JP2016107302A - Method for manufacturing rotary electrical machine structure support, and rotary electrical machine - Google Patents

Method for manufacturing rotary electrical machine structure support, and rotary electrical machine Download PDF

Info

Publication number
JP2016107302A
JP2016107302A JP2014247237A JP2014247237A JP2016107302A JP 2016107302 A JP2016107302 A JP 2016107302A JP 2014247237 A JP2014247237 A JP 2014247237A JP 2014247237 A JP2014247237 A JP 2014247237A JP 2016107302 A JP2016107302 A JP 2016107302A
Authority
JP
Japan
Prior art keywords
joined
boundary portion
manufacturing
structure support
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014247237A
Other languages
Japanese (ja)
Inventor
智明 大橋
Tomoaki Ohashi
智明 大橋
浅井 知
Satoru Asai
知 浅井
善宏 藤田
Yoshihiro Fujita
善宏 藤田
大 長田
Masaru Osada
大 長田
幸美 石川
Yukimi Ishikawa
幸美 石川
淳二 森
Junji Mori
淳二 森
崇 藤田
Takashi Fujita
崇 藤田
央雅 長崎
Terumasa Nagasaki
央雅 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014247237A priority Critical patent/JP2016107302A/en
Publication of JP2016107302A publication Critical patent/JP2016107302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a rotary electrical machine structure support capable of withstanding vibration and distortion while suppressing occurrence of defects and distortion.SOLUTION: The method for manufacturing a rotary electrical machine structure support according to an embodiment comprises an arranging step, a first joining step, and a second joining step. In the arranging step, a first joined member and a second joined member, which is an integrated member of plural plates by lamination, are arranged in their respective positions where the end portions of the two members come into contact with each other. In the first joining step, a rotatingly driven tool made to enter the boundary portion between the end portions of the first and second joined members brought into contact with each other from a first outer surface side of the boundary portion is made to slide along their interface. In the second joining step, the rotatingly driven tool made to enter the boundary portion from a second outer surface side of the boundary portion, positioned at a rear side of the first outer surface, is made to slide along their interface to thereby join the first and second jointed members with each other.SELECTED DRAWING: Figure 2

Description

本発明の実施形態は、回転電機用構造支持体の製造方法及び回転電機に関する。   Embodiments described herein relate generally to a method of manufacturing a structural support for a rotating electrical machine and the rotating electrical machine.

水力発電などで利用される回転電機用の回転子は、遠心力によって生じる内部応力に起因した歪を吸収できるようにするために、比較的硬いソリッドな部材と複数の薄板を積層一体化した可とう性を持つ積層体とを接合した構造支持体を備えている。   Rotors for rotating electrical machines used in hydroelectric power generation, etc., can be formed by laminating and integrating relatively hard solid members and multiple thin plates so that strain caused by internal stress caused by centrifugal force can be absorbed. The structural support body which joined the laminated body which has elasticity is provided.

このような構造支持体は、例えば、複数の薄板の端部どうしを、まずTIG(Tungsten Inert Gas)溶接によって接合して積層一体化し、さらに開先形状をK開先などに加工成形した後、この開先加工された積層体と上記したソリッドな部材とをさらにTIG溶接することによって製作される。なお、TIG溶接される薄板などを含む接合対象の各部材は、材料として銅や銅合金が使用されている。   Such a structural support, for example, after joining the end portions of a plurality of thin plates by TIG (Tungsten Inert Gas) welding and laminating and integrating the groove shape into a K groove, etc., The grooved laminate and the solid member described above are further manufactured by TIG welding. In addition, copper or a copper alloy is used as a material for each member to be joined including a thin plate to be TIG welded.

特開2005−118877号公報JP 2005-118877 A 特許2013−192439号公報Japanese Patent No. 2013-192439 特許第5250123号公報Japanese Patent No. 5250123

ところで、前述した構造支持体は、遠心力によって生じる振動や歪に耐え得る機械的強度が必要となる。しかしながら、構造支持体は、上述したように、銅や銅合金といった難溶接材を材料として適用しているため、溶接箇所に欠陥が生じやすく、また、母材の強度を低下させてしまう溶接時の熱的影響範囲が広くなり、さらには溶接後の変形、各々の薄板の剥離、破損なども懸念される。   By the way, the structural support described above needs to have mechanical strength that can withstand vibrations and strains caused by centrifugal force. However, as described above, since the structural support material is made of a difficult-to-weld material such as copper or copper alloy as described above, defects are easily generated in the welded part, and the strength of the base material is reduced during welding. There is a concern that the range of the thermal influence of the sheet is widened, and further, deformation after welding, peeling of each thin plate, breakage, and the like.

そこで、本発明が解決しようとする課題は、欠陥や変形、剥離、破損の発生を抑えつつ振動や歪に耐え得る機械的強度を確保できる回転電機用構造支持体の製造方法及び回転電機を提供することである。   Therefore, the problem to be solved by the present invention is to provide a method of manufacturing a structural support for a rotating electrical machine and a rotating electrical machine that can secure mechanical strength that can withstand vibration and distortion while suppressing occurrence of defects, deformation, peeling, and breakage. It is to be.

実施の形態に係る回転電機用構造支持体の製造方法は、配置工程、並びに第1及び第2の接合工程を有する。配置工程では、第1の被接合部材と複数の板材が積層一体化された第2の被接合部材とを、互いの端部どうしが接触する位置にそれぞれ配置する。第1の接合工程では、前記端部どうしを接触させた前記第1の被接合部材と前記第2の被接合部材との境界部分へ、当該境界部分の第1の外形面側から貫入させた回転駆動するツールを、前記境界部分の界面に沿ってスライドさせる。第2の接合工程では、前記第1の外形面の背面側に位置する前記境界部分の第2の外形面側から、当該境界部分へ貫入させた前記回転駆動するツールを、前記界面に沿ってスライドさせることによって、前記第1及び第2の被接合部材が互いに接合された回転電機用構造支持体を得る。   The manufacturing method of the structural support for a rotating electrical machine according to the embodiment includes an arranging step and first and second joining steps. In the arranging step, the first member to be joined and the second member to be joined, in which a plurality of plate members are laminated and integrated, are respectively arranged at positions where the end portions contact each other. In the first bonding step, the boundary portion between the first member to be bonded and the second member to be bonded, in which the end portions are brought into contact with each other, is penetrated from the first outer surface side of the boundary portion. A tool to be rotated is slid along the interface of the boundary portion. In the second joining step, the rotationally driven tool penetrated into the boundary portion from the second outer shape side of the boundary portion located on the back side of the first outer shape surface along the interface. By sliding, a structural support body for a rotating electrical machine in which the first and second members to be joined are joined to each other is obtained.

