JP2016102722A - Novel testing method for optical safety - Google Patents

Novel testing method for optical safety Download PDF

Info

Publication number
JP2016102722A
JP2016102722A JP2014241412A JP2014241412A JP2016102722A JP 2016102722 A JP2016102722 A JP 2016102722A JP 2014241412 A JP2014241412 A JP 2014241412A JP 2014241412 A JP2014241412 A JP 2014241412A JP 2016102722 A JP2016102722 A JP 2016102722A
Authority
JP
Japan
Prior art keywords
test
phototoxicity
substance
evaluation
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014241412A
Other languages
Japanese (ja)
Inventor
正博 武吉
Masahiro Takeyoshi
正博 武吉
洋祐 前田
Yosuke Maeda
洋祐 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemicals Evaluation & Res Inst Japan
Chemicals Evaluation and Research Institute
Original Assignee
Chemicals Evaluation & Res Inst Japan
Chemicals Evaluation and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemicals Evaluation & Res Inst Japan, Chemicals Evaluation and Research Institute filed Critical Chemicals Evaluation & Res Inst Japan
Priority to JP2014241412A priority Critical patent/JP2016102722A/en
Publication of JP2016102722A publication Critical patent/JP2016102722A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a systematic and reliable optical safety testing method.SOLUTION: By an optical safety testing method, (1) the UV absorption spectrum of a tested material is measured to determine whether or not tests for optical toxicity and optical allergy induction need to be conducted; (2) in skin sensitivity evaluation, the concentration of the tested material which manifests three times as keen skin sensitivity in a group of tested materials as in a control group of tested materials is calculated; (3) in optical toxicity evaluation (3-i) optical toxicity is tested at the concentration of the tested material calculated as stated in (2) above by two different UV irradiation methods including an optical hapten type method and a prohapten type method to select the more sensitive of the two methods and (3-ii) by the selected UV irradiation method, optical toxicity of the tested material is evaluated to determine the maximum concentration at which neither skin sensitivity nor optical toxicity occurs; and (4) in optical allergy evaluation, by the UV irradiation method selected as stated in (3-i) above is used to evaluate the optical allergy inducing performance of the tested material at the concentration determined as stated in (3-ii) above.SELECTED DRAWING: Figure 1

Description

本発明は、体系的な光安全性試験法に関する。   The present invention relates to a systematic photosafety test method.

医薬品の開発において実施される毒性試験の一つに、光毒性試験がある。この具体的試験方法については、例えば、非特許文献1には、標準的な光毒性試験の試験方法の指標が記載されている。   One of the toxicity tests conducted in the development of pharmaceuticals is a phototoxicity test. Regarding this specific test method, for example, Non-Patent Document 1 describes an index of a test method for a standard phototoxicity test.

