JP2016109332A - Heat exchanger and its process of manufacture - Google Patents

Heat exchanger and its process of manufacture Download PDF

Info

Publication number
JP2016109332A
JP2016109332A JP2014245453A JP2014245453A JP2016109332A JP 2016109332 A JP2016109332 A JP 2016109332A JP 2014245453 A JP2014245453 A JP 2014245453A JP 2014245453 A JP2014245453 A JP 2014245453A JP 2016109332 A JP2016109332 A JP 2016109332A
Authority
JP
Japan
Prior art keywords
along
fluid
extrusion
heat exchanger
exposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014245453A
Other languages
Japanese (ja)
Inventor
信博 阿部
Nobuhiro Abe
信博 阿部
隆一 吉川
Ryuichi Yoshikawa
隆一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LSI Cooler Co Ltd
Original Assignee
LSI Cooler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LSI Cooler Co Ltd filed Critical LSI Cooler Co Ltd
Priority to JP2014245453A priority Critical patent/JP2016109332A/en
Publication of JP2016109332A publication Critical patent/JP2016109332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger of which processing and assembling can be easily carried out in a less-expensive manner and showing superior heat exchanging performance and durability and its process of manufacturing.SOLUTION: This invention is constituted in such a way that a plurality of aluminum extrusion materials 1 are arranged along a short side direction of the first fluid flow passage 2A and the second fluid flow passage 2B having the same shape rectangular section and adjoining flow passages 2A, 2B are alternatively displaced along their long side directions while their positions are being displaced by a specified distance, both surfaces opposing to each other near both ends along their extrusion directions are alternatively exposed along the short side directions of the flow passages 2A, 2B at their short sides in a specified width. One of the exposed flow passages along the extrusion direction is applied as flow inlets 11A, 11B of the first fluid 10A and the second fluid 10B and the other of the exposed flow passages is applied as discharge outlets 12A, 12B of the first fluid 10A and the second fluid 10B and both ends along the extrusion direction are closed by covers 6.SELECTED DRAWING: Figure 8

Description

本発明は、空調機器に使用される熱交換器や、制御機器の冷房に使用される熱交換器の改良に関するものである。 The present invention relates to improvements in heat exchangers used for air conditioning equipment and heat exchangers used for cooling control equipment.

一般に熱交換器は液体や気体の高温の第1流体と、液体や気体の低温の第2流体とを流路を介して接触させることにより冷房や暖房を行なっている。空調機器で使用される熱交換器は、第1流体が流れる第1流路と、第2流体が流れる第2流路とが、紙製のシートの片面に紙製の波形のコルゲ−トを設けて形成され、この第1流路と第2流路を直交して交互に複数枚積重ねて形成されている(特許文献1)。しかしながらこの積層型の熱交換器は、コルゲ−ト加工や、積重ね作業に多数の手間が掛かる上、強度も弱い問題があった。 In general, a heat exchanger performs cooling or heating by bringing a high temperature first fluid such as liquid or gas into contact with a low temperature second fluid such as liquid or gas via a flow path. In the heat exchanger used in the air conditioner, the first flow path through which the first fluid flows and the second flow path through which the second fluid flow have corrugated corrugated paper made on one side of the paper sheet. A plurality of first flow paths and second flow paths are orthogonally stacked and stacked alternately (Patent Document 1). However, this stacked heat exchanger has a problem that the corrugate processing and the stacking work require a lot of labor and the strength is weak.

このため流路を押出し成型したアルミニウムの押出し材を用いて、組立性を改善した熱交換器が提案されている。例えばアルミニウムの押出し材の上下を上部平板と中間平板とで挟んで、この間に台形状と菱形状の第1流体流路を形成し、更にこの中間平板と下部平板との間にアルミニウム押出し材で形成された間隔保持用側壁部を設け、この横の中間平板と下部平板との間にフィン部を設けて第2流体流路を形成した熱交換器(特許文献2)がある。しかしながらこのアルミニウムの押出し材を用いた構成は強度に優れてはいるが、部品点数が多く、その加工も面倒で、組立性も十分に改善されていない問題があった。 For this reason, a heat exchanger with improved assemblability has been proposed using an extruded aluminum material obtained by extruding a flow path. For example, an aluminum extrudate is sandwiched between an upper flat plate and an intermediate flat plate, a trapezoidal and rhombic first fluid flow path is formed between them, and an aluminum extrudate is further formed between the intermediate flat plate and the lower flat plate. There is a heat exchanger (Patent Document 2) in which a formed side wall portion for spacing is provided and a fin portion is provided between the horizontal intermediate plate and the lower plate to form a second fluid flow path. However, although the structure using the extruded material of aluminum is excellent in strength, there are problems that the number of parts is large, the processing is troublesome, and the assemblability is not sufficiently improved.

