JP2016108688A - Carbon fiber for heat insulation material, and heat insulation material using the same - Google Patents

Carbon fiber for heat insulation material, and heat insulation material using the same Download PDF

Info

Publication number
JP2016108688A
JP2016108688A JP2014245947A JP2014245947A JP2016108688A JP 2016108688 A JP2016108688 A JP 2016108688A JP 2014245947 A JP2014245947 A JP 2014245947A JP 2014245947 A JP2014245947 A JP 2014245947A JP 2016108688 A JP2016108688 A JP 2016108688A
Authority
JP
Japan
Prior art keywords
carbon fiber
heat insulating
fiber
insulating material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014245947A
Other languages
Japanese (ja)
Other versions
JP6621983B2 (en
Inventor
▲徳▼子 濃野
Noriko Koino
▲徳▼子 濃野
曽我部 敏明
Toshiaki Sogabe
敏明 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Chemicals Co Ltd
Original Assignee
Osaka Gas Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Chemicals Co Ltd filed Critical Osaka Gas Chemicals Co Ltd
Priority to JP2014245947A priority Critical patent/JP6621983B2/en
Publication of JP2016108688A publication Critical patent/JP2016108688A/en
Application granted granted Critical
Publication of JP6621983B2 publication Critical patent/JP6621983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a carbon fiber having a low thermal conductivity, as well as also to provide a small structure (heat insulation material) having a resiliency by using the carbon fiber; and also, to provide a carbon fiber that can achieve the heat insulation not only in the fiber axis direction as well as also in the radial direction, and also to provide a resilient small heat insulation material by using the carbon fiber.SOLUTION: Provided is a carbon fiber for heat insulation material having a thermal conductivity in the fiber axis direction of 1 to 10 W/m-K as well as having an open pore volume of 0.1 cm/g or less. The carbon fiber for heat insulation material can be produced by a production method including a step of heat treating a precursor fiber of carbon fiber for heat insulation material at 700 to 2400°C.SELECTED DRAWING: None

Description

本発明は、断熱材用炭素繊維及びそれを用いた断熱材に関する。   The present invention relates to a carbon fiber for a heat insulating material and a heat insulating material using the same.

等方性ピッチを炭素前駆体として得られる炭素繊維は、フェルト断熱材又は成形断熱材として幅広く利用されている。成形断熱材は炭素化率の高い樹脂を含浸させ、目的に応じた形状に成形、硬化、炭化、黒鉛化処理等を施した材料である。また、等方性ピッチ系炭素繊維は、熱的安定性及び柔軟性にも優れ形状選択性が高い。現状は工業炉等に使用されており、その具体例としては、例えば、シリコン単結晶引き上げ装置の断熱材等が挙げられる。   Carbon fibers obtained using isotropic pitch as a carbon precursor are widely used as felt heat insulating materials or molded heat insulating materials. The molded heat insulating material is a material that is impregnated with a resin having a high carbonization rate and is molded, cured, carbonized, graphitized, etc. into a shape according to the purpose. In addition, isotropic pitch-based carbon fibers are excellent in thermal stability and flexibility and have high shape selectivity. Currently, it is used in industrial furnaces, and specific examples thereof include, for example, a heat insulating material for a silicon single crystal pulling apparatus.

このように使用される断熱材は、通常、体積の9割前後が空間である。特に、高温領域(例えば、1300℃以上)における輻射熱を、この空間により遮って輻射損失を起こさせて断熱効果を発現させている。この場合、空間形成がより重要とされていることから、炭素繊維を用いて断熱材を成形する際の空間形成方法のみが研究されており、炭素繊維自体の熱伝導率及び断熱性能についてはほとんど議論されていない。   As for the heat insulating material used in this way, about 90% of the volume is usually space. In particular, radiant heat in a high temperature region (for example, 1300 ° C. or higher) is blocked by this space to cause radiation loss, thereby producing a heat insulation effect. In this case, since space formation is more important, only the space formation method when forming a heat insulating material using carbon fiber has been studied, and almost no consideration is given to the thermal conductivity and heat insulation performance of the carbon fiber itself. Not discussed.

しかしながら、断熱材を小さくして十分な断熱性能を得ようとする場合(小型断熱材とする場合)は、多くの空間を形成させる余地が少なくなり炭素繊維の体積割合が大きくなる。この場合には、炭素繊維自体の熱伝導率及び断熱性能が重要になる。   However, when trying to obtain a sufficient heat insulating performance by reducing the heat insulating material (when using a small heat insulating material), there is less room for forming a large space, and the volume ratio of the carbon fiber is increased. In this case, the thermal conductivity and heat insulation performance of the carbon fiber itself are important.

一方、U字型の反応炉を商品名ファイバキャストで埋めて断熱すること等も知られている。ファイバキャストは、セラミックファイバ、無機バインダ等から構成されている。しかしながら、このようなセラミックファイバは、耐熱温度が1000〜1200℃であり、それより高温の装置には適用できない。このため、例えば、1300℃以下の低温領域では、セラミックファイバ等の炭素繊維以外の素材も使用可能であるが、炭素繊維が有する耐化学薬品性、溶融金属との低い濡れ性(低反応性)等が必要となる場合は炭素繊維系の断熱材が有用となる。そのような低温では、輻射熱の割合が少なくなるので、炭素繊維自体の熱伝導率が小さいことがより重要である。   On the other hand, it is also known to insulate a U-shaped reactor by filling it with a brand name fiber cast. The fiber cast is composed of a ceramic fiber, an inorganic binder, or the like. However, such a ceramic fiber has a heat resistant temperature of 1000 to 1200 ° C. and cannot be applied to a device having a higher temperature. For this reason, for example, materials other than carbon fibers such as ceramic fibers can be used in a low temperature region of 1300 ° C. or lower, but the chemical resistance of carbon fibers and the low wettability (low reactivity) with molten metal. For example, a carbon fiber-based heat insulating material is useful. At such low temperatures, the proportion of radiant heat decreases, so it is more important that the carbon fiber itself has a low thermal conductivity.

例えば、特許文献1には、ジャケットヒータ(マントルヒータ)の断熱材にエアロゲル繊維体を使用することができることが記載されている。繊維体として有機繊維、無機繊維等の他、カーボン繊維が挙げられている。このような形式のヒータの断熱材に断熱性に優れた炭素繊維を使用することにより、よりコンパクトにすることが可能となる。   For example, Patent Document 1 describes that an airgel fiber can be used as a heat insulating material for a jacket heater (mantle heater). In addition to organic fibers, inorganic fibers, etc., carbon fibers are mentioned as the fibrous body. It becomes possible to make it more compact by using the carbon fiber excellent in heat insulation for the heat insulating material of such a heater.

国際公開第2012/077648号International Publication No. 2012/077648

本発明は、上記のような課題を解決しようとするものである。具体的には、小型の高温の加熱装置を断熱しようとする場合、断熱材も小さい、又は薄いものが必要とされる。その場合、熱伝導率の小さい炭素繊維は好適な材料であると考えられる。炭素繊維は、一般に直径が6〜20μmであり非常に細いので、小さな断熱材を構成するには好適である。本発明は、熱伝導率が低い炭素繊維を提供するとともに、そのような炭素繊維を用いた可とう性のある小型構造物(断熱材)を提供することも目的とする。   The present invention is intended to solve the above problems. Specifically, when a small high-temperature heating device is to be insulated, a small or thin heat insulating material is required. In that case, a carbon fiber having a low thermal conductivity is considered to be a suitable material. The carbon fiber is generally 6 to 20 μm in diameter and very thin, and is suitable for constituting a small heat insulating material. Another object of the present invention is to provide a carbon fiber having a low thermal conductivity and a flexible small structure (heat insulating material) using such a carbon fiber.

また、繊維軸方向はもとより、径方向にも断熱が発現できる炭素繊維を提供することも目的とする。また、そのような炭素繊維を用いた可とう性の小型断熱材を提供することも目的とする。   Another object of the present invention is to provide a carbon fiber that can exhibit heat insulation not only in the fiber axis direction but also in the radial direction. Moreover, it aims also at providing the flexible small heat insulating material using such a carbon fiber.

本発明者らは、上記課題を解決するために鋭意研究を行った結果、繊維軸方向の熱伝導率及び開気孔量を特定の範囲とすることにより、上記課題を解決した炭素繊維が得られることを見出した。本発明は、当該知見に基づき、さらに研究を重ね完成したものである。即ち、本発明は、以下の構成を包含する。
項1.繊維軸方向の熱伝導率が1〜10W/m・Kであり、且つ、開気孔量が0.1cm/g以下である、断熱材用炭素繊維。
項2.見かけ密度が2.0g/cm未満である、項1に記載の断熱材用炭素繊維。
項3.小角X線散乱法によるギニエプロットにより見積もられる閉気孔を球と仮定した場合における閉気孔の半径が6nm以上である、項1又は2に記載の断熱材用炭素繊維。
項4.等方性ピッチを炭素前駆体とした700〜2400℃の熱処理物である、項1〜3のいずれかに記載の断熱材用炭素繊維。
項5.繊維軸方向の熱伝導率が1〜10W/m・Kであり、且つ、開気孔量が0.1cm/g以下である断熱材用炭素繊維の製造方法であって、
前記断熱材用炭素繊維の前駆体繊維を、700〜2400℃で熱処理する工程
を備える、製造方法。
項6.前記前駆体繊維が、等方性ピッチからなる前駆体繊維である、項5に記載の製造方法。
項7.項1〜4のいずれかに記載の断熱材用炭素繊維、又は請求項5又は6に記載の製造方法により得られた断熱材用炭素繊維を用いた断熱材。
項8.前記断熱材用炭素繊維が耐熱性樹脂又は炭素結合物によって結合されている、項7に記載の断熱材。
項9.前記断熱材用炭素繊維からなる不織布を用い、シート状、試験管形状、巾着形状、バット形状又はるつぼ形状に成形されている、項7に記載の断熱材。
項10.前記断熱材用炭素繊維が耐熱性樹脂又は炭素結合物によって結合され、且つ、シート状、試験管形状、巾着形状、バット形状、るつぼ形状、又は容器形状に成形されている、項7に記載の断熱材。
As a result of intensive studies to solve the above-mentioned problems, the present inventors can obtain a carbon fiber that solves the above-mentioned problems by setting the thermal conductivity in the fiber axis direction and the amount of open pores within a specific range. I found out. The present invention has been completed through further research based on this finding. That is, the present invention includes the following configurations.
Item 1. A carbon fiber for a heat insulating material having a thermal conductivity in the fiber axis direction of 1 to 10 W / m · K and an open pore volume of 0.1 cm 3 / g or less.
Item 2. Item 2. The carbon fiber for an insulating material according to Item 1, wherein the apparent density is less than 2.0 g / cm 3 .
Item 3. Item 3. The carbon fiber for a heat insulating material according to Item 1 or 2, wherein the closed pore radius is 6 nm or more when the closed pore estimated by a Guinier plot by a small angle X-ray scattering method is assumed to be a sphere.
Item 4. Item 4. The carbon fiber for a heat insulating material according to any one of Items 1 to 3, which is a heat-treated product at 700 to 2400 ° C using isotropic pitch as a carbon precursor.
Item 5. A method for producing a carbon fiber for a heat insulating material having a thermal conductivity in the fiber axis direction of 1 to 10 W / m · K and an open pore volume of 0.1 cm 3 / g or less,
The manufacturing method provided with the process of heat-processing the precursor fiber of the said carbon fiber for heat insulating materials at 700-2400 degreeC.
Item 6. Item 6. The method according to Item 5, wherein the precursor fiber is a precursor fiber composed of an isotropic pitch.
Item 7. The heat insulating material using the carbon fiber for heat insulating materials in any one of claim | item 1-4, or the carbon fiber for heat insulating materials obtained by the manufacturing method of Claim 5 or 6.
Item 8. Item 8. The heat insulating material according to Item 7, wherein the carbon fiber for heat insulating material is bonded by a heat resistant resin or a carbon bond.
Item 9. Item 8. The heat insulating material according to item 7, wherein the heat insulating material is formed into a sheet shape, a test tube shape, a drawstring shape, a bat shape or a crucible shape using a nonwoven fabric made of carbon fiber for heat insulating material.
Item 10. Item 8. The heat-insulating carbon fiber is bonded with a heat-resistant resin or a carbon bond, and is formed into a sheet shape, a test tube shape, a drawstring shape, a bat shape, a crucible shape, or a container shape. Insulation.