第1の実施形態に係る回転電機用構造支持体を備えた回転電機の断面を概略的に示す図。The figure which shows schematically the cross section of the rotary electric machine provided with the structure support body for rotary electric machines which concerns on 1st Embodiment. 図1の回転電機用構造支持体の製造方法を第1の外形面側から示した斜視図。The perspective view which showed the manufacturing method of the structure support body for rotary electric machines of FIG. 1 from the 1st external surface side. 図1の回転電機用構造支持体の製造方法を平面方向(上面方向)から示した図。The figure which showed the manufacturing method of the structure support body for rotary electric machines of FIG. 1 from the plane direction (upper surface direction). 図1の回転電機用構造支持体の製造方法を第2の外形面側から示した斜視図。The perspective view which showed the manufacturing method of the structure support body for rotary electric machines of FIG. 1 from the 2nd external surface side. 図2の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIG. 図2及び図5の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIG.2 and FIG.5. 第2の実施形態に係る回転電機用構造支持体の製造方法を第1の外形面側から示した斜視図。The perspective view which showed the manufacturing method of the structure support body for rotary electric machines which concerns on 2nd Embodiment from the 1st external surface side. 図7の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIG. 第3の実施形態に係る回転電機用構造支持体の製造方法を第1の外形面側から示した斜視図。The perspective view which showed the manufacturing method of the structure support body for rotary electric machines which concerns on 3rd Embodiment from the 1st external surface side. 図9の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIG. 図9及び図10の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIG.9 and FIG.10. 図11の回転電機用構造支持体の製造方法を平面方向(上面方向)から示した図。The figure which showed the manufacturing method of the structure support body for rotary electric machines of FIG. 11 from the plane direction (upper surface direction). 図9〜図11の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIGS. 図9〜図11及び図13の回転電機用構造支持体の製造方法から製造工程を一部変更したものを示した斜視図。The perspective view which showed what changed the manufacturing process partially from the manufacturing method of the structure support body for rotary electric machines of FIGS. 9-11 and FIG.

以下、実施の形態を図面に基づき説明する。
<第1の実施の形態>
図1は、本実施形態の回転電機用構造支持体の製造方法によって製造された回転電機用構造支持体17を備える回転電機10を示している。図1に示すように、この回転電機10は、例えば可変速の回転電機であって、より具体的には、揚水発電などで用いられる例えば可変速発電電動機である。
Hereinafter, embodiments will be described with reference to the drawings.
<First Embodiment>
FIG. 1 shows a rotating electrical machine 10 including a rotating electrical machine structure support 17 manufactured by the method for manufacturing a rotating electrical machine structure support of the present embodiment. As shown in FIG. 1, the rotating electrical machine 10 is, for example, a variable speed rotating electrical machine, and more specifically, for example, a variable speed generator motor used in pumped-storage power generation.

回転電機10は、固定子(ステータ)3、回転子(ロータ)5などを備えている。また、回転電機10は、回転子5の回転軸9の両端にそれぞれ対称的に設けられた例えばファン15や通風ダクトを備えた冷却機構などを有している。回転軸9は、固定子3を含む構造部分に軸受機構を介して支持されている。固定子3は、固定子コイル12と固定子鉄心14とを備えている。一方、回転子5は、回転軸9と一体的に設けられた回転子鉄心8及び回転子コイル7を備えている。   The rotating electrical machine 10 includes a stator (stator) 3, a rotor (rotor) 5, and the like. Further, the rotating electrical machine 10 has a cooling mechanism provided with, for example, a fan 15 and a ventilation duct provided symmetrically at both ends of the rotating shaft 9 of the rotor 5. The rotating shaft 9 is supported by a structural portion including the stator 3 via a bearing mechanism. The stator 3 includes a stator coil 12 and a stator core 14. On the other hand, the rotor 5 includes a rotor core 8 and a rotor coil 7 that are provided integrally with the rotation shaft 9.

ここで、回転電機(可変速発電電動機)10の速度変化を伴う運転時において、回転子5は、遠心力によって生じる内部応力に起因した歪や振動を吸収できるようにするために、図1に示すように、上述した回転電機用構造支持体17を備えている。すなわち、回転電機用構造支持体17は、後述する図2に示すように、直方体状のソリッドな構造を有している第1の被接合部材32と、複数の板材(薄板)20aを積層一体化した可とう性を持つ積層体である第2の被接合部材31と、を互いに接合して構成されている。第2の被接合部材(積層体)31は、例えば厚さ0.25mmの複数の板材20aを積層一体化して例えば20mmの厚さで構成されている。   Here, in the operation accompanied by the speed change of the rotating electrical machine (variable speed generator motor) 10, in order to allow the rotor 5 to absorb the distortion and vibration caused by the internal stress caused by the centrifugal force, FIG. As shown, the structure support 17 for a rotating electrical machine described above is provided. That is, as shown in FIG. 2 to be described later, the rotating electrical machine structure support 17 includes a first solid member 32 having a rectangular parallelepiped solid structure and a plurality of plate members (thin plates) 20a laminated and integrated. The second to-be-joined member 31 that is a laminated body having a flexible structure is joined to each other. The second member to be joined (laminated body) 31 is configured to have a thickness of, for example, 20 mm by laminating and integrating a plurality of plate members 20a having a thickness of, for example, 0.25 mm.

図1に示すように、このような回転電機用構造支持体17は、回転子5に遠心力が作用した際にその構造上、例えば内部応力が集中しやすい箇所などに適宜配置されている。また、図2に示すように、回転電機用構造支持体17を構成する第1及び第2の被接合部材32、31の材料には、銅や銅合金が適用されている。なお、第1及び第2の被接合部材32、31は、材料としてアルミニウムやアルミニウム合金を用いて構成することも可能である。また、ソリッドな構造を有する第1の被接合部材32よりも、積層体である第2の被接合部材31のほうに、機械的強度(例えば縦弾性係数など)が高い材料を適用してもよい。   As shown in FIG. 1, such a structural support 17 for a rotating electrical machine is appropriately disposed at a location where internal stress tends to concentrate, for example, when centrifugal force acts on the rotor 5. As shown in FIG. 2, copper or a copper alloy is applied to the material of the first and second members to be joined 32 and 31 constituting the structural support 17 for a rotating electrical machine. In addition, the 1st and 2nd to-be-joined members 32 and 31 can also be comprised using aluminum and aluminum alloy as a material. Further, even when a material having higher mechanical strength (for example, longitudinal elastic modulus) is applied to the second bonded member 31 that is a laminated body than the first bonded member 32 having a solid structure. Good.

次に、第1の被接合部材32と第2の被接合部材31との接合を好適に実現する本実施形態の回転電機用構造支持体の製造方法を主に図2〜図4に基づき説明する。本実施形態の回転電機用構造支持体の製造方法は、配置工程、第1の接合工程、及び第2の接合工程を有している。まず、配置工程では、図2、図3に示すように、第1の被接合部材32と第2の被接合部材31とを、互いの端部32a、31aどうしが接触する位置にそれぞれ配置する。より具体的には、このような第1の被接合部材32と第2の被接合部材31とを例えば専用の治具などを介して所定の加工盤上に固定する。   Next, the manufacturing method of the structural support body for a rotating electrical machine according to the present embodiment that suitably realizes the joining of the first joined member 32 and the second joined member 31 will be described mainly based on FIGS. To do. The manufacturing method of the structural support for a rotating electrical machine according to the present embodiment includes an arrangement step, a first joining step, and a second joining step. First, in an arrangement | positioning process, as shown in FIG.2, FIG.3, the 1st to-be-joined member 32 and the 2nd to-be-joined member 31 are each arrange | positioned in the position where mutual edge part 32a, 31a contacts. . More specifically, the first member to be joined 32 and the second member to be joined 31 are fixed on a predetermined processing board via, for example, a dedicated jig.

ここで、接合対象となる第1の被接合部材32と第2の被接合部材31との開先形状は、いわゆるI開先(I形開先)である。つまり、配置工程で直接接触させる第1の被接合部材32と第2の被接合部材31とのそれぞれの端面全体(端部32a、31aどうしの対向面)は、いずれも平坦な面で形成されている。   Here, the groove shape of the first bonded member 32 and the second bonded member 31 to be bonded is a so-called I groove (I-shaped groove). That is, the entire end surfaces of the first member to be bonded 32 and the second member to be bonded 31 that are in direct contact with each other in the arranging step (opposing surfaces of the end portions 32a and 31a) are both formed as flat surfaces. ing.

