JP2016108707A - Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing inorganic fiber heat-insulating and acoustic material - Google Patents

Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing inorganic fiber heat-insulating and acoustic material Download PDF

Info

Publication number
JP2016108707A
JP2016108707A JP2014249768A JP2014249768A JP2016108707A JP 2016108707 A JP2016108707 A JP 2016108707A JP 2014249768 A JP2014249768 A JP 2014249768A JP 2014249768 A JP2014249768 A JP 2014249768A JP 2016108707 A JP2016108707 A JP 2016108707A
Authority
JP
Japan
Prior art keywords
water
parts
inorganic fiber
soluble binder
inorganic fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014249768A
Other languages
Japanese (ja)
Other versions
JP6412787B2 (en
Inventor
能之 原田
Takayuki Harada
能之 原田
馬場 直子
Naoko Baba
直子 馬場
厚史 窪田
Atsushi Kubota
厚史 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paramount Glass Manufacturing Co Ltd
Original Assignee
Paramount Glass Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paramount Glass Manufacturing Co Ltd filed Critical Paramount Glass Manufacturing Co Ltd
Priority to JP2014249768A priority Critical patent/JP6412787B2/en
Publication of JP2016108707A publication Critical patent/JP2016108707A/en
Application granted granted Critical
Publication of JP6412787B2 publication Critical patent/JP6412787B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water-soluble binder for an inorganic fiber that contains no formaldehyde, exhibits physical properties suitable for use in the production process of an inorganic fiber heat-insulating and acoustic material, produces a cured product of the binder having excellent resilience and water resistance by heat treatment and to provide an inorganic fiber heat-insulating and acoustic material using the water-soluble binder for an inorganic fiber.SOLUTION: The water-soluble binder for an inorganic fiber is produced by mixing a water-soluble polymer composed mainly of a polyvinyl alcohol-based resin, a crosslinking agent, an adhesion inhibitor, a silane coupling agent and a mold releasing agent. The inorganic fiber heat-insulating and acoustic material is molded by heat treatment with use of the binder.SELECTED DRAWING: None

Description

本発明は、グラスウール、又、ロックウール等の無機繊維断熱吸音材の製造工程に適した物性を示し、その硬化物に優れた弾力性と耐水性を有する、ホルムアルデヒドを含有しない無機繊維用水溶性バインダー、及びそれを用いた無機繊維断熱吸音材に関する。   The present invention is a water-soluble binder for inorganic fibers which does not contain formaldehyde and has physical properties suitable for the production process of heat insulating and absorbing materials for inorganic fibers such as glass wool and rock wool, and has excellent elasticity and water resistance in the cured product. And an inorganic fiber heat-absorbing sound-absorbing material using the same.

従来から、グラスウール、又、ロックウール等の無機繊維からなる断熱吸音材において、繊維間を接着させるバインダーとして、水溶性フェノール・ホルムアルデヒド樹脂を主成分としたフェノール系バインダーが広く使用されている。フェノール系バインダーは、加熱により硬化し、弾力性と耐水性に優れた硬化物が得られる事から、これを用いた無機繊維断熱吸音材は、圧縮時の弾力性と、長期間の使用での寸法安定性に優れている。   Conventionally, phenolic binders mainly composed of water-soluble phenol / formaldehyde resins have been widely used as heat-absorbing and sound-absorbing materials made of inorganic fibers such as glass wool and rock wool, as binders for bonding fibers. The phenolic binder is cured by heating, and a cured product with excellent elasticity and water resistance can be obtained. Therefore, the inorganic fiber heat-insulating sound absorbing material using this has elasticity during compression and long-term use. Excellent dimensional stability.

しかし、フェノール系バインダーに使用される水溶性フェノール樹脂は、架橋剤にホルムアルデヒドが使用されている為、製造工程でのホルムアルデヒドの放出が問題となっている。又、加熱硬化時には多くのホルムアルデヒドが放出され、無機繊維断熱吸音材内部へ残存する為、そのホルムアルデヒドが建物に施工された後、徐々に外部に放出される問題もあった。   However, since the water-soluble phenol resin used in the phenolic binder uses formaldehyde as a cross-linking agent, formaldehyde emission in the production process is a problem. In addition, a large amount of formaldehyde is released during heat-curing and remains inside the inorganic fiber heat-absorbing sound-absorbing material, so that there is a problem that the formaldehyde is gradually released to the outside after being applied to the building.

近年、ホルムアルデヒド等の揮発性有機化合物による室内空気の汚染が原因とされるシックハウス症候群等の健康被害が問題となっている。その為、製造工程や建物の室内空気へのホルムアルデヒドの放出量について、法律で制限が求められている。   In recent years, health damage such as sick house syndrome caused by pollution of indoor air by volatile organic compounds such as formaldehyde has become a problem. For this reason, there is a legal limit on the amount of formaldehyde released into the manufacturing process and indoor air of buildings.

無機繊維断熱吸音材から放出されるホルムアルデヒドは、フェノール系バインダーに含有する物である為、上記問題の解決には、ホルムアルデヒドが含有されていない水溶性バインダーが必要であり、所望され、数多くの提案がなされている。   Since formaldehyde released from an inorganic fiber heat-absorbing sound-absorbing material is a substance contained in a phenolic binder, a solution of the above problem requires a water-soluble binder that does not contain formaldehyde. Has been made.

例えば、下記特許文献1には、(A)ヒドロキシル基を持つ水溶性高分子(より詳細には、ヒドロキシル基を持つ水溶性高分子が、ポリビニルアルコール):100質量部、及び(B)ホウ素系化合物5質量部以上を含有することを特徴する無機繊維用バインダーが開示されている。   For example, in the following Patent Document 1, (A) a water-soluble polymer having a hydroxyl group (more specifically, a water-soluble polymer having a hydroxyl group is polyvinyl alcohol): 100 parts by mass, and (B) a boron-based polymer An inorganic fiber binder characterized by containing 5 parts by mass or more of a compound is disclosed.

又、下記特許文献2には、酸価が350から850mgKOH/gのアクリル系樹脂と、ジアルカノールアミンを少なくとも1種類以上含有する架橋剤と、硬化促進剤とを含有し、前記アクリル系樹脂中のカルボキシル基のモル数に対し、架橋剤中の水酸基とイミノ基との合計のモル数が、モル比で0.8〜1.5であり、揮発性塩基性化合物によってpHが6.0〜8.0に調整されていることを特徴とする無機繊維用水性バインダーが開示されている。   Patent Document 2 below contains an acrylic resin having an acid value of 350 to 850 mg KOH / g, a crosslinking agent containing at least one dialkanolamine, and a curing accelerator, The total number of moles of hydroxyl groups and imino groups in the crosslinking agent is 0.8 to 1.5 in terms of mole ratio with respect to the number of moles of the carboxyl group, and the pH is 6.0 to 6.0 depending on the volatile basic compound. An aqueous binder for inorganic fibers characterized by being adjusted to 8.0 is disclosed.

特開2011‐153395号公報JP 2011-153395 A 特開2007‐56415号公報JP 2007-56415 A

ポリビニルアルコール系樹脂の水溶液は、フェノール系樹脂の水溶液と比較し、水溶液粘度が高く、塗布後の無機繊維断熱吸音材中間体に粘着性が生じる。通常、バインダーを塗布した無機繊維は、有孔コンベア上に吸引されながら堆積される。無機繊維断熱吸音材中間体に粘着性が生じた場合、嵩高の形状にならず、加熱時の加圧不足による無機繊維断熱吸音材の表面平滑性が損なわれる恐れがある。   The aqueous solution of the polyvinyl alcohol-based resin has a higher aqueous solution viscosity than the aqueous solution of the phenol-based resin, and the adhesiveness is generated in the inorganic fiber heat insulating material intermediate after coating. Usually, inorganic fibers coated with a binder are deposited while being sucked onto a perforated conveyor. When adhesiveness arises in the inorganic fiber heat-insulation material intermediate, the bulky shape does not occur, and the surface smoothness of the inorganic fiber heat-absorption material may be impaired due to insufficient pressurization during heating.

一般にポリビニルアルコール系樹脂やアクリル系樹脂等は、フェノール系樹脂と比較し、吸水性があり、その硬化物は、フェノール系樹脂に比べ、耐水性に劣る。その為、それらを使用した無機繊維断熱吸音材は、空気中の湿度により、軟化し、製造直後に比べ、柔らかくなり、厚さの変動が起こる恐れがある。
また、バインダーを付着させた無機繊維断熱吸音材の中間体は、加熱処理により乾燥される。一般にポリビニルアルコール系樹脂の水溶性バインダーは、フェノール系樹脂の水溶性バインダーに比べ、高粘度でベタツキが強い傾向がある。水溶性バインダーを噴霧した無機繊維では、ポリビニルアルコール系樹脂の方がベタツキが強くなり、無機繊維堆積コンベアへの貼り付きや加熱処理時の乾燥機有孔プレートへの貼り付きの問題があった。
更に、無機繊維用水溶性バインダーに沈殿物が発生すると、後工程でのスプレー装置に詰まり等の問題を生じてしまうことより、バインダーには、沈殿物が発生しないことが求められている。
In general, polyvinyl alcohol-based resins, acrylic resins, and the like have water absorbency as compared with phenol-based resins, and the cured product is inferior in water resistance compared to phenol-based resins. Therefore, the inorganic fiber heat-absorbing sound-absorbing material using them is softened due to the humidity in the air, and becomes softer than that immediately after the production, and the thickness may vary.
Moreover, the intermediate body of the inorganic fiber heat-insulation material to which the binder is attached is dried by heat treatment. In general, a water-soluble binder of a polyvinyl alcohol-based resin tends to have a high viscosity and a strong stickiness compared to a water-soluble binder of a phenol-based resin. In the inorganic fiber sprayed with the water-soluble binder, the stickiness of the polyvinyl alcohol-based resin is stronger, and there is a problem of sticking to the inorganic fiber deposition conveyor and sticking to the dryer perforated plate during the heat treatment.
Furthermore, when a precipitate is generated in the water-soluble binder for inorganic fibers, a problem such as clogging occurs in the spray device in a subsequent process, and therefore, the binder is required not to generate a precipitate.

したがって本発明の目的は、ホルムアルデヒドを含有しない、無機繊維断熱吸音材の製造工程に対して優れた適性を有し、加熱処理により得られるバインダー硬化物が優れた弾力性と耐水性とを有する無機繊維用水溶性バインダー及びそれを用いた無機繊維断熱吸音材を提供することにある。   Accordingly, an object of the present invention is an inorganic material that does not contain formaldehyde, has excellent suitability for the production process of an inorganic fiber heat-absorbing sound-absorbing material, and a cured binder obtained by heat treatment has excellent elasticity and water resistance. It is an object to provide a water-soluble binder for fibers and an inorganic fiber heat insulating sound absorbing material using the same.