本発明の断熱材用炭素繊維は、繊維軸方向はもとより、径方向にも断熱が発現することができる。このため、本発明の断熱材用炭素繊維を用いた断熱材は、炭素繊維による熱伝導が小さく、気体や輻射熱の通過による熱伝導を小さくすることができる。特に、多くの空間を形成させる余地が少ない、小さなまたは薄い断熱材にはより効果的である。   The heat insulating carbon fiber of the present invention can exhibit heat insulation not only in the fiber axis direction but also in the radial direction. For this reason, the heat insulating material using the carbon fiber for heat insulating material of the present invention has a small heat conduction by the carbon fiber, and can reduce the heat conduction by the passage of gas or radiant heat. In particular, it is more effective for a small or thin heat insulating material that has little room for forming a lot of space.

本発明の断熱材用炭素繊維においては、閉気孔のサイズを比較的大きくすることが可能である。このため、本発明の断熱材用炭素繊維を用いた断熱材は、炭素繊維中の閉気孔がより輻射熱を遮る(輻射損失)ことが可能となり、炭素繊維の径方向の断熱性能が高く、繊維径方向により効果的に断熱性が発現したものとすることができる。この場合も、多くの空間を形成させる余地が少ない、小さなまたは薄い断熱材にはより効果的である。   In the carbon fiber for a heat insulating material of the present invention, the size of closed pores can be made relatively large. For this reason, the heat insulating material using the carbon fiber for a heat insulating material of the present invention enables the closed pores in the carbon fiber to block the radiant heat (radiation loss), and the heat insulating performance in the radial direction of the carbon fiber is high. The heat insulating property can be effectively expressed in the radial direction. Again, this is more effective for small or thin insulations that have less room to form a lot of space.

このような本発明の断熱材を所望の形状に成形した場合には、可とう性の断熱材とすることも可能である。   When such a heat insulating material of the present invention is formed into a desired shape, it is possible to obtain a flexible heat insulating material.

実施例2及び6の炭素繊維の吸脱着等温線である。左図は実施例2、右図は実施例6の結果である。2 is an adsorption / desorption isotherm of carbon fibers of Examples 2 and 6. The left figure shows the results of Example 2, and the right figure shows the results of Example 6. 実施例2〜6の炭素繊維の小角X線散乱法によるギニエプロットである。It is a Guinier plot by the small angle X ray scattering method of the carbon fiber of Examples 2-6.

1.断熱材用炭素繊維
本発明の断熱材用炭素繊維は、繊維軸方向の熱伝導率が1〜10W/m・Kであり、且つ、開気孔量が0.1cm/g以下である。このような特徴を有する本発明の断熱材用炭素繊維は、炭素繊維による熱伝導を小さくすることができる。また、このような特徴を有する本発明の断熱材用炭素繊維は、開気孔が少ないため、気体、輻射熱の通過による熱伝導を小さくすることもできる。
1. Carbon fiber for heat insulating material The carbon fiber for heat insulating material of the present invention has a thermal conductivity in the fiber axis direction of 1 to 10 W / m · K and an open pore volume of 0.1 cm 3 / g or less. The carbon fiber for a heat insulating material of the present invention having such characteristics can reduce heat conduction by the carbon fiber. Moreover, since the carbon fiber for a heat insulating material of the present invention having such characteristics has few open pores, heat conduction due to passage of gas and radiant heat can be reduced.

本発明の断熱材用炭素繊維は、ピッチ系炭素繊維(石炭系ピッチ系炭素繊維及び石油系ピッチ系炭素繊維)、ポリアクリロニトリル(PAN)系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維、セルロース系炭素繊維等のいずれもが採用し得る。これらのなかでも、本発明では、ピッチの精製の際に組織を制御することにより、熱処理による黒鉛結晶の発達度合いを制御することが可能である観点から、ピッチ系炭素繊維が好ましく、熱処理による黒鉛結晶の発達度合いが少ない等方性ピッチ系炭素繊維がより好ましい。「ピッチ系炭素繊維」とは、ピッチを原料(炭素前駆体)として製造された炭素繊維を意味する。等方性ピッチ系炭素繊維とは、ピッチが等方性である場合の炭素繊維である。「等方性」とは、光学的に等方性であって、分子、分子の集団等が無秩序に配向していることを意味する。「炭素前駆体」とは、目的とする最終炭素製品の前の段階にある一連の炭素化中間体を意味する。本発明において、炭素前駆体は、等方性ピッチであり、前記最終炭素製品は等方性ピッチ系炭素繊維であることが好ましい。   The carbon fiber for heat insulating material of the present invention includes pitch-based carbon fiber (coal-based pitch-based carbon fiber and petroleum-based pitch-based carbon fiber), polyacrylonitrile (PAN) -based carbon fiber, rayon-based carbon fiber, phenol-based carbon fiber, and cellulose. Any of the carbon-based carbon fibers can be used. Among these, in the present invention, pitch-based carbon fibers are preferable from the viewpoint that the degree of development of graphite crystals by heat treatment can be controlled by controlling the structure during pitch purification, and graphite by heat treatment is preferable. An isotropic pitch-based carbon fiber with a low degree of crystal growth is more preferable. “Pitch-based carbon fiber” means carbon fiber produced using pitch as a raw material (carbon precursor). An isotropic pitch-based carbon fiber is a carbon fiber when the pitch is isotropic. “Isotropic” is optically isotropic and means that molecules, a group of molecules, and the like are randomly oriented. By “carbon precursor” is meant a series of carbonized intermediates that are in a stage prior to the intended final carbon product. In the present invention, the carbon precursor is preferably isotropic pitch, and the final carbon product is preferably isotropic pitch-based carbon fiber.

炭素前駆体である「ピッチ」とは、木材、石炭等の乾留の際に得られる液状タール、オイルサンド等から得られるビチューメン、オイルシェール等の乾留によって得られる油分、原油の蒸留による残渣油、石油留分のクラッキングによって生成するタール等を熱処理及び重合して得られる常温で固体状の材料である。具体的には、(a)石炭系ピッチ、(b)石油系ピッチ、(c)ナフタレン等の芳香族化合物を重合した合成ピッチ等が挙げられる。ピッチは、化学的には無数の縮合多環芳香族化合物の混合物である。石炭を原料として得られる石炭系ピッチとしては、コークス炉から生じるコールタールを熱処理して得られるピッチが挙げられる。   “Pitch”, which is a carbon precursor, refers to liquid tar obtained during dry distillation of wood, coal, etc., bitumen obtained from oil sand, etc., oil obtained by dry distillation such as oil shale, residual oil obtained by distillation of crude oil, It is a solid material at room temperature obtained by heat treatment and polymerization of tar and the like produced by cracking of petroleum fractions. Specific examples include (a) coal-based pitch, (b) petroleum-based pitch, and (c) synthetic pitch obtained by polymerizing aromatic compounds such as naphthalene. Pitch is a mixture of a myriad of condensed polycyclic aromatic compounds chemically. Examples of the coal-based pitch obtained using coal as a raw material include pitch obtained by heat treatment of coal tar generated from a coke oven.

本発明において、原料として使用するピッチは、特に限定されないが、石炭系ピッチ、特に石炭系等方性ピッチであってもよい。   In the present invention, the pitch used as a raw material is not particularly limited, but may be a coal-based pitch, particularly a coal-based isotropic pitch.

ピッチ(特に等方性ピッチ)の軟化点は、特に限定されず、後述する断熱材用炭素繊維の製造方法における紡糸方法によって適宜設定することができる。   The softening point of the pitch (particularly isotropic pitch) is not particularly limited, and can be appropriately set according to the spinning method in the method for producing the carbon fiber for heat insulating material described later.