次に、第1の接合工程では、図2、図3に示すように、端部32a、31aどうしを接触させた第1の被接合部材32と第2の被接合部材31との境界部分25へ、当該境界部分25の第1の外形面F1側から貫入させた矢印S1方向に回転駆動するツール30を、境界部分25の界面25aに沿って矢印B1方向にスライド(移動)させる。   Next, in the first joining step, as shown in FIGS. 2 and 3, the boundary portion 25 between the first joined member 32 and the second joined member 31 in which the end portions 32 a and 31 a are in contact with each other. Then, the tool 30 that is rotationally driven in the direction of arrow S1 that is penetrated from the first outer surface F1 side of the boundary portion 25 is slid (moved) in the direction of arrow B1 along the interface 25a of the boundary portion 25.

ツール30は、大径のショルダ部30aとこのショルダ部30aの先端部側に設けられた小径の突起部30bとを有する段付きの略円柱形状の接合工具(接合ツール)である。また、ツール30は、3軸方向に移動可能であると共に自身の軸心を回転中心として自転(回転駆動)する。突起部30bは、境界部分25(被接合部分30c、30d)に直接的に貫入される貫入部である。突起部30bの突出長さは、貫入される方向の境界部分25の厚さに応じて適宜設定される。   The tool 30 is a stepped substantially columnar joining tool (joining tool) having a large-diameter shoulder portion 30a and a small-diameter protrusion 30b provided on the tip end side of the shoulder portion 30a. The tool 30 is movable in three axis directions and rotates (rotates and drives) around its own axis as a rotation center. The protrusion 30b is a penetrating portion that penetrates directly into the boundary portion 25 (bonded portions 30c and 30d). The protruding length of the protrusion 30b is appropriately set according to the thickness of the boundary portion 25 in the penetrating direction.

また、ツール30の動作は、矢印S1方向への回転速度が例えば500〜1500rpm、矢印B1方向への移動速度が例えば17〜30cm/min、突起部30bが境界部分25に貫入する荷重が例えば3000〜5000kgf、となるように調整される。   The operation of the tool 30 is such that the rotational speed in the direction of the arrow S1 is, for example, 500 to 1500 rpm, the moving speed in the direction of the arrow B1 is, for example, 17-30 cm / min, and the load that the protrusion 30b penetrates into the boundary portion 25 is, for example, 3000. It is adjusted to be ˜5000 kgf.

ここで、第1の接合工程では、図2、図3に示すように、スライドしながら回転するツール30(突起部30b)が貫入している境界部分25(被接合部分30c)は、摩擦熱が発生して軟化すると共に、塑性流動が生じて母材が混練された後、硬化する。これにより、まず、境界部分25における第1の外形面F1側(被接合部分30c)が、摩擦攪拌接合(FSW:Friction Stir Welding)される。   Here, in the first joining step, as shown in FIGS. 2 and 3, the boundary portion 25 (joined portion 30 c) through which the tool 30 that rotates while sliding (projecting portion 30 b) penetrates is caused by frictional heat. Is generated and softened, and plastic flow occurs, and the base material is kneaded and then cured. As a result, first, the first outer surface F1 side (bonded portion 30c) in the boundary portion 25 is subjected to friction stir welding (FSW: Friction Stir Welding).

次に、第2の接合工程では、被接合部分30cが摩擦攪拌接合された第1の被接合部材32と第2の被接合部材31とを、図4に示すように、第1の外形面F1の背面側に位置する第2の外形面F2側が上面になるように裏返し、前述した治具などを介して加工盤上に固定する。さらに、第2の接合工程では、図4に示すように、境界部分25の第2の外形面F2側から、当該境界部分25(被接合部分30d)へ貫入させた矢印S1方向に回転駆動するツール30を、界面25aに沿って矢印B1方向にスライド(移動)させることによって、第1及び第2の被接合部材32、31が互いに接合された回転電機用構造支持体17を得る。なお、ツール30における回転速度、移動速度、荷重などの動作条件は、前述したように調整される。つまり、第2の接合工程では、図4に示すように、境界部分25における第2の外形面F2側(被接合部分30d)が、摩擦攪拌接合される。   Next, in the second joining step, as shown in FIG. 4, the first outer surface of the first joined member 32 and the second joined member 31 in which the joined portion 30 c is friction stir joined. It is turned over so that the second outer surface F2 side located on the back side of F1 becomes the upper surface, and fixed on the processing board via the jig described above. Further, in the second joining step, as shown in FIG. 4, rotation is driven in the direction of the arrow S1 penetrating from the second outer surface F2 side of the boundary portion 25 into the boundary portion 25 (joined portion 30d). The tool 30 is slid (moved) along the interface 25a in the direction of the arrow B1 to obtain the rotating electrical machine structural support body 17 in which the first and second members to be joined 32 and 31 are joined to each other. Note that the operating conditions such as the rotational speed, moving speed, and load in the tool 30 are adjusted as described above. That is, in the second joining step, as shown in FIG. 4, the second outer surface F2 side (joined portion 30d) in the boundary portion 25 is friction stir welded.

したがって、本実施形態に係る回転電機用構造支持体の製造方法では、第1の外形面F1側と第2の外形面F2側との2パス(2回)に分けて、第1の被接合部材32と第2の被接合部材31とを摩擦攪拌接合するので、摩擦攪拌されて境界部分25(母材)が熱的影響を受ける熱的影響範囲(軟化領域)を狭くすることが可能となる。   Therefore, in the method for manufacturing a rotating electrical machine structural support according to the present embodiment, the first outer surface F1 side and the second outer surface F2 side are divided into two passes (twice), and the first bonded object is obtained. Since the member 32 and the second member to be joined 31 are friction stir welded, it is possible to narrow the thermal influence range (softening region) in which the boundary portion 25 (base material) is thermally affected by friction stir. Become.

つまり、例えば1パスで境界部分25を摩擦攪拌接合する場合には、境界部分25の厚さ方向全体を一度に摩擦攪拌させるために、例えば剛性などを考慮してサイズを大きくしたツールを適用することになるので、熱的影響範囲を広げてしまう結果となる。これに対して、2パスで境界部分25を摩擦攪拌接合する本実施形態の製法では、合理的にサイズを小さくしたツールを二度に分けて適用するので、結果的に熱的影響範囲を狭めることが可能となる。   That is, for example, when the boundary portion 25 is friction stir welded in one pass, in order to friction stir the entire thickness direction of the boundary portion 25 at once, a tool whose size is increased in consideration of rigidity, for example, is applied. As a result, the thermal influence range is widened. On the other hand, in the manufacturing method of the present embodiment in which the boundary portion 25 is friction stir welded in two passes, a reasonably small size tool is applied in two portions, resulting in a narrow thermal influence range. It becomes possible.