上記目的を達成するにあたって、本発明の無機繊維用水溶性バインダーは、ポリビニルアルコール系樹脂を主成分とする水溶性高分子と、架橋剤と、粘着抑制剤と、離型剤と、シランカップリング剤とを混合し、混合後の水溶液は無機繊維に対し、優れた浸透性を有する無機繊維用水溶性バインダーであり、その硬化物に優れた弾力性と耐水性を有していることを特徴としている(請求項1)。   In achieving the above object, the water-soluble binder for inorganic fibers of the present invention includes a water-soluble polymer mainly composed of polyvinyl alcohol resin, a crosslinking agent, an adhesion inhibitor, a release agent, and a silane coupling agent. The aqueous solution after mixing is a water-soluble binder for inorganic fibers that has excellent permeability to inorganic fibers, and is characterized by having excellent elasticity and water resistance in its cured product. (Claim 1).

本発明の無機繊維用水溶性バインダーにおいて、架橋剤は、(a)ポリカルボン酸の化合物、重合物又は共重合物、(b)硼砂化合物、(c)その混合物、より選択される1種類であり、前記ポリビニルアルコール系樹脂を100質量部に対し、固形分換算で4.0質量部以上を含有することが好ましい(請求項2)。   In the water-soluble binder for inorganic fibers of the present invention, the crosslinking agent is one type selected from (a) a compound, polymer or copolymer of polycarboxylic acid, (b) a borax compound, and (c) a mixture thereof. The polyvinyl alcohol resin preferably contains 4.0 parts by mass or more in terms of solid content with respect to 100 parts by mass (Claim 2).

本発明の無機繊維用水溶性バインダーにおいて、前記粘着抑制剤は、塩類化合物の水溶液であり、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対し、固形分換算で3.0から20.0質量部含有することが好ましい(請求項3)。 In the water-soluble binder for inorganic fibers of the present invention, the adhesion inhibitor is an aqueous solution of a salt compound, and is 3.0 to 20 in terms of solid content with respect to a total of 100 parts by mass of the polyvinyl alcohol resin and the crosslinking agent. It is preferable to contain 0.0 mass part (Claim 3).

本発明の無機繊維用水溶性バインダーにおいて、シランカップリング剤を、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対して、0.1から3.0質量部を含有することが好ましい(請求項4)。   In the water-soluble binder for inorganic fibers of the present invention, the silane coupling agent preferably contains 0.1 to 3.0 parts by mass with respect to 100 parts by mass in total of the polyvinyl alcohol resin and the crosslinking agent. (Claim 4).

本発明の無機繊維用水溶性バインダーにおいて、前記離型剤は、重質オイル、又は、重質オイルとシリコーンオイルの混合物の水分散体であり、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対し、固形分換算で5.0から30.0質量部含有することが好ましい(請求項5)。   In the water-soluble binder for inorganic fibers of the present invention, the release agent is heavy oil or an aqueous dispersion of a mixture of heavy oil and silicone oil, and a total of 100 of the polyvinyl alcohol-based resin and the crosslinking agent. It is preferable to contain 5.0 to 30.0 parts by mass in terms of solid content with respect to parts by mass (Claim 5).

本発明の無機繊維断熱吸音材は、上記本発明の無機繊維用水溶性バインダーを、無機繊維に塗布し、加熱処理により硬化させて成形したことを特徴とする(請求項6)。   The inorganic fiber heat-absorbing sound-absorbing material of the present invention is characterized in that the water-soluble binder for inorganic fibers of the present invention is applied to inorganic fibers and cured by heat treatment (Claim 6).

請求項1に記載の無機繊維用水溶性バインダーは、ポリビニルアルコール系樹脂からなり、ホルムアルデヒドを含有しない為、バインダー塗布時や加熱処理時にホルムアルデヒドが放出することなく使用する事ができる。   The water-soluble binder for inorganic fibers according to claim 1 is made of a polyvinyl alcohol resin and does not contain formaldehyde, so that it can be used without releasing formaldehyde during binder coating or heat treatment.

そして、ポリビニルアルコール系樹脂は架橋剤と混合する事で、親水性を有するポリビニルアルコール中のヒドロキシル基と架橋反応を行い、耐水性を付与する事ができる。それにより、気温や湿度によって、断熱吸音性能に関わる断熱吸音材の厚さ寸法や、施工時に自立性に関係なく剛性が低下することなく、従来のフェノール系バインダーと同等の物性を有するものとなり、住宅、建物の断熱吸音材として好適に使用できる。   And by mixing a polyvinyl alcohol-type resin with a crosslinking agent, it can perform a crosslinking reaction with the hydroxyl group in hydrophilic polyvinyl alcohol, and can provide water resistance. Thereby, depending on the temperature and humidity, the thickness dimensions of the heat insulating sound absorbing material related to the heat insulating sound absorbing performance and the physical properties equivalent to those of conventional phenolic binders are not reduced regardless of the independence during construction, It can be suitably used as a heat insulating sound absorbing material for houses and buildings.

前記ポリビニルアルコール系樹脂は、水溶性高分子であり、架橋剤を添加しない状態で硬化させた場合、その硬化物は水溶性であり、吸水及び膨潤してしまう。請求項2に特定した架橋剤を混合する事で親水基である水溶性高分子中のヒドロキシル基と架橋反応させ、その硬化物に耐水性を付与する事ができる。   The polyvinyl alcohol-based resin is a water-soluble polymer, and when cured without adding a crosslinking agent, the cured product is water-soluble and absorbs water and swells. By mixing the cross-linking agent specified in claim 2, it is possible to cause a cross-linking reaction with a hydroxyl group in a water-soluble polymer which is a hydrophilic group, thereby imparting water resistance to the cured product.

ポリビニルアルコール系樹脂は、水に溶解する事で無機繊維に浸透し、粘着性を発現させてしまう。請求項3に記載の発明によれば、粘着抑制剤として使用する塩類化合物は、ポリビニルアルコール系樹脂を結晶化させ、水への溶解を抑制する。ポリビニルアルコール系樹脂の水への溶解性を調整する事で過度な粘着性の発現を抑制できる。   A polyvinyl alcohol-type resin will permeate | transmit an inorganic fiber by melt | dissolving in water, and will express adhesiveness. According to invention of Claim 3, the salt compound used as an adhesion inhibitor crystallizes a polyvinyl alcohol-type resin, and suppresses the melt | dissolution to water. Excessive adhesiveness can be suppressed by adjusting the solubility of the polyvinyl alcohol resin in water.

請求項4に記載の発明によれば、シランカップリング剤が、無機繊維とバインダーとの界面における接着性を向上させる事ができ、得られる無機繊維断熱吸音材の弾力性及び耐水性を向上させることができる。   According to invention of Claim 4, a silane coupling agent can improve the adhesiveness in the interface of an inorganic fiber and a binder, and improves the elasticity and water resistance of the inorganic fiber heat insulation material obtained. be able to.

請求項5に記載の発明によれば、離型剤として使用する重質オイル及びシリコーンオイルは、無機繊維に滑りを与え、繊維堆積コンベアや乾燥機有孔プレートへの貼り付きを軽減できる。
請求項6に記載の発明によれば、優れた弾力性と耐水性とを有する無機繊維断熱吸音材が提供される。
According to the fifth aspect of the present invention, the heavy oil and silicone oil used as the release agent can slip the inorganic fibers and reduce sticking to the fiber accumulation conveyor and the dryer perforated plate.
According to invention of Claim 6, the inorganic fiber heat insulation sound-absorbing material which has the outstanding elasticity and water resistance is provided.

本発明の無機繊維用水溶性バインダーは、ポリビニルアルコール系樹脂を主成分とする水溶性高分子と、架橋剤と、粘着抑制剤と、離型剤と、シランカップリング剤とを混合し、その水溶液に過度な粘着性が発生しない無機繊維用水溶性バインダーであり、その硬化物に優れた弾力性と耐水性がある組成物である。尚、優れた弾力性とは、従来技術の代表例たるフェノール系樹脂を主成分とする水溶性バインダーを使用して製造された無機繊維断熱吸音材に比較して優れた弾力性を有すると言うことであり、フェノール系樹脂を主成分とする水溶性バインダーを使用して製造された無機繊維断熱吸音材の反発力と同等又はそれよりも大きな反発力を有することを意味する。優れた耐水性とは、例えば、飽和水蒸気下にて1時間静置した時の厚さの変化率として認識することができるものであり、該変化率が10%以下のものを言う。   The water-soluble binder for inorganic fibers of the present invention comprises a water-soluble polymer containing a polyvinyl alcohol resin as a main component, a crosslinking agent, an adhesion inhibitor, a release agent, and a silane coupling agent, and an aqueous solution thereof. It is a water-soluble binder for inorganic fibers that does not generate excessive tackiness, and is a composition having excellent elasticity and water resistance in its cured product. In addition, it is said that it has excellent elasticity compared with the inorganic fiber heat insulation sound-absorbing material manufactured using the water-soluble binder which has a phenol-type resin as a main component which is a representative example of a prior art. This means that it has a repulsive force equal to or greater than the repulsive force of an inorganic fiber heat-absorbing sound-absorbing material produced using a water-soluble binder mainly composed of a phenolic resin. The excellent water resistance is, for example, a value that can be recognized as a rate of change in thickness when allowed to stand for 1 hour under saturated water vapor, and means that the rate of change is 10% or less.

本発明の無機繊維用水溶性バインダーに用いるポリビニルアルコール系樹脂としては、特に限定はしない。ポリビニルアルコール系樹脂の重合度が水溶液の粘度に直接影響する為、塗布装置のスプレー適性に合わせて選択する必要があり、重合度500以下の低粘度のグレードが好ましい。例えば、日本酢ビ・ポバール社製の「JL-05E」が挙げられるが、本発明は、これに限定されない。   The polyvinyl alcohol resin used for the water-soluble binder for inorganic fibers of the present invention is not particularly limited. Since the degree of polymerization of the polyvinyl alcohol resin directly affects the viscosity of the aqueous solution, it is necessary to select it according to the sprayability of the coating apparatus, and a low viscosity grade having a degree of polymerization of 500 or less is preferable. For example, “JL-05E” manufactured by Nippon Vinegar Poval Co., Ltd. can be mentioned, but the present invention is not limited to this.

本発明の無機繊維用水溶性バインダーに用いる架橋剤(a)(b)(c)は、上記ポリビニルアルコール系樹脂を100.0質量部に対し、固形分換算で4.0質量部以上を含有することが好ましい。尚、架橋剤は、ポリビニルアルコールに対して作用する為、ポリビニルアルコール固形分に対しての質量部とした。
固形分換算で4.0質量部未満だと親水基である水溶性高分子中のヒドロキシル基と架橋剤とが十分に架橋反応せず、硬化物に耐水性を付与する事ができない。
尚、架橋剤の上限は、特に限定するものではないが、経済性の観点からすると、ポリビニルアルコール系樹脂100.0質量部に対して、100.0質量部以下が好ましい。
The crosslinking agents (a), (b) and (c) used for the water-soluble binder for inorganic fibers of the present invention contain 4.0 parts by mass or more in terms of solid content with respect to 100.0 parts by mass of the polyvinyl alcohol resin. It is preferable. In addition, since the crosslinking agent acts with respect to polyvinyl alcohol, it was made into the mass part with respect to polyvinyl alcohol solid content.
If it is less than 4.0 parts by mass in terms of solid content, the hydroxyl group in the water-soluble polymer which is a hydrophilic group and the crosslinking agent do not sufficiently undergo a crosslinking reaction, and water resistance cannot be imparted to the cured product.
In addition, although the upper limit of a crosslinking agent is not specifically limited, From an economical viewpoint, 100.0 mass parts or less are preferable with respect to 100.0 mass parts of polyvinyl alcohol-type resin.