本発明の断熱材用炭素繊維の繊維軸方向の熱伝導率は、1〜10W/m・K、好ましくは3.5〜9W/m・K、より好ましくは4.2〜8W/m・Kである。断熱材用炭素繊維の繊維軸方向の熱伝導率が1W/m・K未満の材料は製造が困難である。一方、断熱材用炭素繊維の繊維軸方向の熱伝導率が10W/m・Kをこえると、炭素繊維自身の熱伝導率が高すぎて、得られる断熱材の断熱性能が乏しくなる。なお、断熱材用炭素繊維の繊維軸方向の熱伝導率は、気体置換法によって見かけ密度を測定し、示差走査熱量計を用いて比熱を測定し、光交流法を用いて熱拡散率を測定したうえで、熱伝導率=(見かけ密度)×(比熱)×(熱拡散率)によって決定する。   The thermal conductivity in the fiber axis direction of the carbon fiber for thermal insulation of the present invention is 1 to 10 W / m · K, preferably 3.5 to 9 W / m · K, more preferably 4.2 to 8 W / m · K. It is. It is difficult to manufacture a material having a thermal conductivity in the fiber axis direction of the carbon fiber for heat insulating material of less than 1 W / m · K. On the other hand, if the thermal conductivity in the fiber axis direction of the carbon fiber for thermal insulation exceeds 10 W / m · K, the thermal conductivity of the carbon fiber itself is too high, and the thermal insulation performance of the obtained thermal insulation becomes poor. In addition, the thermal conductivity in the fiber axis direction of the carbon fiber for thermal insulation is measured by the gas displacement method, the specific heat is measured using a differential scanning calorimeter, and the thermal diffusivity is measured using the optical alternating current method. In addition, the thermal conductivity is determined by (apparent density) × (specific heat) × (thermal diffusivity).

本発明の断熱材用炭素繊維の開気孔量は、0.1cm/g以下、好ましくは0.08cm/g以下、より好ましくは0.05cm/g以下である。断熱材用炭素繊維の開気孔量が0.1cm/gをこえると、気体、輻射熱の通過による熱伝導がしやすくなり、得られる断熱材の断熱性能が乏しくなる。なお、断熱材用炭素繊維の開気孔量の下限値は特に制限はなく、0cm/gが最も好ましい。また、断熱材用炭素繊維の開気孔量は、BET法により測定される全細孔容積を開気孔量として求める。なお、BET法では、炭素繊維表面に存在する細孔量のみが判断可能であるため、BET法による全細孔容積は、開気孔量に相当する。 Open pores of the carbon fiber heat insulating material of the present invention, 0.1 cm 3 / g or less, preferably 0.08 cm 3 / g, more preferably at most 0.05 cm 3 / g. When the amount of open pores of the carbon fiber for heat insulation exceeds 0.1 cm 3 / g, heat conduction due to passage of gas and radiant heat becomes easy, and the heat insulation performance of the obtained heat insulation becomes poor. In addition, there is no restriction | limiting in particular in the lower limit of the amount of open pores of the carbon fiber for heat insulating materials, and 0 cm < 3 > / g is the most preferable. Moreover, the open pore volume of the carbon fiber for a heat insulating material is obtained by using the total pore volume measured by the BET method as the open pore volume. In the BET method, only the amount of pores existing on the carbon fiber surface can be determined, and therefore the total pore volume by the BET method corresponds to the amount of open pores.

本発明の断熱材用炭素繊維の見かけ密度は、2.0g/cm未満が好ましく、1.0〜1.9g/cmがより好ましく、1.3〜1.7g/cmがさらに好ましい。断熱材用炭素繊維の見かけ密度をこの範囲とすることで、断熱材用炭素繊維の結晶性をより損なわないようにしつつ、炭素繊維中に存在する閉気孔をより大きくし、閉気孔が輻射熱をより遮り(輻射損失)、炭素繊維の径方向の断熱性能をより高めることができ、得られる断熱材の断熱性能をより向上させることができる。これにより、炭素繊維径方向に断熱させる薄いシート状断熱材を形成することも可能である。なお、断熱材用炭素繊維の見かけ密度は、気体置換法によって測定する。 The apparent density of the insulation material for the carbon fiber of the present invention is preferably less than 2.0 g / cm 3, more preferably 1.0~1.9g / cm 3, more preferably 1.3~1.7g / cm 3 . By making the apparent density of the carbon fiber for heat insulating material within this range, while keeping the crystallinity of the carbon fiber for heat insulating material more impaired, the closed pores existing in the carbon fiber are made larger, and the closed pores radiate heat. Further shielding (radiation loss), the heat insulation performance in the radial direction of the carbon fiber can be further increased, and the heat insulation performance of the obtained heat insulating material can be further improved. Thereby, it is also possible to form a thin sheet-like heat insulating material that is thermally insulated in the carbon fiber radial direction. In addition, the apparent density of the carbon fiber for heat insulating materials is measured by a gas substitution method.

本発明の断熱材用炭素繊維の閉気孔の半径は、6nm以上が好ましく、6.5〜15nmがより好ましく、7〜13nmがさらに好ましい。断熱材用炭素繊維の閉気孔の半径をこの範囲とすることで、閉気孔が輻射熱を遮り(輻射損失)、炭素繊維の径方向の断熱性能をより高めることができ、得られる断熱材の断熱性能をより向上させることができる。これにより、炭素繊維径方向に断熱させる薄いシート状断熱材を形成することも可能である。なお、断熱材用炭素繊維の閉気孔の半径は、小角X線散乱法によるギニエプロットにより見積もられる閉気孔を球と仮定した場合に算出される閉気孔半径とする。   The radius of the closed pores of the carbon fiber for heat insulating material of the present invention is preferably 6 nm or more, more preferably 6.5 to 15 nm, and even more preferably 7 to 13 nm. By making the radius of the closed pores of the carbon fiber for heat insulating material within this range, the closed pores can block the radiant heat (radiation loss), and the heat insulation performance in the radial direction of the carbon fiber can be further improved, and the heat insulation of the obtained heat insulating material The performance can be further improved. Thereby, it is also possible to form a thin sheet-like heat insulating material that is thermally insulated in the carbon fiber radial direction. In addition, the radius of the closed pores of the carbon fiber for heat insulating material is a closed pore radius calculated when the closed pores estimated by the Guinier plot by the small angle X-ray scattering method are assumed to be spheres.

本発明の断熱材用炭素繊維は、後述する断熱材用炭素繊維の製造方法においても詳述するが、700〜2400℃の熱処理物(特に等方性ピッチを炭素前駆体とした700〜2400℃の熱処理物)であることが好ましく、1100〜2400℃の熱処理物(特に等方性ピッチを炭素前駆体とした1100〜2400℃の熱処理物)であることがより好ましく、1300〜2400℃の熱処理物(特に等方性ピッチを炭素前駆体とした1300〜2400℃の熱処理物)であることがさらに好ましい。断熱材用炭素繊維の熱処理温度をこの範囲とすることで、炭素繊維の黒鉛結晶化度が過度に発達しにくく、組織が無配向のままであるため、開気孔をより少なく、閉気孔をより発達させることができ、低熱伝導率及び高断熱性の炭素繊維が得やすい。また、用途に応じてより好適な選択が可能となる。   The carbon fiber for a heat insulating material of the present invention will be described in detail in a method for producing a carbon fiber for a heat insulating material described later, but is a heat treated product of 700 to 2400 ° C. (particularly 700 to 2400 ° C. using an isotropic pitch as a carbon precursor). Heat treatment product of 1100 to 2400 ° C. (especially heat treatment product of 1100 to 2400 ° C. using isotropic pitch as a carbon precursor), more preferably heat treatment of 1300 to 2400 ° C. It is more preferable to be a product (particularly a heat treated product of 1300 to 2400 ° C. using isotropic pitch as a carbon precursor). By setting the heat treatment temperature of the carbon fiber for the heat insulating material within this range, the graphite crystallinity of the carbon fiber is hardly excessively developed and the structure remains non-oriented, so there are fewer open pores and more closed pores. It is easy to obtain carbon fibers that can be developed and have low thermal conductivity and high heat insulation. Further, a more suitable selection can be made according to the application.

本発明の断熱材用炭素繊維の繊維径は、特に限定されないが、平均で、6〜18μmが好ましく、11〜14μmがより好ましい。断熱材用炭素繊維の繊維径をこの範囲とすることにより、繊維の機械的強度を確保しながら好適な断熱性能を発揮できる。断熱材用炭素繊維の平均繊維径は、拡大鏡及び画像解析装置による観察により測定する。   Although the fiber diameter of the carbon fiber for heat insulating materials of this invention is not specifically limited, 6-18 micrometers is preferable on the average, and 11-14 micrometers is more preferable. By setting the fiber diameter of the carbon fiber for a heat insulating material within this range, a suitable heat insulating performance can be exhibited while ensuring the mechanical strength of the fiber. The average fiber diameter of the carbon fiber for heat insulation is measured by observation with a magnifying glass and an image analyzer.

本発明の断熱材用炭素繊維の繊維長は、特に限定されないが、好ましい繊維長はフェルト断熱材と成形断熱材とで異なる。すなわち、フェルト断熱材では、例えばニードルパンチにより繊維を交絡させる必要があるので、数cm〜数十cmの長さで、且つ一定の幅のある短繊維の集合体であるマット繊維を用いることが好ましい。   The fiber length of the carbon fiber for heat insulating material of the present invention is not particularly limited, but the preferable fiber length is different between the felt heat insulating material and the molded heat insulating material. That is, in the felt heat insulating material, since it is necessary to entangle the fibers by, for example, a needle punch, it is necessary to use mat fibers that are aggregates of short fibers having a length of several centimeters to several tens of centimeters. preferable.

成形断熱材では、その製作にフェルトを用いる場合とミルド繊維やチョップ繊維を用いる場合とで異なる。ここで、フェルトを用いた成形断熱材をフェルト系成形断熱材といい、ミルド繊維やチョップ繊維を用いた成形断熱材をショートファイバ系成形断熱材という。   In a molded heat insulating material, the case where felt is used for the production differs from the case where milled fiber or chop fiber is used. Here, a molded heat insulating material using felt is referred to as a felt-based molded heat insulating material, and a molded heat insulating material using milled fiber or chopped fiber is referred to as a short fiber-based molded heat insulating material.

フェルト系成形断熱材の場合は、上記マット繊維を用いることが好ましい。   In the case of a felt-based molded heat insulating material, it is preferable to use the mat fiber.

ショートファイバ系成形断熱材では、ミルド繊維では、平均繊維長さは0.04〜3mm程度が好ましく、チョップ繊維では、平均繊維長さは3〜10mm程度が好ましい。なお、断熱材用炭素繊維の平均繊維長さは、拡大鏡及び画像解析装置による観察により測定する。   In the short fiber type heat insulating material, the average fiber length is preferably about 0.04 to 3 mm for milled fibers, and the average fiber length is preferably about 3 to 10 mm for chopped fibers. In addition, the average fiber length of the carbon fiber for heat insulating materials is measured by observation with a magnifier and an image analyzer.