これにより、本実施形態の回転電機用構造支持体の製造方法によれば、境界部分25(母材)における熱的影響に起因した強度の低下を抑えることができ、所望の機械的強度を確保できる。また、本実施形態の製法では、難溶接材である銅や銅合金製の第1の被接合部材32と第2の被接合部材31とを、TIG溶接などの溶接技術を用いずに(難溶接材の接合に適したプロセスである溶融現象を伴わない摩擦攪拌接合を用いて)互いを接合するので、接合箇所での欠陥や変形の発生を抑制することが可能となる。さらに、本実施形態の製法によれば、溶接する場合に例えば必要となる接合箇所の開先形状の加工や、予熱を与えることなどが不要となり、製造コストを低減することができる。   Thereby, according to the manufacturing method of the structural support body for a rotating electrical machine of the present embodiment, it is possible to suppress a decrease in strength due to the thermal influence in the boundary portion 25 (base material) and to secure a desired mechanical strength. it can. Further, in the manufacturing method of the present embodiment, the first member 32 and the second member 31 made of copper or copper alloy, which are difficult-to-weld materials, are used without using a welding technique such as TIG welding (difficulty Since they are joined to each other (using friction stir welding without melting phenomenon, which is a process suitable for joining welding materials), it becomes possible to suppress the occurrence of defects and deformations at the joints. Furthermore, according to the manufacturing method of the present embodiment, for example, it is not necessary to process a groove shape of a joint portion required for welding or to give preheating, and the manufacturing cost can be reduced.

また、このようにして製造される回転電機用構造支持体17を回転子5に備えた回転電機10によれば、速度変化を伴う運転時において、遠心力により回転子5に生じる振動や歪を効果的に吸収することができる。   Further, according to the rotating electrical machine 10 provided with the rotor 5 having the structure support 17 for the rotating electrical machine manufactured as described above, vibration and distortion generated in the rotor 5 due to centrifugal force during operation accompanied by a speed change. It can be absorbed effectively.

ここで、本実施形態の回転電機用構造支持体の製造方法は、図5に示すように、回転駆動するツール30をスライドさせる移動経路上に、例えば第1又は第2の被接合部材32、31の材料と、同じ材料を供給しながら実施することも可能である。具体的には、図5に示すように、第1及び第2の外形面側からの摩擦攪拌接合中に粉末供給装置33から銅や銅合金の粉末34を供給する。これにより、ツール30の例えばショルダ部30aの端面との摺動により生じる第1及び第2の被接合部材32、31の各表面(各上面)の凹みを摩擦攪拌接合の過程で補修することができる。   Here, as shown in FIG. 5, the manufacturing method of the rotating electrical machine structure support of the present embodiment has, for example, the first or second member 32 to be joined on the moving path for sliding the tool 30 to be rotated, It is also possible to carry out while supplying the same material as the 31 materials. Specifically, as shown in FIG. 5, copper or copper alloy powder 34 is supplied from a powder supply device 33 during friction stir welding from the first and second outer surface sides. Thereby, the dent of each surface (each upper surface) of the 1st and 2nd to-be-joined members 32 and 31 produced by sliding with the end face of the shoulder part 30a of the tool 30 can be repaired in the process of friction stir welding. it can.

また、本実施形態の回転電機用構造支持体の製造方法は、前述した配置工程並びに第1及び第2の接合工程を実施することによって、図6に示すように、第2の被接合部材31の両端部31a、31bに一対の第2の被接合部材32、35の一端部32a、35aをそれぞれ接合することも可能である。   Moreover, the manufacturing method of the structure support body for rotary electric machines of this embodiment performs the arrangement | positioning process mentioned above, and the 1st and 2nd joining process, as shown in FIG. It is also possible to join the one end portions 32a and 35a of the pair of second members to be joined 32 and 35 to the both end portions 31a and 31b, respectively.

<第2の実施の形態>
次に、第2の実施の形態を図7、図8に基づき説明する。なお、図7、図8において、図2などに示した第1の実施形態中の構成要素と同一の構成要素については、同一の符号を付与し重複する説明を省略する。
<Second Embodiment>
Next, a second embodiment will be described with reference to FIGS. 7 and 8, the same components as those in the first embodiment shown in FIG. 2 and the like are given the same reference numerals, and redundant description is omitted.

本実施形態の回転電機用構造支持体の製造方法は、第1の被接合部材32と第2の被接合部材31との間における少なくとも境界部分25を冷却しながら第1及び第2の接合工程を実施する。この場合の冷却は、例えば、冷媒が内部を通過する冷却用部材を、第1及び第2の被接合部材32、31と接触させることなどで実現される。   In the method for manufacturing a structural support for a rotating electrical machine according to the present embodiment, the first and second joining steps are performed while cooling at least the boundary portion 25 between the first joined member 32 and the second joined member 31. To implement. The cooling in this case is realized, for example, by bringing the cooling member through which the refrigerant passes through the first and second members to be joined 32 and 31 into contact with each other.

具体的には、図7に示すように、第1の実施形態で述べた第1及び第2の被接合部材32、31を固定するための例えば銅や銅合金製の加工盤38を冷却用部材として適用する。さらに、この加工盤38の内部に例えば冷却水などを流すための冷媒の流路39を形成しておく。   Specifically, as shown in FIG. 7, for example, a processing board 38 made of copper or copper alloy for fixing the first and second members to be joined 32 and 31 described in the first embodiment is used for cooling. Apply as a member. Further, a coolant flow path 39 for flowing cooling water or the like is formed in the processing board 38.

また、これに代えて、図8に示すように、アルゴンガスやヘリウムガスなどの不活性ガスをシールドガス52として供給するシールドガス供給装置51を用意し、第1及び第2の接合工程を実施する際に、第1又は第2の外形面F1、F2側から境界部分25へシールドガス52を供給し、境界部分25を冷却するようにしてもよい。   Instead, as shown in FIG. 8, a shield gas supply device 51 for supplying an inert gas such as argon gas or helium gas as the shield gas 52 is prepared, and the first and second bonding steps are performed. In doing so, the boundary gas 25 may be cooled by supplying the shielding gas 52 from the first or second outer surface F1, F2 side to the boundary portion 25.

したがって、第2の実施形態に係る回転電機用構造支持体の製造方法によれば、摩擦攪拌接合時に生じる発熱を抑制できるので、熱的影響に起因した境界部分25(被接合部分)の強度の低下を抑えることができ、これにより、第1の被接合部材32と第2の被接合部材31とが接合される当該境界部分25において所望の剛性を確保できる。   Therefore, according to the method for manufacturing a rotating electrical machine structural support according to the second embodiment, heat generated at the time of friction stir welding can be suppressed, so that the strength of the boundary portion 25 (joined portion) due to the thermal influence is increased. The decrease can be suppressed, and thereby desired rigidity can be secured in the boundary portion 25 where the first member 32 and the second member 31 are joined.

<第3の実施の形態>
次に、第3の実施の形態を図9〜図14に基づき説明する。なお、図9〜図14において、図2、図4などに示した第1の実施形態中の構成要素と同一の構成要素については、同一の符号を付与し重複する説明を省略する。
<Third Embodiment>
Next, a third embodiment will be described with reference to FIGS. 9 to 14, the same components as those in the first embodiment shown in FIGS. 2, 4, and the like are assigned the same reference numerals and redundant description is omitted.

本実施形態の回転電機用構造支持体の製造方法は、図9に示すように、まず、配置工程では、端部どうしを接触させた第1の被接合部材32と第2の被接合部材31との境界部分25を、第1及び第2の外形面F1、F2それぞれの側面側に位置する第3及び第4の外形面F3、F4側から、矢印P1、P2方向に挟持するように一対の挟持部材53、54をさらに配置する。一対の挟持部材53、54は、例えば銅や銅合金で構成されている。   As shown in FIG. 9, in the manufacturing method of the rotating electrical machine structure support of the present embodiment, first, in the arranging step, the first member 32 and the second member 31 in which the ends are brought into contact with each other. Is paired so as to be sandwiched in the directions of arrows P1 and P2 from the third and fourth outer surfaces F3 and F4 located on the side surfaces of the first and second outer surfaces F1 and F2, respectively. The clamping members 53 and 54 are further arranged. The pair of clamping members 53 and 54 is made of, for example, copper or a copper alloy.