特開2001−241867号公報JP 2001-241867 A 特開平5−39992号公報JP-A-5-39992

本発明は上記問題を改善し、加工や組立が容易で安価であると共に、熱交換性能と耐久性に優れた熱交換器およびその製造方法を提供するものである。 The present invention improves the above problems, and provides a heat exchanger that is easy and inexpensive to process and assemble, and that excels in heat exchange performance and durability, and a method for manufacturing the same.

本発明の請求項1記載の熱交換器は、同一形状をなす矩形断面の流路を、その短辺方向に沿って複数併設し、且つ隣接する流路を長辺方向に沿って交互にその位置を一定距離ずらせたアルミニウム押出し材の押出し方向に沿った両端近傍の対向する両面を、流路の短辺方向に沿って所定の幅で矩形断面の流路の短辺側を交互に露出させ、露出した流路の押出し方向に沿った一方を流体の流入口とし、他方を流体の排出口とし、押出し方向に沿った両端を閉塞したことを特徴とするものである。 In the heat exchanger according to claim 1 of the present invention, a plurality of rectangular cross-section flow paths having the same shape are provided along the short side direction, and adjacent flow paths are alternately arranged along the long side direction. The opposite sides in the vicinity of both ends along the extrusion direction of the extruded aluminum material whose position is shifted by a certain distance are alternately exposed at the short side of the rectangular cross section with a predetermined width along the short side direction of the flow path. One of the exposed flow paths along the extrusion direction is a fluid inflow port, the other is a fluid discharge port, and both ends along the extrusion direction are closed.

本発明の請求項2記載の熱交換器は、請求項1において、アルミニウム押出し材の押出し方向に沿った両端を、ガスケットを介してカバーで閉塞したことを特徴とするものである。 The heat exchanger according to claim 2 of the present invention is characterized in that, in claim 1, both ends along the extrusion direction of the extruded aluminum material are closed with a cover via a gasket.

本発明の請求項3記載の熱交換器の製造方法は、同一形状をなす矩形断面の流路を、その短辺方向に沿って複数併設し、且つ隣接する流路を長辺方向に沿って交互にその位置を一定距離ずらせたアルミニウム押出し材を成型した後、この押出し方向に沿った両端近傍の対向する両面を流路の短辺方向に沿って所定の幅で矩形断面の流路の短辺側が交互に露出するようにフライス加工して切欠し、次いでアルミニウム押出し材の押出し方向に沿った両端を閉塞して、前記切欠して露出した流路の押出し材の押出し方向に沿った一方を流体の流入口とし、他方を流体の排出口としたことを特徴とするものである。 In the heat exchanger manufacturing method according to claim 3 of the present invention, a plurality of rectangular cross-section flow paths having the same shape are provided along the short side direction, and adjacent flow paths are provided along the long side direction. After forming an aluminum extruded material whose position is alternately shifted by a certain distance, the opposing both surfaces near both ends along the extrusion direction are short-circuited with a predetermined width along the short-side direction of the flow path and a rectangular cross-section flow path. Milled so that the sides are exposed alternately, cut out, then closed both ends along the extrusion direction of the aluminum extruded material, and one side along the extrusion direction of the extruded material of the flow channel exposed through the notch A fluid inflow port is provided, and the other is a fluid discharge port.