本発明のショートファイバ系成形断熱材用炭素繊維のアスペクト比(繊維長/繊維径)は、特に限定されないが、ミルド繊維を用いる場合は平均で、2〜500が好ましい。チョップ繊維を用いる場合は平均で、170〜1670が好ましい。ショートファイバ系成形断熱材用炭素繊維のアスペクト比をこの範囲とすることにより、好適な断熱材とすることができる。   The aspect ratio (fiber length / fiber diameter) of the carbon fiber for short fiber-based molded heat insulating material of the present invention is not particularly limited, but is preferably 2 to 500 on average when milled fiber is used. When chopped fibers are used, 170 to 1670 is preferable on average. By setting the aspect ratio of the carbon fiber for short fiber-based molded heat insulating material within this range, a suitable heat insulating material can be obtained.

2.断熱材用炭素繊維の製造方法
本発明の断熱材用炭素繊維は、
本発明の断熱材用炭素繊維の前駆体繊維を、700〜2400℃で熱処理する工程
を備える製造方法により、得ることができる。
2. Manufacturing method of carbon fiber for heat insulating material Carbon fiber for heat insulating material of the present invention is
It can obtain by the manufacturing method provided with the process of heat-processing the precursor fiber of the carbon fiber for heat insulating materials of this invention at 700-2400 degreeC.

(1)断熱材用炭素繊維の前駆体繊維
本発明の断熱材用炭素繊維の製造方法では、原料として断熱材用炭素繊維の前駆体を使用する(以下、断熱材用炭素繊維の前駆体を、単に「前駆体繊維」ともいう)。
(1) Carbon fiber precursor fiber for heat insulating material In the method for producing the carbon fiber for heat insulating material of the present invention, a carbon fiber precursor for heat insulating material is used as a raw material (hereinafter referred to as carbon fiber precursor for heat insulating material). Simply referred to as “precursor fibers”).

前駆体繊維は、ピッチ(特に等方性ピッチ)を原料として得られる炭素繊維であることが好ましい。つまり、前駆体繊維は、前記断熱材用炭素繊維と同様、ピッチ系炭素繊維(石炭系ピッチ系炭素繊維及び石油系ピッチ系炭素繊維)、ポリアクリロニトリル(PAN)系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維、セルロース系炭素繊維等のいずれもが採用し得るが、ピッチ系炭素繊維(特に等方性ピッチ系炭素繊維)であることが好ましい。また、前駆体繊維のサイズ(繊維径、繊維長及びアスペクト比)は、特に限定されないが、後述の熱処理によって繊維のサイズはほとんど変わらないため、前駆体繊維のサイズは、本発明の断熱材用炭素繊維と同等のサイズとすることが好ましい。   The precursor fiber is preferably a carbon fiber obtained using pitch (particularly isotropic pitch) as a raw material. That is, the precursor fiber is the same as the carbon fiber for heat insulating material, pitch-based carbon fiber (coal-based pitch-based carbon fiber and petroleum-based pitch-based carbon fiber), polyacrylonitrile (PAN) -based carbon fiber, rayon-based carbon fiber, Any of phenol-based carbon fibers, cellulose-based carbon fibers, and the like can be employed, but pitch-based carbon fibers (particularly isotropic pitch-based carbon fibers) are preferable. Further, the size of the precursor fiber (fiber diameter, fiber length, and aspect ratio) is not particularly limited, but the size of the precursor fiber is for the heat insulating material of the present invention because the size of the fiber is hardly changed by the heat treatment described later. It is preferable to make it the size equivalent to carbon fiber.

ピッチ(特に等方性ピッチ)は、上述したピッチ及び等方性ピッチの説明と同様である。好ましいピッチ及び等方性ピッチもまた、上述したピッチ及び等方性ピッチの説明と同様であり、石炭系等方性ピッチが好ましい。ピッチ及び等方性ピッチの軟化点は、特に限定されず、紡糸方法によって適宜設定することができる。   The pitch (particularly the isotropic pitch) is the same as that described above for the pitch and the isotropic pitch. Preferred pitches and isotropic pitches are also the same as described above for pitches and isotropic pitches, and coal-based isotropic pitches are preferred. The softening points of the pitch and the isotropic pitch are not particularly limited, and can be appropriately set depending on the spinning method.

このような前駆体繊維としては、合成してもよいし、市販品を使用することもできる。市販品を使用する場合、その具体例としては、
・大阪ガスケミカル(株)製ドナカーボ・チョップ(品番:S−231、S−232、S−234、S−331、S−332等)
・大阪ガスケミカル(株)製ドナカーボ・ミルド(品番:S−2404N、S−249、S−241、S−242、S−243、S−244、S−246、S−247、S−343、S−344、SG−244A、SG−249、SG−241等)
・大阪ガスケミカル(株)製炭素繊維マット(品番:S−210等)
等が挙げられる。
As such precursor fiber, you may synthesize | combine and can also use a commercial item. When using a commercial product, as a specific example,
-Dona Carbo Chop manufactured by Osaka Gas Chemical Co., Ltd. (Part No .: S-231, S-232, S-234, S-331, S-332, etc.)
-Osaka Gas Chemical Co., Ltd. DonaCarbo Mildo (part number: S-2404N, S-249, S-241, S-242, S-243, S-244, S-246, S-247, S-343, S-344, SG-244A, SG-249, SG-241, etc.)
・ Carbon fiber mat manufactured by Osaka Gas Chemical Co., Ltd. (Part No .: S-210 etc.)
Etc.

本発明において、前駆体繊維を合成する場合、前駆体繊維の製造方法は、特に限定されないが、例えば、ピッチ系前駆体繊維を得る場合には、以下の各工程:
(i)炭素前駆体としてピッチ(特に等方性ピッチ)を紡糸する工程1、
(ii)前記工程1で得られた紡糸(ピッチ繊維)を不融化処理する工程2、及び
(iii)前記工程2で得られた不融化繊維(不融化ピッチ繊維)を炭素化処理する工程3
を含む製造方法で前駆体繊維を製造することが好ましい。以下、各工程について説明する。
In the present invention, when the precursor fiber is synthesized, the method for producing the precursor fiber is not particularly limited. For example, when obtaining a pitch-based precursor fiber, the following steps:
(I) Step 1 of spinning pitch (particularly isotropic pitch) as a carbon precursor,
(Ii) Step 2 for infusibilizing the spinning (pitch fiber) obtained in Step 1 and (iii) Step 3 for carbonizing the infusible fiber (infusible pitch fiber) obtained in Step 2
It is preferable to produce the precursor fiber by a production method including: Hereinafter, each step will be described.

工程1:紡糸
工程1では、炭素前駆体として、例えば、ピッチ(特に等方性ピッチ)を紡糸する。この工程1により、紡糸(ピッチ繊維)が得られる。
Step 1: In the spinning step 1, for example, pitch (particularly isotropic pitch) is spun as the carbon precursor. By this step 1, spinning (pitch fiber) is obtained.

紡糸方法は、特に限定されず、例えば溶融紡糸が挙げられる。具体的な溶融紡糸方法としては、渦流法紡糸、スパンボンド紡糸、遠心法紡糸等が挙げられる。また、溶融紡糸する際の温度は、ピッチ(特に等方性ピッチ)が溶融する限り、特に限定されない。また、ノズルの形状、紡糸速度等のその他の紡糸条件についても、特に限定されず、使用用途等に応じて適宜設定することができる。なお、渦流法紡糸とは、ノズルから吐出される溶融ピッチ糸に熱ガスのジェット流を吹き当て、効率よく延伸する方法である。この紡糸方法では、不規則な曲状の紡糸(ピッチ繊維)が得られる。   The spinning method is not particularly limited, and examples thereof include melt spinning. Specific melt spinning methods include vortex spinning, spunbond spinning, and centrifugal spinning. Further, the temperature at the time of melt spinning is not particularly limited as long as the pitch (particularly isotropic pitch) is melted. Also, other spinning conditions such as the shape of the nozzle and the spinning speed are not particularly limited, and can be set as appropriate according to the intended use. Note that the vortex spinning is a method in which a hot gas jet stream is blown onto a molten pitch yarn discharged from a nozzle to efficiently draw. In this spinning method, irregularly curved spinning (pitch fibers) can be obtained.

工程1において、溶融紡糸によりピッチ繊維を得る場合、前記ピッチ繊維は連続繊維ではなく、例えば、数cm〜数十cmの長さで、且つ一定の幅のある短繊維が得られることが多い。   In Step 1, when pitch fibers are obtained by melt spinning, the pitch fibers are not continuous fibers, and for example, short fibers having a length of several cm to several tens of cm and a certain width are often obtained.

工程2:不融化処理
工程2では、紡糸(ピッチ繊維)を不融化処理する。この工程2により、不融化繊維が得られる。不融化処理とは、一般的には、炭素前駆体に繊維形状を与えた後、後述する炭素化(炭化)で繊維形状を維持できるように、酸化的な脱水素環化、縮合等により熱硬化性とする処理をいう。本工程では、前記不融化処理をすることにより、ピッチ繊維に酸素を導入して酸素との架橋結合によって安定化させることが好ましい。
Process 2: Infusibilization process In process 2, spinning (pitch fiber) is infusibilized. By this step 2, an infusible fiber is obtained. The infusibilization treatment is generally performed by oxidative dehydrocyclization, condensation, or the like so that the fiber shape can be maintained by carbonization (carbonization) described later after giving the fiber shape to the carbon precursor. This is a treatment for making it curable. In this step, it is preferable that the infusibilization treatment is performed to introduce oxygen into the pitch fiber and stabilize it by cross-linking with oxygen.

不融化処理の方法としては、特に限定されない。例えば、ピッチ繊維に対して熱風を当てること等が挙げられる。   The method for infusibilization is not particularly limited. For example, hot air is applied to the pitch fibers.

不融化処理の際の雰囲気は、酸素含有雰囲気であることが好ましい。酸素の導入としては、空気を用いる他、酸化窒素、酸化硫黄等のガス状酸化剤を用いてもよい。   The atmosphere during the infusibilization treatment is preferably an oxygen-containing atmosphere. As the introduction of oxygen, in addition to air, a gaseous oxidant such as nitrogen oxide or sulfur oxide may be used.

不融化処理の際の温度は、特に限定されない。例えば、紡糸温度前後まで加熱することができる。   The temperature during the infusibilization process is not particularly limited. For example, it can be heated to around the spinning temperature.