さらに第1及び第2の接合工程では、図9に示すように、第1又は第2の外形面F1、F2側から一方の挟持部材53へ貫入させた回転駆動するツール30を、境界部分の界面に沿って他方の挟持部材54上へとスライド(移動)させる。   Further, in the first and second joining steps, as shown in FIG. 9, the rotationally driven tool 30 penetrating from the first or second outer surface F1 or F2 side into one of the holding members 53 is moved to the boundary portion. It is slid (moved) onto the other holding member 54 along the interface.

この製法によれば、ツール30の突起部(貫入部)30bによる摩擦攪拌接合時の接合痕が境界部分25の表面(上面)に残ってしまうことなどを抑制できることに加え、第2の被接合部材31本体から板材20aがばらけることなどを防止できる。なお、境界部分25の接合後、第1及び第2の被接合部材32、31側から、接合された一対の挟持部材53、54を除去してもよい。   According to this manufacturing method, in addition to being able to suppress the fact that the joining mark at the time of friction stir welding by the protrusion (penetrating part) 30b of the tool 30 remains on the surface (upper surface) of the boundary portion 25, etc., It is possible to prevent the plate material 20a from separating from the member 31 main body. In addition, after joining the boundary part 25, you may remove a pair of joined clamping members 53 and 54 from the 1st and 2nd to-be-joined members 32 and 31 side.

また、図10に示す回転電機用構造支持体の製造方法を適用することもできる。すなわち、配置工程では、図10に示すように、端部32a、31aどうしを接触させた第1の被接合部材32と第2の被接合部材31との境界部分25の第1又は第2の外形面F1、F2上に保護部材55をさらに配置する。   Moreover, the manufacturing method of the structure support body for rotary electric machines shown in FIG. 10 is also applicable. That is, in the arrangement step, as shown in FIG. 10, the first or second boundary portion 25 between the first member 32 and the second member 31 in which the end portions 32a and 31a are in contact with each other. A protective member 55 is further arranged on the outer surfaces F1 and F2.

保護部材55は、銅や銅合金を材料とする厚さ0.5〜2mm以上の矩形状の薄板である。この保護部材55は、自身の長手方向を、ツール30のスライド方向(矢印B1方向)に揃えて、境界部分25(第1又は第2の外形面F1、F2上の境界線)を覆い隠すように配置され、治具などを介してこの位置に固定される。また、保護部材55の短手方向の長さは、ツール30におけるショルダ部30aの直径以上の長さで構成されている。さらに、保護部材55の厚さは、摩擦攪拌接合時に、ツール30の例えばショルダ部30aの端面との摺動により生じ得る凹み以上の厚さで構成されている。   The protection member 55 is a rectangular thin plate made of copper or copper alloy and having a thickness of 0.5 to 2 mm or more. The protective member 55 has its longitudinal direction aligned with the sliding direction (arrow B1 direction) of the tool 30 so as to cover the boundary portion 25 (the boundary line on the first or second outer surface F1, F2). And is fixed at this position via a jig or the like. Further, the length of the protective member 55 in the short direction is configured to be equal to or longer than the diameter of the shoulder portion 30 a of the tool 30. Furthermore, the thickness of the protection member 55 is configured to be equal to or greater than a dent that may be generated by sliding with the end surface of the shoulder portion 30a of the tool 30 during friction stir welding.

このような保護部材55を配置した後、第1及び第2の接合工程では、第1又は第2の外形面F1、F2側から、保護部材55越しに境界部分25へ貫入させた回転駆動するツール30を、界面25aに沿ってスライド(移動)させる。このような製法によれば、ツール30のショルダ部30aとの摺動により生じる凹み分を保護部材55の厚さで補填することができ、境界部分25(被接合部分)の接合強度を確保することができる。また、第2の被接合部材(積層体)31に座屈などが生じることを抑制できる。   After the protective member 55 is arranged, in the first and second joining steps, the first and second outer faces F1 and F2 are driven to rotate through the protective member 55 and into the boundary portion 25. The tool 30 is slid (moved) along the interface 25a. According to such a manufacturing method, it is possible to compensate for the dent caused by the sliding of the tool 30 with the shoulder portion 30a with the thickness of the protective member 55, and to ensure the bonding strength of the boundary portion 25 (bonded portion). be able to. Further, buckling or the like can be suppressed from occurring in the second member to be bonded (laminated body) 31.

また、図11に示す回転電機用構造支持体の製造方法を適用することも可能である。つまり、図11に示すように、配置工程では、端部32a、31aどうしを接触させた第1の被接合部材32と第2の被接合部材31との境界部分25を、第1及び第2の外形面F1、F2それぞれの側面側に位置する第3及び第4の外形面F3、F4側から、挟持するように一対の挟持部材53、54を配置すると共に、一対の挟持部材53、54上及び第1の被接合部材32と第2の被接合部材31との境界部分25の第1又は第2の外形面F1、F2上に保護部材61をさらに配置する。   Moreover, it is also possible to apply the manufacturing method of the structure support body for rotary electric machines shown in FIG. That is, as shown in FIG. 11, in the arrangement step, the boundary portion 25 between the first member 32 and the second member 31 in which the end portions 32a and 31a are in contact with each other is defined as the first and second members. A pair of sandwiching members 53 and 54 are disposed so as to be sandwiched from the third and fourth exterior surfaces F3 and F4 located on the side surfaces of the respective exterior surfaces F1 and F2, and the pair of sandwiching members 53 and 54 A protective member 61 is further disposed on the first or second outer surface F1 or F2 of the boundary portion 25 between the upper and first bonded members 32 and 31.

さらに、第1及び第2の接合工程では、第1又は第2の外形面F1、F2側から、保護部材61越しに一方の挟持部材53側へ貫入させた回転駆動するツール30を、境界部分25の界面に沿って他方の挟持部材54側へとスライド(移動)させる。   Further, in the first and second joining steps, the rotationally driven tool 30 penetrating from the first or second outer surface F1, F2 side through the protective member 61 to the one clamping member 53 side is separated from the boundary portion. 25 is slid (moved) along the interface 25 to the other clamping member 54 side.

このような図11にした回転電機用構造支持体の製造方法によれば、ツール30の突起部(貫入部)30bによる接合痕が、境界部分25に残ることなどを抑制できると共、第2の被接合部材31からの板材20aの分散などを防止でき、また、ツール30のショルダ部30aとの摺動が原因となる凹みの発生を抑えることができる。さらに、第2の被接合部材(積層体)31に座屈などが発生することを抑制できる。   According to the method for manufacturing a structure support for a rotating electrical machine shown in FIG. 11, it is possible to prevent the joining trace due to the protrusion (penetrating portion) 30 b of the tool 30 from remaining on the boundary portion 25. It is possible to prevent the plate member 20a from being dispersed from the member 31 to be joined, and to suppress the occurrence of a dent caused by the sliding of the tool 30 with the shoulder portion 30a. Furthermore, it is possible to suppress the occurrence of buckling or the like in the second member to be joined (laminated body) 31.

ここで、配置工程では、図11に示したように、それぞれ配置された一対の挟持部材53、54と保護部材61とを、図12に示すように、摩擦攪拌接合を用いて(接合箇所30eを設けて)一体化してもよい。この場合、一対の挟持部材53、54及び保護部材61をセットする際の作業性を高めることができる。   Here, in the placement step, as shown in FIG. 11, the pair of sandwiching members 53 and 54 and the protection member 61, which are respectively placed, are joined using friction stir welding as shown in FIG. May be integrated). In this case, workability at the time of setting a pair of clamping members 53 and 54 and protection member 61 can be improved.