前記架橋剤(a)としては、脂肪族カルボン酸単量体より選択される1種類以上の単量体の化合物、重合物または共重合物である。上記脂肪族カルボン酸単量体としては、アクリル酸系、メタクリル酸系、クロトン酸系等の脂肪族モノカルボン酸類の重合物、又、共重合物、マレイン酸系、フマル酸系、イタコン酸系等の脂肪族ジカルボン酸類の化合物、重合物、又、共重合物が好ましい。ポリビニルアルコール系樹脂との反応性を考慮すると、単量体中に2個のカルボン酸を持つマレイン酸系共重合物が更に好ましい。好ましい架橋剤(a)としては、五協産業社製「ガントレンツAN−119」(マレイン酸共重合物)や三洋化成社製無機繊維用アクリル樹脂「グラスパール」が挙げられるが、本発明は、これに限定されない。   The crosslinking agent (a) is a compound, polymer or copolymer of one or more monomers selected from aliphatic carboxylic acid monomers. Examples of the aliphatic carboxylic acid monomer include polymers of aliphatic monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and copolymers, maleic acid, fumaric acid, and itaconic acid. A compound, polymer, or copolymer of an aliphatic dicarboxylic acid such as Considering the reactivity with the polyvinyl alcohol resin, a maleic acid copolymer having two carboxylic acids in the monomer is more preferable. Preferred examples of the crosslinking agent (a) include “Gantrenz AN-119” (maleic acid copolymer) manufactured by Gokyo Sangyo Co., Ltd. and acrylic resin “Glass Pearl” for inorganic fibers manufactured by Sanyo Chemical Co., Ltd. It is not limited to this.

前記架橋剤(b)としては、ホウ素化合物であって、ホウ砂、ホウ酸、ホウ酸錯体等が挙げられる。ホウ素系化合物は、混合撹拌時に架橋反応を行う為、水溶液の過度な粘度増加が見られる恐れがあり、低濃度の水溶液として添加する事が好ましい。好ましい架橋剤(b)としては、市販のホウ砂を4.0%水溶液に調整したものが挙げられるが、本発明は、これに限定されない。   Examples of the cross-linking agent (b) include boron compounds such as borax, boric acid, and boric acid complexes. Since the boron-based compound undergoes a crosslinking reaction during mixing and stirring, an excessive increase in viscosity of the aqueous solution may be observed, and it is preferable to add it as a low-concentration aqueous solution. Preferred cross-linking agents (b) include those prepared by adjusting commercially available borax to 4.0% aqueous solution, but the present invention is not limited to this.

前記架橋剤(c)としては、前記架橋剤(a)と(b)の混合物である。耐水性の効果や水溶液の粘度状態に応じて、架橋剤(a)と(b)とを併用して使用できる。従来、フィルム成形の分野では、(b)ホウ素化合物をポリビニルアルコール系樹脂と架橋させ、増粘させる目的として、(a)脂肪族カルボン酸系化合物をポリビニルアルコール系樹脂と架橋させ、耐水性を付与する目的として、併用して使用する事が多く、周知の技術として挙げられる。   The crosslinking agent (c) is a mixture of the crosslinking agents (a) and (b). The crosslinking agents (a) and (b) can be used in combination depending on the water resistance effect and the viscosity state of the aqueous solution. Conventionally, in the field of film forming, (b) for the purpose of crosslinking and thickening a boron compound with a polyvinyl alcohol resin, (a) crosslinking an aliphatic carboxylic acid compound with a polyvinyl alcohol resin to impart water resistance For this purpose, it is often used in combination and is known as a well-known technique.

本発明の無機繊維用水溶性バインダーに用いる粘着抑制剤としては、塩類化合物の水溶液であり、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100.0質量部に対し、固形分換算で3.0から20.0質量部含有することが好ましい。固形分換算で3.0質量部未満だと、粘着性を抑制する事ができない。固形分換算で20.0質量部を超えると、ポリビニルアルコール系樹脂を沈殿させ、塗布時のスプレー性を悪化させる恐れがある。尚、粘着抑制剤は、ポリビニルアルコール系樹脂と架橋剤とが架橋反応した樹脂に対して作用する為、粘着抑制剤の量は、ポリビニルアルコール系樹脂と架橋剤との合計100質量部に対しての質量部とした。下記のシランカップリング剤、離型剤の量に関しても同様である。   The adhesion inhibitor used in the water-soluble binder for inorganic fibers of the present invention is an aqueous solution of a salt compound, and is 3.0 in terms of solid content with respect to a total of 100.0 parts by mass of the polyvinyl alcohol resin and the crosslinking agent. To 20.0 parts by mass is preferable. If the solid content is less than 3.0 parts by mass, the tackiness cannot be suppressed. If it exceeds 20.0 parts by mass in terms of solid content, the polyvinyl alcohol-based resin may be precipitated and the sprayability at the time of application may be deteriorated. In addition, since an adhesion inhibitor acts on a resin in which a polyvinyl alcohol-based resin and a crosslinking agent have undergone a crosslinking reaction, the amount of the adhesion inhibitor is based on a total of 100 parts by mass of the polyvinyl alcohol-based resin and the crosslinking agent. It was set as the mass part. The same applies to the amounts of the following silane coupling agent and release agent.

前記粘着抑制剤としては、硫酸アンモニウム、硫酸ナトリウム、塩酸ナトリウム、炭酸ナトリウム等の硫酸、塩酸、炭酸、酢酸等のアルカリ金属塩またはアンモニウム塩が挙げられ、1種類及び2種類以上の併用する事ができる。なかでも、硫酸アンモニウムは水溶性に優れ、水溶液濃度を任意で調整出来るので好ましい。過度の添加は、ポリビニルアルコールを沈殿させ、塗布時のスプレー性を悪化させる恐れがある。   Examples of the adhesion inhibitor include sulfuric acid such as ammonium sulfate, sodium sulfate, sodium hydrochloride, and sodium carbonate, alkali metal salts such as hydrochloric acid, carbonic acid, and acetic acid, or ammonium salts, which can be used alone or in combination of two or more. . Among these, ammonium sulfate is preferable because it is excellent in water solubility and the aqueous solution concentration can be adjusted arbitrarily. Excessive addition may cause polyvinyl alcohol to precipitate and deteriorate sprayability during application.

本発明の無機繊維用水溶性バインダーに用いるシランカップリング剤としては、3−アミノプロピルトリエトキシシラン、N‐2‐(アミノエチル)−3−アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン等のアミノシランカップリング剤、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン等のエポキシシランカップリング剤等が挙げられ、具体的には、信越化学社製アミノプロピルトリメトキシシラン「KBE903」が挙げられるが、本発明は、これに限定されない。これらは、1種類または2種類以上を併用する事ができ、上記ポリビニルアルコール系樹脂と上記架橋剤の合計100質量部に対し、固形分換算で0.1から3.0質量部が好ましい。固形分換算で0.1質量部未満だとポリビニルアルコール系樹脂と無機繊維との界面接着が十分に行われない。固形分換算で3.0質量部を超えると、ポリビニルアルコール系樹脂の水溶性や反応性には問題はないが、大幅な性能向上が望めず、コストアップに繋がる。シランカップリング剤は、ポリビニルアルコール系樹脂と無機繊維との界面接着に作用するほかに、シリコーンオイル等のシリコーン系添加剤の無機繊維表面への定着にも作用する為、無機繊維断熱吸音材の耐水性向上にも効果がある。   Examples of the silane coupling agent used for the water-soluble binder for inorganic fibers of the present invention include aminosilanes such as 3-aminopropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and aminopropyltriethoxysilane. Examples include coupling agents, epoxy silane coupling agents such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and the like. Specifically, aminopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd. KBE903 "is included, but the present invention is not limited to this. These can use together 1 type, or 2 or more types, 0.1 to 3.0 mass parts is preferable in conversion of solid content with respect to a total of 100 mass parts of the said polyvinyl alcohol-type resin and the said crosslinking agent. When the solid content is less than 0.1 parts by mass, the interfacial adhesion between the polyvinyl alcohol-based resin and the inorganic fibers is not sufficiently performed. If it exceeds 3.0 parts by mass in terms of solid content, there is no problem in water solubility and reactivity of the polyvinyl alcohol resin, but a significant performance improvement cannot be expected, leading to an increase in cost. The silane coupling agent not only acts on the interfacial adhesion between the polyvinyl alcohol resin and the inorganic fiber, but also acts to fix the silicone additive such as silicone oil on the surface of the inorganic fiber. It is also effective in improving water resistance.

上述のように、一般にポリビニルアルコール系樹脂の水溶性バインダーは、フェノール系樹脂の水溶性バインダーに比べ、高粘度でベタツキが強い傾向がある。水溶性バインダーを噴霧した無機繊維では、ポリビニルアルコール系樹脂の方がベタツキが強くなり、無機繊維堆積コンベアへの貼り付きや加熱処理時の乾燥機有孔プレートへの貼り付きの問題が発生し易い。離型剤を添加する事でポリビニルアルコール系樹脂に離形性を付与し、これらの問題を解決できる。   As described above, generally, a water-soluble binder of a polyvinyl alcohol resin tends to have a high viscosity and a strong stickiness compared to a water-soluble binder of a phenol resin. For inorganic fibers sprayed with a water-soluble binder, the stickiness of the polyvinyl alcohol resin is stronger, and the problem of sticking to the inorganic fiber deposition conveyor and sticking to the perforated plate of the dryer during heat treatment is likely to occur. . By adding a release agent, release properties can be imparted to the polyvinyl alcohol resin, and these problems can be solved.

本発明の無機繊維用水溶性バインダーにおいては、離型剤として、重質オイル、又は、重質オイルとシリコーンオイルの混合物の水分散体であり、すでに界面活性剤が添加され水への分散が可能なもの、又は、水に分散したものを使用する。前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対し、5.0から30.0質量部含有することが好ましく、5.0から20.0質量部が更に好ましい。固形分換算で5.0質量部未満だと離形性を十分に発揮できない。固形分換算で30.0質量部を超えると、オイルを分散させる界面活性剤の影響で無機繊維断熱吸音材の弾力性や耐水性の悪化に繋がる恐れがある。   The water-soluble binder for inorganic fibers of the present invention is a water dispersion of heavy oil or a mixture of heavy oil and silicone oil as a release agent, and a surfactant can be added to disperse in water. Or those dispersed in water. The content is preferably 5.0 to 30.0 parts by mass, more preferably 5.0 to 20.0 parts by mass with respect to 100 parts by mass in total of the polyvinyl alcohol resin and the crosslinking agent. If it is less than 5.0 parts by mass in terms of solid content, the releasability cannot be sufficiently exhibited. If it exceeds 30.0 parts by mass in terms of solid content, the elasticity and water resistance of the inorganic fiber heat-absorbing sound-absorbing material may be deteriorated due to the influence of the surfactant that disperses the oil.