その他の不融化処理の条件(例えば、昇温速度、不融化処理の保持時間等)については特に限定されず、使用用途等に応じて適宜設定することができる。   Other conditions for the infusibilization treatment (for example, the rate of temperature rise, the retention time for the infusibilization treatment, etc.) are not particularly limited, and can be set as appropriate according to the intended use.

工程3:炭素化処理
工程3では、不融化繊維を炭素化処理する。この工程3により前駆体繊維が得られる。炭素化処理(炭化処理)とは、炭素以外の元素を放出して炭素含有率の高い固体を生成させる処理をいう。
Step 3: In the carbonization treatment step 3, the infusible fiber is carbonized. By this step 3, a precursor fiber is obtained. Carbonization treatment (carbonization treatment) refers to a treatment that releases elements other than carbon to produce a solid with a high carbon content.

炭素化処理の際の温度は、特に限定されない。例えば、700〜1000℃程度で熱処理することが好ましい。   The temperature during the carbonization treatment is not particularly limited. For example, heat treatment is preferably performed at about 700 to 1000 ° C.

炭素化処理の際の雰囲気は、不活性ガス雰囲気(非酸化性ガス雰囲気)が好ましく、窒素ガス雰囲気がより好ましい。   The atmosphere during the carbonization treatment is preferably an inert gas atmosphere (non-oxidizing gas atmosphere), and more preferably a nitrogen gas atmosphere.

その他の炭素化処理の条件(例えば、昇温速度、炭素化処理の保持時間等)については特に限定されず、使用用途等に応じて適宜設定することができる。   Other carbonization treatment conditions (for example, the rate of temperature rise, the retention time of the carbonization treatment, etc.) are not particularly limited, and can be appropriately set according to the intended use.

その他の工程
炭素化処理を行った後、前記前駆体繊維が得られる。一般的には、前記前駆体繊維の形態は、マット状であることが多い。前駆体繊維が得られた後、必要に応じて、本発明の効果を損なわない範囲で、前記前駆体繊維に対して、切断処理、粉砕処理等を行ってミルド繊維やチョップ繊維としてもよい。前記切断処理及び粉砕処理は、前駆体繊維の形状を適宜変更することができる。
After performing the other process carbonization treatment, the precursor fiber is obtained. In general, the precursor fiber is often in the form of a mat. After the precursor fiber is obtained, if necessary, the precursor fiber may be subjected to a cutting process, a pulverizing process, or the like within a range not impairing the effects of the present invention to obtain a milled fiber or a chop fiber. In the cutting process and the pulverizing process, the shape of the precursor fiber can be appropriately changed.

粉砕方法としては、特に限定されない。例えば、ジェットミル、ハンマーミル、ピンミル等を用いて、前駆体繊維を粉砕することができる。   The pulverization method is not particularly limited. For example, the precursor fiber can be pulverized using a jet mill, a hammer mill, a pin mill, or the like.

切断方法としては、特に限定されない。例えば、ロービングカッター、ギロチン式カッター、クロスカッター、低速せん断型スクリーン式粉砕機等を用いて、前駆体繊維を切断することができる。   The cutting method is not particularly limited. For example, the precursor fibers can be cut using a roving cutter, a guillotine cutter, a cross cutter, a low-speed shear type screen grinder, or the like.

(2)前駆体繊維に対する熱処理工程
前記の断熱材用炭素繊維の製造方法では、前駆体繊維を700〜2400℃で熱処理することにより、本発明の断熱材用炭素繊維を好適に得られる。前駆体繊維の熱処理温度をこの範囲とすることで、炭素繊維の黒鉛結晶化度が過度に発達しにくく、組織が無配向のままであるため、開気孔をより少なく、閉気孔をより発達させることができ、低熱伝導率及び高断熱性の炭素繊維が得やすい。また、用途に応じてより好適な選択が可能となる。なお、前駆体繊維の熱処理温度は、上記観点から、1100〜2400℃が好ましく、1300〜2400℃がより好ましい。なお、前記工程3において、700〜1000℃の熱処理を施した場合は、この熱処理工程を施さずに、工程3で得た炭素繊維を、700〜1000℃の熱処理物である本発明の断熱材用炭素繊維としてもよい。
(2) Heat treatment process with respect to precursor fiber In the manufacturing method of the carbon fiber for heat insulating materials, the carbon fiber for heat insulating material of the present invention is suitably obtained by heat-treating the precursor fiber at 700 to 2400 ° C. By setting the heat treatment temperature of the precursor fiber within this range, the graphite crystallinity of the carbon fiber is not easily developed excessively, and the structure remains non-oriented, resulting in fewer open pores and more closed pores. Therefore, it is easy to obtain carbon fibers having low thermal conductivity and high heat insulation. Further, a more suitable selection can be made according to the application. In addition, 1100-2400 degreeC is preferable from the said viewpoint, and the heat processing temperature of a precursor fiber has more preferable 1300-2400 degreeC. In addition, in the said process 3, when heat processing of 700-1000 degreeC was performed, the heat insulating material of this invention which is the heat processing thing of 700-1000 degreeC, without performing this heat processing process, the carbon fiber obtained at process 3 is used. Carbon fiber may be used.

熱処理工程における加熱方法は、特に限定されない。例えば、公知の各種熱処理炉を用いて、それぞれの使用方法に準じて、加熱処理を行うことができる。   The heating method in the heat treatment step is not particularly limited. For example, it can heat-process according to each usage method using well-known various heat processing furnaces.

熱処理工程における前駆体繊維の雰囲気は、非酸化性ガス雰囲気が好ましく、窒素ガス、アルゴンガス等の不活性ガス雰囲気がより好ましい。   The atmosphere of the precursor fiber in the heat treatment step is preferably a non-oxidizing gas atmosphere, and more preferably an inert gas atmosphere such as nitrogen gas or argon gas.

その他の熱処理条件(例えば、圧力、昇温速度、熱処理の保持時間等)については特に限定されず、使用用途等に応じて適宜設定することができる。   Other heat treatment conditions (for example, pressure, temperature increase rate, heat treatment holding time, etc.) are not particularly limited, and can be set as appropriate according to the intended use.

3.断熱材
本発明の断熱材は、前記した本発明の断熱材用炭素繊維を用いて得られる。
3. Heat insulating material The heat insulating material of the present invention is obtained using the carbon fiber for heat insulating material of the present invention described above.

本発明の好ましい一態様では、本発明の断熱材用炭素繊維が耐熱性樹脂又は炭素結合物によって結合されていることが好ましい。   In a preferred embodiment of the present invention, it is preferable that the carbon fiber for a heat insulating material of the present invention is bonded by a heat resistant resin or a carbon bond.

この場合、本発明の断熱材は、本発明の断熱材用炭素繊維を使用した炭素繊維フェルトと炭素マトリックスを主たる組成とすることが好ましい。   In this case, it is preferable that the heat insulating material of the present invention is mainly composed of a carbon fiber felt using the carbon fiber for heat insulating material of the present invention and a carbon matrix.

具体的には、フェルト系成形断熱材とショートファイバ系成形断熱材とがある。フェルト系成形断熱材の場合、炭素繊維フェルトは、本発明の断熱材用炭素繊維又は熱処理によって本発明の断熱材用炭素繊維となる繊維(前記前駆体繊維)を、例えばニードルパンチにより繊維を交絡させることによって得られる。炭素繊維フェルトの厚みは、使用用途等によっても好ましい厚みが異なり特に限定されないが、3〜15mmが好ましい。   Specifically, there are felt-based molded heat insulating materials and short fiber-based molded heat insulating materials. In the case of a felt-based molded heat insulating material, the carbon fiber felt entangles the carbon fiber for the heat insulating material of the present invention or the fiber (the precursor fiber) that becomes the carbon fiber for the heat insulating material of the present invention by heat treatment, for example, the needle punch. To obtain. The thickness of the carbon fiber felt is not particularly limited and is preferably 3 to 15 mm, although the preferred thickness varies depending on the intended use.

この場合、まず炭素繊維フェルトに、熱処理によって炭素マトリックスになり得る樹脂成分を添加し、いわゆるプリプレグを作製することが好ましい。プリプレグの作製にあっては、樹脂成分を添加した炭素繊維フェルトを必要に応じて乾燥させてもよい。   In this case, it is preferable to first add a resin component capable of forming a carbon matrix by heat treatment to the carbon fiber felt to produce a so-called prepreg. In producing the prepreg, the carbon fiber felt to which the resin component is added may be dried as necessary.

樹脂成分としては、フェノール樹脂、フラン樹脂、ポリイミド樹脂、エポキシ樹脂等の合成樹脂を使用することができる。これら樹脂は単体で使用してもよく、2種以上の樹脂を組合せて使用してもよい。また、合成樹脂をメチルアルコール、エチルアルコール等の有機溶剤で適宜希釈してもよい。   As the resin component, a synthetic resin such as a phenol resin, a furan resin, a polyimide resin, or an epoxy resin can be used. These resins may be used alone or in combination of two or more resins. The synthetic resin may be appropriately diluted with an organic solvent such as methyl alcohol or ethyl alcohol.

この場合、本発明の断熱材用炭素繊維と、樹脂成分との混合比率は特に制限されないが、本発明の断熱材用炭素繊維100質量部に対し、得られる断熱材の成形性と断熱性能の観点から、樹脂成分を5〜120質量部とすることが好ましい。   In this case, the mixing ratio of the carbon fiber for heat insulating material of the present invention and the resin component is not particularly limited, but the moldability and heat insulating performance of the obtained heat insulating material with respect to 100 parts by mass of the carbon fiber for heat insulating material of the present invention. From the viewpoint, the resin component is preferably 5 to 120 parts by mass.

ショートファイバ系成形断熱材の場合、一つの形態としてミルド繊維及び/又はチョップ繊維を乾式法または湿式法により、二次元にランダムに繊維が配向したシートを作製する方法がある。乾式法の場合、例えば、エアーレイド法により、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン等の熱融着性繊維を適宜上記ミルド繊維及び/又はチョップ繊維混合しながら、乾式シートを作製する方法が挙げられる。なお、熱融着性繊維の長さは1〜10mm、混合量は炭素繊維100質量部に対して1〜30質量部であってもよい。   In the case of the short fiber type heat insulating material, as one form, there is a method in which milled fibers and / or chop fibers are produced by a dry method or a wet method to produce a sheet in which fibers are randomly oriented in two dimensions. In the case of the dry method, for example, a method of preparing a dry sheet by air raid method while mixing heat-fusible fibers such as polyethylene, polyethylene terephthalate, polypropylene, etc. with the above milled fibers and / or chop fibers as appropriate. The length of the heat-fusible fiber may be 1 to 10 mm, and the mixing amount may be 1 to 30 parts by mass with respect to 100 parts by mass of the carbon fiber.

