JP2016108789A - High strength panel for building - Google Patents

High strength panel for building Download PDF

Info

Publication number
JP2016108789A
JP2016108789A JP2014245721A JP2014245721A JP2016108789A JP 2016108789 A JP2016108789 A JP 2016108789A JP 2014245721 A JP2014245721 A JP 2014245721A JP 2014245721 A JP2014245721 A JP 2014245721A JP 2016108789 A JP2016108789 A JP 2016108789A
Authority
JP
Japan
Prior art keywords
panel
core material
strength
panels
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014245721A
Other languages
Japanese (ja)
Inventor
永上 修一
Shuichi Nagakami
修一 永上
宏伸 上野
Hironobu Ueno
宏伸 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Industrial Co Ltd
Original Assignee
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Industrial Co Ltd filed Critical Meisei Industrial Co Ltd
Priority to JP2014245721A priority Critical patent/JP2016108789A/en
Publication of JP2016108789A publication Critical patent/JP2016108789A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high strength panel for a building, capable of improving workability, and capable of securing even strength, in response to weight reduction more than usual, even in a large panel.SOLUTION: A high strength panel is formed by sandwiching a plurality of core material panels 30 between two metal plates 20, and in the core material panels 30, the extending direction of fiber of a core material runs along the thickness direction of the core material panel 30, and the core material is compressed to high density of 120-220 kg/m, and the core material panel 30 is also arranged in a zigzag shape between the metal plates 20, and strength of the whole indicates 2500 N/mor more.SELECTED DRAWING: Figure 1

Description

本発明は、外壁や間仕切り壁等の壁材として用いる建築物用高強度パネルに関する。   The present invention relates to a high-strength panel for buildings used as a wall material such as an outer wall or a partition wall.

工場や倉庫、あるいは住宅等の建築物において外壁や間仕切り壁等を施工する場合、複数の長方形状のパネルを立てて順次接合しながら胴縁等の支持部材に固定することにより簡易に施工する方法がある(特許文献1等)。そのようなパネルに対しては特に高い密閉性や耐火・断熱性といった特性が求められる場合があり、従来、ALC(Autoclaved Lightweight Cocrete)パネルと呼ばれる軽量気泡コンクリートパネルや軽量セメント成型パネルが、そのような特性を満たすものとして広く使用されている(特許文献2参照)。また、比較的大規模な物流倉庫や冷凍・冷蔵倉庫、あるいは食品加工工場等の建築物の場合には、施工の効率化を図る観点から大型パネルが使用される。このようなパネルには、建築基準法や消防法によって耐火・断熱性が規定されているとともに、耐震性等の確保のための強度も規定されている。   When constructing exterior walls or partition walls in buildings such as factories, warehouses, or houses, a simple method is to install a plurality of rectangular panels and fix them to a support member such as a torso while sequentially joining them. (Patent Document 1, etc.). Such panels may be required to have particularly high sealing properties, fire resistance and heat insulation properties. Conventionally, lightweight cellular concrete panels and lightweight cement-molded panels called ALC (Autoclaved Lightweight Cocrete) panels are used. It is widely used to satisfy various characteristics (see Patent Document 2). In the case of buildings such as relatively large-scale distribution warehouses, frozen / refrigerated warehouses, or food processing factories, large panels are used from the viewpoint of improving the efficiency of construction. Such panels are stipulated in terms of fire resistance and heat insulation by the Building Standards Law and Fire Service Law, and are also stipulated in terms of strength for ensuring earthquake resistance and the like.

特開2001−040800号公報JP 2001-040800 A 特開2008−014052号公報JP 2008-014052 A

ところで、上記コンクリートパネルやセメント成型パネルであっても重量がかさみ施工性が低下する状況がある。その場合には作業員の増員を招くことになるため、なるべく少数の作業員で施工したい場合に問題となり、この問題はパネルが大型化するほど顕著になってくる。   By the way, even if it is the said concrete panel and a cement molding panel, there exists a condition where weight is bulky and construction property falls. In this case, the number of workers is increased, which causes a problem when construction is performed with as few workers as possible. This problem becomes more prominent as the panel becomes larger.

本発明は上記事情に鑑みてなされたものであり、その主な課題としては、大型パネルであっても軽量化に伴う施工性の向上が図られるとともに強度も確保することができる建築物用高強度パネルを提供することにある。   This invention is made | formed in view of the said situation, The main subject is the high for buildings which can aim at the improvement of the workability accompanying weight reduction, and can ensure intensity | strength even if it is a large sized panel. It is to provide a strength panel.