上記重質オイルとしては、粘度グレードでVG320、VG460、VG680をベースとしたエマルションのものが好ましく、具体的には、出光興産社製重質オイルエマルション「ダフニープロソルブルPF」が挙げられるが、本発明は、これに限定されない。VG320より小さいグレードでは、加熱処理時の揮発が大きくなり、離型剤としての効果が弱くなる恐れがある。VG680より大きいグレードでは、無機繊維用バインダーの粘度増加に影響し、無機繊維への浸透性が悪化する恐れがある。   As the heavy oil, emulsions based on viscosity grades VG320, VG460, and VG680 are preferable, and specifically, heavy oil emulsion "Dafney Prosolvable PF" manufactured by Idemitsu Kosan Co., Ltd. may be mentioned. The present invention is not limited to this. In grades smaller than VG320, volatilization during heat treatment increases, and the effect as a release agent may be weakened. If the grade is larger than VG680, the viscosity of the inorganic fiber binder is increased, and the permeability to the inorganic fiber may be deteriorated.

上記シリコーンオイルとしては、ジメチルタイプ、アミノ変性、エポキシ変性、水素変性等の有機官能性タイプのポリシロキサン系オイルのエマルションが好ましい。特にジメチルタイプは、ポリビニルアルコール系樹脂に対し、強い滑りを付与し、離形性の効果が高い。更に、シリコーンオイルは、耐水性向上にも効果があり、添加により耐水性を向上できる。具体的には、信越化学製シリコーンオイルエマルション「Polon MR」が挙げられるが、本発明は、これに限定されない。   The silicone oil is preferably an emulsion of an organic functional type polysiloxane oil such as dimethyl type, amino-modified, epoxy-modified or hydrogen-modified. In particular, the dimethyl type imparts a strong slip to the polyvinyl alcohol-based resin and has a high releasability effect. Furthermore, the silicone oil is effective in improving the water resistance, and the water resistance can be improved by addition. Specific examples include silicone oil emulsion “Polon MR” manufactured by Shin-Etsu Chemical, but the present invention is not limited to this.

本発明の無機繊維用水溶性バインダーは、必要に応じて、防塵剤、その他撥水剤、着色剤、pH調整剤等の添加剤更に添加しても良い。   The water-soluble binder for inorganic fibers of the present invention may be further added with additives such as a dustproof agent, other water repellent, a colorant, and a pH adjuster, if necessary.

本発明の無機繊維用水溶性バインダーは、上記ポリビニルアルコール系樹脂と、架橋剤と、粘着抑制剤と、シランカップリング剤と、離型剤とを、攪拌機の付いたタンクを用いて混合し、調整することができる。   The water-soluble binder for inorganic fibers of the present invention is prepared by mixing the polyvinyl alcohol resin, a crosslinking agent, an adhesion inhibitor, a silane coupling agent, and a release agent using a tank equipped with a stirrer. can do.

本発明の無機繊維用水溶性バインダーの塗布液の固形分濃度は、2.0から20.0質量%が好ましく、2.0から10.0質量%が更に好ましい。20.0質量%を超えると、水溶液の粘度が増加し、無機繊維に対する浸透性が低下する。2.0質量%未満では、水分量が多くなり、加熱処理に時間を要し、生産性が低下する。   The solid concentration of the coating solution of the water-soluble binder for inorganic fibers of the present invention is preferably 2.0 to 20.0% by mass, more preferably 2.0 to 10.0% by mass. If it exceeds 20.0% by mass, the viscosity of the aqueous solution increases and the permeability to inorganic fibers decreases. If it is less than 2.0% by mass, the amount of water increases, and it takes time for the heat treatment, resulting in a decrease in productivity.

次に、本発明の無機繊維断熱吸音材について説明する。   Next, the inorganic fiber heat insulating sound absorbing material of the present invention will be described.

本発明の無機繊維断熱吸音材は、上記無機繊維用水溶性バインダーを無機繊維に付与し、加熱処理により硬化させて成形して得られたものである。   The inorganic fiber heat insulating sound-absorbing material of the present invention is obtained by applying the water-soluble binder for inorganic fibers to inorganic fibers and curing it by heat treatment.

本発明の無機繊維断熱吸音材は、例えば以下のようにして製造することができる。まず、溶融した無機原料を繊維化装置で繊維化し、その直後に上記の無機繊維用水溶性バインダーを無機繊維に付与する。次いで、無機繊維用水溶性バインダーが付与された無機繊維を繊維堆積装置内の有孔コンベア上に堆積して無機繊維断熱吸音材中間体を形成し、乾燥設備にて所望する厚さに設定した上下一対の有孔プレート等で狭圧し、加熱処理し、無機繊維用水性バインダーを硬化させて無機繊維断熱吸音材を形成する。そして、必要に応じて表皮材等を被覆させて、無機繊維断熱吸音材を所望とする幅、長さに切断して製品が得られる。以下、各工程についてさらに詳しく説明する。   The inorganic fiber heat insulating sound-absorbing material of the present invention can be produced, for example, as follows. First, the molten inorganic raw material is fiberized with a fiberizing apparatus, and immediately after that, the above-mentioned water-soluble binder for inorganic fibers is applied to the inorganic fibers. Next, inorganic fibers to which a water-soluble binder for inorganic fibers has been applied are deposited on a perforated conveyor in a fiber depositing device to form an inorganic fiber heat insulating material intermediate, and the upper and lower sides set to a desired thickness in a drying facility Narrow pressure is applied with a pair of perforated plates or the like, heat treatment is performed, and the aqueous binder for inorganic fibers is cured to form an inorganic fiber heat insulating sound absorbing material. And a skin material etc. are coat | covered as needed, and a product is obtained by cut | disconnecting the inorganic fiber heat insulation sound-absorbing material to the desired width | variety and length. Hereinafter, each step will be described in more detail.

本発明の無機繊維断熱吸音材に用いる無機繊維としては、特に限定しないが、通常の断熱吸音材に使用されているグラスウール、ロックウール等を用いることができる。無機繊維の繊維化方法は、火焔法、吹き飛ばし法、遠心法(ロータリー法とも言う)等の各種の公知方法を用いることができる。特に無機繊維がグラスウールの場合は、遠心法を用いることが好ましい。なお、目的とする無機繊維断熱吸音材の密度は、通常の断熱材や吸音材に使用されている密度でよく、好ましくは5〜300kg/mの範囲である。 Although it does not specifically limit as an inorganic fiber used for the inorganic fiber heat insulation sound-absorbing material of this invention, The glass wool, the rock wool, etc. which are used for the normal heat insulation sound-absorption material can be used. Various known methods such as a flame method, a blow-off method, and a centrifugal method (also referred to as a rotary method) can be used as a method for fiberizing inorganic fibers. In particular, when the inorganic fiber is glass wool, it is preferable to use a centrifugal method. In addition, the density of the target inorganic fiber heat-insulating material may be a density used in ordinary heat-insulating materials and sound-absorbing materials, and is preferably in the range of 5 to 300 kg / m 3 .

無機繊維にバインダーを付与するには、この分野で公知のスプレー装置等を用いて塗布、噴霧する。バインダーの付与量の調整は、従来のバインダーと同様の方法で調整することができる。そして、バインダーの付与量は、無機繊維断熱吸音材の密度や用途によって異なるが、バインダーを付与した無機繊維断熱吸音材の質量を基準として、固形分換算で0.5〜15.0質量%の範囲が好ましく、0.5〜9.0質量%の範囲がより好ましい。 In order to impart a binder to the inorganic fiber, it is applied and sprayed using a spray device or the like known in this field. The amount of the binder applied can be adjusted by the same method as the conventional binder. The amount of the binder applied varies depending on the density and use of the inorganic fiber heat-absorbing sound absorbing material, but is 0.5 to 15.0% by mass in terms of solid content based on the mass of the inorganic fiber heat-absorbing sound absorbing material to which the binder is applied. The range is preferable, and the range of 0.5 to 9.0% by mass is more preferable.

無機繊維は繊維化から堆積の間で徐々に絡み合い、ウール状の形態をとる。無機繊維にバインダーを付与するタイミングとしては、繊維化後であればいつでも良いが、ウール内部への付着が難しくなる為、バインダーを効率的に付与させるためには、ウール形態の弱い、繊維化直後に付与することが好ましい。 Inorganic fibers are gradually intertwined between fiberizing and depositing and take a wooly form. As for the timing of applying the binder to the inorganic fiber, it may be any time after fiberization, but because it becomes difficult to adhere to the inside of the wool, in order to efficiently give the binder, the wool form is weak, immediately after fiberization It is preferable to give to.

上記工程によってバインダーが付与された無機繊維は、繊維堆積装置内の有孔コンベア上に堆積され、嵩高い無機繊維断熱吸音材中間体となる。繊維堆積装置は、有孔コンベアの裏面より吸引する事で無機繊維を効率的に堆積させることができる。 The inorganic fiber to which the binder has been applied by the above process is deposited on a perforated conveyor in the fiber deposition apparatus, and becomes a bulky inorganic fiber heat insulating material intermediate. The fiber deposition apparatus can efficiently deposit inorganic fibers by suction from the back surface of the perforated conveyor.

その後、前記無機繊維断熱吸音材中間体を、乾燥設備にて所望とする厚さになるように設定した上下一対の有孔コンベア等で連続的に狭圧し、加熱した熱風によりバインダーを硬化させて、無機繊維断熱吸音材をマット状に成形した後、所望とする幅、長さに切断する。   Thereafter, the inorganic fiber heat insulating sound absorbing material intermediate is continuously narrowed by a pair of upper and lower perforated conveyors set to have a desired thickness in a drying facility, and the binder is cured by heated hot air. Then, after the inorganic fiber heat insulating sound absorbing material is formed into a mat shape, it is cut into a desired width and length.

バインダーの加熱硬化温度は、特に限定しないが、160〜250℃が好ましい。また、加熱硬化時間は、無機繊維断熱吸音材の密度、厚さにより、30秒〜10分の間で適宜調整する。   Although the heat curing temperature of a binder is not specifically limited, 160-250 degreeC is preferable. Further, the heat curing time is appropriately adjusted between 30 seconds and 10 minutes depending on the density and thickness of the inorganic fiber heat-absorbing sound-absorbing material.

本発明の無機繊維断熱吸音材は、そのままの形態で用いてもよく、また、表皮材で被覆して用いてもよい。表皮材としては、この分野で公知のものを使用する事ができ、例えば、紙、合成樹脂フィルム、金属箔フィルム、不織布、織布あるいはこれらを組み合わせたものを用いることができる。   The inorganic fiber heat-absorbing sound-absorbing material of the present invention may be used as it is, or may be used after being covered with a skin material. As the skin material, those known in this field can be used. For example, paper, synthetic resin film, metal foil film, nonwoven fabric, woven fabric, or a combination thereof can be used.

このようにして得られた本発明の無機繊維断熱吸音材は、バインダーの加熱硬化時に、ホルムアルデヒドを放出することがないので、従来のフェノール系バインダーと比較して、環境負荷の少ないものである。
The inorganic fiber heat-absorbing sound-absorbing material of the present invention thus obtained does not release formaldehyde when the binder is heat-cured, and therefore has less environmental impact than conventional phenolic binders.