湿式法の場合、例えば、水、アセトン、アルコール類等の溶媒に分散させた上記ミルド繊維及び/又はチョップ繊維を底部にスクリーンを有する型枠に供給し、抄紙し、乾燥させて湿式シートを作製する方法が挙げられる。このとき、溶媒中にフェノール樹脂、フラン樹脂等の樹脂成分を添加することにより、ミルド繊維及び/又はチョップ繊維がより結着されたシートとすることができる。   In the case of a wet method, for example, the above milled fiber and / or chop fiber dispersed in a solvent such as water, acetone, alcohols, etc. are supplied to a mold having a screen at the bottom, paper-made, and dried to produce a wet sheet. The method of doing. At this time, it can be set as the sheet | seat with which the milled fiber and / or the chop fiber were more bound by adding resin components, such as a phenol resin and a furan resin, in a solvent.

シートは、例えば、目付が10〜500g/m程度のものが好ましい。シート又は重ね合わせたシートに上記炭素繊維フェルトの場合と同様な方法で、熱処理によって炭素マトリックスになり得る樹脂成分を添加し、いわゆるプリプレグを作製することが好ましい。 The sheet preferably has a basis weight of about 10 to 500 g / m 2 , for example. A so-called prepreg is preferably prepared by adding a resin component that can be converted into a carbon matrix by heat treatment in the same manner as in the case of the carbon fiber felt described above.

本発明の断熱材用炭素繊維と樹脂成分とを混合する場合、必要に応じて、各種添加剤も混合してもよい。添加剤としては、潤滑剤、補強材、フィラー、金属粉末等が挙げられる。   When mixing the carbon fiber for heat insulating materials of this invention and a resin component, you may mix various additives as needed. Examples of the additive include a lubricant, a reinforcing material, a filler, and a metal powder.

潤滑剤としては、人造黒鉛、天然黒鉛、二硫化モリブデン等が挙げられる。補強材としては、ガラス繊維、アラミド繊維等が挙げられる。フィラーとしては、タルク、ガラスビーズ等が挙げられる。金属粉末としては、銅粉、黄銅粉、青銅粉等が挙げられる。これらの添加剤の含有量は特に制限されず、本発明の効果を損なわない範囲とすることができる。   Examples of the lubricant include artificial graphite, natural graphite, and molybdenum disulfide. Examples of the reinforcing material include glass fiber and aramid fiber. Examples of the filler include talc and glass beads. Examples of the metal powder include copper powder, brass powder and bronze powder. The content of these additives is not particularly limited, and can be within a range that does not impair the effects of the present invention.

このようにして得られる断熱材は、必要に応じて、不活性ガス雰囲気で1000〜2400℃程度の温度で熱処理を施し、樹脂成分を炭素化させて炭素結合物としてもよい。   The heat insulating material thus obtained may be subjected to a heat treatment at a temperature of about 1000 to 2400 ° C. in an inert gas atmosphere as necessary, and the resin component may be carbonized to form a carbon bond.

一方、本発明の他の好ましい態様としては、フェルト断熱材があり、前記炭素繊維フェルトを、断熱材用炭素繊維からなる不織布として、そのまま断熱材として使用することも可能である。   On the other hand, as another preferred embodiment of the present invention, there is a felt heat insulating material, and the carbon fiber felt can be used as a heat insulating material as it is as a nonwoven fabric made of carbon fiber for heat insulating material.

積層型の平板形状の断熱材を得る場合は、上記プリプレグを重ねることによって作製することができる。平板形状の断熱材は、プリプレグを最終製品の厚みに応じて必要枚数重ねた後、加熱しながらプレス成形して樹脂成分を硬化させることが好ましい。加熱温度は、樹脂成分が硬化するのに必要な温度とすることができる。   When obtaining a laminated flat plate-shaped heat insulating material, it can be produced by stacking the prepregs. It is preferable that the flat plate-shaped heat insulating material is cured by press molding while heating, after the necessary number of prepregs are stacked according to the thickness of the final product. The heating temperature can be a temperature necessary for the resin component to cure.

また、平板形状だけでなくプリプレグを円筒型のマンドレルに螺旋状に巻く工程を取り入れることにより、円筒形状の断熱材を得ることもできる。   Moreover, not only a flat plate shape but also a cylindrical heat insulating material can be obtained by incorporating a step of winding a prepreg spirally around a cylindrical mandrel.

一方、同様の手法を採用することにより、シート状、試験管形状、巾着形状、バット形状、るつぼ形状、容器形状等の形状に成形してもよい。   On the other hand, by adopting the same method, it may be formed into a sheet shape, a test tube shape, a drawstring shape, a bat shape, a crucible shape, a container shape or the like.

本発明の断熱材をシート状に成形する場合、略円筒形状の金属、ヒータ等の側面に巻き付けることによって外部の材料を断熱することもできる。また、ガスクロマトグラフィー等の注入口の周辺に巻き付けてもよいし、オーブン庫内の所定箇所に設置してもよい。   When the heat insulating material of the present invention is formed into a sheet shape, an external material can be insulated by wrapping around a side surface of a substantially cylindrical metal, a heater or the like. Moreover, you may wind around the inlets, such as a gas chromatography, and you may install in the predetermined location in oven oven.

本発明の断熱材を試験管形状に成形する場合、試験管、ビーカー等の実験器具、実験装置等の外部の形状にあわせて成形し、その外部に設置することで、外部を内部の高温材料から断熱することができる。   When the heat insulating material of the present invention is molded into a test tube shape, it is molded according to the external shape of a test tube, a beaker or other laboratory instrument, an experimental device, etc. Can be insulated from.

本発明の断熱材を巾着形状に成形する場合、外部を内部に投入した高温材料から断熱することができる。   When the heat insulating material of the present invention is formed into a drawstring shape, it is possible to insulate from the high temperature material with the outside inserted inside.

本発明の断熱材をバット形状に成形する場合、当該バット形状の断熱材の中に高温加熱焼成体、熱処理後の高温容器等を投入し、外部を当該高温加熱焼成体、熱処理後の高温容器等から断熱することができる。   When the heat insulating material of the present invention is formed into a bat shape, a high-temperature heat-fired body, a high-temperature container after heat treatment, and the like are put into the heat-resistant material of the bat shape, and the outside is the high-temperature heat-fired body, high-temperature container after heat treatment It can be insulated from etc.

本発明の断熱材をるつぼ形状に成形する場合、るつぼの外部に当該るつぼ形状の断熱材を設置し、外部をるつぼから断熱することができる。   When shape | molding the heat insulating material of this invention in a crucible shape, the said crucible-shaped heat insulating material can be installed in the exterior of a crucible, and the exterior can be thermally insulated from a crucible.

本発明の断熱材を容器形状に成形する場合、内部に高温材料を投入し、外部を内部の高温材料から断熱することができる。   When the heat insulating material of the present invention is molded into a container shape, a high temperature material can be introduced into the inside and the outside can be insulated from the high temperature material inside.

以下に実施例を示して本発明を具体的に説明する。但し、本発明は実施例の態様に限定されない。   The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the embodiments.

製造例1
以下のようにして、実施例1の等方性ピッチ系炭素繊維(マット繊維)を得た。
Production Example 1
The isotropic pitch-based carbon fiber (mat fiber) of Example 1 was obtained as follows.

まず、石炭系の等方性ピッチ(炭素前駆体)を出発原料とし、渦流法によって前記等方性ピッチに対して紡糸(紡糸処理)を行った。次いで、前記処理で得られたピッチ繊維に対して、空気(大気)雰囲気下で不融化処理を行った。次に、前記処理で得られた不融化繊維(不融化ピッチ繊維)に対して、不活性ガス雰囲気下で700〜1000℃の所定温度で熱処理を行い、炭素化処理を行った。なお、前記紡糸処理、不融化処理、及び炭素化処理は、連続的に行った。以上により、製造例1の等方性ピッチ系炭素繊維マットが得られた。この手法は、強化プラスチックス(1998年)Vol. 34, No. 3, p.89-93でも示されている。   First, coal-based isotropic pitch (carbon precursor) was used as a starting material, and the isotropic pitch was spun (spun) by the vortex method. Next, the pitch fiber obtained by the above-described treatment was subjected to an infusibilization treatment in an air (atmosphere) atmosphere. Next, the infusible fiber (infusible pitch fiber) obtained by the above-described treatment was subjected to a heat treatment at a predetermined temperature of 700 to 1000 ° C. in an inert gas atmosphere to perform a carbonization treatment. The spinning treatment, infusibilization treatment, and carbonization treatment were performed continuously. As a result, the isotropic pitch-based carbon fiber mat of Production Example 1 was obtained. This technique is also shown in Reinforced Plastics (1998) Vol. 34, No. 3, p.89-93.

実施例1:800℃
製造例1において、前記不活性ガス雰囲気下での熱処理を800℃未満で行い、等方性ピッチ系炭素繊維マットを得た。当該炭素繊維マットを抵抗炉内に投入し、アルゴンガス雰囲気下に、800℃まで昇温し、最高温度での保持時間を2時間に設定し、実施例1の炭素繊維を得た。
Example 1: 800 ° C
In Production Example 1, the heat treatment under the inert gas atmosphere was performed at less than 800 ° C. to obtain an isotropic pitch-based carbon fiber mat. The carbon fiber mat was put into a resistance furnace, heated to 800 ° C. in an argon gas atmosphere, and the holding time at the maximum temperature was set to 2 hours, whereby the carbon fiber of Example 1 was obtained.

実施例2:1000℃
製造例1において、前記不活性ガス雰囲気下での熱処理を1000℃未満で行い、等方性ピッチ系炭素繊維マットを得た。当該炭素繊維マットを抵抗炉内に投入し、アルゴンガス雰囲気下に、1000℃まで昇温し、最高温度での保持時間を2時間に設定し、実施例2の炭素繊維を得た。
Example 2: 1000 ° C
In Production Example 1, the heat treatment under the inert gas atmosphere was performed at less than 1000 ° C. to obtain an isotropic pitch-based carbon fiber mat. The carbon fiber mat was put into a resistance furnace, heated to 1000 ° C. in an argon gas atmosphere, and the holding time at the maximum temperature was set to 2 hours, whereby the carbon fiber of Example 2 was obtained.