本発明の建築物用高強度パネルは、2枚の金属板の間に複数の芯材パネルが挟まれてなる高強度パネルであって、前記芯材パネルは、芯材材料の繊維の延びる方向が該芯材パネルの厚さ方向に沿っているとともに、該芯材材料を120〜220kg/mの高密度に圧縮したものであり、かつ、該芯材パネルは前記金属板間において千鳥状に配列されており、全体の強度が2500N/m以上を示すことを特徴とする。 The high-strength panel for buildings of the present invention is a high-strength panel in which a plurality of core panels are sandwiched between two metal plates, and the core panel has a direction in which the fibers of the core material extend. Along with the thickness direction of the core panel, the core material is compressed to a high density of 120 to 220 kg / m 3 , and the core panels are arranged in a staggered manner between the metal plates The overall strength is 2500 N / m 2 or more.

本願発明では、前記金属板の厚さが0.4〜1.2mmであることを特徴とする。   In this invention, the thickness of the said metal plate is 0.4-1.2 mm, It is characterized by the above-mentioned.

本発明によれば、大型パネルであっても従来より軽量化に伴う施工性の向上が図られとるともに強度も確保することができる建築物用高強度パネルを提供されるといった効果を奏する。   According to the present invention, it is possible to provide a high-strength panel for buildings that can improve the workability associated with weight reduction and ensure the strength even if it is a large panel.

本発明の一実施形態に係る高強度パネルによって間仕切りを施工した状態を示す斜視図である。It is a perspective view which shows the state which constructed the partition with the high intensity | strength panel which concerns on one Embodiment of this invention. 一実施形態に係る耐火断熱パネルの接合構造を示す断面図である。It is sectional drawing which shows the joining structure of the fireproof heat insulation panel which concerns on one Embodiment. 一実施形態に係る耐火断熱パネルの接合構造の詳細を示す断面図であるIt is sectional drawing which shows the detail of the joining structure of the fireproof heat insulation panel which concerns on one Embodiment. 高強度パネル内の芯材パネルの配列を示す図である。It is a figure which shows the arrangement | sequence of the core material panel in a high intensity | strength panel. 実施例の曲げ試験方法を示す図である。It is a figure which shows the bending test method of an Example. 実施例の変形追従性試験方法を示す図である。It is a figure which shows the deformation | transformation followability test method of an Example.

以下、図面を参照して本発明の一実施形態を説明する。
図1は一実施形態に係る建築物用高強度パネル(以下、パネルと略称)10によって間仕切り壁10Aを構築した状態を示している。この場合、パネル10は床スラブ1から上階スラブ2までの高さを有し、複数のパネル10を横方向に接合して間仕切り壁10Aが構築される。パネル10の上下の端部は、それぞれ床スラブ1、上階スラブ2に固定される断面L字状の一対の取付金具4間に挟み込まれて支持され、これによりパネル10は床スラブ1と上階スラブ2との間に直立状態で支持される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a state in which a partition wall 10A is constructed by a high-strength panel for buildings (hereinafter abbreviated as a panel) 10 according to an embodiment. In this case, the panel 10 has a height from the floor slab 1 to the upper floor slab 2, and the partition wall 10A is constructed by joining a plurality of panels 10 in the lateral direction. The upper and lower ends of the panel 10 are sandwiched and supported between a pair of L-shaped mounting brackets 4 fixed to the floor slab 1 and the upper floor slab 2, respectively. It is supported upright between the floor slabs 2.

なお、図1では床スラブ1と上階スラブ2間の1フロアの高さが1枚のパネル10の長さ寸法に対応しているが、例えば大規模な倉庫や工場の外壁等において1枚のパネル10の長さを超える高さの間仕切り壁等を構築する場合には、複数のパネル10を上方に積み上げて接合し複数段にパネル10を施工する。   In FIG. 1, the height of one floor between the floor slab 1 and the upper slab 2 corresponds to the length of one panel 10, but for example, one sheet in a large warehouse or an outer wall of a factory. When a partition wall or the like having a height exceeding the length of the panel 10 is constructed, the plurality of panels 10 are stacked and joined together to construct the panels 10 in a plurality of stages.