また、このような製法に代えて、図13に示す回転電機用構造支持体の製造方法を適用することもできる。つまり、配置工程では、図13に示すように、断面がコの字状の接合補助部材56を配置する。この接合補助部材56は、図9、図11に示した一対の挟持部材53、54の機能を有する一対の挟持部56b、56cと、図10、図11に示した保護部材55、61の機能を有する保護部56aと、を備えている。   Moreover, it can replace with such a manufacturing method and can also apply the manufacturing method of the structure support body for rotary electric machines shown in FIG. That is, in the arranging step, as shown in FIG. 13, the joining auxiliary member 56 having a U-shaped cross section is arranged. This joining auxiliary member 56 has a pair of sandwiching portions 56b and 56c having the functions of the pair of sandwiching members 53 and 54 shown in FIGS. 9 and 11, and the functions of the protection members 55 and 61 shown in FIGS. And a protective part 56a.

図13に示すように、一対の挟持部56b、56cは、端部31a、32aどうしを接触させた第1の被接合部材32と第2の被接合部材31との境界部分25を、第1及び第2の外形面F1、F2それぞれの側面側に位置する第3及び第4の外形面F3、F4側から挟持する。一方、保護部56aは、境界部分25の第1又は第2の外形面F1、F2上に載置される。すなわち、接合補助部材56は、図9、図11に示した一対の挟持部材53、54と図10、図11に示した保護部材55(又は61)とを一体化した構造を有する。   As shown in FIG. 13, the pair of sandwiching portions 56b and 56c has a boundary portion 25 between the first member to be joined 32 and the second member to be joined 31 in which the end portions 31a and 32a are in contact with each other. And the third and fourth outer surfaces F3 and F4 located on the side surfaces of the second outer surfaces F1 and F2, respectively. On the other hand, the protection part 56a is placed on the first or second outer surface F1, F2 of the boundary portion 25. That is, the joining auxiliary member 56 has a structure in which the pair of clamping members 53 and 54 shown in FIGS. 9 and 11 and the protective member 55 (or 61) shown in FIGS. 10 and 11 are integrated.

このような接合補助部材56を配置した後、少なくとも第1の接合工程を実施する場合には、第1の外形面F1側から、接合補助部材56の一方の挟持部56bへ貫入させた回転駆動するツール30を、境界部分25の界面25aに沿って前記保護部56a上及び他方の挟持部56c上へと順次スライド(移動)させる。なお、第2の接合工程を実施する場合には、図10に示した例えば保護部材55を第2の外形面F2上に配置した後、ツール30を用いた摩擦攪拌接合を行うようにしてもよい。   After such a joining auxiliary member 56 is arranged, at least when the first joining step is performed, the rotational drive is made to penetrate from the first outer surface F1 side into one clamping portion 56b of the joining auxiliary member 56. The tool 30 to be moved is sequentially slid (moved) along the interface 25a of the boundary portion 25 onto the protection portion 56a and onto the other clamping portion 56c. In the case of performing the second joining step, for example, the protective member 55 shown in FIG. 10 is disposed on the second outer surface F2, and then the friction stir welding using the tool 30 is performed. Good.

既述したように、図13に示した回転電機用構造支持体の製造方法によれば、ツール30の突起部(貫入部)30bによる接合痕が、境界部分25に残ることなどを抑制できることに加え、第2の被接合部材31からの板材20aの分散などを防止でき、しかも、ツール30のショルダ部30aとの摺動が原因となる凹みの発生を抑えることができる。また、第2の被接合部材31に座屈などが生じることを抑制できる。さらに、図13に示した回転電機用構造支持体の製造方法によれば、保護部と一対の挟持部とを一体化させた接合補助部材56を用いることで、当該接合補助部材56をセットする際の作業性を向上させることができる。   As described above, according to the method of manufacturing the rotating electrical machine structure support shown in FIG. 13, it is possible to prevent the joining traces due to the protrusions (penetrating portions) 30 b of the tool 30 from remaining on the boundary portion 25. In addition, the dispersion of the plate material 20a from the second member to be joined 31 can be prevented, and the occurrence of a dent caused by the sliding of the tool 30 with the shoulder portion 30a can be suppressed. Further, it is possible to suppress the occurrence of buckling or the like in the second bonded member 31. Furthermore, according to the method for manufacturing the structural support for a rotating electrical machine shown in FIG. 13, the joining assisting member 56 is set by using the joining assisting member 56 in which the protection part and the pair of sandwiching parts are integrated. The workability at the time can be improved.

さらに、このような製法に代えて、図14に示す回転電機用構造支持体の製造方法を適用することも可能である。すなわち、図14に示すように、第1の被接合部材32に代えて、第1の被接合部材72を用意する。第1の被接合部材72の端部72cは、断面がコの字状に形成されており、第2の被接合部材31の端部31aを第1及び第2の外形面F1、F2側から挟持するための一対の第2の挟持部72a、72bを有している。   Furthermore, instead of such a manufacturing method, it is also possible to apply a method for manufacturing a rotating electrical machine structural support shown in FIG. That is, as shown in FIG. 14, a first member to be joined 72 is prepared in place of the first member to be joined 32. The end portion 72c of the first member to be bonded 72 has a U-shaped cross section, and the end portion 31a of the second member to be bonded 31 is viewed from the first and second outer surfaces F1 and F2 side. It has a pair of 2nd clamping parts 72a and 72b for clamping.

さらに、配置工程では、図14に示すように、第1の被接合部材72における一対の第2の挟持部72a、72bで第2の被接合部材31の端部を挟持させるように、第1及び第2の被接合部材72、31をそれぞれ配置する。また、図14に示すように、第1及び第2の接合工程では、第1又は第2の外形面F1、F2側から一方の第2の挟持部72a(又は72b)へ貫入させた回転駆動するツール30を、当該一方の第2の挟持部72a(又は72b)上でスライド(移動)させる。   Further, in the arranging step, as shown in FIG. 14, the first end portion of the second member to be joined 31 is sandwiched between the pair of second sandwiching portions 72 a and 72 b in the first member to be joined 72. And the 2nd to-be-joined members 72 and 31 are arrange | positioned, respectively. Further, as shown in FIG. 14, in the first and second joining steps, the rotational drive is made to penetrate from the first or second outer surface F1 or F2 side to one second holding portion 72a (or 72b). The tool 30 to be slid is slid (moved) on the one second holding portion 72a (or 72b).