実施例3:1200℃
実施例2で得た等方性ピッチ系炭素繊維マットを抵抗炉内に投入し、アルゴンガス雰囲気下に、1200℃まで昇温し、最高温度での保持時間を2時間に設定し、実施例3の炭素繊維を得た。
Example 3: 1200 ° C
The isotropic pitch-based carbon fiber mat obtained in Example 2 was put into a resistance furnace, heated to 1200 ° C. in an argon gas atmosphere, and the holding time at the maximum temperature was set to 2 hours. 3 carbon fibers were obtained.

実施例4:1400℃
実施例2で得た等方性ピッチ系炭素繊維マットを抵抗炉内に投入し、アルゴンガス雰囲気下に、1400℃まで昇温し、最高温度での保持時間を2時間に設定し、実施例4の炭素繊維を得た。
Example 4: 1400 ° C
The isotropic pitch-based carbon fiber mat obtained in Example 2 was put into a resistance furnace, heated to 1400 ° C. in an argon gas atmosphere, and the holding time at the maximum temperature was set to 2 hours. 4 carbon fibers were obtained.

実施例5:2000℃
実施例2で得た等方性ピッチ系炭素繊維マットを抵抗炉内に投入し、アルゴンガス雰囲気下に、2000℃まで昇温し、最高温度での保持時間を2時間に設定し、実施例5の炭素繊維を得た。
Example 5: 2000 ° C
The isotropic pitch-based carbon fiber mat obtained in Example 2 was put into a resistance furnace, heated to 2000 ° C. under an argon gas atmosphere, and the holding time at the maximum temperature was set to 2 hours. 5 carbon fibers were obtained.

実施例6:2400℃
実施例2で得た等方性ピッチ系炭素繊維マットを抵抗炉内に投入し、アルゴンガス雰囲気下に、2400℃まで昇温し、最高温度での保持時間を2時間に設定し、実施例6の炭素繊維を得た。
Example 6: 2400 ° C
The isotropic pitch-based carbon fiber mat obtained in Example 2 was put in a resistance furnace, heated to 2400 ° C. in an argon gas atmosphere, and the holding time at the maximum temperature was set to 2 hours. 6 carbon fibers were obtained.

平均繊維径
実施例1〜6で得た炭素繊維について、(株)Hirox製の拡大鏡及び画像解析装置を用いて、1000倍に拡大して行った。このとき、各ピッチ系炭素繊維をそれぞれ任意に10点選び出し、上記10点の繊維径を測定した。その結果、実施例1の炭素繊維の繊維径は平均で約14μmであり、実施例2〜6の炭素繊維の繊維径は平均で約13μmであった。
Average fiber diameter The carbon fibers obtained in Examples 1 to 6 were magnified 1000 times using a magnifying glass and an image analyzer manufactured by Hirox. At this time, 10 points of each pitch-based carbon fiber were arbitrarily selected, and the fiber diameters of the 10 points were measured. As a result, the fiber diameter of the carbon fibers of Example 1 was about 14 μm on average, and the fiber diameter of the carbon fibers of Examples 2 to 6 was about 13 μm on average.

見かけ密度
実施例1〜6の各炭素繊維に対して、見かけ密度測定を行った。具体的には、気体置換法によって上記各炭素繊維の見かけ密度を測定した。測定装置は、マイクロメリティックス社製の乾式自動密度計アキュピック1330−03を使用した。測定に使用したガスはヘリウムガスとし、温度は25℃であった。
Apparent density Apparent density was measured for each carbon fiber of Examples 1-6. Specifically, the apparent density of each carbon fiber was measured by a gas substitution method. As a measuring apparatus, a dry automatic densimeter Accupic 1330-03 manufactured by Micromeritics was used. The gas used for the measurement was helium gas, and the temperature was 25 ° C.

見かけ密度は、試料の質量を、試料の外形容積から開気孔(細孔)を除いた容積で割った値である。この場合、開気孔(細孔)は、ヘリウムガスが浸透する気孔(細孔)と考えられる。見かけ密度の大小が、閉気孔の大小を示していると評価できる。具体的には、繊維径すなわち体積に変化がないので、見かけ密度が小さいほど、閉気孔が大きい傾向にあると考えられる。この結果は、以下の炭素繊維の小角X線散乱法によるギニエプロットから見積もった閉気孔の大きさの結果とも整合している。   The apparent density is a value obtained by dividing the mass of the sample by the volume obtained by removing the open pores (pores) from the external volume of the sample. In this case, the open pores (pores) are considered to be pores (pores) through which helium gas penetrates. It can be evaluated that the apparent density indicates the size of closed pores. Specifically, since there is no change in fiber diameter, that is, volume, it is considered that the smaller the apparent density, the larger the closed pores. This result is consistent with the result of the closed pore size estimated from the following Guinier plot of carbon fiber by the small angle X-ray scattering method.

結果を表1に示す。   The results are shown in Table 1.

Figure 2016108688
Figure 2016108688

熱伝導率
実施例1〜3及び5〜6の炭素繊維の繊維軸方向の熱伝導率は、比熱、熱拡散率及び見かけ密度から、以下の式:
熱伝導率=(見かけ密度)×(比熱)×(熱拡散率)
により算出した。
Thermal conductivity The thermal conductivity in the fiber axis direction of the carbon fibers of Examples 1 to 3 and 5 to 6 is expressed by the following formula from specific heat, thermal diffusivity and apparent density:
Thermal conductivity = (apparent density) x (specific heat) x (thermal diffusivity)
Calculated by

実施例1〜3及び5〜6の炭素繊維の比熱は、Perkin-Elmer社製の示差走査熱量計を用いて昇温速度10℃/分で行った。このとき、標準試料はα−Al、雰囲気は乾燥窒素中、測定温度は25℃であった。 The specific heat of the carbon fibers of Examples 1 to 3 and 5 to 6 was performed at a heating rate of 10 ° C./min using a differential scanning calorimeter manufactured by Perkin-Elmer. At this time, the standard sample was α-Al 2 O 3 , the atmosphere was dry nitrogen, and the measurement temperature was 25 ° C.

実施例1〜3及び5〜6の炭素繊維の熱拡散率は、アルバック理工(株)製の熱拡散率測定装置を用いて光交流法で求めた。照射光に半導体レーザであった。雰囲気は真空中であり、測定温度は約25℃で測定した。   The thermal diffusivities of the carbon fibers of Examples 1 to 3 and 5 to 6 were obtained by an optical alternating current method using a thermal diffusivity measuring device manufactured by ULVAC-RIKO. The irradiation light was a semiconductor laser. The atmosphere was in a vacuum and the measurement temperature was about 25 ° C.

結果を表2に示す。   The results are shown in Table 2.

Figure 2016108688
Figure 2016108688

吸脱着等温線(開気孔量)
実施例2及び6の炭素繊維の吸脱着等温線を求めた。具体的には、マイクロトラック・ベル(株)製のBELSORP−maxを用いて、N(77K)吸着による上記吸脱着等温線を求めた。
Adsorption / desorption isotherm (open pore volume)
The adsorption and desorption isotherms of the carbon fibers of Examples 2 and 6 were determined. Specifically, the adsorption / desorption isotherm by N 2 (77K) adsorption was determined using BELSORP-max manufactured by Microtrack Bell Co., Ltd.

次に、得られた吸脱着等温線に基づいて、BET法にて上記各炭素繊維の比表面積及び全細孔容積を求めた。なお、BET法においては、炭素繊維表面に存在する気孔のみを判断できるため、全細孔容積は、開気孔量に相当する。   Next, based on the obtained adsorption / desorption isotherm, the specific surface area and the total pore volume of each carbon fiber were determined by the BET method. In the BET method, only the pores existing on the carbon fiber surface can be determined, and therefore the total pore volume corresponds to the amount of open pores.

結果を表3及び図1に示す。なお、図1において、左図は実施例2、右図は実施例6の結果である。いずれの炭素繊維においても、吸着曲線と脱着曲線がほぼトレースしており、表面に細孔がほとんど存在しない(開気孔量が存在しないか、存在するとしても極めて少ない)ことが示された。   The results are shown in Table 3 and FIG. In FIG. 1, the left figure shows the results of Example 2, and the right figure shows the results of Example 6. In any of the carbon fibers, the adsorption curve and the desorption curve are almost traced, indicating that there are almost no pores on the surface (there is no open pore volume or very little if any).

Figure 2016108688
Figure 2016108688

閉気孔の大きさ
実施例2〜6の炭素繊維について、小角X線散乱法による測定を行った。具体的には、(株)リガク製の全自動水平型多目的X線回折装置SmartLabを用い、入射X線波長を0.154nm(CuKα)、測定時間を1800秒として行った。なお、サンプルは、測定前に、真空乾燥機中で、100℃で2時間以上乾燥させた。
Size of closed pores The carbon fibers of Examples 2 to 6 were measured by a small angle X-ray scattering method. Specifically, a fully automatic horizontal multipurpose X-ray diffractometer SmartLab manufactured by Rigaku Corporation was used, the incident X-ray wavelength was 0.154 nm (CuKα), and the measurement time was 1800 seconds. The sample was dried at 100 ° C. for 2 hours or more in a vacuum dryer before measurement.

小角X線散乱法において開気孔と閉気孔との区別はできないが、実施例2〜6の炭素繊維において、開気孔は開気孔量が存在しないか、存在するとしても極めて少ないので細孔は閉気孔とすることができる。   In the small-angle X-ray scattering method, open pores cannot be distinguished from closed pores. However, in the carbon fibers of Examples 2 to 6, the open pores do not exist or the amount of open pores is very small, if any, so the pores are closed. It can be a pore.

実施例2〜6の炭素繊維の小角X線散乱法によるギニエプロットを図2に示す。ギニエプロットは、散乱パラメータs(=4πsinθ/λ)の2乗に対して散乱強度の自然対数ln(I(s))をプロットしたものである。ここで、λはX線波長である。ギニエ領域を直線近似して、その傾きから慣性半径を求めることができる。ここで、ギニエ領域をsが0.0002Å−2以下の領域とした。直線の傾き=−(慣性半径)/3である。 The Guinier plot by the small angle X ray scattering method of the carbon fiber of Examples 2-6 is shown in FIG. The Guinier plot is a plot of the natural logarithm ln (I (s)) of the scattering intensity against the square of the scattering parameter s (= 4π sin θ / λ). Here, λ is the X-ray wavelength. By approximating the Guinier region with a straight line, the radius of inertia can be obtained from the inclination. Here, the Guinier region s 2 is the 0.0002A -2 following areas. The slope of the line = - a (inertia radius) 2/3.