そして、2014年には非特許文献2において、医薬品の光安全性評価ガイドラインについての以下の問題点及び提言が通知されている。
これによれば、第一に、化学的試験法を用いた光反応性試験においては、ROS(reactive oxygen species)アッセイが代表的試験方法として挙げられる。しかし、当該試験は、in vivoにおける直接的な光毒性物質を予見する上での感度が高いことが示されているが、一方で、偽陽性結果の割合が高いことから、特異度は低い。また、陽性結果となったものは、追加的評価を考慮すべき旨が指摘されている。
次に、in vitro試験法を用いた光毒性試験において代表的な3T3ニュートラルレッド毒性試験(3T3 NRU PT)は、水溶性物質に関しては現在最も適切なin vitroスクリーニング手法であるとされている。しかし、当該試験において陽性結果が得られた場合は、臨床的な光毒性を必ずしも示唆するものではないが、追加的評価を考慮すべきとしている。
第三に、ヒト皮膚の再構築モデルによる手法については、ヒト皮膚よりも感受性が低いことが指摘された。したがって、使用する試験法の感度の理解と妥当かつ可能な試験法の条件を適宜調整する必要があるといえる。
第四には、全身適用薬のin vivo光安全性試験においては、様々な動物種で実施されているが、未だ標準的試験デザインは確立されていない。さらにまた、経皮適用薬のin vivo光安全性試験において、経皮投与の医薬品の接触光アレルギー・急性光毒性(光刺激性)試験法の正式なバリデーションは行われておらず、当該試験で観察される急性光刺激はヒトにも関係すると考えられているが、ヒトの光アレルギー性試験の予測性は不明であるとされ、未だ一般的に推奨されない方法といえる。
In 2014, Non-Patent Document 2 is informed of the following problems and recommendations regarding photosafety evaluation guidelines for pharmaceuticals.
According to this, first, in a photoreactivity test using a chemical test method, a ROS (reactive oxygen species) assay is cited as a representative test method. However, the test has been shown to be highly sensitive in predicting direct phototoxic substances in vivo, while the specificity is low due to the high rate of false positive results. In addition, it has been pointed out that additional evaluation should be considered for positive results.
Next, the 3T3 neutral red toxicity test (3T3 NRU PT), which is a representative phototoxicity test using an in vitro test method, is considered to be the most appropriate in vitro screening method for water-soluble substances. However, if a positive result is obtained in the test, it does not necessarily indicate clinical phototoxicity, but additional evaluation should be considered.
Thirdly, it was pointed out that the method based on the human skin reconstruction model is less sensitive than human skin. Therefore, it can be said that it is necessary to appropriately understand the sensitivity of the test method used and the appropriate and possible test method conditions.
Fourth, in vivo photosafety testing of systemic drugs has been performed in various animal species, but a standard test design has not yet been established. Furthermore, in the in vivo photosafety test of drugs for transdermal application, there is no formal validation of contact photoallergy / acute phototoxicity (photostimulation) test methods for drugs for transdermal administration. Although the observed acute light stimulation is considered to be related to humans, the predictability of human photoallergic tests is unknown, and it can be said that the method is not yet generally recommended.

「医薬品の製造(輸入)承認申請に必要な毒性試験のガイドラインについて」(平成元年9月11日、薬審一第24号、各都道府県衛生主管部(局)長あて厚生省薬務局審査第一・審査第二・生物製剤課長連名通知)"Guidelines for toxicity tests required for application for approval of manufacture (import) of pharmaceutical products" (September 11, 1989, Pharmaceutical Examination No. 24, Examined by the Pharmaceutical Affairs Bureau of the Ministry of Health and Welfare 1st, 2nd review, Biopharmaceutical department manager's joint name notice) 「医薬品の光安全性評価ガイドラインについて」(平成26年5月21日、薬食審査発0521第1号、各都道府県衛生主管部(局)長あて厚生労働省医薬食品局審査管理課長通知)“About Photosafety Evaluation Guidelines for Pharmaceuticals” (May 21, 2014, Meal Eating Review No. 0521 No. 1, Notification to the Director of the Department of Health and Safety, Ministry of Health, Labor and Welfare)

上述のように、光安全性評価の方法は、画一化されておらず、追加的評価等が必要な場合、その判断は、現状では薬剤開発者に委ねられているといえるため、技術的にも実施者間のばらつきを無くすためにも、信頼性ある体系的な評価方法がまさに必要といえる。
さらに、従来の光安全性試験法は、上記に指摘されるとおり、予測性、確実性の他に、試験あたりの費用や時間がかかり、さらに、臨床試験において光毒性が発現すると医薬品の開発方針を変更せざるを得なくなり、さらにコストがかかるという、問題があった。
さらにまた、動物愛護の観点からも、代替法の利用、使用動物数の削減及び苦痛の削減の原則に従って、使用動物数を削減するため、(なお、これまでモルモット試験が一般的に用いられていたがこれを含め、)さらなる信頼性のある効果的な体系的試験法の開発が望まれる。
As described above, the photosafety evaluation method is not standardized, and when additional evaluation is necessary, it can be said that the decision is currently left to the drug developer. In addition, a reliable systematic evaluation method is absolutely necessary in order to eliminate variations among implementers.
Furthermore, as pointed out above, conventional photosafety testing methods are costly and time consuming per test, in addition to predictability and certainty. There was a problem that it was forced to change, and it cost more.
Furthermore, from the viewpoint of animal welfare, in order to reduce the number of animals used in accordance with the principles of using alternative methods, reducing the number of animals used and reducing pain (the guinea pig test has been commonly used so far). The development of a more reliable and effective systematic test method is desired.