パネル10は、図2および図3に示すように、2枚の金属板20の間に複数の長方形状の芯材パネル30が挟まれた構成を有している。金属板20は、カラー鋼板、フッ素鋼板、塩ビ鋼板、SUS等のステンレス板等であって、厚さが0.4〜1.2mmのものが用いられる。   2 and 3, the panel 10 has a configuration in which a plurality of rectangular core panels 30 are sandwiched between two metal plates 20. The metal plate 20 is a color steel plate, a fluorine steel plate, a vinyl steel plate, a stainless steel plate such as SUS, etc., and has a thickness of 0.4 to 1.2 mm.

芯材パネル30は、不燃性および断熱性を備えた無機系繊維等からなる芯材材料を120〜220kg/mの高密度に圧縮成形して得たものであり、厚さは、100〜250mmの範囲から選択される。この芯材パネル30においては、繊維が一方向に延びる材料からなり、その繊維の延びる方向が自身の厚さ方向に沿っている。芯材パネル30の具体的な材料としては、例えば、製鉄プロセスで得られるガラス状の鉄炉スラグに石灰等を混合して高温で溶解し生成されるロックウールや、グラスウール等の無機系人造繊維等が挙げられる。 The core material panel 30 is obtained by compression-molding a core material made of inorganic fibers or the like having nonflammability and heat insulation to a high density of 120 to 220 kg / m 3 , and the thickness is 100 to It is selected from the range of 250 mm. In this core panel 30, the fibers are made of a material extending in one direction, and the extending direction of the fibers is along its own thickness direction. Specific materials for the core panel 30 include, for example, rock wool produced by mixing lime or the like with glassy iron furnace slag obtained by an iron making process and melting at high temperature, and inorganic artificial fibers such as glass wool. Etc.

2枚の金属板20に挟まれる複数の芯材パネル30は、図4に示すように、長手方向を金属板20の長手方向と平行にし、かつ、横に隣接するものとは長手方向に半分の長さずらした千鳥状として端面どうしを密接させた状態で配列されている。   As shown in FIG. 4, the plurality of core material panels 30 sandwiched between the two metal plates 20 have a longitudinal direction parallel to the longitudinal direction of the metal plate 20 and half of the longitudinally adjacent ones in the longitudinal direction. The end faces are arranged in close contact with each other in a zigzag pattern shifted in length.

パネル10は横方向に並べられ、長手方向に沿った側端面どうしが接合されて間仕切り壁10Aが構築される。図3に示すように、パネル10の一方(図3で左側)の側端面には表裏の金属板20が折り返されることにより凹部11が形成され、凹部11の底面に長手方向に沿った凸条31が形成されている。また、パネル10の他方(図3で右側)の側端面には厚さを減じることで凸部12が形成され、凸部12の端面に長手方向に沿った溝32が形成されている。パネル10の両方の側端面は芯材パネル30が露出しており、その芯材パネル30の厚さ方向中央部に、凸条31および溝32が形成されている。   The panels 10 are arranged in the horizontal direction, and the side end faces along the longitudinal direction are joined together to construct the partition wall 10A. As shown in FIG. 3, a concave portion 11 is formed on one side end surface (left side in FIG. 3) of the panel 10 by folding the front and back metal plates 20, and a convex strip extending in the longitudinal direction on the bottom surface of the concave portion 11. 31 is formed. Further, a convex portion 12 is formed by reducing the thickness on the other side end surface (right side in FIG. 3) of the panel 10, and a groove 32 along the longitudinal direction is formed on the end surface of the convex portion 12. The core material panel 30 is exposed on both side end surfaces of the panel 10, and a ridge 31 and a groove 32 are formed in the central portion in the thickness direction of the core material panel 30.

パネル10は、充填材40を間に挟んだ圧縮させ、凹部11に凸部12を嵌合させるとともに凸条31に溝32を嵌合させることで、横方向に接合される。充填材40は、例えば厚さ10〜15mm程度のセラミックファイバーや生体溶解性繊維等が用いられる。   The panel 10 is joined in the lateral direction by compressing the filler 40 between them, fitting the convex portion 12 to the concave portion 11, and fitting the groove 32 to the convex strip 31. As the filler 40, for example, a ceramic fiber or a biosoluble fiber having a thickness of about 10 to 15 mm is used.

