tube is reduced, so that the temperature of the refrigerant is lowered. The pressure drops. Then, by repeating these, the pressure in the drying tank fluctuates, and at this time, the second vacuum gauge, which generates a difference in the measurement instruction value due to the gas type (water vapor), is particularly affected, and the measurement instruction value is greatly increased. This is thought to be due to fluctuations.

このような場合、乾燥槽内で一度に乾燥処理する被乾燥物の量を減らしたり、コールドトラップとして、水蒸気に対して充分な吸着能力を持つ高性能なものを用いたりすれば、上記従来例の方法でも乾燥終点を検知することができるが、これでは、乾燥冷却用の設備コストやランニングコストが多大となるという問題を招来する。   In such a case, if the amount of the object to be dried at once in the drying tank is reduced, or if a high performance thing having sufficient adsorption capacity for water vapor is used as a cold trap, the above conventional example This method can also detect the end point of drying, but this causes a problem that the equipment cost and running cost for drying and cooling become large.

特許第5094372号公報Japanese Patent No. 5094372

本発明は、以上の知見に基づいてなされたものであり、被乾燥物の種類や量によって乾燥槽内の圧力が変動している場合でも可及的速やかに乾燥終点を検知することができる真空乾燥の終点検知方法及び真空乾燥装置を提供することをその課題とするものである。   The present invention has been made on the basis of the above knowledge, and it is possible to detect the end point of drying as quickly as possible even when the pressure in the drying tank varies depending on the type and amount of the object to be dried. It is an object of the present invention to provide a drying end point detection method and a vacuum drying apparatus.

上記課題を解決するために、被乾燥物が配置された乾燥槽内を真空引きし、被乾燥物から気化した水蒸気を排気すると共にコールドトラップに吸着させながら被乾燥物を乾燥する乾燥工程にて被乾燥物の乾燥終点を検知する本発明の真空乾燥の終点検知方法は、乾燥槽内の圧力を、ガス種により測定指示値の影響を受けない全圧測定可能な第1の真空計と、ガス種により測定指示値に差が発生する全圧測定可能な第2の真空計とで測定し、第1及び第2の両真空計での測定指示値の差が小さく収束する時点を乾燥終点と判断し、乾燥槽内の真空引きに伴って当該乾燥槽内の圧力が下降している間で第2の真空計で測定した圧力が一旦上昇に転じるときの一の変曲点と、次に下降に転じるときの他の変曲点とを用いて指標値を求め、この求めた指標値を第2の真空計の測定指示値に置き換えて判断することを特徴とする。   In order to solve the above-mentioned problem, the drying tank in which the object to be dried is evacuated is evacuated, and the water vapor evaporated from the object to be dried is exhausted and dried in the drying process while adsorbed on the cold trap. The vacuum drying end point detection method of the present invention for detecting the drying end point of an object to be dried includes a first vacuum gauge capable of measuring the total pressure of the pressure in the drying tank without being affected by the measurement instruction value by the gas type, Measured with a second vacuum gauge capable of measuring the total pressure, which causes a difference in the measured instruction value depending on the gas type, and the time when the difference between the measured instruction values of both the first and second vacuum gauges converges is the end point of drying. The first inflection point when the pressure measured by the second vacuum gauge temporarily starts to rise while the pressure in the drying tank is decreasing as the vacuum in the drying tank is evacuated, The index value was obtained using other inflection points when turning down to Characterized by determining the target value by replacing the measurement instruction value of the second gauge.

上記においては、例えば、前記一の変曲点を最小値、前記他の変曲点を最大値とし、最大値と最小値との差が所定値以下になると、そのときの最大値及び最小値の少なくとも一方を前記指標値とすることができる。他方で、前記一の変曲点を最小値、前記他の変曲点を最大値とし、これら最大値と最小値との中間値を取得し、相前後して取得した中間値の差が所定値以下になると、そのときの少なくとも一方の中間値を前記指標値とすることもできる。   In the above, for example, when the one inflection point is the minimum value, the other inflection point is the maximum value, and the difference between the maximum value and the minimum value is not more than a predetermined value, the maximum value and the minimum value at that time At least one of the values can be used as the index value. On the other hand, the one inflection point is the minimum value and the other inflection point is the maximum value, and an intermediate value between the maximum value and the minimum value is acquired, and the difference between the acquired intermediate values is predetermined. When the value is less than or equal to the value, at least one intermediate value at that time can be used as the index value.

以上によれば、例えば、最大値と最小値との差や相前後する中間値の差が所定値以下になったときのように、一の変曲点と他の変曲点とを用いて指標値を求め、この指標値を第2の真空計の測定指示値とみなし、その上で第1の真空計での測定指示値との差が小さく収束する時点を乾燥終点と判断するようにしたため、被乾燥物の種類や量によって乾燥槽内の圧力が変動している場合でも可及的速やかに乾燥終点を検知することができる。この場合、乾燥槽内で一度に乾燥処理する被乾燥物の量を減らしたり、コールドトラップとして水蒸気の吸着能力が極めて高いものを用いたりする必要はなく、有利である。なお、乾燥槽内が圧力変動したとき、第1の真空計の測定指示値も、第2の真空計の変動とは無関係に変動することがあるが、乾燥終点を検知する領域における変動量は、第2の真空計のものと比較して極めて少なく、乾燥終点の検知に与える影響は小さい。但し、第1の真空計においても、乾燥槽内の真空引きに伴って当該乾燥槽内の圧力が下降している間で第1の真空計で測定した圧力が一旦上昇に転じる場合にその変曲点を最小値、次に下降に転じる変曲点を最大値とし、単位時間当たりに最小値及び最大値が複数回連続して減少している場合に、そのときの最大値及び最小値の少なくとも一方を、または、最小値と最大値の平均値が単位時間当たりに連続して減少している場合に、そのときの平均値を第1の真空計の測定指示値とすれば、より可及的速やかにかつ確実に乾燥終点を検知できてよい。   According to the above, for example, using one inflection point and another inflection point, such as when the difference between the maximum value and the minimum value or the difference between successive intermediate values is less than or equal to a predetermined value. An index value is obtained, this index value is regarded as a measurement instruction value of the second vacuum gauge, and a point in time when the difference from the measurement instruction value of the first vacuum gauge is small and converges is determined as the drying end point. Therefore, even when the pressure in the drying tank varies depending on the type and amount of the object to be dried, the end point of drying can be detected as quickly as possible. In this case, it is not necessary to reduce the amount of objects to be dried at once in the drying tank, or to use a cold trap having a very high water vapor adsorption capacity, which is advantageous. When the pressure in the drying tank fluctuates, the measurement indication value of the first vacuum gauge may also change independently of the fluctuation of the second vacuum gauge, but the fluctuation amount in the region where the drying end point is detected is Compared with that of the second vacuum gauge, it is extremely small and has little influence on the detection of the drying end point. However, even in the first vacuum gauge, when the pressure measured with the first vacuum gauge once rises while the pressure in the drying tank is decreasing due to the vacuuming in the drying tank, the change occurs. If the inflection point where the inflection point turns to the minimum value and then descends is the maximum value, and the minimum value and the maximum value decrease continuously several times per unit time, the maximum and minimum values at that time If at least one of them or the average value of the minimum and maximum values decreases continuously per unit time, the average value at that time can be used as the measurement indication value of the first gauge. The end point of drying may be detected as quickly and reliably as possible.