したがって、この製法によれば、第2の被接合部材31から板材20aがばらけることなどを抑制できると共に、ツール30のショルダ部30aとの摺動が原因となる凹みの発生を抑えることができる。さらに、第2の被接合部材(積層体)31に座屈などが発生することを抑制できる。   Therefore, according to this manufacturing method, it can suppress that the board | plate material 20a disperses from the 2nd to-be-joined member 31, and generation | occurrence | production of the dent resulting from sliding with the shoulder part 30a of the tool 30 can be suppressed. . Furthermore, it is possible to suppress the occurrence of buckling or the like in the second member to be joined (laminated body) 31.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

7…回転子コイル、10…回転電機、20a…板材、25…境界部分、25a…界面、30…ツール、30a…ショルダ部、30b…突起部、30c,30d…被接合部分、30e…接合箇所、31…第2の被接合部材、31a…第2の被接合部材の端部、32、72…第1の被接合部材、32a,72c…第1の被接合部材の端部、39…冷媒の流路、33…粉末供給装置、34…粉末、38…加工盤、51…シールドガス供給装置、52…シールドガス、53,54…挟持部材、55,61…保護部材、56…接合補助部材、56a…保護部、56b,56c…挟持部、72a,72b…第2の挟持部、F1…第1の外形面、F2…第2の外形面、F3…第3の外形面、F4…第4の外形面。   DESCRIPTION OF SYMBOLS 7 ... Rotor coil, 10 ... Rotary electric machine, 20a ... Plate material, 25 ... Boundary part, 25a ... Interface, 30 ... Tool, 30a ... Shoulder part, 30b ... Projection part, 30c, 30d ... Joined part, 30e ... Joining location , 31 ... second joined member, 31a ... end of second joined member, 32, 72 ... first joined member, 32a, 72c ... end of first joined member, 39 ... refrigerant , 33 ... powder supply device, 34 ... powder, 38 ... processing board, 51 ... shield gas supply device, 52 ... shield gas, 53, 54 ... clamping member, 55, 61 ... protective member, 56 ... joining auxiliary member , 56a ... protection part, 56b, 56c ... clamping part, 72a, 72b ... second clamping part, F1 ... first outer surface, F2 ... second outer surface, F3 ... third outer surface, F4 ... first 4 external surface.

Claims (15)

第1の被接合部材と複数の板材が積層一体化された第2の被接合部材とを、互いの端部どうしが接触する位置にそれぞれ配置する配置工程と、
前記端部どうしを接触させた前記第1の被接合部材と前記第2の被接合部材との境界部分へ、当該境界部分の第1の外形面側から貫入させた回転駆動するツールを、前記境界部分の界面に沿ってスライドさせる第1の接合工程と、
前記第1の外形面の背面側に位置する前記境界部分の第2の外形面側から、当該境界部分へ貫入させた前記回転駆動するツールを、前記界面に沿ってスライドさせることによって、前記第1及び第2の被接合部材が互いに接合された回転電機用構造支持体を得る第2の接合工程と、
を有する回転電機用構造支持体の製造方法。
An arrangement step of arranging the first member to be joined and the second member to be joined, in which the plurality of plate members are laminated and integrated, at positions where the end portions contact each other;
A rotationally driven tool that penetrates from the first outer surface side of the boundary portion into the boundary portion between the first member to be bonded and the second member to be bonded that are in contact with each other, A first joining step for sliding along the interface of the boundary portion;
By sliding the rotationally driven tool penetrating into the boundary portion from the second outer surface side of the boundary portion located on the back side of the first outer surface along the interface, the first portion A second joining step of obtaining a rotating electrical machine structural support in which the first and second members to be joined are joined together;
The manufacturing method of the structure support body for rotary electric machines which has this.
前記第1及び第2の接合工程は、前記回転駆動するツールをスライドさせる移動経路上に、前記第1又は第2の被接合部材の材料と同じ材料を供給しながら実施される、
請求項1に記載の回転電機用構造支持体の製造方法。
The first and second joining steps are performed while supplying the same material as the material of the first or second member to be joined on a moving path for sliding the rotationally driven tool.
The manufacturing method of the structure support body for rotary electric machines of Claim 1.
前記配置工程並びに前記第1及び第2の接合工程を実施することによって、前記第2の被接合部材の両端部に一対の前記第1の被接合部材の一端部をそれぞれ接合する、
請求項1又は2に記載の回転電機用構造支持体の製造方法。
By carrying out the arranging step and the first and second joining steps, one end of the pair of first joined members is joined to both ends of the second joined member, respectively.
The manufacturing method of the structure support body for rotary electric machines of Claim 1 or 2.
前記第1及び第2の接合工程は、前記第1の被接合部材と前記第2の被接合部材との間における少なくとも前記境界部分を冷却しながら実施される、
請求項1ないし3のいずれか1項に記載の回転電機用構造支持体の製造方法。
The first and second joining steps are performed while cooling at least the boundary portion between the first joined member and the second joined member.
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 3.
前記境界部分の冷却は、シールドガスを供給すること、又は冷媒が内部を通過する冷却用部材を前記第1及び第2の被接合部材に接触させること、によって行われる、
請求項4に記載の回転電機用構造支持体の製造方法。
Cooling of the boundary portion is performed by supplying a shielding gas or bringing a cooling member through which a refrigerant passes through the first and second members to be joined into contact with each other.
The manufacturing method of the structure support body for rotary electric machines of Claim 4.
前記配置工程で直接接触させる前記第1の被接合部材と前記第2の被接合部材とのそれぞれの端面全体は、いずれも平坦な面で形成されている、
請求項1に記載の回転電機用構造支持体の製造方法。
The entire end surfaces of the first and second members to be directly contacted in the arrangement step are each formed as a flat surface.
The manufacturing method of the structure support body for rotary electric machines of Claim 1.
前記配置工程では、前記端部どうしを接触させた前記第1の被接合部材と前記第2の被接合部材との境界部分を、前記第1及び第2の外形面それぞれの側面側に位置する第3及び第4の外形面側から、挟持するように一対の挟持部材をさらに配置し、
前記第1及び第2の接合工程では、前記第1又は第2の外形面側から一方の前記挟持部材へ貫入させた前記回転駆動するツールを、前記境界部分の界面に沿って他方の前記挟持部材上へとスライドさせる、
請求項1ないし6のいずれか1項に記載の回転電機用構造支持体の製造方法。
In the arrangement step, a boundary portion between the first member to be joined and the second member to be joined, in which the ends are brought into contact with each other, is positioned on a side surface side of each of the first and second outer surfaces. A pair of clamping members are further arranged so as to be clamped from the third and fourth outer surface sides,
In the first and second joining steps, the tool to be driven to rotate, which is inserted into one of the clamping members from the first or second outer surface side, is clamped along the interface of the boundary portion. Slide onto the part,
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 6.
前記配置工程では、前記端部どうしを接触させた前記第1の被接合部材と前記第2の被接合部材との境界部分の前記第1又は第2の外形面上に保護部材をさらに配置し、
前記第1及び第2の接合工程では、前記第1又は第2の外形面側から、前記保護部材越しに前記境界部分へ貫入させた前記回転駆動するツールを、前記界面に沿ってスライドさせる、
請求項1ないし6のいずれか1項に記載の回転電機用構造支持体の製造方法。
In the arranging step, a protective member is further arranged on the first or second outer surface of the boundary portion between the first member to be joined and the second member to be joined, which are brought into contact with each other. ,
In the first and second joining steps, the rotationally driven tool that has penetrated the boundary portion through the protective member from the first or second outer surface side is slid along the interface.
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 6.
前記配置工程では、前記端部どうしを接触させた前記第1の被接合部材と前記第2の被接合部材との境界部分を、前記第1及び第2の外形面それぞれの側面側に位置する第3及び第4の外形面側から、挟持するように一対の挟持部材を配置すると共に、前記一対の挟持部材上及び前記第1の被接合部材と前記第2の被接合部材との境界部分の前記第1又は第2の外形面上に保護部材をさらに配置し、
前記第1及び第2の接合工程では、前記第1又は第2の外形面側から、前記保護部材越しに一方の前記挟持部材側へ貫入させた前記回転駆動するツールを、前記境界部分の界面に沿って他方の前記挟持部材側へとスライドさせる、
請求項1ないし6のいずれか1項に記載の回転電機用構造支持体の製造方法。
In the arrangement step, a boundary portion between the first member to be joined and the second member to be joined, in which the ends are brought into contact with each other, is positioned on a side surface side of each of the first and second outer surfaces. A pair of clamping members are arranged so as to be clamped from the third and fourth outer surface sides, and a boundary portion on the pair of clamping members and between the first and second bonded members. A protective member is further arranged on the first or second outer surface of
In the first and second joining steps, the rotationally driven tool penetrated from the first or second outer surface side to the one clamping member side through the protective member is connected to the interface of the boundary portion. Slid along the other clamping member side,
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 6.
前記配置工程では、それぞれ配置された前記一対の挟持部材と前記保護部材とを摩擦攪拌接合を用いて一体化する、
請求項9に記載の回転電機用構造支持体の製造方法。
In the arrangement step, the pair of sandwiching members and the protection member that are arranged are integrated using friction stir welding,
The manufacturing method of the structure support body for rotary electric machines of Claim 9.
前記配置工程では、前記端部どうしを接触させた前記第1の被接合部材と前記第2の被接合部材との境界部分を、前記第1及び第2の外形面それぞれの側面側に位置する第3及び第4の外形面側から挟持する一対の挟持部と、前記境界部分の前記第1又は第2の外形面上に載置される保護部と、を備えた接合補助部材をさらに配置し、
少なくとも前記第1の接合工程では、前記第1の外形面側から、前記接合補助部材の一方の前記挟持部へ貫入させた前記回転駆動するツールを、前記境界部分の界面に沿って前記保護部上及び他方の前記挟持部上へと順次スライドさせる、
請求項1ないし6のいずれか1項に記載の回転電機用構造支持体の製造方法。
In the arrangement step, a boundary portion between the first member to be joined and the second member to be joined, in which the ends are brought into contact with each other, is positioned on a side surface side of each of the first and second outer surfaces. A joining auxiliary member further comprising: a pair of clamping parts that are clamped from the third and fourth outer surface sides; and a protection part that is placed on the first or second outer surface of the boundary portion. And
At least in the first joining step, the protector is provided along the interface of the boundary portion with the rotationally driven tool penetrating from the first outer surface side into one of the clamping parts of the joining auxiliary member. Slide sequentially on the upper and other clamping parts,
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 6.
前記第1の被接合部材の端部は、前記第2の被接合部材の端部を前記第1及び第2の外形面側から挟持するための一対の第2の挟持部を有しており、
前記配置工程では、前記第1の被接合部材における前記一対の第2の挟持部で前記第2の被接合部材の端部を挟持させるように、前記第1及び第2の被接合部材をそれぞれ配置し、
前記第1及び第2の接合工程では、前記第1又は第2の外形面側から一方の前記第2の挟持部へ貫入させた前記回転駆動するツールを、当該一方の第2の挟持部上でスライドさせる、
請求項1ないし5のいずれか1項に記載の回転電機用構造支持体の製造方法。
The end portion of the first member to be bonded has a pair of second holding portions for holding the end portion of the second member to be bonded from the first and second outer surface sides. ,
In the arranging step, the first and second members to be joined are respectively sandwiched between the pair of second sandwiching portions of the first member to be joined so as to sandwich the end portions of the second member to be joined. Place and
In the first and second joining steps, the rotationally driven tool penetrated from the first or second outer surface side into one of the second clamping parts is placed on the one second clamping part. Slide with
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 5.
前記第1及び第2の被接合部材の材料は、銅又は銅合金である、
請求項1ないし12のいずれか1項に記載の回転電機用構造支持体の製造方法。
The material of the first and second members to be joined is copper or a copper alloy.
The manufacturing method of the structure support body for rotary electric machines of any one of Claim 1 thru | or 12.
製造対象の回転電機用構造支持体は、回転電機の回転子側に配置される、
請求項1ないし13のいずれか1項に記載の回転電機用構造支持体の製造方法。
The structural support for a rotating electrical machine to be manufactured is disposed on the rotor side of the rotating electrical machine,
The manufacturing method of the structure support body for rotary electric machines of any one of Claims 1 thru | or 13.
請求項1ないし14のいずれか1項に記載の回転子コイルの製造方法によって製造された回転電機用構造支持体を備える回転電機。   A rotating electrical machine comprising the structural support for a rotating electrical machine manufactured by the method for manufacturing a rotor coil according to any one of claims 1 to 14.
JP2014247237A 2014-12-05 2014-12-05 Method for manufacturing rotary electrical machine structure support, and rotary electrical machine Pending JP2016107302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247237A JP2016107302A (en) 2014-12-05 2014-12-05 Method for manufacturing rotary electrical machine structure support, and rotary electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247237A JP2016107302A (en) 2014-12-05 2014-12-05 Method for manufacturing rotary electrical machine structure support, and rotary electrical machine