以下に、本発明を実施例によって説明する。本発明は下記の実施例に制限されるものではない。なお、以下の説明において、部及び%は、質量基準を表す。   Hereinafter, the present invention will be described by way of examples. The present invention is not limited to the following examples. In the following description, parts and% represent mass standards.

(実施例1)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で96.0部と、架橋剤としてホウ砂の4%水溶液を固形分換算で4.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で15.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、実施例1の無機繊維用水溶性バインダーを得た。
Example 1
An aqueous solution of polyvinyl alcohol-based resin “JL-05E” manufactured by Nihon Ventures and Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, is 96.0 parts in terms of solid content and 4 borax as a crosslinking agent. % Aqueous solution 4.0 parts in terms of solids, 24% aqueous solution of ammonium sulfate as an adhesion inhibitor 15.0 parts in terms of solids, Idemitsu Kosan Heavy Oil Emulsion “Daphne Prosolve” PF ”is 15.0 parts in terms of solid content, and silicone oil emulsion“ Polon MR ”made by Shin-Etsu Chemical is 5.0 parts in terms of solid content, and aminopropyltrimethoxysilane“ KBE903 ”manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent. Was mixed with 1.0 part, and after stirring, it was adjusted with water so that the concentration of the aqueous solution was 4% to obtain a water-soluble binder for inorganic fibers of Example 1.

(実施例2)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で92.5部と、架橋剤として五協産業社製マレイン酸系共重合物「ガントレンツAN−119」の水溶液を固形分換算で7.5部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で3.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、実施例2の無機繊維用水溶性バインダーを得た。
(Example 2)
92.5 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Ventures and Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and Gokyo Sangyo Co., Ltd. as a crosslinking agent. 7.5 parts of an aqueous solution of maleic acid-based copolymer “Gantrenz AN-119” in terms of solid content, and 3.0 parts of a 24% aqueous solution of ammonium sulfate as an adhesion inhibitor in terms of solid content, as a release agent Idemitsu Kosan Co., Ltd. heavy oil emulsion “Daphne Prosolvable PF” 15.0 parts in terms of solid content and Shin-Etsu Chemical silicone oil emulsion “Polon MR” 5.0 parts in solid content, silane coupling agent As an example, aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. was mixed with 1.0 part, stirred, and adjusted with water so that the concentration of the aqueous solution was 4%. To obtain a machine for fibers a water-soluble binder.

(実施例3)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で92.5部と、架橋剤として五協産業社製マレイン酸系共重合物「ガントレンツAN−119」の水溶液を固形分換算で7.5部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で3.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、実施例3の無機繊維用水溶性バインダーを得た。
(Example 3)
92.5 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Ventures and Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and Gokyo Sangyo Co., Ltd. as a crosslinking agent. 7.5 parts of an aqueous solution of maleic acid-based copolymer “Gantrenz AN-119” in terms of solid content, and 3.0 parts of a 24% aqueous solution of ammonium sulfate as an adhesion inhibitor in terms of solid content, as a release agent Idemitsu Kosan Co., Ltd. heavy oil emulsion “Daphne Prosolvable PF” is 5.0 parts in terms of solid content, and Shinetsu Chemical Co., Ltd. aminopropyltrimethoxysilane “KBE903” is 1.0 part as a silane coupling agent. After mixing and stirring, the mixture was adjusted with water so that the concentration of the aqueous solution was 4% to obtain a water-soluble binder for inorganic fibers of Example 3.

(実施例4)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で70.0部と、架橋剤としてアクリル酸重合物である三洋化成社製無機繊維用アクリル樹脂「グラスパール」の水溶液を固形分換算で30.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で3.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、実施例4の無機繊維用水溶性バインダーを得た。
Example 4
70.0 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nippon Vinegar Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and an acrylic acid polymer as a crosslinking agent 30.0 parts of an aqueous solution of acrylic resin “Glasspearl” for inorganic fibers made by Sanyo Chemical Co., Ltd. in solids, and 3.0 parts of a 24% aqueous solution of ammonium sulfate as an adhesion inhibitor in terms of solids. Idemitsu Kosan Co., Ltd.'s heavy oil emulsion "Daphne Prosolvable PF" in solids equivalent 15.0 parts, Shin-Etsu's silicone oil emulsion "Polon MR" in solids equivalents 5.0 parts, and silane cup Mix 1.0 part of aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as a ring agent and, after stirring, adjust with water so that the concentration of the aqueous solution becomes 4%. , To obtain an inorganic fiber for a water-soluble binder of Example 4.

(実施例5)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で50.0部と、架橋剤としてアクリル酸重合物である三洋化成社製無機繊維用アクリル樹脂「グラスパール」の水溶液を固形分換算で50.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で3.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、実施例5の無機繊維用水溶性バインダーを得た。
(Example 5)
An aqueous solution of polyvinyl alcohol-based resin “JL-05E” manufactured by NIPPON POVAL CO., LTD. Having a polymerization degree of 300 and a saponification degree of 88% is 50.0 parts in terms of solid content, and an acrylic acid polymer as a crosslinking agent. 30.0 parts by weight of an aqueous solution of acrylic resin “Glasspearl” for inorganic fibers made by Sanyo Chemical Co., Ltd., and 3.0 parts by weight of a 24% aqueous solution of ammonium sulfate as an adhesion inhibitor, in terms of solids. Idemitsu Kosan Co., Ltd.'s heavy oil emulsion "Daphne Prosolvable PF" in solids equivalent 15.0 parts, Shin-Etsu's silicone oil emulsion "Polon MR" in solids equivalents 5.0 parts, and silane cup Mix 1.0 part of aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as a ring agent and, after stirring, adjust with water so that the concentration of the aqueous solution becomes 4%. , To obtain an inorganic fiber for a water-soluble binder of Example 5.

(比較例1)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で96.0部と、架橋剤として硼砂4%水溶液を固形分換算で4.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例1の無機繊維用水溶性バインダーを得た。
(Comparative Example 1)
96.0 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Ventures and Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and a 4% aqueous solution of borax as a crosslinking agent Is 4.0 parts in terms of solid content, and 15.0 parts in terms of solid content is Daphne Prosolvable PF, a heavy oil emulsion made by Idemitsu Kosan Co., Ltd. as a mold release agent, and “Polon MR” is a silicone oil emulsion made by Shin-Etsu Chemical. Is mixed with 5.0 parts in terms of solid content and 1.0 part of aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent. After stirring, the concentration of the aqueous solution is 4%. Then, a water-soluble binder for inorganic fibers of Comparative Example 1 was obtained by adjusting with water.

(比較例2)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で92.5部と、架橋剤として五協産業社製マレイン酸系共重合物「ガントレンツAN−119」の水溶液を固形分換算で7.5部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例2の無機繊維用水溶性バインダーを得た。
(Comparative Example 2)
92.5 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Ventures and Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and Gokyo Sangyo Co., Ltd. as a crosslinking agent. 7.5 parts of an aqueous solution of maleic acid-based copolymer “Gantrenz AN-119” in terms of solids and a heavy oil emulsion “Dafney Prosolvable PF” made by Idemitsu Kosan Co., Ltd. as solids in terms of solids 15.0 parts and 5.0 parts of Shinetsu Chemical's silicone oil emulsion “Polon MR” in terms of solid content, and 1.0 part of Shin-Etsu Chemical's aminopropyltrimethoxysilane “KBE903” as a silane coupling agent After mixing and stirring, the mixture was adjusted with water so that the concentration of the aqueous solution was 4% to obtain a water-soluble binder for inorganic fibers of Comparative Example 2.

(比較例3)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で97.0部と、架橋剤として硼砂4%水溶液を固形分換算で3.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で15.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例3の無機繊維用水溶性バインダーを得た。
尚、比較例3は、請求項1の発明には含まれるものの、請求項2の発明には含まれない。ここでは、請求項2に着目し、「比較例」として把握した。
(Comparative Example 3)
An aqueous solution of polyvinyl alcohol-based resin “JL-05E” manufactured by Nihon Vitamin Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, is 97.0 parts in terms of solid content, and a 4% aqueous solution of borax as a crosslinking agent. 3.0 parts in terms of solid content, 15.0 parts in terms of solid content of a 24% aqueous solution of ammonium sulfate as an adhesion inhibitor, and a heavy oil emulsion "Dafney Prosolvable PF" manufactured by Idemitsu Kosan Co., Ltd. as a release agent. 15.0 parts in terms of solid content and 5.0 parts in terms of solid content silicone oil emulsion “Polon MR” and 1 part of aminopropyltrimethoxysilane “KBE903” made by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent. After mixing with 0.0 part, the mixture was stirred and adjusted with water so that the concentration of the aqueous solution was 4%. Thus, a water-soluble binder for inorganic fibers of Comparative Example 3 was obtained.
The comparative example 3 is included in the invention of claim 1 but is not included in the invention of claim 2. Here, paying attention to claim 2, it grasped as “comparative example”.

(比較例4)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で97.0部と、架橋剤として五協産業社製マレイン酸系共重合物「ガントレンツAN−119」を固形分換算で3.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で3.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例4の無機繊維用水溶性バインダーを得た。
尚、比較例4は、請求項1の発明には含まれるものの、請求項2の発明には含まれない。ここでは、請求項2に着目し、「比較例」として把握した。
(Comparative Example 4)
An aqueous solution of polyvinyl alcohol-based resin “JL-05E” manufactured by Nihon Ventures and Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, is 97.0 parts in terms of solid content and Gokyo Sangyo Co., Ltd. as a crosslinking agent. 3.0 parts by weight of maleic acid copolymer “Gantrenz AN-119” in terms of solids, 3.0 parts by weight of 24% aqueous solution of ammonium sulfate as an adhesion inhibitor, and Idemitsu Kosan as a release agent Shin-Etsu's heavy oil emulsion “Daphne Prosolvable PF” is 15.0 parts in terms of solids and Shinetsu Chemical's silicone oil emulsion “Polon MR” is 5.0 parts in terms of solids, Shinetsu as a silane coupling agent. Aminopropyltrimethoxysilane “KBE903” manufactured by Kagaku Co., Ltd. was mixed with 1.0 part, and after stirring, adjusted with water so that the concentration of the aqueous solution was 4%. It was obtained 維用 water-soluble binder.
The comparative example 4 is included in the invention of claim 1 but is not included in the invention of claim 2. Here, paying attention to claim 2, it grasped as “comparative example”.

(比較例5)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で96.0部と、架橋剤として硼砂の4%水溶液を固形分換算で4.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で25.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例5の無機繊維用水溶性バインダーを得た。
尚、この比較例5は、請求項1に係る発明には含まれるものの、請求項3に係る発明には含まれない。ここでは、請求項3に着目し、比較例として把握した。
(Comparative Example 5)
96.0 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Vitamin Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and 4% of borax as a crosslinking agent Aqueous solution is 4.0 parts in terms of solids, 24% aqueous solution of ammonium sulfate as an adhesion inhibitor is 25.0 parts in terms of solids, and a heavy oil emulsion “Dafney Prosolvable PF” made by Idemitsu Kosan Co., Ltd. as a release agent. "15.0 parts in terms of solid content and 5.0 parts in terms of solid content silicone oil emulsion" Polon MR ", and aminopropyltrimethoxysilane" KBE903 "manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent. After mixing with 1.0 part and stirring, it adjusted with water so that the density | concentration of aqueous solution might be 4%, and the water-soluble binder for inorganic fibers of the comparative example 5 was obtained.
The comparative example 5 is included in the invention according to claim 1, but is not included in the invention according to claim 3. Here, paying attention to claim 3, it grasped as a comparative example.