また、本発明においては、前記一の変曲点と他の変曲点とが単位時間当たりに連続して減少している場合を、指標値を求める条件に加え、前記指標値の第2の真空計の測定指示値への置き換えを行うようにすれば、より確実に乾燥終点を検知することができる。   In the present invention, the case where the one inflection point and the other inflection point are continuously decreased per unit time is added to the condition for obtaining the index value, and the second of the index values If the measurement instruction value of the vacuum gauge is replaced, the end point of drying can be detected more reliably.

本発明においては、前記第1の真空計として隔膜圧力計が用いられ、前記第2の真空計としてピラニ真空計が用いられることが好ましい。   In the present invention, a diaphragm pressure gauge is preferably used as the first vacuum gauge, and a Pirani vacuum gauge is preferably used as the second vacuum gauge.

また、上記課題を解決するために、被乾燥物が配置される乾燥槽と、真空槽内を真空引きする真空ポンプと、被乾燥物から気化した水蒸気を吸着するコールドトラップとを備え、水蒸気を排気すると共にコールドトラップに吸着させながら被乾燥物を乾燥する場合にこの真空乾燥の終点検知が可能な本発明の真空乾燥装置は、乾燥槽内の圧力を、ガス種により測定指示値の影響を受けない全圧測定可能な第1の真空計と、ガス種により測定指示値に差が発生する全圧測定可能な第2の真空計と、第1及び第2の両真空計での測定指示値の差が小さく収束する時点を乾燥終点と判断する判定手段とを更に備え、判定手段は、乾燥槽内の真空引きに伴って当該乾燥槽内の圧力が下降している間で第2の真空計で測定した圧力が一旦上昇に転じるときの一の変曲点と、次に下降に転じるときの他の変曲点とを用いて指標値を求め、この求めた指標値を第2の真空計の測定指示値に置き換えて判断することを特徴とする。   In order to solve the above problems, the apparatus includes a drying tank in which an object to be dried is arranged, a vacuum pump that evacuates the vacuum tank, and a cold trap that adsorbs water vapor evaporated from the object to be dried. The vacuum drying apparatus of the present invention, which can detect the end point of vacuum drying when the object to be dried is dried while being evacuated and adsorbed to a cold trap, the pressure in the drying tank is affected by the measurement instruction value depending on the gas type. The first vacuum gauge capable of measuring the total pressure that is not received, the second vacuum gauge capable of measuring the total pressure that causes a difference in the measurement instruction value depending on the gas type, and the measurement instructions in both the first and second vacuum gauges A determination unit that determines a point of time when the difference between the values converges to be a drying end point, and the determination unit includes a second unit while the pressure in the drying tank is decreasing due to vacuuming in the drying tank. Once the pressure measured by the vacuum gauge starts to rise An index value is obtained using one inflection point and another inflection point when turning downward, and the obtained index value is replaced with the measurement indication value of the second vacuum gauge. It is characterized by.

本発明の真空乾燥の終点検知方法の実施に用いられる真空乾燥装置の構成を示す模式図。The schematic diagram which shows the structure of the vacuum drying apparatus used for implementation of the end point detection method of the vacuum drying of this invention. (a)及び(b)は、真空乾燥の終点検知のためのフロー図。(A) And (b) is a flowchart for the end point detection of vacuum drying. 真空乾燥時の第1及び第2の両真空計の圧力変動を示すグラフ。The graph which shows the pressure fluctuation of both the 1st and 2nd vacuum gauge at the time of vacuum drying.

以下、図面を参照して、本発明の真空乾燥装置を真空凍結乾燥装置とし、この真空凍結乾燥装置を用いて薬品や食品といった被乾燥物Sを真空凍結乾燥する場合を例に本発明の真空乾燥の終点検知方法及び真空乾燥装置の実施形態を説明する。   Hereinafter, with reference to the drawings, the vacuum drying apparatus of the present invention is a vacuum freeze-drying apparatus, and the vacuum of the present invention is taken as an example when the object to be dried S such as medicines and foods is vacuum-freeze-dried using this vacuum freeze-drying apparatus. An embodiment of a drying end point detection method and a vacuum drying apparatus will be described.