Publications (1)

Publication Number Publication Date
JP2016107302A true JP2016107302A (en) 2016-06-20

Family

ID=56121437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247237A Pending JP2016107302A (en) 2014-12-05 2014-12-05 Method for manufacturing rotary electrical machine structure support, and rotary electrical machine

Country Status (1)

Country Link
JP (1) JP2016107302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018086674A (en) * 2016-11-29 2018-06-07 日本軽金属株式会社 Junction method
JP2018086673A (en) * 2016-11-29 2018-06-07 日本軽金属株式会社 Junction method
CN109128484A (en) * 2018-09-10 2019-01-04 西安交通大学 A kind of agitating friction is welded the standby steel formula aluminium that covers and is flexible coupling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018086674A (en) * 2016-11-29 2018-06-07 日本軽金属株式会社 Junction method
JP2018086673A (en) * 2016-11-29 2018-06-07 日本軽金属株式会社 Junction method
CN109128484A (en) * 2018-09-10 2019-01-04 西安交通大学 A kind of agitating friction is welded the standby steel formula aluminium that covers and is flexible coupling method

Similar Documents

Publication Publication Date Title
JP6479491B2 (en) Rotor coil manufacturing method and rotating electric machine
JP2017077565A (en) Method for manufacturing structure support for rotary electric machine, and rotary electric machine
TWI601360B (en) Rotating electrical machine and method for making the same
JP2016107302A (en) Method for manufacturing rotary electrical machine structure support, and rotary electrical machine
JP2012191789A (en) Squirrel-cage rotor for induction motor with end ring and bar brazed together and method for manufacturing the same
JP2017108578A (en) Stator laminated iron core and manufacturing method of the same
JP5613357B1 (en) Press-fit joining device
KR101384408B1 (en) Method for welding aluminum member using friction stir welding technology
JP6394398B2 (en) Member peeling apparatus and member peeling method
JP2013200487A (en) Galvano scanner and laser processing apparatus
KR20150056718A (en) Device and method for friction stir welding
JP2013126311A (en) Rotary electric machine
JP5664357B2 (en) Conductor pattern member for power module substrates
JP2018098968A (en) Rotary electric machine rotor and manufacturing method thereof
JP2015015796A (en) Method of manufacturing lamination iron core
JP2015084312A (en) Rotor core heating apparatus and rotor core shrink fit method
JP6036735B2 (en) Joining method
JP6056786B2 (en) Joining method
JP2012210070A (en) Rotor of motor and method for manufacturing the same
JP5664254B2 (en) Manufacturing method of power module substrate and brazing material foil joining apparatus
JP4305247B2 (en) Stator manufacturing method
JP6898886B2 (en) Rotating machine and stator damping structure
JP5988951B2 (en) Permanent magnet type rotating electrical machine and method for manufacturing permanent magnet type rotating electrical machine
JP2007185042A (en) Linear motor and its manufacturing method, and stage device using this linear motor
JP6487623B2 (en) Joining method