本発明に係る請求項1記載の熱交換器によれば、押出し成型されたアルミニウムの第1流体流路と第2流体流路が交互に形成され、第1流体と第2流体との間で効率よく熱交換することができ、アルミニウム製なので強度と耐久性に優れている。またアルミニウム押出し材はその切り出す長さを調整することにより種々の熱交換量の熱交換器を容易に作成することができる。またアルミニウム押出し材の表面の少なくとも4カ所を平面フライス加工するだけで流入口と排出口が形成できるので加工が容易である上、アルミニウム押出し材の両端を閉塞するだけで簡単に、且つ安価に作成することができる。 According to the heat exchanger of the first aspect of the present invention, the extruded first aluminum fluid passage and the second fluid passage are alternately formed, and the first fluid passage and the second fluid passage are formed. It can exchange heat efficiently and is made of aluminum, so it has excellent strength and durability. Further, by adjusting the length of the extruded aluminum material, heat exchangers with various heat exchange amounts can be easily prepared. In addition, it is easy to process because the inlet and outlet can be formed by flat milling at least four locations on the surface of the extruded aluminum material, and it can be easily and inexpensively created by simply closing both ends of the extruded aluminum material. can do.

また請求項2記載の熱交換器によれば、アルミニウム押出し材の押出し方向に沿った両端を、ガスケットを介してカバーで閉塞するだけなので組立てが容易である。 Moreover, according to the heat exchanger of Claim 2, since the both ends along the extrusion direction of an aluminum extrusion material are only obstruct | occluded with a cover via a gasket, an assembly is easy.

また請求項3記載の熱交換器によれば、同一形状をなす矩形断面の流路を、その短辺方向に沿って複数併設し、且つ隣接する流路を長辺方向に沿って交互にその位置を一定距離ずらせたアルミニウム押出し材を成型した後、アルミニウム押出し材の表面の少なくとも4カ所を平面フライス加工するだけで流入口と排出口が形成できるので加工が容易で簡単に且つ安価に作成することができる。 According to the heat exchanger according to claim 3, a plurality of rectangular cross-section flow paths having the same shape are provided along the short side direction, and adjacent flow paths are alternately arranged along the long side direction. After molding the extruded aluminum material whose position is shifted by a certain distance, it is possible to form the inlet and outlet by simply milling at least four places on the surface of the extruded aluminum material. be able to.

以下本発明の実施の一形態を図1ないし図8を参照して詳細に説明する。図1はアルミニウム押出し材1を示すもので、図2に示すように同一形状をなす矩形断面の流路2A、2Bが、その短辺方向に沿って複数併設されていると共に、隣接する流路2A、2Bを長辺方向に沿って交互にその位置を一定距離Lだけずらせて形成したものである。この流路2A、2Bをずれせたアルミニウム押出し材1を、押出し方向に沿って所定の長さに切断する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. FIG. 1 shows an extruded aluminum material 1. As shown in FIG. 2, a plurality of channels 2 A and 2 B having a rectangular cross section having the same shape are provided along the short side direction and adjacent channels. 2A and 2B are formed by alternately shifting their positions by a certain distance L along the long side direction. The aluminum extruded material 1 in which the flow paths 2A and 2B are displaced is cut into a predetermined length along the extrusion direction.

次に、このアルミニウム押出し材1を図示しないフライス盤にセットし、図1の仮想線で示すように両端部から少し離れた部分の上面のC1の範囲を、図2の厚さDだけ平面フライス加工して除去する。このフライス加工する厚さは流路2Bの上面の厚さが、流路2A、2B間の厚さと同じに残るように設定する。 Next, this aluminum extruded material 1 is set on a milling machine (not shown), and the range of C1 on the upper surface of the part slightly away from both ends as shown by the phantom lines in FIG. 1 is flat milled by the thickness D in FIG. And remove. The thickness to be milled is set so that the thickness of the upper surface of the flow path 2B remains the same as the thickness between the flow paths 2A and 2B.

アルミニウム押出し材1の上面の両端近傍のC1の範囲を除去した状態は図3に示すようになる。この場合、アルミニウム押出し材1の押出し方向に沿った両端部は残してここをカバー取付け部3とする。なお図3では手前側のカバー取付け部3を省略して、内部構造を見えるように示している。 A state where the range of C1 in the vicinity of both ends of the upper surface of the extruded aluminum material 1 is removed is as shown in FIG. In this case, both ends along the extrusion direction of the extruded aluminum material 1 are left and this is used as the cover attachment portion 3. In FIG. 3, the front cover attaching portion 3 is omitted, and the internal structure is shown so as to be visible.