パネル10の全体寸法としては、例えば、幅:900mm程度、高さ:1800〜8000mm程度とされ、厚さは100〜150mm程度とされる。また、パネル10を製造するにあたっては、千鳥状に並べた芯材パネル30の両面に金属板20をウレタン樹脂系等の接着剤で接着して金属サンドイッチパネルを製造するという製造方法で製造することができる。   The overall dimensions of the panel 10 are, for example, a width: about 900 mm, a height: about 1800-8000 mm, and a thickness of about 100-150 mm. Moreover, when manufacturing the panel 10, it manufactures with the manufacturing method of adhere | attaching the metal plate 20 on both surfaces of the core material panel 30 arranged in a staggered pattern with adhesives, such as a urethane resin type | system | group, and manufacturing a metal sandwich panel. Can do.

本実施形態のパネル10は、重量が24kg/m程度とALCパネルの重量(65kg/m程度)よりも軽く、このため大型パネルであっても軽量化に伴う施工性の向上が図られる。また、全体強度が2500N/m以上と、国土交通省所管の倉庫業法で規定されている耐荷重値:2500N/m以上という条件を満足し、かつ、耐震性に優れるものとされ、強度も確保される。以下の実施例において、これら性能を有することを実証する。 The panel 10 of the present embodiment has a weight of about 24 kg / m 2, which is lighter than the weight of the ALC panel (about 65 kg / m 2 ). . In addition, the total strength is 2500 N / m 2 or more, and the load resistance value specified by the warehouse business law under the jurisdiction of the Ministry of Land, Infrastructure, Transport and Tourism: 2500 N / m 2 or more is satisfied. Is also secured. The following examples demonstrate these capabilities.

[1]曲げ試験による強度評価
本発明のパネルとして、表1に示すA,Bの仕様のものをそれぞれ3枚(No.1〜3)用意し、図5に示す曲げ試験機によってパネルの曲げ試験を行った。ここで、働き幅とは一端側の接合端部のパネル嵌合部を除いた長さ(図2でW1)を言う。パネルA,Bにおいては、表裏の金属板が塗装溶融亜鉛めっき鋼板(JIS G 3312)、芯材パネルがロックウールパネル、金属板と芯材パネルとの接着にウレタン系樹脂接着剤を用いたという点が共通している。
[1] Strength evaluation by bending test
Three panels (No. 1 to 3) having the specifications of A and B shown in Table 1 were prepared as the panels of the present invention, and the panel was subjected to a bending test using a bending tester shown in FIG. Here, the working width means the length (W1 in FIG. 2) excluding the panel fitting portion at the joint end on one end side. In panels A and B, the front and back metal plates were painted hot-dip galvanized steel sheets (JIS G 3312), the core material panel was a rock wool panel, and a urethane resin adhesive was used to bond the metal plate and the core material panel. The point is common.

Figure 2016108789
Figure 2016108789

図5の曲げ試験機は、フロア50上に設置した一対の支持板(幅:100mm、厚さ12mm)51間にパネル10を架け渡し、パネル10の離間した2位置に対し、一対の加圧板(幅:100mm、厚さ12mm)52および加圧用鋼材53を介して荷重Pをパネル10の中心から下方に向けてかけるものである。支持板51間の支持スパン長さLは6000mm、支持板51と加圧板52は左右対称の位置に配され、左右の支持板51と加圧板52との間はL/4、加圧板52の間はL/2に設定している。パネル10は長手方向を支持板51間の方向に沿った状態として支持板51上に載置される。   The bending tester shown in FIG. 5 spans a panel 10 between a pair of support plates (width: 100 mm, thickness 12 mm) 51 installed on a floor 50, and a pair of pressure plates with respect to two spaced positions of the panel 10. (Width: 100 mm, thickness: 12 mm) The load P is applied downward from the center of the panel 10 through the steel material 53 for pressurization and 52. The support span length L between the support plates 51 is 6000 mm, the support plate 51 and the pressure plate 52 are disposed at symmetrical positions, and the distance between the left and right support plates 51 and the pressure plate 52 is L / 4. The interval is set to L / 2. The panel 10 is placed on the support plate 51 with the longitudinal direction along the direction between the support plates 51.

パネルA,Bを3枚ずつ上記曲げ試験機に供し、パネルが破壊により座屈したときの最大の荷重(Pmax)に応じた単位荷重(Wmax)を強度(N/m)として調べた。なお、単位荷重は、最大荷重をパネルの支持面積(働き幅×支持スパン長さ)で除した値である。曲げ強度試験の結果を表2に示す。表2によれば、A,Bいずれのパネルも2500N/m以上の強度を示し、倉庫の外壁や間仕切り用のパネルとして実用可能であることが確かめられた。 Each of the panels A and B was subjected to the bending tester three times, and the unit load (Wmax) corresponding to the maximum load (Pmax) when the panel was buckled due to breakage was examined as the strength (N / m 2 ). The unit load is a value obtained by dividing the maximum load by the panel support area (working width × support span length). The results of the bending strength test are shown in Table 2. According to Table 2, both the A and B panels showed a strength of 2500 N / m 2 or more, and it was confirmed that they were practical as panels for warehouse outer walls and partitions.