(比較例6)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で96.0部と、架橋剤として硼砂の4%水溶液を固形分換算で4.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で15.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で40.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例6の無機繊維用水溶性バインダーを得た。
尚、この比較例6は、請求項1に係る発明には含まれるものの、請求項5に係る発明には含まれない。ここでは、請求項5に着目し、比較例として把握した。
(Comparative Example 6)
96.0 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Vitamin Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and 4% of borax as a crosslinking agent Aqueous solution is 4.0 parts in terms of solids, 24% aqueous solution of ammonium sulfate as an adhesion inhibitor is 15.0 parts in terms of solids, and Idemitsu Kosan Heavy Oil Emulsion “Daphne Prosolve PF” as a release agent. 40.0 parts in terms of solid content and 1.0 part of aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent are mixed, and after stirring, the concentration of the aqueous solution becomes 4%. Thus, the water-soluble binder for inorganic fibers of Comparative Example 6 was obtained by adjusting with water.
The comparative example 6 is included in the invention according to claim 1, but is not included in the invention according to claim 5. Here, paying attention to claim 5, it grasped as a comparative example.

(比較例7)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で96.0部と、架橋剤として硼砂の4%水溶液を固形分換算で4.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で15.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で20.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例7の無機繊維用水溶性バインダーを得た。
尚、この比較例7は、請求項1に係る発明には含まれるものの、請求項5に係る発明には含まれない(離型剤の固形分換算の合計量が35.0部である)。ここでは、請求項5に着目し、比較例として把握した。
(Comparative Example 7)
96.0 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Vitamin Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and 4% of borax as a crosslinking agent Aqueous solution is 4.0 parts in terms of solids, 24% aqueous solution of ammonium sulfate as an adhesion inhibitor is 15.0 parts in terms of solids, and Idemitsu Kosan Heavy Oil Emulsion “Daphne Prosolve PF” as a release agent. "15.0 parts in terms of solid content and 20.0 parts in terms of solid content silicone oil emulsion" Polon MR "and aminopropyltrimethoxysilane" KBE903 "manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent. 1.0 part was mixed and, after stirring, the mixture was adjusted with water so that the concentration of the aqueous solution was 4% to obtain a water-soluble binder for inorganic fibers of Comparative Example 7.
In addition, although this comparative example 7 is included in the invention which concerns on Claim 1, it is not included in the invention which concerns on Claim 5 (the total amount of solid content conversion of a mold release agent is 35.0 parts) . Here, paying attention to claim 5, it grasped as a comparative example.

(比較例8)
重合度が300で、ケン化度が88%である日本酢ビ・ポバール社製ポリビニルアルコール系樹脂「JL−05E」の水溶液を固形分換算で96.0部と、架橋剤として硼砂の4%水溶液を固形分換算で4.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で15.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部とを混合し、撹拌後、水溶液の濃度が4.0%になるように、水で調整して、比較例8の無機繊維用水溶性バインダーを得た。
(Comparative Example 8)
96.0 parts of an aqueous solution of polyvinyl alcohol resin “JL-05E” manufactured by Nihon Vitamin Poval Co., which has a polymerization degree of 300 and a saponification degree of 88%, in terms of solid content, and 4% of borax as a crosslinking agent 4.0 parts of aqueous solution in terms of solid content, 15.0 parts of 24% aqueous solution of ammonium sulfate as an adhesion inhibitor in terms of solid content, and aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent After mixing with 1.0 part and stirring, it adjusted with water so that the density | concentration of aqueous solution might be 4.0%, and the water-soluble binder for inorganic fibers of the comparative example 8 was obtained.

(比較例9)
DIC社製無機繊維用水溶性フェノール系樹脂「フェノライト」の水溶液を固形分換算で100.0部と、反応促進剤として硫酸アンモニウムの24%水溶液を固形分換算で3.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5部とを混合し、撹拌後、水溶液の濃度が4.0%になるように、水で調整して、比較例9の無機繊維用水溶性バインダーを得た。尚、水溶性フェノール樹脂「フェノライト」は、すでに架橋剤(ホルムアデヒド)が混合されている為、新たな架橋剤の添加は行わない。
尚、ポリビニルアルコール樹脂の場合とフェノール樹脂の場合では、硫酸アンモニウムの作用が異なる。水溶性高分子がポリビニルアルコール樹脂の場合には、硫酸アンモニウムはポリビニルアルコール系樹脂を結晶化させ、水への溶解を抑制するため、粘着抑制剤として作用する。これに対して、水溶性高分子が水溶性フェノール樹脂の場合には、加熱処理時に樹脂を酸性にし、反応促進剤として作用する。
(Comparative Example 9)
Silane coupling with an aqueous solution of water-soluble phenolic resin “Phenolite” manufactured by DIC, 100.0 parts in terms of solids, and a 24% aqueous solution of ammonium sulfate as a reaction accelerator, 3.0 parts in terms of solids 1.0 parts of aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as an agent, and 15.0 parts in terms of solid content of heavy oil emulsion “Dafney Prosolvable PF” manufactured by Idemitsu Kosan Co., Ltd. as a release agent The inorganic fiber of Comparative Example 9 was prepared by mixing 5 parts of a silicone oil emulsion “Polon MR” manufactured by Shin-Etsu Chemical Co., Ltd. in solids with water and adjusting with water so that the concentration of the aqueous solution was 4.0%. A water-soluble binder was obtained. The water-soluble phenolic resin “Phenolite” is already mixed with a crosslinking agent (formaldehyde), so no new crosslinking agent is added.
In the case of polyvinyl alcohol resin and phenol resin, the action of ammonium sulfate is different. When the water-soluble polymer is a polyvinyl alcohol resin, ammonium sulfate functions as an adhesion inhibitor because it crystallizes the polyvinyl alcohol resin and suppresses dissolution in water. On the other hand, when the water-soluble polymer is a water-soluble phenol resin, the resin is acidified during the heat treatment and acts as a reaction accelerator.

(比較例10)
ポリアクリル酸を主成分とした三洋化成社製無機繊維用アクリル樹脂「グラスパール」の水溶液を固形分換算で100.0部と、粘着抑制剤として硫酸アンモニウムの24%水溶液を固形分換算で5.0部と、シランカップリング剤として信越化学社製アミノプロピルトリメトキシシラン「KBE903」を1.0部と、離型剤として出光興産社製重質オイルエマルション「ダフニープロソルブルPF」を固形分換算で15.0部及び信越化学製シリコーンオイルエマルション「Polon MR」を固形分換算で5.0部とを混合し、撹拌後、水溶液の濃度が4%になるように、水で調整して、比較例10の無機繊維用水溶性バインダーを得た。尚、無機繊維用アクリル樹脂「グラスパール」はすでに架橋剤が混合されている為、新たな架橋剤の添加は行わない。
(Comparative Example 10)
An aqueous solution of “Glass Pearl”, an acrylic resin for inorganic fibers manufactured by Sanyo Chemical Co., Ltd., which is mainly composed of polyacrylic acid, and 50.0% of a 24% aqueous solution of ammonium sulfate as a solid content in terms of solid content. 1.0 part of aminopropyltrimethoxysilane “KBE903” manufactured by Shin-Etsu Chemical Co., Ltd. as a silane coupling agent, and a heavy oil emulsion “Dafney Prosolvable PF” manufactured by Idemitsu Kosan Co., Ltd. as a release agent. 15.0 parts in terms of conversion and 5.0 parts in terms of solid content of silicone oil emulsion “Polon MR” manufactured by Shin-Etsu Chemical Co., Ltd. are mixed and adjusted with water so that the concentration of the aqueous solution becomes 4% after stirring. The water-soluble binder for inorganic fibers of Comparative Example 10 was obtained. In addition, since the acrylic resin for inorganic fibers “Glass Pearl” is already mixed with a crosslinking agent, no new crosslinking agent is added.

実施例1〜5、比較例1〜10で得られた無機繊維用水溶性バインダーを用いて、下記に記す方法にて評価を実施した。   Evaluation was carried out by the method described below using the water-soluble binder for inorganic fibers obtained in Examples 1 to 5 and Comparative Examples 1 to 10.

(液安定性の評価)
実施例1〜5、比較例1〜10で得られた無機繊維用水溶性バインダーを1時間静置し、液中への沈殿物の発生の有無を確認した。
沈殿物が発生した場合、後工程でのスプレー装置にて詰まり等の問題に発展する為、無い事を基準とした。
(Evaluation of liquid stability)
The water-soluble binder for inorganic fibers obtained in Examples 1 to 5 and Comparative Examples 1 to 10 was allowed to stand for 1 hour, and the presence or absence of precipitates in the liquid was confirmed.
In the case where a precipitate is generated, it becomes a standard because it develops into a problem such as clogging in a spray device in a later process.

(粘着性の評価)
実施例1〜5、比較例1〜10で得られた無機繊維用水溶性バインダーを遠心法により繊維化したグラスウールに樹脂固形分が5%付着する様にスプレー装置にて塗布し、無機繊維堆積装置内で吸引しながら有孔コンベア上に堆積させ、無機繊維断熱吸音材中間体を得た。得られた無機繊維断熱吸音材中間体の厚さを測定し、下記数式により、粘着度を求めた。
粘着性=中間体厚さ/成形厚さ×100
※成形厚さ:20mm
粘着性の目標値は、後工程での挟圧成形時の潰し代を考慮し、150%以上が望ましい。
中間厚さ=成形厚さ20mm × 粘着性150%以上 = 30mm以上
(Evaluation of adhesiveness)
The inorganic fiber deposition apparatus was coated with a spray device so that 5% of the resin solids adhered to the glass wool fiberized by the centrifugal method using the water-soluble binder for inorganic fibers obtained in Examples 1 to 5 and Comparative Examples 1 to 10. The mixture was deposited on a perforated conveyor while being sucked in, to obtain an inorganic fiber heat insulating material intermediate. The thickness of the resulting inorganic fiber heat-absorbing sound-absorbing material intermediate was measured, and the degree of adhesion was determined by the following mathematical formula.
Adhesiveness = intermediate thickness / molding thickness × 100
* Molding thickness: 20mm
The target value for adhesiveness is preferably 150% or more in consideration of a crushing margin at the time of nipping and pressing in the subsequent process.
Intermediate thickness = Molding thickness 20mm × Adhesiveness 150% or more = 30mm or more

(乾燥機適性の評価)
前記で得られた無機繊維断熱吸音材中間体をそれぞれの樹脂特性に適した乾燥温度(ポリビニルアルコール系樹脂:190℃、フェノール系樹脂:240℃、アクリル系樹脂:260℃)にて、10分間の加熱処理を実施し、密度 64kg/m、厚さ 20mm、バインダー付着率 5.0%の無機繊維断熱吸音材を成形した。成形時に乾燥機プレート面への成形品の貼り付き状態を確認した。
貼り付きは、製造工程でのトラブルに展開する為、無い事を基準とした。
(Evaluation of dryer suitability)
10 minutes at the drying temperature (polyvinyl alcohol-type resin: 190 degreeC, phenol-type resin: 240 degreeC, acrylic resin: 260 degreeC) suitable for each resin characteristic for the inorganic fiber heat insulation sound-absorbing material intermediate body obtained above. Then, an inorganic fiber heat insulating sound absorbing material having a density of 64 kg / m 3 , a thickness of 20 mm, and a binder adhesion rate of 5.0% was formed. The state of sticking of the molded product to the dryer plate surface was confirmed during molding.
The sticking is based on the fact that there is no sticking because it causes problems in the manufacturing process.