次にアルミニウム押出し材1を反転させて、図1に示すC2の範囲を、同様に厚さDだけ平面フライス加工して除去し図4および図5の状態に加工する。なお図4でも手前側のカバー取付け部3を省略して、内部構造を見えるように示している。 Next, the aluminum extruded material 1 is reversed, and the range of C2 shown in FIG. 1 is similarly removed by plane milling by the thickness D, and processed into the state shown in FIGS. In FIG. 4, the front cover attaching portion 3 is omitted and the internal structure is shown so as to be visible.

次に図5に示すように、アルミニウム押出し材1の押出し方向に沿った両端のカバー取付け部3には、その各コーナにビス孔4を加工する。次に図6に示すようにカバー取付け部3にガスケット5を介してカバー6を、図7に示すようにビス7で固定して閉塞し、熱交換器8を組立てる。 Next, as shown in FIG. 5, screw holes 4 are processed in the respective corners of the cover attaching portions 3 at both ends along the extrusion direction of the aluminum extruded material 1. Next, as shown in FIG. 6, the cover 6 is fixed to the cover attaching portion 3 through the gasket 5 and closed with screws 7 as shown in FIG. 7, and the heat exchanger 8 is assembled.

このように組立てた熱交換器8は、フライス加工して除去した部分に貫通する流路と非貫通の流路2A、2Bが交互に現れる。例えば上面の手前側を第1流体の流入口11Aとし、後方側を第1流体の排出口12Aとする。また下面の手前側を第2流体の流入口11Bとし、後方側を第2流体の排出口12Bとする。 In the heat exchanger 8 assembled in this way, the flow paths penetrating the portions removed by milling and the non-penetrating flow paths 2A and 2B appear alternately. For example, the front side of the upper surface is the first fluid inlet 11A and the rear side is the first fluid outlet 12A. The front side of the lower surface is the second fluid inlet 11B, and the rear side is the second fluid outlet 12B.

例えば図8に示すように第1流体10Aを冷却した温度の低い空気とし、図示しない冷房器からブロアーで第1流体の流入口11Aに供給すると、ここから押出し方向に沿った第1流体流路2Aを通って第1流体の排出口12Aから排出され冷房器に戻る。 For example, as shown in FIG. 8, when the first fluid 10 </ b> A is cooled to low temperature air and is supplied to the first fluid inlet 11 </ b> A from a cooler (not shown) by a blower, the first fluid flow path along the extrusion direction therefrom The air is discharged from the first fluid discharge port 12A through 2A and returned to the air conditioner.

また第2流体10Bを暖まった温度の高い空気とし、図示しない機器を冷却して暖まった第2流体10Bをブロアーで第2流体の流入口11Bに供給する。この流入口11Bから押出し方向に沿った第2流体流路2Bを通って第2流体の排出口12Aから排出されて冷房する機器に戻される。 Further, the second fluid 10B is heated to high temperature air, and the second fluid 10B that has been warmed by cooling an unillustrated device is supplied to the second fluid inlet 11B by a blower. From this inflow port 11B, it passes through the second fluid flow path 2B along the extrusion direction, is discharged from the discharge port 12A of the second fluid, and is returned to the equipment to be cooled.

このように押出し成型されたアルミニウムの第1流体流路2Aと第2流体流路2Bが交互に形成され、第1流体10Aと第2流体10Bとの間で効率よく熱交換することができ、アルミニウム製なので強度と耐久性に優れている。またアルミニウム押出し材1はその切り出す長さを調整することにより種々の熱交換量の熱交換器8を容易に作成することができる。またアルミニウム押出し材1の表面の4カ所を平面フライス加工するだけで流入口11A、11Bと排出口12A、12Bが形成でき加工が容易である上、アルミニウム押出し材1の両端にガスケット5とカバー6を取付けて組立てられるので安価に作成することができる。 The aluminum first fluid flow path 2A and the second fluid flow path 2B extruded in this way are alternately formed, and heat can be efficiently exchanged between the first fluid 10A and the second fluid 10B. Made of aluminum, it has excellent strength and durability. Moreover, the heat exchanger 8 of various heat exchange amounts can be easily produced by adjusting the cut-out length of the extruded aluminum material 1. In addition, the inlets 11A and 11B and the outlets 12A and 12B can be formed simply by plane milling at four locations on the surface of the extruded aluminum material 1, and the processing is easy. Further, the gasket 5 and the cover 6 are formed at both ends of the extruded aluminum material 1. Can be manufactured at low cost.