図1を参照して、DMは、本発明の真空乾燥の終点検知方法を適用できる真空凍結乾燥装置である。真空凍結乾燥装置DMは、所定容積の乾燥槽1と、被乾燥物Sから気化した水蒸気を吸着するコールドトラップ2と、乾燥槽1内を真空引きする真空ポンプ3と、被乾燥物Sを加熱するヒータ4とを有する。気密容器としての乾燥槽1内には、被乾燥物Sの載置が可能な棚11が上下方向に間隔を存して複数設置されている。コールドトラップ2は、乾燥槽1に内蔵される凝縮管21と、凝縮管21に冷媒を供給する冷凍機22とを備え、凝縮管21が常時一定の温度(例えば、−50℃程度)に冷却されるようになっている。なお、冷凍機22としては公知の構造のものが利用できるため、その温度制御等を含め、ここでは詳細な説明は省略する。   Referring to FIG. 1, DM is a vacuum freeze-drying apparatus to which the vacuum drying end point detection method of the present invention can be applied. The vacuum freeze-drying apparatus DM heats the object to be dried S, a drying tank 1 having a predetermined volume, a cold trap 2 for adsorbing water vapor evaporated from the object to be dried S, a vacuum pump 3 for evacuating the inside of the drying tank 1, and the like. And the heater 4 to be used. In the drying tank 1 as an airtight container, a plurality of shelves 11 on which the object to be dried S can be placed are installed at intervals in the vertical direction. The cold trap 2 includes a condensing tube 21 built in the drying tank 1 and a refrigerator 22 that supplies a refrigerant to the condensing tube 21. The condensing tube 21 is always cooled to a constant temperature (for example, about −50 ° C.). It has come to be. In addition, since the thing of a well-known structure can be utilized as the refrigerator 22, detailed description is abbreviate | omitted here including the temperature control.

また、真空ポンプ3としては、排気管31を介して乾燥槽1に接続される、例えばメカニカルブースターポンプ32とその背圧側の油回転真空ポンプ33とで構成され、乾燥槽1内を所定圧力まで真空引きできるようになっている。なお、本実施形態では、乾燥槽1に凝縮管21が内蔵されるものを例に説明するが、乾燥槽に連結管を介して密閉容器を接続し、当該密閉容器に、凝縮管を内蔵すると共に真空ポンプからの排気管を接続する構成を採用することもできる。また、ヒータ4としては、乾燥させようとする被乾燥物をその水分が気化する所定温度に加熱できるものであれば、その形態を問わず、抵抗加熱式のものやランプ式のものを用いることができ、この場合、乾燥槽1の内側または外側に設けたり、棚11に内蔵したりすることができ、また、被乾燥物Sによってはヒータ4を省略することもできる。   Further, the vacuum pump 3 includes, for example, a mechanical booster pump 32 and an oil rotary vacuum pump 33 on the back pressure side connected to the drying tank 1 through an exhaust pipe 31, and the drying tank 1 has a predetermined pressure. It can be evacuated. In addition, although this embodiment demonstrates to an example what the condensation pipe | tube 21 is incorporated in the drying tank 1, a sealed container is connected to a drying tank via a connection pipe, and a condensation pipe is built in the said sealed container. In addition, a configuration in which an exhaust pipe from a vacuum pump is connected may be employed. Further, as the heater 4, a resistance heating type or a lamp type may be used as long as it can heat an object to be dried to a predetermined temperature at which moisture is vaporized. In this case, it can be provided inside or outside the drying tank 1 or can be built in the shelf 11, and the heater 4 can be omitted depending on the object to be dried S.

乾燥槽1には、槽内の圧力(全圧)を測定するために、測定方式の異なる第1の真空計5aと第2の真空計5bとが設けられている。第1の真空計5aとしては、乾燥時の圧力が1Pa〜200Pa程度の圧力範囲で全圧計測可能で、ガスの種類の影響を受けない隔膜圧力計であるキャパシタンスマノメータが用いられる。他方で、第2の真空計5bとしては、乾燥時の圧力が1Pa〜200Pa程度の圧力範囲が全圧計測可能で、熱伝導を利用し測定ガスの種類によって測定指示値に差が生ずるピラニ真空計が用いられる。   The drying tank 1 is provided with a first vacuum gauge 5a and a second vacuum gauge 5b having different measurement methods in order to measure the pressure (total pressure) in the tank. As the first vacuum gauge 5a, a capacitance manometer that is a diaphragm pressure gauge that can measure the total pressure in a pressure range of about 1 Pa to 200 Pa during drying and is not affected by the type of gas is used. On the other hand, as the second vacuum gauge 5b, a Pirani vacuum that can measure the total pressure in the pressure range of about 1 Pa to 200 Pa at the time of drying and causes a difference in the measurement instruction value depending on the type of measurement gas using heat conduction. A meter is used.

上記真空凍結乾燥装置DMの冷凍機22、真空ポンプ3や第1及び第2の両真空計5a,5bの作動等は、マイクロコンピュータ、シーケンサーやメモリーなどを備える、判定手段としての機能も持つ制御ユニット6により統括制御され、第1及び第2の両真空計5a,5bで夫々測定されて制御ユニット6に入力される測定指示値を基に、その差が小さく収束する時点を真空乾燥の終点として検知される。以下に、図2及び図3を参照して、本実施形態の真空乾燥の終点検知を具体的に説明する。   The operation of the refrigerator 22, the vacuum pump 3, the first and second vacuum gauges 5a and 5b, etc. of the vacuum freeze-drying apparatus DM is provided with a microcomputer, a sequencer, a memory, etc., and also has a function as a determination means. The end point of the vacuum drying is the time when the difference converges to a small extent based on the measurement instruction values that are controlled by the unit 6 and measured by the first and second vacuum gauges 5a and 5b and input to the control unit 6, respectively. Detected as Hereinafter, the end point detection of the vacuum drying according to the present embodiment will be described in detail with reference to FIGS.