Figure 2016108789
Figure 2016108789

[2]変形追従性試験による耐震性評価
図6に示す試験体10Bに対し耐震性の指標となる変形追従性試験(JIS A 1414-2:2010 に準じる)を行った。試験体10Bは、幅:900mm、高さ(長さ):3265mm、厚さ:100mm(金属板の厚さ:0.5mm)の本発明のパネル10を横方向に3数並べて接合し、さらに両側に幅を400mmにカットしたパネル10を接合して横スパンを3500mmにしたものである。この試験体10Bを、上下の支持梁61間、および左右の支持ポスト62間に立て込んで固定した。なお、上下の支持梁61との間には、それぞれ厚さ25mm、10mmのセラミックファイバーを挟んだ。そして、両側の支持ポスト62の上下の端部に固定したリンク63を上下の支持梁61の両端部にピン64を介して結合し、上側の梁61がピン64を支点に左右方向に揺動可能なように支持した。
[2] Seismic evaluation by deformation follow-up test
A deformation follow-up test (according to JIS A 1414-2: 2010), which is an index of earthquake resistance, was performed on the specimen 10B shown in FIG. The test body 10B is formed by joining three panels 10 of the present invention having a width of 900 mm, a height (length) of 3265 mm, and a thickness of 100 mm (metal plate thickness: 0.5 mm) in the horizontal direction, Panels 10 having a width cut to 400 mm are joined to both sides to make the lateral span 3500 mm. This test body 10B was stood and fixed between the upper and lower support beams 61 and between the left and right support posts 62. A ceramic fiber having a thickness of 25 mm and 10 mm was sandwiched between the upper and lower support beams 61. The links 63 fixed to the upper and lower ends of the support posts 62 on both sides are coupled to both ends of the upper and lower support beams 61 via pins 64, and the upper beam 61 swings left and right around the pins 64 as fulcrums. Supported as possible.

変形追従性試験は、上側の梁61の一端部を梁61の延びる正負の方向に、表3に示す加力段階1〜9で荷重をかけて水平方向に変位させ、その際の試験体の状況を確認した。加力段階1〜8の層間変形角(γ=変位量/試験体の高さ)は、1/400rad、1/300rad、1/200rad、1/150rad、1/120rad、1/100rad、1/75rad、1/50radとし、加力段階9では、最大変位ストロークとなる正側1/45rad、負側1/30radとした。   In the deformation follow-up test, one end portion of the upper beam 61 is displaced in the horizontal direction by applying a load in the loading steps 1 to 9 shown in Table 3 in the positive and negative directions in which the beam 61 extends. Checked the situation. The interlaminar deformation angles (γ = displacement / height of the specimen) in the application steps 1 to 8 are 1/400 rad, 1/300 rad, 1/200 rad, 1/150 rad, 1/120 rad, 1/100 rad, 1/100, respectively. 75 rad and 1/50 rad, and in the force application stage 9, the positive side 1/45 rad and the negative side 1/30 rad that are the maximum displacement stroke were set.

Figure 2016108789
Figure 2016108789

表3に記載する試験体の状況結果によれば、いずれの負荷状況においてもパネルに損傷や不具合の発生は見られず、高い耐震性を示すことが確認された。なお、上記倉庫業法では層間変形角が1/125以上を求められており、本発明品はこの規定値を十分満足している。   According to the status results of the test specimens described in Table 3, it was confirmed that no damage or malfunction was observed in the panel under any load condition, and high earthquake resistance was exhibited. In the warehouse business method, an interlayer deformation angle is required to be 1/125 or more, and the product of the present invention sufficiently satisfies this specified value.