慣性半径と形状パラメータとの関係から、閉気孔を球と仮定した場合に球の半径は次式となる。   From the relationship between the radius of inertia and the shape parameter, when the closed pore is assumed to be a sphere, the radius of the sphere is as follows.

閉気孔を球と仮定した場合に球の半径=(5/3)1/2×(慣性半径)
求めた慣性半径及び閉気孔を球と仮定した場合における閉気孔の半径の結果を表4に示す。
When the closed pore is assumed to be a sphere, the radius of the sphere = (5/3) 1/2 × (inertia radius)
Table 4 shows the results of the calculated radius of inertia and the radius of the closed pore when the closed pore is assumed to be a sphere.

Figure 2016108688
Figure 2016108688

Claims (10)

繊維軸方向の熱伝導率が1〜10W/m・Kであり、且つ、開気孔量が0.1cm/g以下である、断熱材用炭素繊維。 A carbon fiber for a heat insulating material having a thermal conductivity in the fiber axis direction of 1 to 10 W / m · K and an open pore volume of 0.1 cm 3 / g or less. 見かけ密度が2.0g/cm未満である、請求項1に記載の断熱材用炭素繊維。 The carbon fiber for heat insulating materials according to claim 1, wherein the apparent density is less than 2.0 g / cm 3 . 小角X線散乱法によるギニエプロットにより見積もられる閉気孔を球と仮定した場合における閉気孔の半径が6nm以上である、請求項1又は2に記載の断熱材用炭素繊維。 The carbon fiber for a heat insulating material according to claim 1 or 2, wherein a closed pore radius is 6 nm or more when a closed pore estimated by a Guinier plot by a small angle X-ray scattering method is assumed to be a sphere. 等方性ピッチを炭素前駆体とした700〜2400℃の熱処理物である、請求項1〜3のいずれかに記載の断熱材用炭素繊維。 The carbon fiber for a heat insulating material according to any one of claims 1 to 3, which is a heat-treated product at 700 to 2400 ° C using an isotropic pitch as a carbon precursor. 繊維軸方向の熱伝導率が1〜10W/m・Kであり、且つ、開気孔量が0.1cm/g以下である断熱材用炭素繊維の製造方法であって、
前記断熱材用炭素繊維の前駆体繊維を、700〜2400℃で熱処理する工程
を備える、製造方法。
A method for producing a carbon fiber for a heat insulating material having a thermal conductivity in the fiber axis direction of 1 to 10 W / m · K and an open pore volume of 0.1 cm 3 / g or less,
The manufacturing method provided with the process of heat-processing the precursor fiber of the said carbon fiber for heat insulating materials at 700-2400 degreeC.
前記前駆体繊維が、等方性ピッチからなる前駆体繊維である、請求項5に記載の製造方法。 The manufacturing method of Claim 5 whose said precursor fiber is a precursor fiber which consists of isotropic pitches. 請求項1〜4のいずれかに記載の断熱材用炭素繊維、又は請求項5又は6に記載の製造方法により得られた断熱材用炭素繊維を用いた断熱材。 The heat insulating material using the carbon fiber for heat insulating materials in any one of Claims 1-4, or the carbon fiber for heat insulating materials obtained by the manufacturing method of Claim 5 or 6. 前記断熱材用炭素繊維が耐熱性樹脂又は炭素結合物によって結合されている、請求項7に記載の断熱材。 The heat insulating material according to claim 7, wherein the carbon fiber for heat insulating material is bonded by a heat resistant resin or a carbon bond. 前記断熱材用炭素繊維からなる不織布を用い、シート状、試験管形状、巾着形状、バット形状又はるつぼ形状に成形されている、請求項7に記載の断熱材。 The heat insulating material according to claim 7, wherein the heat insulating material is formed into a sheet shape, a test tube shape, a drawstring shape, a bat shape or a crucible shape using a nonwoven fabric made of the carbon fiber for heat insulating material. 前記断熱材用炭素繊維が耐熱性樹脂又は炭素結合物によって結合され、且つ、シート状、試験管形状、巾着形状、バット形状、るつぼ形状、又は容器形状に成形されている、請求項7に記載の断熱材。 The carbon fiber for thermal insulation is bonded by a heat resistant resin or a carbon bond, and is formed into a sheet shape, a test tube shape, a drawstring shape, a bat shape, a crucible shape, or a container shape. Insulation material.
JP2014245947A 2014-12-04 2014-12-04 Carbon fiber for heat insulating material and heat insulating material using the same Active JP6621983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245947A JP6621983B2 (en) 2014-12-04 2014-12-04 Carbon fiber for heat insulating material and heat insulating material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245947A JP6621983B2 (en) 2014-12-04 2014-12-04 Carbon fiber for heat insulating material and heat insulating material using the same

Publications (2)

Publication Number Publication Date
JP2016108688A true JP2016108688A (en) 2016-06-20
JP6621983B2 JP6621983B2 (en) 2019-12-18

Family

ID=56123316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245947A Active JP6621983B2 (en) 2014-12-04 2014-12-04 Carbon fiber for heat insulating material and heat insulating material using the same

Country Status (1)

Country Link
JP (1) JP6621983B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315614A (en) * 1987-06-19 1988-12-23 Mitsubishi Oil Co Ltd Production of highly electrically conductive graphite fiber
JPH03141170A (en) * 1989-10-25 1991-06-17 Osaka Gas Co Ltd Heat-insulation material and production thereof
US5721308A (en) * 1995-06-20 1998-02-24 Mitsubishi Chemical Corporation Pitch based carbon fiber and process for producing the same
JP2000328412A (en) * 1999-05-24 2000-11-28 Osaka Gas Co Ltd Sound absorbing and heat insulating material, and its production
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2002295787A (en) * 2001-03-29 2002-10-09 Kawasaki Heavy Ind Ltd Method for controlling heat conductivity of porous heat insulating material
JP2003078716A (en) * 2001-09-04 2003-03-14 Sharp Corp Image forming device and method for adjusting focus of its light emitter array
US7018526B1 (en) * 2001-11-30 2006-03-28 The University Of Akron Carbonized pitch moldings prepared from synthetic mesophase pitch and heat-soaked isotropic pitch
WO2006112516A1 (en) * 2005-04-19 2006-10-26 Teijin Limited Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein
JP2014058765A (en) * 2012-08-22 2014-04-03 Oji Kinocloth Co Ltd Method for producing carbon fiber nonwoven fabric for precursor of heat insulating material and method for producing heat insulating material
US20140265038A1 (en) * 2013-03-15 2014-09-18 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315614A (en) * 1987-06-19 1988-12-23 Mitsubishi Oil Co Ltd Production of highly electrically conductive graphite fiber
JPH03141170A (en) * 1989-10-25 1991-06-17 Osaka Gas Co Ltd Heat-insulation material and production thereof
US5721308A (en) * 1995-06-20 1998-02-24 Mitsubishi Chemical Corporation Pitch based carbon fiber and process for producing the same
JP2000328412A (en) * 1999-05-24 2000-11-28 Osaka Gas Co Ltd Sound absorbing and heat insulating material, and its production
JP2002121404A (en) * 2000-10-19 2002-04-23 Polymatech Co Ltd Heat-conductive polymer sheet
JP2002295787A (en) * 2001-03-29 2002-10-09 Kawasaki Heavy Ind Ltd Method for controlling heat conductivity of porous heat insulating material
JP2003078716A (en) * 2001-09-04 2003-03-14 Sharp Corp Image forming device and method for adjusting focus of its light emitter array
US7018526B1 (en) * 2001-11-30 2006-03-28 The University Of Akron Carbonized pitch moldings prepared from synthetic mesophase pitch and heat-soaked isotropic pitch
WO2006112516A1 (en) * 2005-04-19 2006-10-26 Teijin Limited Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein
JP2014058765A (en) * 2012-08-22 2014-04-03 Oji Kinocloth Co Ltd Method for producing carbon fiber nonwoven fabric for precursor of heat insulating material and method for producing heat insulating material
US20140265038A1 (en) * 2013-03-15 2014-09-18 Ut-Battelle, Llc Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby

Also Published As

Publication number Publication date
JP6621983B2 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
Cheng et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure
Park Carbon fibers
Jenkins et al. Polymeric carbons: carbon fibre, glass and char
Ji et al. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization
Banerjee et al. Recent advancement in coal tar pitch-based carbon fiber precursor development and fiber manufacturing process
Qin et al. Effect of organoclay reinforcement on lignin-based carbon fibers
Liu et al. Evolution of microstructure and properties of phenolic fibers during carbonization
Li et al. Preparation and characterization of activated carbon fibers from liquefied wood
WO2017178492A1 (en) Polyacrylonitrile-based graphite fiber
Zhang et al. Preparation and characterization of activated carbon fibers from liquefied poplar bark
JPS62117820A (en) Production of carbon fiber chopped strand
Qian et al. Multiscale SiCnw and carbon fiber reinforced SiOC ceramic with enhanced mechanical and microwave absorption properties
JP6128610B2 (en) Carbon fiber precursor fiber, carbon fiber, and method for producing carbon fiber
JP6621983B2 (en) Carbon fiber for heat insulating material and heat insulating material using the same
Khishigbayar et al. Microwave-assisted heating of electrospun SiC fiber mats
JP6407747B2 (en) Pitch-based carbon fiber and method for producing the same
KR101342938B1 (en) Conductive carbon fibers comprising mineral fibers coated by pitch and the manufacturing method
Zhong et al. Bio-inspired gradient multilayer ceramic fiber aerogel loaded with TaSi2 and WSi2: Fabrication, anti-oxidation and thermal insulation
JP2023511515A (en) Insulation suitable for use at high temperatures and method of making said material
JP2009185411A (en) Heat insulator containing carbon fiber
Yu et al. Highly flexible and strong SiC fibre mats prepared by electrospinning and hot-drawing
Mohammad et al. The effect of modification of matrix on densification efficiency of pitch based carbon composites
US20190257005A1 (en) Low thermal conductivity carbon-containing materials and methods of producing the same
Liu et al. Microstructure and properties of liquefied wood-based activated carbon fibers prepared from precursors and carbon fibers
Elagib et al. Carbonization performance of pre-oxidized PAN fibers prepared by microwave heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191121

R150 Certificate of patent or registration of utility model

Ref document number: 6621983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250