図2(a)に示すように、乾燥槽1に被乾燥物Sをセットし、乾燥工程が開始されると(STEP1)、コールドトラップ2、真空ポンプ3並びにヒータ4が夫々作動され、これにより、真空ポンプ3により乾燥槽1内を真空引きし、加熱により被乾燥物Sから気化した水蒸気が排気されると共にコールドトラップ2に吸着されて被乾燥物Sが乾燥され、これに伴って乾燥槽1内の圧力も次第に低下していく。次に、第1及び第2の両真空計5a,5bにより夫々測定された乾燥槽1内の圧力が一定の周期で制御ユニット6に入力され(STEP2)、そのときの第1の真空計5aの測定指示値をDG、第2の両真空計5bの測定指示値をPGとして制御ユニット6に(記憶)設定する(STEP3,4)。そして、DGとPGとを比較したときのDGとPGとの差が、被乾燥物Sを必要十分に乾燥したと判断できる、事前に制御ユニット6に設定される所定値(SP)より低下したか否かが判別され(STEP5)、所定値SP以下になっていると、第1及び第2の両真空計5a,5bでの測定指示値の差が小さく収束したと判断し、その時点を真空乾燥の終点として検知する(STEP6)。なお、DGとPGとの差が所定値SPより高い場合には、STEP2に戻り、このとき、第1及び第2の両真空計5a,5bにより夫々測定された乾燥槽1内の圧力が制御ユニット6に入力され、そのときの測定指示値が新たなDG、PGとして制御ユニット6に設定されているものが更新される。 As shown in FIG. 2 (a), when the object to be dried S is set in the drying tank 1 and the drying process is started (STEP 1), the cold trap 2, the vacuum pump 3 and the heater 4 are respectively operated. Then, the inside of the drying tank 1 is evacuated by the vacuum pump 3, the water vapor evaporated from the object to be dried S is exhausted by heating and adsorbed by the cold trap 2, and the object to be dried S is dried. The pressure in 1 gradually decreases. Next, the pressure in the drying tank 1 measured by both the first and second vacuum gauges 5a and 5b is input to the control unit 6 at a constant cycle (STEP 2), and the first vacuum gauge 5a at that time Are set (stored) in the control unit 6 as DG and the measurement instruction values of the second vacuum gauges 5b as PG (STEPs 3 and 4). Then, the difference between DG and PG when comparing DG and PG is lower than the predetermined value (SP) set in advance in the control unit 6, which can determine that the object to be dried S is sufficiently dried. whether it is discriminated (STEP5), the is equal to or less than a predetermined value SP 1, determines that both the first and second gauge 5a, the difference between the measured indicated value of the at 5b has converged small, the time Is detected as the end point of vacuum drying (STEP 6). Incidentally, when the difference between the DG and PG is higher than a predetermined value SP 1 returns to STEP2, this time, both the first and second gauge 5a, the pressure in the drying chamber 1 are respectively measured by 5b What is input to the control unit 6 and the measurement instruction value at that time is set in the control unit 6 as new DG and PG is updated.

ところで、被乾燥物Sの種類や乾燥槽1で処理しようとする被乾燥物Sの量によっては例えばコールドトラップ2の能力を超える量の水蒸気が気化することで、図3に示すように、第1及び第2の各真空計5a、5bの測定指示値が上昇と下降を繰り返し、これに起因して真空乾燥の終点を可及的速やかに判定できない虞がある(図3中、実線で示すものは第1の真空計5aで測定したものであり、点線で示すものは第2の真空計5bで測定したものである)。そこで、本実施形態では、乾燥槽1内の真空引きに伴って当該乾燥槽1内の圧力が通常下降を続ける工程と、制御ユニット6が認識している期間で第1及び第2の両真空計5a,5bで測定している圧力が一旦上昇に転じる場合の一の変曲点と、次に下降に転じるときの他の変曲点とを用いて指標値を求め、この求めた指標値を第1及び第2の両真空計5a,5bの測定指示値に置き換えて判断することとした。例えば、第1及び第2の両真空計5a,5bで測定している圧力が一旦上昇に転じる場合にその一の変曲点を最小値(DGmin,PGmin)、再度下降に転じる場合に他の変曲点を最大値(DGmax,PGmax)とし(図3も参照)、最大値と最小値との差が所定値以下になると、そのときの最大値及び最小値の少なくとも一方を指標値とし、この指標値を上記第1及び第2の両真空計5a,5bの測定指示値と夫々置き換えて判断する。つまり、図2(a)に示す真空乾燥の終点検知のフローにおいて、一の変曲点が発生した場合、STEP3,4で設定されるDGとPGとを上記最大値または最小値に基づいて置き換えることとした。以下に、図2(b)を参照して、他の変曲点である最大値に基づくDG,PGの設定の一例(STEP3,4のDG,PGをSTEP24の値で置き換える例)を具体的に説明する。   By the way, depending on the type of the material to be dried S and the amount of the material to be dried S to be processed in the drying tank 1, for example, an amount of water vapor exceeding the capacity of the cold trap 2 is vaporized, as shown in FIG. The measurement indication values of the first and second vacuum gauges 5a and 5b repeatedly rise and fall, and there is a possibility that the end point of vacuum drying cannot be determined as quickly as possible due to this (indicated by a solid line in FIG. 3). The thing measured with the 1st vacuum gauge 5a, and the thing shown with a dotted line is what was measured with the 2nd vacuum gauge 5b). Therefore, in the present embodiment, both the first and second vacuums are performed during the period in which the pressure in the drying tank 1 continues to fall normally as the vacuum in the drying tank 1 is evacuated, and during the period recognized by the control unit 6. An index value is obtained using one inflection point when the pressure measured by the total 5a, 5b once rises and another inflection point when the pressure next falls, and the obtained index value Was replaced with the measurement instruction values of both the first and second vacuum gauges 5a and 5b. For example, when the pressure measured by both the first and second vacuum gauges 5a and 5b once rises, the first inflection point is set to the minimum value (DGmin, PGmin). The inflection point is set to the maximum value (DGmax, PGmax) (see also FIG. 3), and when the difference between the maximum value and the minimum value becomes a predetermined value or less, at least one of the maximum value and the minimum value at that time is used as the index value, This index value is judged by replacing it with the measurement instruction values of both the first and second vacuum gauges 5a and 5b. That is, in the flow of detecting the end point of vacuum drying shown in FIG. 2A, when one inflection point occurs, DG and PG set in STEP 3 and 4 are replaced based on the maximum value or the minimum value. It was decided. In the following, referring to FIG. 2B, an example of setting DG and PG based on the maximum value which is another inflection point (example in which DG and PG in STEP 3 and 4 are replaced with the value in STEP 24) is concretely shown. Explained.