また上記説明では流入口11A、11Bと排出口12A、12Bを上下両面に形成した熱交換器8について示したが、横にして左右両面に形成した状態で使用しても良い。また流入口11A、11Bと排出口12A、12Bは4カ所設けた場合について示したが、6カ所以上設けても良い。またアルミニウム押出し材1の両端をガスケット5とカバー6で閉塞した場合について示したが、露出している流路2A、2Bの端部に詰め物をして閉塞した構造でも良い。 In the above description, the heat exchanger 8 in which the inlets 11A and 11B and the outlets 12A and 12B are formed on both the upper and lower sides is shown. Further, although the case where four inlets 11A and 11B and four outlets 12A and 12B are provided is shown, six or more may be provided. Moreover, although the case where the both ends of the aluminum extrusion material 1 were obstruct | occluded with the gasket 5 and the cover 6 was shown, the structure closed by stuffing the edge part of the exposed flow paths 2A and 2B may be sufficient.

なお上記説明では第1流体10Aと、第2流体10Bを共に空気を使用した場合について示したが、一方または両方がオイルや不凍液などの液体を流しても良い。 In the above description, the case where both the first fluid 10A and the second fluid 10B use air is shown, but one or both may flow a liquid such as oil or antifreeze.

本発明の実施の一形態による同一形状をなす矩形断面の流路を、その短辺方向に沿って複数併設したアルミニウム押出し材の斜視図である。It is a perspective view of the aluminum extrusion material which arranged the flow path of the rectangular cross section which makes the same shape by one Embodiment of this invention along with the short side direction. 図1のアルミニウム押出し材の正面図である。It is a front view of the aluminum extrusion material of FIG. 図2に示すアルミニウム押出し材の上面両端側を除去した状態を示す斜視図である。It is a perspective view which shows the state which removed the upper surface both ends side of the aluminum extrusion material shown in FIG. 図3に示すアルミニウム押出し材の上下両面の両端側を除去した状態を示す斜視図である。It is a perspective view which shows the state which removed the both ends of the upper and lower surfaces of the aluminum extrusion material shown in FIG. アルミニウム押出し材の上下両面の両端側を除去した状態を示す斜視図である。It is a perspective view which shows the state which removed the both-ends side of the upper and lower surfaces of an aluminum extrusion material. 熱交換器を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows a heat exchanger. 熱交換器の斜視図である。It is a perspective view of a heat exchanger. 熱交換器内の流体の流れを示す説明図である。It is explanatory drawing which shows the flow of the fluid in a heat exchanger.

1 アルミニウム押出し材
2A 第1流体流路
2B 第2流体流路
3 カバー取付け部
4 ビス孔
5 ガスケット
6 カバー
7 ビス
8 熱交換器
10A 第1流体
10B 第2流体
11A 第1流体の流入口
11B 第2流体の流入口
12A 第1流体の排出口
12B 第2流体の排出口

1 Extruded aluminum
2A 1st fluid flow path
2B Second fluid flow path
3 Cover mounting part
4 Screw holes
5 Gasket
6 Cover
7 screw
8 Heat exchanger
10A 1st fluid
10B Second fluid
11A First fluid inlet
11B Second fluid inlet
12A First fluid outlet
12B Second fluid outlet

Claims (3)

同一形状をなす矩形断面の流路を、その短辺方向に沿って複数併設し、且つ隣接する流路を長辺方向に沿って交互にその位置を一定距離ずらせたアルミニウム押出し材の押出し方向に沿った両端近傍の対向する両面を、流路の短辺方向に沿って所定の幅で矩形断面の流路の短辺側を交互に露出させ、露出した流路の押出し方向に沿った一方を流体の流入口とし、他方を流体の排出口とし、押出し方向に沿った両端を閉塞したことを特徴とする熱交換器。 In the extrusion direction of the aluminum extrusion material, a plurality of rectangular cross-section flow paths having the same shape are provided along the short side direction, and adjacent flow paths are alternately shifted by a certain distance along the long side direction. The opposite sides in the vicinity of both ends along the short side of the flow path are alternately exposed with the short side of the rectangular cross section with a predetermined width along the short side direction of the flow path, and one of the exposed flow paths along the extrusion direction is exposed. A heat exchanger characterized in that a fluid inlet is provided, the other is a fluid outlet, and both ends along the extrusion direction are closed. アルミニウム押出し材の押出し方向に沿った両端を、ガスケットを介してカバーで閉塞したことを特徴とする請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein both ends of the extruded aluminum material along the extrusion direction are closed with a cover via a gasket. 同一形状をなす矩形断面の流路を、その短辺方向に沿って複数併設し、且つ隣接する流路を長辺方向に沿って交互にその位置を一定距離ずらせたアルミニウム押出し材を成型した後、この押出し方向に沿った両端近傍の対向する両面を流路の短辺方向に沿って所定の幅で矩形断面の流路の短辺側が交互に露出するようにフライス加工して切欠し、次いでアルミニウム押出し材の押出し方向に沿った両端を閉塞して、前記切欠して露出した流路の押出し材の押出し方向に沿った一方を流体の流入口とし、他方を流体の排出口としたことを特徴とする熱交換器の製造方法。