上記課題を解決するために、発明者らは鋭意研究を重ね、以下を発明するに至った。
即ち、本発明は、
<1> 下記ステップ(1)〜(4)、
(1)被験物質のUV吸収スペクトル測定を行い、前記被験物質の最大吸収波長におけるモル吸光係数が1000以上の場合に、次のステップ(2)を行うことを決定し、そして、モル吸光係数が1000未満の場合に、UV吸収が無いものとして光毒性及び光アレルギー性陰性と評価することにより、次の(2)以後のステップの光毒性及び光アレルギー性試験の実施の要否を決定するステップ、
(2)皮膚感作性評価において、被験物質試験群が、対照物質試験群に対して3倍の皮膚感作性を示す前記被験物質の濃度の算出を行うステップ、
(3)光毒性評価において、
(3−i)前記ステップ(2)で算出した前記被験物質濃度において、光ハプテン型試験及びプロハプテン型試験の2通りのUV照射方法で光毒性試験を行い、より感作性の高い試験方法を選択するステップ、
(3−ii)前記(3−i)において選択されたいずれか1つの前記UV照射方法において、前記被験物質について光毒性試験を行い、皮膚感作及び光毒性を生じない最高濃度を決定するステップ、
(4)光アレルギー性評価において、前記(3−i)において選択されたUV照射方法を用い、前記(3−ii)において決定された皮膚感作及び光毒性の生じない濃度で、前記被験物質の光アレルギー性を評価するステップ、
からなる、光安全性試験方法。
<2> 前記ステップ(2)における前記皮膚感作性評価が、OECD TG429に準拠したLLNA試験により行われ、被験物質に対する対照物質試験群に対し3倍の増殖刺激係数(SI)値を示す被験物質の濃度(EC3)の算出を行うことを特徴とする、<1>に記載の方法。
<3> 前記ステップ(3)におけるUV照射量が10J/cm乃至20J/cmであることを特徴とする、<1>に記載の方法。
<4> 前記ステップ(3)における前記光毒性評価が、マウスにおける耳介厚さの増加を指標とする、<1>に記載の方法。
<5> 前記ステップ(4)における前記光アレルギー性評価が、OECD TG429に準拠したLLNA試験により行われることを特徴とする、<1>に記載の方法。
<6> 下記ステップ(1)〜(4)、
(1)被験物質のUV吸収スペクトル測定を行い、前記被験物質の最大吸収波長におけるモル吸光係数が1000以上の場合に、次のステップ(2)を行うことを決定し、そして、モル吸光係数が1000未満の場合に、UV吸収が無いものとして光毒性及び光アレルギー性陰性と評価することにより、次の(2)以後のステップの光毒性及び光アレルギー性試験の実施の要否を決定するステップ、
(2)皮膚感作性評価において、被験物質試験群が、対照物質試験群に対して3倍の皮膚感作性を示す前記被験物質の濃度の算出を行うステップ、
(3)光毒性評価において、
(3−i)前記ステップ(2)で算出した前記被験物質濃度において、光ハプテン型試験及びプロハプテン型試験の2通りのUV照射方法で光毒性試験を行い、より感作性の高い試験方法を選択するステップ、
(3−ii)前記(3−i)において選択されたいずれか1つの前記UV照射方法において、前記被験物質について光毒性試験を行い、皮膚感作及び光毒性を生じない最高濃度を決定するステップ、
(4)光アレルギー性評価において、前記(3−i)において選択されたUV照射方法を用い、前記(3−ii)において決定された皮膚感作及び光毒性の生じない濃度で、前記被験物質の光アレルギー性を評価するステップ、
からなる、光安全性試験における光増殖刺激係数(pSI:photo Stimulation Index)比、pSI差、傾き比及び光アレルギーファクター(PAF:Photo Allergy Factor)を用い、光アレルギー性の強度を定量化する方法。
である。
In order to solve the above-mentioned problems, the inventors have conducted extensive research and have invented the following.
That is, the present invention
<1> The following steps (1) to (4),
(1) The UV absorption spectrum of the test substance is measured, and when the molar extinction coefficient at the maximum absorption wavelength of the test substance is 1000 or more, it is determined that the next step (2) is performed, and the molar extinction coefficient is In the case of less than 1000, the phototoxicity and photoallergenicity negative are evaluated as having no UV absorption, thereby determining the necessity of conducting the phototoxicity and photoallergenicity test in the subsequent steps (2) and subsequent steps. ,
(2) In the skin sensitization evaluation, a test substance test group calculates a concentration of the test substance exhibiting a skin sensitization three times that of a control substance test group,
(3) In phototoxicity assessment,
(3-i) At the test substance concentration calculated in the step (2), a phototoxicity test is performed by two UV irradiation methods of a photohapten type test and a prohapten type test, and a test method with higher sensitization is obtained. Step to choose,