図2(a)に示す真空乾燥の終点検知フロー(STEP1〜6)中、STEP3,4にてDGとPGとが設定された状態で第1及び第2の両真空計5a,5bにより夫々測定された乾燥槽1内の圧力が制御ユニット6に入力されると(STEP11:STEP2〜4と同一)、このときの測定指示値が設定済みのDG、PGと比較され、上昇しているか否かが判別される(STEP12)。上昇している場合には、一の変曲点が発生したとしてこのときの測定指示値を最小値とし、DGmin,PGminとして制御ユニット6に設定する(STEP13)と共に、真空乾燥の終点検知フロー(STEP1〜6)中、STEP5での判別は、STEP24終了後に行うこととする。なお、特に図示して説明しないが、一の変曲点がみられない場合には、真空乾燥の終点検知フロー(STEP1〜6)に従ってDG,PGが設定されてその終点が判断される。更に、上述したように、変曲点は制御ユニット6に入力された測定指示値と設定済みの値(DG、PG)との比較で判断されるが、これに限定されるものではない。例えば、制御ユニット6に入力された測定指示値として、ノイズ成分を除去するための平均化処理を加えた値を用いることができ(この場合の平均化を行うサンプル群の時間範囲は、対象となる装置によって適宜選択すればよい)、その他の比率制限や一次遅れフィルタなどの手法を適用することもできる。つまり、公知のノイズ低減手法が加えられた値を制御ユニット6に入力された測定指示値及び設定済みの圧力値として変曲点の判断に用いることができる。   Measured by both the first and second vacuum gauges 5a and 5b in the state where DG and PG are set in STEPs 3 and 4 in the vacuum drying end point detection flow (STEP 1 to 6) shown in FIG. When the pressure in the drying tank 1 is input to the control unit 6 (STEP 11: same as STEPs 2 to 4), the measurement instruction value at this time is compared with the set DG and PG, and whether or not it is increased Is discriminated (STEP 12). If it has risen, it is assumed that one inflection point has occurred, the measurement instruction value at this time is set to the minimum value, DGmin and PGmin are set in the control unit 6 (STEP 13), and the end point detection flow of vacuum drying ( In STEP 1 to 6), the determination in STEP 5 is performed after STEP 24 ends. Although not specifically illustrated and described, when one inflection point is not found, DG and PG are set according to the vacuum drying end point detection flow (STEPs 1 to 6), and the end point is determined. Further, as described above, the inflection point is determined by comparing the measurement instruction value input to the control unit 6 with the set values (DG, PG), but is not limited thereto. For example, as the measurement instruction value input to the control unit 6, a value obtained by adding an averaging process for removing noise components can be used (in this case, the time range of the sample group to be averaged is the target). Other methods such as a ratio limit and a first-order lag filter can also be applied. That is, a value to which a known noise reduction technique is added can be used for the determination of the inflection point as the measurement instruction value input to the control unit 6 and the set pressure value.

他方、最小値DGmin,PGminが設定されると、例えばコールドトラップ2の能力を超える量の水蒸気が気化していることで第1及び第2の各真空計5a、5bの測定指示値が上昇と下降を繰り返すとみなすことができ、そして、第1及び第2の両真空計5a,5bにより夫々測定された乾燥槽1内の圧力が制御ユニット6に入力されると(STEP14)、このときの測定指示値がDGmin,PGminと比較して一旦上昇した後に下降を開始したものであるか否かが判別される(STEP15)。そして、下降を開始したものである場合、そのときの測定指示値を最大値とし、DGmax,PGmaxとして制御ユニット6に設定する(STEP16)。   On the other hand, when the minimum values DGmin and PGmin are set, for example, the amount of water vapor exceeding the capacity of the cold trap 2 is vaporized, so that the measurement instruction values of the first and second vacuum gauges 5a and 5b are increased. When the pressure in the drying tank 1 measured by the first and second vacuum gauges 5a and 5b is input to the control unit 6 (STEP 14), it can be regarded that the lowering is repeated. It is determined whether or not the measurement instruction value has started to decrease after once increasing compared to DGmin and PGmin (STEP 15). If the descent has started, the measurement instruction value at that time is set to the maximum value and set as DGmax, PGmax in the control unit 6 (STEP 16).

次に、最大値DGmax,PGmaxが設定された後、第1及び第2の両真空計5a,5bにより夫々測定された乾燥槽1内の圧力が制御ユニットに入力されると(STEP17)、このときの測定指示値が再度上昇を開始したものであって且つ設定済みの最小値より低い測定指示値になっていることでDGmin,PGminの更新が必要か否かが判別され(STEP18)、必要な場合にはそのときの測定指示値が新たなDGmin,PGminとして制御ユニット6に設定されているものが更新される(STEP19)。そして、最小値が更新された後、第1及び第2の両真空計5a,5bにより夫々測定された乾燥槽1内の圧力が制御ユニット6に入力されると(STEP20)、このときの測定指示値が一旦上昇した後に下降を開始したものであって且つ設定済みの最大値より高い測定指示値になっていることでDGmax,PGmaxの更新が必要か否かが判別され(STEP21)、必要な場合にはそのときの測定指示値が新たなDGmax,PGmaxとして制御ユニット6に設定されているものが更新される(STEP22)。   Next, after the maximum values DGmax and PGmax are set, when the pressure in the drying tank 1 measured by the first and second vacuum gauges 5a and 5b is input to the control unit (STEP 17), It is determined whether or not DGmin and PGmin need to be updated because the measurement instruction value at that time has started to rise again and is a measurement instruction value lower than the set minimum value (STEP 18). In such a case, the values set in the control unit 6 as the new DGmin and PGmin are updated (STEP 19). Then, after the minimum value is updated, when the pressure in the drying tank 1 measured by both the first and second vacuum gauges 5a and 5b is input to the control unit 6 (STEP 20), the measurement at this time It is determined whether or not DGmax and PGmax need to be updated because the measured value is higher than the preset maximum value after the command value has once increased and then started to decrease (STEP 21). If this is the case, the measurement instruction values set at that time in the control unit 6 as new DGmax and PGmax are updated (STEP 22).