(弾力性の評価)
前記で得られたそれぞれの無機繊維断熱吸音材を、SHIMADZU社製万能試験機「AG-IS」を用い、厚さ50%まで圧縮した時の反発力を測定し、比較した。
弾力性は、比較例9のフェノール系樹脂を使用した無機繊維断熱吸音材の反発力を基準とし、フェノール系樹脂を使用した無機繊維断熱吸音材の反発力よりも大きな数値を有するものは、「弾力性良好」と判断した。
(Evaluation of elasticity)
Using the universal tester “AG-IS” manufactured by SHIMADZU, the repulsive force when each inorganic fiber heat-absorbing and sound-absorbing material obtained above was compressed to 50% was measured and compared.
The elasticity is based on the repulsive force of the inorganic fiber heat insulating material using the phenolic resin of Comparative Example 9, and has a numerical value larger than the repulsive force of the inorganic fiber heat insulating material using the phenolic resin. It was judged as “good elasticity”.

(耐水性の評価)
前記で得られた無機繊維断熱吸音材を、HIRAYAMA社製加圧加湿試験機「HG−50」を用いて、飽和水蒸気下にて1時間静置し、試験後の厚さ変化率を測定し、比較した。
厚さ変化率(膨れ率)=(試験後厚さ−試験前厚さ)/試験前厚さ×100
無機繊維断熱吸音材を飽和水蒸気下で静置することにより、断熱吸音材は水を含み、強度低下に伴って、厚さが増す。従って、この厚さ変化率が小さい程、水を含む量が少なく、強度低下の起こさない耐水性に優れている断熱吸音材といえる。
(Evaluation of water resistance)
The inorganic fiber heat insulating sound absorbing material obtained above was allowed to stand for 1 hour under saturated steam using a pressure humidification tester “HG-50” manufactured by HIRAYAMA, and the thickness change rate after the test was measured. Compared.
Thickness change rate (blowing rate) = (Thickness after test−Thickness before test) / Thickness before test × 100
By leaving the inorganic fiber heat-absorbing sound-absorbing material under saturated water vapor, the heat-insulating sound-absorbing material contains water and increases in thickness as the strength decreases. Therefore, it can be said that the smaller the rate of change in thickness, the smaller the amount of water contained, and the heat insulating sound-absorbing material that is excellent in water resistance without causing strength reduction.

(ホルムアルデヒド放散量の評価)
前記で得られた無機繊維断熱吸音材を、JIS A 1901の試験規格に基づき、ホルムアルデヒドの放散量を測定した。
ホルムアルデヒドを含まない樹脂材料である為、未検出を基準にした。
(Evaluation of formaldehyde emission)
The inorganic fiber heat insulating sound absorbing material obtained above was measured for the amount of formaldehyde diffused based on the test standard of JIS A 1901.
Since it is a resin material that does not contain formaldehyde, it was based on undetected.

前記で記した実施例1〜5の評価結果を表1に、比較例1〜10の評価結果を表2に示した。   The evaluation results of Examples 1 to 5 described above are shown in Table 1, and the evaluation results of Comparative Examples 1 to 10 are shown in Table 2.

Figure 2016108707
Figure 2016108707

Figure 2016108707
Figure 2016108707

上記結果より、粘着性について、比較例1及び2の値に低下が見られた。比較例1及び2は、粘着抑制剤が無添加の為、無機繊維中間体に粘着性が生じ、吸引時に潰れたと思われる。そして、比較例1及び2は、無機繊維中間体の厚さが不十分な為、その後の加熱時に十分な加圧が無く、表面平滑性に劣る傾向が見られた。又、粘着抑制剤を3.0部以上添加したその他については、十分な結果が得られた。   From the above results, a decrease was observed in the values of Comparative Examples 1 and 2 with respect to tackiness. In Comparative Examples 1 and 2, since the adhesion inhibitor was not added, the inorganic fiber intermediate was considered to be sticky and collapsed during suction. In Comparative Examples 1 and 2, since the thickness of the inorganic fiber intermediate was insufficient, there was no sufficient pressurization during subsequent heating, and a tendency to be inferior in surface smoothness was observed. Moreover, sufficient results were obtained for the others in which 3.0 parts or more of an adhesion inhibitor was added.

上記結果より、液安定性について、比較例5に沈殿物が見られた。比較例5は、粘着抑制剤として硫酸アンモニウムを25.0部と多量に添加した為、ポリビニルアルコール系樹脂の水への溶解性が極端に低下し、樹脂成分の沈殿が見られた。沈殿物の発生は、長時間の使用においてスプレー装置での詰まりに発展する恐れがある。そして、樹脂成分が沈殿し、付着量が低下してしまう為、成形物の弾力性や耐水性の悪化にもつながった。   From the above results, a precipitate was observed in Comparative Example 5 with respect to the liquid stability. In Comparative Example 5, since ammonium sulfate was added in a large amount of 25.0 parts as an adhesion inhibitor, the solubility of the polyvinyl alcohol resin in water was extremely reduced, and precipitation of the resin component was observed. The generation of precipitates can lead to clogging in the spray device over long periods of use. And since the resin component precipitated and the amount of adhesion decreased, it led to the deterioration of the elasticity and water resistance of the molded product.

上記結果より、乾燥機適性については、比較例8に乾燥プレートへの貼り付きが見られた。比較例8は、離型剤を添加していない為、無機繊維断熱吸音材に離形性が無く、貼り付きが発生した。離型剤を5.0部以上添加したその他については、貼り付きは見られなかった。尚、比較例8に関しては、乾燥プレートに貼り付いてしまったことより、成形物を製造することができず、従って、弾力性、耐水性、ホルムアルデヒド放散量に関しての試験は行わなかった。   From the above results, sticking to the drying plate was seen in Comparative Example 8 for the suitability of the dryer. In Comparative Example 8, since no release agent was added, the inorganic heat insulating sound-absorbing material had no releasability and sticking occurred. No sticking was observed in other cases where 5.0 parts or more of a release agent was added. In Comparative Example 8, the molded product could not be produced because it adhered to the drying plate, and therefore, tests on elasticity, water resistance, and formaldehyde emission were not conducted.

上記結果より、弾力性について、比較例3〜7に低い値が見られた。比較例3及び4は、架橋剤が3.0部と少ない為、架橋反応が十分に行われなかったためと思われる。比較例5は、粘着抑制剤の過添加により、樹脂成分が沈殿し、無機繊維への付着が十分に行われなかったためと思われる。比較例6及び7は、離型剤の過添加により、離型剤に含まれる界面活性剤が無機繊維断熱吸音材強度(弾力性)に悪影響を示した。又、実施例1及び2と比較例1及び2の比較では、その強度に大きな変化が見られない事から、粘着抑制剤が樹脂の反応に悪影響を示していないことが分かる。   From the above results, low values were found in Comparative Examples 3 to 7 for elasticity. In Comparative Examples 3 and 4, it seems that the crosslinking reaction was not sufficiently performed because the amount of the crosslinking agent was as small as 3.0 parts. In Comparative Example 5, it is considered that the resin component was precipitated due to the excessive addition of the adhesion inhibitor, and the adhesion to the inorganic fibers was not sufficiently performed. In Comparative Examples 6 and 7, the surfactant contained in the release agent had an adverse effect on the strength (elasticity) of the inorganic fiber heat insulating material due to the excessive addition of the release agent. Moreover, in the comparison of Example 1 and 2 and Comparative Example 1 and 2, since the big change is not seen in the intensity | strength, it turns out that the adhesion inhibitor does not have a bad influence on reaction of resin.

上記結果より、耐水性については、比較例3及び4と比較例6及び7に悪い値が見られた。比較例3及び4は、架橋剤が3.0部と少なく、樹脂の架橋反応が十分に行われなかったと思われる。比較例6及び7は、離型剤の合計添加率が30.0部以上と多く、離型剤に含まれる界面活性剤の影響で耐水性の悪化が見られたと思われる。   From the above results, regarding the water resistance, bad values were seen in Comparative Examples 3 and 4 and Comparative Examples 6 and 7. In Comparative Examples 3 and 4, the amount of the crosslinking agent is as small as 3.0 parts, and it seems that the crosslinking reaction of the resin was not sufficiently performed. In Comparative Examples 6 and 7, the total addition rate of the release agent was as large as 30.0 parts or more, and it seems that water resistance deteriorated due to the influence of the surfactant contained in the release agent.

上記結果より、ホルムアルデヒド放散量について、フェノール系樹脂を用いた比較例9以外は未検出であった。   From the above results, the amount of formaldehyde emitted was not detected except for Comparative Example 9 using a phenolic resin.

本発明の無機繊維用水溶性バインダーは、無機繊維断熱吸音材の製造工程に優れた適性を示し、ホルムアルデヒドを含有しないバインダーであり、それを用いた無機繊維断熱吸音材は、住宅や建物の断熱材又は吸音材として好適に使用できる。   The water-soluble binder for inorganic fibers of the present invention is a binder that does not contain formaldehyde and exhibits excellent suitability for the production process of an inorganic fiber heat-absorbing sound-absorbing material. Or it can use suitably as a sound-absorbing material.