After molding an extruded aluminum material in which a plurality of rectangular cross-section flow paths having the same shape are provided along the short side direction, and adjacent flow paths are alternately shifted by a certain distance along the long side direction. Then, both opposing sides near both ends along the extrusion direction are milled so that the short sides of the rectangular cross section are alternately exposed with a predetermined width along the short side direction of the flow path, and then cut out. Both ends along the extrusion direction of the aluminum extruded material are closed, and one of the flow paths exposed by the cutout along the extrusion direction of the extruded material is used as a fluid inlet, and the other is used as a fluid outlet. A method for manufacturing a heat exchanger.

JP2014245453A 2014-12-04 2014-12-04 Heat exchanger and its process of manufacture Pending JP2016109332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245453A JP2016109332A (en) 2014-12-04 2014-12-04 Heat exchanger and its process of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245453A JP2016109332A (en) 2014-12-04 2014-12-04 Heat exchanger and its process of manufacture

Publications (1)

Publication Number Publication Date
JP2016109332A true JP2016109332A (en) 2016-06-20

Family

ID=56123707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245453A Pending JP2016109332A (en) 2014-12-04 2014-12-04 Heat exchanger and its process of manufacture

Country Status (1)

Country Link
JP (1) JP2016109332A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114809A (en) * 1977-02-19 1978-10-06 Kernforschungsanlage Juelich Ceramic heat transmitting body and method of its manufacture
JPH0433884U (en) * 1990-07-05 1992-03-19
JP2009068834A (en) * 2007-09-11 2009-04-02 Ikun Chiyou Condenser assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114809A (en) * 1977-02-19 1978-10-06 Kernforschungsanlage Juelich Ceramic heat transmitting body and method of its manufacture
JPH0433884U (en) * 1990-07-05 1992-03-19
JP2009068834A (en) * 2007-09-11 2009-04-02 Ikun Chiyou Condenser assembly

Similar Documents

Publication Publication Date Title
JP5882179B2 (en) Internal heat exchanger with external manifold
JPH11287580A (en) Heat exchanger
JP2013542397A (en) Double air flow exchanger with improved heat and moisture transfer
CN107924897A (en) Laminated cores build radiator
JP2008235725A (en) Water-cooled heat sink
JPWO2018012558A1 (en) Stacked heat sink core
KR101900232B1 (en) Plate heat exchanger
JP6578964B2 (en) Laminate heat exchanger
JP5005314B2 (en) Water-cooled heat sink and manufacturing method thereof
JP2020201020A (en) Heat exchanger
US9989314B2 (en) Heat exchanger assembly
JP2010121925A (en) Heat exchanger
JPH0493596A (en) Core structure of stacked type heat exchanger
JP6578980B2 (en) Laminate heat exchanger
JP2016109332A (en) Heat exchanger and its process of manufacture
JP6392659B2 (en) Heat exchanger and manufacturing method thereof
KR101730890B1 (en) Plastic Heat Exchanger for Heat Recovery
WO2017195588A1 (en) Stack type heat exchanger
US11187470B2 (en) Plate fin crossflow heat exchanger
JP2005282907A (en) Heat exchanger
KR101368309B1 (en) Heat exchanger for exhaust heat recovery
CN111765786A (en) Heat exchanger and heat exchanger assembly
JPH0539992A (en) Heat exchanger
RU2540030C2 (en) Assembled plate-type heat exchanger
JP2013142515A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190220