次に、最大値DGmax,PGmaxが更新されると、第1及び第2の両真空計5a,5b夫々についてDGmaxとDGminとの差及びPGmaxとPGminとの差が所定値SP,SP以下に夫々なっているかが判別され(STEP23)、夫々所定値SP,SP以下になっている場合には、そのときの最大値DGmax,PGmaxを指標値とし、これらの指標値を図2(a)に示す真空乾燥の終点検知のフローにおけるDGとPGと夫々置き換え(STEP3,4のDG,PGをSTEP24の値DGmax,PGmaxで置き換え)、その後にSTEP5の判別を行い、真空乾燥の終点検知と判定されない場合は、特に図示しないが、STEP17に戻る。なお、所定値SP,SPより高い場合には、STEP5の判別は行わず、STEP17に戻る。 Next, when the maximum values DGmax and PGmax are updated, the difference between DGmax and DGmin and the difference between PGmax and PGmin for the first and second vacuum gauges 5a and 5b are less than or equal to predetermined values SP 2 and SP 3, respectively. (STEP 23), and when the values are less than or equal to the predetermined values SP 2 and SP 3 , respectively, the maximum values DGmax and PGmax at that time are used as index values, and these index values are shown in FIG. DG and PG in the flow for detecting the end point of vacuum drying shown in a) are respectively replaced (DG and PG in STEP 3 and 4 are replaced with values DGmax and PGmax in STEP 24), and then STEP 5 is determined to detect the end point of vacuum drying. If not determined, the process returns to STEP 17 although not shown. If it is higher than the predetermined values SP 2 and SP 3 , STEP 5 is not discriminated and the process returns to STEP 17.

以上の実施形態によれば、被乾燥物Sから気化する水蒸気の量が多くて両真空計5a,5bの測定指示値が変動する場合でもDGmaxとDGminとの差及びPGmaxとPGminとの差が所定値SP,SP以下に夫々なっている場合に、そのときの値DGmax,PGmaxを指標値とし、この指標値を測定指示値DG,PGとみなし、これに基づいて両者の差が小さく収束する時点を乾燥終点と判断するようにしたため、被乾燥物Sの種類や量によって乾燥槽1内の圧力が変動している場合でも可及的速やかに乾燥終点を検知することができる。また、別の手法として、特に図示しないが、一の変曲点としての最小値DGmin,PGminと、他の変曲点としての最大値DGmax,PGmaxとが夫々単位時間当たりに連続して減少している場合に、減少率が予め設定した値の範囲となった時点で第1及び第2の両真空計5a,5bの測定指示値への置き換えを行うことでも乾燥終点を検知することができる。また、複数の手法を組み合わせて判断するようにすれば、より確実に乾燥終点を検知することができる。その結果、乾燥槽1内で一度に乾燥処理する被乾燥物の量を減らしたり、コールドトラップ2として水蒸気の吸着能力が極めて高いものを用いたりする必要はなく、有利である。 According to the above embodiment, even when the amount of water vapor evaporated from the material to be dried S is large and the measurement indication values of both vacuum gauges 5a and 5b vary, the difference between DGmax and DGmin and the difference between PGmax and PGmin are When the values are less than or equal to the predetermined values SP 2 and SP 3 , the values DGmax and PGmax at that time are used as index values, and these index values are regarded as measurement instruction values DG and PG. Since the time of convergence is determined as the end point of drying, the end point of drying can be detected as quickly as possible even when the pressure in the drying tank 1 varies depending on the type and amount of the material to be dried S. As another method, although not particularly illustrated, the minimum values DGmin and PGmin as one inflection point and the maximum values DGmax and PGmax as other inflection points respectively decrease continuously per unit time. In this case, the end point of drying can be detected by replacing the measurement rate values of the first and second vacuum gauges 5a and 5b when the reduction rate falls within a preset value range. . Moreover, if it judges by combining a some method, a drying end point can be detected more reliably. As a result, it is not necessary to reduce the amount of objects to be dried at once in the drying tank 1 or to use a cold trap 2 having a very high water vapor adsorption capacity, which is advantageous.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではい。上記実施形態では、最大値DGmax,PGmaxから指標値を求め、これを図2(a)に示す真空乾燥の終点検知のフローにおけるDGとPGと置き換えるものを例に説明したが、これに限定されるものではない。例えば、最小値DGmin,PGminから指標値を求めるようにしてもよく、また、最大値DGmaxと最小値PGminとから、または、最小値DGminと最大値PGmaxとから指標値を求めることもできる。更に、特に図示して説明しないが、一定の周期で最大値DGmax,PGmaxと最小値DGmin,PGminとから真空計5a,5b毎に中間値を取得し、相前後して取得した中間値の差が夫々所定位置以下になり、中間値が単位時間当たりに連続して減少している場合に、測定指示値DG,PGへの置き換えを行うようにしてもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. In the above embodiment, the index value is obtained from the maximum values DGmax and PGmax, and this is replaced with DG and PG in the vacuum drying end point detection flow shown in FIG. It is not something. For example, the index value may be obtained from the minimum values DGmin and PGmin, or the index value may be obtained from the maximum value DGmax and the minimum value PGmin, or from the minimum value DGmin and the maximum value PGmax. Furthermore, although not shown and described in particular, an intermediate value is acquired for each vacuum gauge 5a, 5b from the maximum value DGmax, PGmax and the minimum value DGmin, PGmin in a certain cycle, and the difference between the intermediate values acquired before and after May be replaced with measurement instruction values DG and PG when the intermediate value continuously decreases per unit time.