Claims (6)

ポリビニルアルコール系樹脂を主成分とする水溶性高分子と、架橋剤と、粘着抑制剤と、シランカップリング剤と、離型剤とを混合して得られた無機繊維用水溶性バインダーであり、その硬化物に優れた弾力性と耐水性とがある事を特徴とする、無機繊維用水溶性バインダー。   It is a water-soluble binder for inorganic fibers obtained by mixing a water-soluble polymer mainly composed of a polyvinyl alcohol resin, a crosslinking agent, an adhesion inhibitor, a silane coupling agent, and a release agent, A water-soluble binder for inorganic fibers, characterized in that the cured product has excellent elasticity and water resistance. 前記架橋剤は、(a)ポリカルボン酸の化合物、重合物又は共重合物、(b)硼砂化合物、(c)その混合物、より選択される1種類であり、前記ポリビニルアルコール系樹脂を100質量部に対し、固形分換算で4.0質量部以上を含有する請求項1に記載の無機繊維用水溶性バインダー。   The cross-linking agent is one selected from (a) a compound of a polycarboxylic acid, a polymer or copolymer, (b) a borax compound, and (c) a mixture thereof. The water-soluble binder for inorganic fibers according to claim 1, which contains 4.0 parts by mass or more in terms of solid content with respect to parts. 前記粘着抑制剤は、塩類化合物の水溶液であり、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対し、固形分換算で3.0から20.0質量部含有した請求項1又は2のいずれか1項に記載の無機繊維用水溶性バインダー。   The said adhesion inhibitor is the aqueous solution of a salt compound, and contained 3.0 to 20.0 mass parts in conversion of solid content with respect to 100 mass parts in total of the said polyvinyl alcohol-type resin and the said crosslinking agent. 3. The water-soluble binder for inorganic fibers according to any one of 2 above. シランカップリング剤を、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対して、固形分換算で0.1から3.0質量部を含有する請求項1〜3のいずれか1項に記載の無機繊維用水溶性バインダー。   The silane coupling agent contains 0.1 to 3.0 parts by mass in terms of solid content with respect to 100 parts by mass in total of the polyvinyl alcohol resin and the crosslinking agent. The water-soluble binder for inorganic fibers according to Item. 離型剤は、重質オイル、又は、重質オイルとシリコーンオイルの混合物の水分散体であり、前記ポリビニルアルコール系樹脂と前記架橋剤との合計100質量部に対し、5.0から30.0質量部含有する請求項1〜4のいずれか1項に記載の無機繊維用水溶性バインダー。 The release agent is an aqueous dispersion of heavy oil or a mixture of heavy oil and silicone oil, and is from 5.0 to 30 with respect to 100 parts by mass in total of the polyvinyl alcohol resin and the crosslinking agent. The water-soluble binder for inorganic fibers according to any one of claims 1 to 4, which contains 0 part by mass. 請求項1〜5のいずれか1項に記載の無機繊維用水溶性バインダーを無機繊維に付与し、加熱処理により硬化させて成形したことを特徴とする無機繊維断熱吸音材。 An inorganic fiber heat-absorbing sound-absorbing material, wherein the water-soluble binder for inorganic fibers according to any one of claims 1 to 5 is applied to inorganic fibers and cured by heat treatment.
JP2014249768A 2014-12-10 2014-12-10 Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing an inorganic fiber heat-absorbing sound absorbing material Active JP6412787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014249768A JP6412787B2 (en) 2014-12-10 2014-12-10 Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing an inorganic fiber heat-absorbing sound absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014249768A JP6412787B2 (en) 2014-12-10 2014-12-10 Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing an inorganic fiber heat-absorbing sound absorbing material

Publications (2)

Publication Number Publication Date
JP2016108707A true JP2016108707A (en) 2016-06-20
JP6412787B2 JP6412787B2 (en) 2018-10-24

Family

ID=56123402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014249768A Active JP6412787B2 (en) 2014-12-10 2014-12-10 Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing an inorganic fiber heat-absorbing sound absorbing material

Country Status (1)

Country Link
JP (1) JP6412787B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180130449A (en) 2017-05-29 2018-12-07 닛신 가가꾸 고교 가부시끼가이샤 Binder for inorganic fiber and inorganic fiber mat
JP2019085672A (en) * 2017-11-07 2019-06-06 日東紡績株式会社 Binder composition for mineral wool and mineral wool
WO2019111449A1 (en) * 2017-12-07 2019-06-13 日東紡績株式会社 Binder composition for mineral wool, mineral wool, and production method for mineral wool
WO2020129801A1 (en) 2018-12-18 2020-06-25 日信化学工業株式会社 Binder for inorganic fibers and inorganic fiber mat
JP2020537054A (en) * 2017-10-09 2020-12-17 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
WO2021039556A1 (en) 2019-08-23 2021-03-04 日信化学工業株式会社 Binder for inorganic fibers and inorganic fiber mat
WO2021166647A1 (en) 2020-02-19 2021-08-26 日信化学工業株式会社 Binder for inorganic fibers and inorganic fiber mat

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106546A (en) * 2002-09-09 2004-04-08 Armstrong World Industries Inc Low formaldehyde emission panel
JP2006257595A (en) * 2005-03-18 2006-09-28 Asahi Fiber Glass Co Ltd Water-based binder for inorganic fiber and heat and sound insulation material made of inorganic fiber
JP2007146315A (en) * 2005-11-25 2007-06-14 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber and inorganic fiber thermal and/or acoustical insulation material
JP2008174891A (en) * 2006-12-22 2008-07-31 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber of heat-insulating/sound-absorbing material and heat-insulating/sound-absorbing material of inorganic fiber
JP2011153395A (en) * 2010-01-28 2011-08-11 Nisshin Chem Ind Co Ltd Binder for inorganic fiber, and inorganic fiber mat processed with the binder
WO2011162277A1 (en) * 2010-06-23 2011-12-29 旭ファイバーグラス株式会社 Aqueous binder for inorganic fiber heat-insulating sound-absorbing member, inorganic fiber heat-insulating sound-absorbing member and method for producing inorganic fiber heat-insulating sound-absorbing member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106546A (en) * 2002-09-09 2004-04-08 Armstrong World Industries Inc Low formaldehyde emission panel
JP2006257595A (en) * 2005-03-18 2006-09-28 Asahi Fiber Glass Co Ltd Water-based binder for inorganic fiber and heat and sound insulation material made of inorganic fiber
JP2007146315A (en) * 2005-11-25 2007-06-14 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber and inorganic fiber thermal and/or acoustical insulation material
JP2008174891A (en) * 2006-12-22 2008-07-31 Asahi Fiber Glass Co Ltd Aqueous binder for inorganic fiber of heat-insulating/sound-absorbing material and heat-insulating/sound-absorbing material of inorganic fiber
JP2011153395A (en) * 2010-01-28 2011-08-11 Nisshin Chem Ind Co Ltd Binder for inorganic fiber, and inorganic fiber mat processed with the binder
WO2011162277A1 (en) * 2010-06-23 2011-12-29 旭ファイバーグラス株式会社 Aqueous binder for inorganic fiber heat-insulating sound-absorbing member, inorganic fiber heat-insulating sound-absorbing member and method for producing inorganic fiber heat-insulating sound-absorbing member

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180130449A (en) 2017-05-29 2018-12-07 닛신 가가꾸 고교 가부시끼가이샤 Binder for inorganic fiber and inorganic fiber mat
JP2018199881A (en) * 2017-05-29 2018-12-20 日信化学工業株式会社 Binder for inorganic fiber and inorganic fiber mat
JP7219270B2 (en) 2017-10-09 2023-02-07 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
JP2020537054A (en) * 2017-10-09 2020-12-17 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
JP2019085672A (en) * 2017-11-07 2019-06-06 日東紡績株式会社 Binder composition for mineral wool and mineral wool
WO2019111449A1 (en) * 2017-12-07 2019-06-13 日東紡績株式会社 Binder composition for mineral wool, mineral wool, and production method for mineral wool
JP2019099971A (en) * 2017-12-07 2019-06-24 日東紡績株式会社 Binder composition for mineral wool, mineral wool, and manufacturing method for mineral wool
CN113195667A (en) * 2018-12-18 2021-07-30 日信化学工业株式会社 Binder for inorganic fibers and inorganic fiber mat
KR20210104781A (en) 2018-12-18 2021-08-25 닛신 가가꾸 고교 가부시끼가이샤 Binders for Inorganic Fibers and Inorganic Fiber Mats
JPWO2020129801A1 (en) * 2018-12-18 2021-10-28 日信化学工業株式会社 Binders for inorganic fibers and inorganic fiber mats
JP7192881B2 (en) 2018-12-18 2022-12-20 日信化学工業株式会社 Inorganic fiber binder and inorganic fiber mat
WO2020129801A1 (en) 2018-12-18 2020-06-25 日信化学工業株式会社 Binder for inorganic fibers and inorganic fiber mat
CN113195667B (en) * 2018-12-18 2023-10-20 日信化学工业株式会社 Binder for inorganic fibers and inorganic fiber mat
WO2021039556A1 (en) 2019-08-23 2021-03-04 日信化学工業株式会社 Binder for inorganic fibers and inorganic fiber mat
CN114269843A (en) * 2019-08-23 2022-04-01 日信化学工业株式会社 Binder for inorganic fiber and inorganic fiber mat
KR20220045046A (en) 2019-08-23 2022-04-12 닛신 가가꾸 고교 가부시끼가이샤 Binders for Inorganic Fibers and Inorganic Fiber Mats
WO2021166647A1 (en) 2020-02-19 2021-08-26 日信化学工業株式会社 Binder for inorganic fibers and inorganic fiber mat
KR20220137761A (en) 2020-02-19 2022-10-12 닛신 가가꾸 고교 가부시끼가이샤 Binders for Inorganic Fibers and Inorganic Fiber Mats

Also Published As

Publication number Publication date
JP6412787B2 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
JP6412787B2 (en) Water-soluble binder for inorganic fiber containing no formaldehyde and method for producing an inorganic fiber heat-absorbing sound absorbing material
JP5118306B2 (en) Aqueous binder for heat insulating sound absorbing material for inorganic fiber and heat insulating sound absorbing material for inorganic fiber
JP5997827B1 (en) Aqueous binder for heat insulating sound absorbing material for inorganic fiber and heat insulating sound absorbing material for inorganic fiber
JP6141840B2 (en) Sizing composition for mineral wool based on maltitol and the resulting insulation product
KR101127485B1 (en) Sizing composition, method of preparing the same, mineral fibers, thermal or acoustic insulation product and veil of mineral fibers
JP5711228B2 (en) Water-based binder for inorganic fiber heat-insulating material, inorganic fiber heat-insulating material, and method for producing inorganic fiber heat-absorbing material
JP2007528438A (en) Binder composition and related methods
US20130292863A1 (en) Methods and systems for adjusting the composition of a binder system for use in making fiberglass products
JP6017079B1 (en) Aqueous binder for heat insulating sound absorbing material for inorganic fiber and heat insulating sound absorbing material for inorganic fiber
JP2008515761A (en) Water repellent glass fiber binder containing a fluorinated polymer
JP4759375B2 (en) Aqueous binder for inorganic fiber and heat insulating sound absorbing material for inorganic fiber
JP2005068399A (en) Curable aqueous composition and use thereof as heat-resistant nonwoven fabric binder
JP2007056415A (en) Aqueous binder for inorganic fiber and inorganic fiber heat insulating and sound absorbing material
JP2004156196A (en) Binder for glass fiber nonwoven fabric
JP6557464B2 (en) Insulating fiber-absorbing sound absorbing material having flexibility and method for producing the same
WO2016013539A1 (en) Inorganic fibrous insulating material
JP5615166B2 (en) Aqueous binder for mineral fiber and mineral fiber laminate
JP2005299013A (en) Inorganic fiber mat
JP5664465B2 (en) Glass fiber article and glass fiber reinforced plastic
JP2008505254A (en) Ethoxysilane-containing glass fiber binder
US6803439B2 (en) Fatty acid containing fiberglass binder
JP2020183591A (en) Mineral wool
JP6433060B2 (en) Aqueous binder composition of aliphatic or cycloaliphatic dicarboxaldehyde and resorcinol
JP2020059955A (en) Mineral wool
JP6954015B2 (en) Binder composition for mineral wool and mineral wool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R150 Certificate of patent or registration of utility model

Ref document number: 6412787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250