10…パネル
10A…間仕切り壁
20…金属板
30…芯材パネル
10 ... Panel
10A ... partition wall
20 ... Metal plate
30 ... Core panel

Claims (2)

2枚の金属板の間に複数の芯材パネルが挟まれてなる高強度パネルであって、
前記芯材パネルは、芯材材料の繊維の延びる方向が該芯材パネルの厚さ方向に沿っているとともに、該芯材材料を120〜220kg/mの高密度に圧縮したものであり、かつ、該芯材パネルは前記金属板間において千鳥状に配列されており、
全体の強度が2500N/m以上を示すことを特徴とする建築物用高強度パネル。
A high-strength panel in which a plurality of core panels are sandwiched between two metal plates,
The core material panel is obtained by compressing the core material to a high density of 120 to 220 kg / m 3 while the extending direction of the fibers of the core material is along the thickness direction of the core material panel. And the core panel is arranged in a staggered manner between the metal plates,
A high-strength panel for buildings, wherein the overall strength is 2500 N / m 2 or more.
前記金属板の厚さが0.4〜1.2mmであることを特徴とする請求項1に記載の建築物用高強度パネル。   The high-strength panel for buildings according to claim 1, wherein the metal plate has a thickness of 0.4 to 1.2 mm.
JP2014245721A 2014-12-04 2014-12-04 High strength panel for building Pending JP2016108789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245721A JP2016108789A (en) 2014-12-04 2014-12-04 High strength panel for building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245721A JP2016108789A (en) 2014-12-04 2014-12-04 High strength panel for building

Publications (1)

Publication Number Publication Date
JP2016108789A true JP2016108789A (en) 2016-06-20

Family

ID=56123393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245721A Pending JP2016108789A (en) 2014-12-04 2014-12-04 High strength panel for building

Country Status (1)

Country Link
JP (1) JP2016108789A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939217A (en) * 1972-08-19 1974-04-12
JPS51125707U (en) * 1975-04-03 1976-10-12
JPH09501117A (en) * 1994-05-18 1997-02-04 メテクノ ソシエタ ペル アチオニ Mineral wool panel and manufacturing method thereof
US20040121118A1 (en) * 2002-12-12 2004-06-24 Rheinhold & Mahla Aktiengesellschaft Space-enclosing panel
JP2011080222A (en) * 2009-10-06 2011-04-21 Meisei Kogyo Kk Noncombustible heat-insulating panel and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939217A (en) * 1972-08-19 1974-04-12
JPS51125707U (en) * 1975-04-03 1976-10-12
JPH09501117A (en) * 1994-05-18 1997-02-04 メテクノ ソシエタ ペル アチオニ Mineral wool panel and manufacturing method thereof
US20040121118A1 (en) * 2002-12-12 2004-06-24 Rheinhold & Mahla Aktiengesellschaft Space-enclosing panel
JP2011080222A (en) * 2009-10-06 2011-04-21 Meisei Kogyo Kk Noncombustible heat-insulating panel and method for manufacturing the same

Similar Documents

Publication Publication Date Title
CN107148540B (en) The floor used between floors and ceiling panel
CN105189884B (en) Modular building system
US20190218811A1 (en) Diaphragm to lateral support coupling in a structure
FI20050095A (en) Room Arrangement, Joining Profile, Joining, Ship, Building, and Method to Build a Room Arrangement
EP2025823A1 (en) Large-size sandwich wall panel of fibrolite and method for fabrication thereof
KR20130116158A (en) Exterior panel module
KR20140098586A (en) Outer wall insulation panel for modular building and manufacture method
CN104805928A (en) Pump watering core material fibreboard wrapping sandwich insulation outer wall
MX2022005456A (en) Decorative panel suitable for assembling a floor, ceiling or wall covering by interconnecting a plurality of said panels with each other, and decorative covering of such interconnected panels.
JP2016108789A (en) High strength panel for building
JP2017025615A (en) Wall panel fixing structure
CN201730242U (en) Honeycomb wallboard
Hegger et al. Light-weight TRC sandwich building envelopes
CN205475928U (en) Light board building system's of light steel of assembled light -duty superstructure system
Sustersic et al. hybrid cross-laminated timber plates (HCLTP)–numerical optimisation modelling and experimental tests
JP6243779B2 (en) Clean room structure and clean room construction method
CN210134570U (en) Board frame unification fire prevention floor structure and building
WO2019007229A1 (en) Floor slab system
JP2018531339A6 (en) Construction system and construction materials
JP2018531339A (en) Construction system and construction materials
CN210134569U (en) Heat preservation and insulation floor structure and building
JP6937458B2 (en) A composite connecting body with fire resistance by crimping and joining CLT walls and PC beams.
KR101456226B1 (en) Exterior panel module
Hegger et al. Applications for TRC
CN212534650U (en) Lightweight steel wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190307