また、上記実施形態では、第1及び第2の両真空計5a,5bの各測定指示値について置き換えを行っているが、これに限定されるものではない。即ち、乾燥槽1内が圧力変動したとき、第1の真空計5aの測定指示値は、第2の真空計5bの変動とは無関係に変動することがあるが、乾燥終点を検知する領域における変動量は、第2の真空計5bのものと比較して極めて少ない場合がある。このような場合には、上記に従い求めた指標値を第2の真空計5bの測定指示値と置き換えればよい。   Moreover, in the said embodiment, although it replaces about each measurement instruction | indication value of both the 1st and 2nd vacuum gauges 5a and 5b, it is not limited to this. That is, when the pressure in the drying tank 1 fluctuates, the measurement instruction value of the first vacuum gauge 5a may fluctuate regardless of the fluctuation of the second vacuum gauge 5b, but in the region where the drying end point is detected. The amount of variation may be very small compared to that of the second vacuum gauge 5b. In such a case, the index value obtained according to the above may be replaced with the measurement instruction value of the second vacuum gauge 5b.

1…真空凍結乾燥装置、1…乾燥槽、2…コールドトラップ、3…真空ポンプ、4…ヒータ、5a…キャパシタンスマノメータ(第1の真空計)、5b…ピラニ真空計(第2の真空計)、S…被乾燥物。   DESCRIPTION OF SYMBOLS 1 ... Vacuum freeze-drying apparatus, 1 ... Drying tank, 2 ... Cold trap, 3 ... Vacuum pump, 4 ... Heater, 5a ... Capacitance manometer (1st vacuum gauge), 5b ... Pirani vacuum gauge (2nd vacuum gauge) , S: To be dried.

Claims (6)

被乾燥物が配置された乾燥槽内を真空引きし、被乾燥物から気化した水蒸気を排気すると共にコールドトラップに吸着させながら被乾燥物を乾燥する乾燥工程にて被乾燥物の乾燥終点を検知する真空乾燥の終点検知方法であって、
乾燥槽内の圧力を、ガス種により測定指示値の影響を受けない全圧測定可能な第1の真空計と、ガス種により測定指示値に差が発生する全圧測定可能な第2の真空計とで測定し、第1及び第2の両真空計での測定指示値の差が小さく収束する時点を乾燥終点と判断するものにおいて、
乾燥槽内の真空引きに伴って当該乾燥槽内の圧力が下降している間で第2の真空計で測定した圧力が一旦上昇に転じるときの一の変曲点と、次に下降に転じるときの他の変曲点とを用いて指標値を求め、この求めた指標値を第2の真空計の測定指示値に置き換えて判断することを特徴とする真空乾燥の終点検知方法。
The inside of the drying tank where the object to be dried is placed is evacuated, and the vaporized water vapor from the object to be dried is exhausted, and the drying end point of the object to be dried is detected in the drying process where the object to be dried is adsorbed by the cold trap. An end point detection method for vacuum drying,
The first vacuum gauge capable of measuring the total pressure of the pressure in the drying tank without being affected by the measurement instruction value depending on the gas type, and the second vacuum capable of measuring the total pressure that causes a difference in the measurement instruction value depending on the gas type. In the case where the difference between the measured indication values in both the first and second vacuum gauges is small and converges is determined as the drying end point,
The first inflection point when the pressure measured by the second vacuum gauge once rises while the pressure inside the drying tank is decreasing as the pressure in the drying tank is reduced, and then the pressure decreases. A method for detecting the end point of vacuum drying, wherein an index value is obtained using another inflection point, and the obtained index value is replaced with a measurement instruction value of a second vacuum gauge.
前記一の変曲点を最小値、前記他の変曲点を最大値とし、最大値と最小値との差が所定値以下になると、そのときの最大値及び最小値の少なくとも一方を前記指標値とすることを特徴とする請求項1記載の真空乾燥の終点検知方法。   When the one inflection point is the minimum value and the other inflection point is the maximum value, and the difference between the maximum value and the minimum value is less than or equal to a predetermined value, at least one of the maximum value and the minimum value is the index. The end point detection method for vacuum drying according to claim 1, wherein the value is a value. 前記一の変曲点を最小値、前記他の変曲点を最大値とし、これら最大値と最小値との中間値を取得し、相前後して取得した中間値の差が所定値以下になると、そのときの少なくとも一方の中間値を前記指標値とすることを特徴とする請求項1記載の真空乾燥の終点検知方法。   The one inflection point is the minimum value, the other inflection point is the maximum value, an intermediate value between the maximum value and the minimum value is acquired, and the difference between the acquired intermediate values is less than or equal to a predetermined value. The end point detection method for vacuum drying according to claim 1, wherein at least one intermediate value at that time is used as the index value. 前記一の変曲点と他の変曲点とが単位時間当たりに連続して減少している場合に、前記指標値の第2の真空計の測定指示値への置き換えを行うことを特徴とする請求項1〜3のいずれか1項に記載の真空乾燥の終点検知方法。   When the one inflection point and the other inflection point continuously decrease per unit time, the index value is replaced with a measurement instruction value of a second vacuum gauge, The end point detection method for vacuum drying according to any one of claims 1 to 3. 前記第1の真空計として隔膜圧力計が用いられ、前記第2の真空計としてピラニ真空計が用いられることを特徴とする請求項1〜4のいずれか1項に記載の真空乾燥の終点検知方法。   The end point detection of the vacuum drying according to any one of claims 1 to 4, wherein a diaphragm pressure gauge is used as the first vacuum gauge, and a Pirani vacuum gauge is used as the second vacuum gauge. Method. 被乾燥物が配置される乾燥槽と、真空槽内を真空引きする真空ポンプと、被乾燥物から気化した水蒸気を吸着するコールドトラップとを備え、水蒸気を排気すると共にコールドトラップに吸着させながら被乾燥物を乾燥する場合にこの真空乾燥の終点検知が可能な真空乾燥装置であって、
乾燥槽内の圧力を、ガス種により測定指示値の影響を受けない全圧測定可能な第1の真空計と、ガス種により測定指示値に差が発生する全圧測定可能な第2の真空計と、第1及び第2の両真空計での測定指示値の差が小さく収束する時点を乾燥終点と判断する判定手段とを更に備えるものにおいて、
判定手段は、乾燥槽内の真空引きに伴って当該乾燥槽内の圧力が下降している間で第2の真空計で測定した圧力が一旦上昇に転じるときの一の変曲点と、次に下降に転じるときの他の変曲点とを用いて指標値を求め、この求めた指標値を第2の真空計の測定指示値に置き換えて判断することを特徴とする真空乾燥装置。
A drying tank in which an object to be dried is disposed, a vacuum pump for evacuating the inside of the vacuum tank, and a cold trap that adsorbs water vapor evaporated from the object to be dried are evacuated and exhausted while being adsorbed by the cold trap. A vacuum drying apparatus capable of detecting the end point of vacuum drying when drying a dried product,
The first vacuum gauge capable of measuring the total pressure of the pressure in the drying tank without being affected by the measurement instruction value depending on the gas type, and the second vacuum capable of measuring the total pressure that causes a difference in the measurement instruction value depending on the gas type. And a determination means for determining that the difference between the measurement instruction values in both the first and second vacuum gauges is small and converges as a drying end point,
The determination means includes one inflection point when the pressure measured by the second vacuum gauge once rises while the pressure in the drying tank is decreasing as the vacuum in the drying tank is reduced, A vacuum drying apparatus characterized in that an index value is obtained by using another inflection point when turning downward, and the obtained index value is replaced with a measurement instruction value of a second vacuum gauge.
JP2014246677A 2014-12-05 2014-12-05 End point detection method for vacuum drying and vacuum drying apparatus Active JP6513379B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014246677A JP6513379B2 (en) 2014-12-05 2014-12-05 End point detection method for vacuum drying and vacuum drying apparatus
TW104138775A TWI613409B (en) 2014-12-05 2015-11-23 Vacuum drying end point detecting method and vacuum drying device
KR1020150173158A KR20160068693A (en) 2014-12-05 2015-12-07 End point detection method of vacuum drying and vacuum drying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014246677A JP6513379B2 (en) 2014-12-05 2014-12-05 End point detection method for vacuum drying and vacuum drying apparatus

Publications (2)

Publication Number Publication Date
JP2016109348A true JP2016109348A (en) 2016-06-20
JP6513379B2 JP6513379B2 (en) 2019-05-15

Family

ID=56123899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014246677A Active JP6513379B2 (en) 2014-12-05 2014-12-05 End point detection method for vacuum drying and vacuum drying apparatus

Country Status (3)

Country Link
JP (1) JP6513379B2 (en)
KR (1) KR20160068693A (en)
TW (1) TWI613409B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631753A (en) * 2018-11-26 2021-11-09 Khs有限责任公司 Apparatus and method for plasma treatment of containers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156499A (en) * 2007-12-26 2009-07-16 Ulvac Japan Ltd Method of confirming drying end point in vacuum drying device
US20130192083A1 (en) * 2012-02-01 2013-08-01 Revive Electronics, LLC Methods and apparatuses for drying electronic devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0594372A (en) 1991-03-19 1993-04-16 Fujitsu Ltd Buffer storage control system
JP3977895B2 (en) * 1997-05-14 2007-09-19 芝浦メカトロニクス株式会社 Reclaimed solvent recycling device and vacuum drying device
CN103180037B (en) * 2010-10-29 2015-05-06 株式会社爱发科 Vacuum freeze drying apparatus and frozen particle manufacturing method
CN103411390B (en) * 2013-07-18 2015-09-02 上海海洋大学 A kind of ice temperature Minton dryer and the vacuum drying method of fresh fish fillet ice temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156499A (en) * 2007-12-26 2009-07-16 Ulvac Japan Ltd Method of confirming drying end point in vacuum drying device
US20130192083A1 (en) * 2012-02-01 2013-08-01 Revive Electronics, LLC Methods and apparatuses for drying electronic devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631753A (en) * 2018-11-26 2021-11-09 Khs有限责任公司 Apparatus and method for plasma treatment of containers

Also Published As

Publication number Publication date
TW201638543A (en) 2016-11-01
KR20160068693A (en) 2016-06-15
TWI613409B (en) 2018-02-01
JP6513379B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US9726556B2 (en) Method for calibrating a temperature sensor of a vapour compression system
US9791174B2 (en) Method for controlling an expansion device of a vapor compression system during start-up using rates of change of an evaporator inlet and outlet temperature
US20160356534A1 (en) Refrigeration cycle device
JP2016153617A (en) Cryopump system, cryopump control device and cryopump regeneration method
US3687612A (en) Method of controlling relative humidity in gaseous sterilizers
CN114382677B (en) Cryopump and method for regenerating cryopump
RU2016141632A (en) REFRIGERATING UNIT WITH PRESSURE REGULATOR
JP6395549B2 (en) Oil separator, refrigeration cycle apparatus, and control method of oil return amount
JP2020503513A5 (en)
JP2016109348A (en) Terminal point detection method for vacuum drying and vacuum drying device
RU2728446C2 (en) Mass spectrometric leak detector with turbomolecular pump and booster pump on common shaft
JP6934239B2 (en) High-sensitivity temperature rise desorption gas analyzer
CN109696037B (en) Method for determining product parameters in a freeze dryer, freeze dryer and software product
CN107514737B (en) Dehumidifier and fault judgment method and device thereof
RU2017131841A (en) MULTI-STAGE DISTILLATION INSTALLATION AND METHOD OF ITS OPERATION
JP2018505052A5 (en)
JP2017020688A (en) Heat pump type water heater
JP6639129B2 (en) Cryotrap
CN102628639A (en) Vacuum drying device and vacuum drying control method
JP6196849B2 (en) Vacuum cooling device
JP6748456B2 (en) Vacuum cooling device
JP6830481B2 (en) Leakage detection during vacuuming in the test room or inspected object
JP2017020737A (en) Cryotrap
CN211097649U (en) Solvent evaporation system
CN104641189A (en) Method for the controlled removal of foreign gases from a sorption device with an inert gas trap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190410

R150 Certificate of patent or registration of utility model

Ref document number: 6513379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250