(3-ii) A step of performing a phototoxicity test on the test substance in any one of the UV irradiation methods selected in (3-i) and determining a maximum concentration that does not cause skin sensitization and phototoxicity. ,
(4) In the photoallergic evaluation, using the UV irradiation method selected in (3-i) above, the test substance at a concentration at which skin sensitization and phototoxicity determined in (3-ii) do not occur The step of assessing the photoallergenicity of the
A photosafety test method comprising:
<2> The test in which the skin sensitization evaluation in the step (2) is performed by an LLNA test based on OECD TG429, and shows a growth stimulation coefficient (SI) value three times that of the control substance test group for the test substance. The method according to <1>, wherein the concentration of the substance (EC3) is calculated.
<3> The method according to <1>, wherein the UV irradiation amount in the step (3) is 10 J / cm 2 to 20 J / cm 2 .
<4> The method according to <1>, wherein the phototoxicity evaluation in the step (3) uses an increase in auricle thickness in a mouse as an index.
<5> The method according to <1>, wherein the photoallergic evaluation in the step (4) is performed by an LLNA test based on OECD TG429.
<6> The following steps (1) to (4),
(1) The UV absorption spectrum of the test substance is measured, and when the molar extinction coefficient at the maximum absorption wavelength of the test substance is 1000 or more, it is determined that the next step (2) is performed, and the molar extinction coefficient is In the case of less than 1000, the phototoxicity and photoallergenicity negative are evaluated as having no UV absorption, thereby determining the necessity of conducting the phototoxicity and photoallergenicity test in the subsequent steps (2) and subsequent steps. ,
(2) In the skin sensitization evaluation, a test substance test group calculates a concentration of the test substance exhibiting a skin sensitization three times that of a control substance test group,
(3) In phototoxicity assessment,
(3-i) At the test substance concentration calculated in the step (2), a phototoxicity test is performed by two UV irradiation methods of a photohapten type test and a prohapten type test, and a test method with higher sensitization is obtained. Step to choose,
(3-ii) A step of performing a phototoxicity test on the test substance in any one of the UV irradiation methods selected in (3-i) and determining a maximum concentration that does not cause skin sensitization and phototoxicity. ,
(4) In the photoallergic evaluation, using the UV irradiation method selected in (3-i) above, the test substance at a concentration at which skin sensitization and phototoxicity determined in (3-ii) do not occur The step of assessing the photoallergenicity of the
A method for quantifying the intensity of photoallergy using a photo-stimulation index (pSI) ratio, a pSI difference, a slope ratio, and a photoallergy factor (PAF) in a photosafety test .
It is.

用語の説明
本発明における「被験物質」とは、特に限定はなく、医薬、化粧品、生活用品等としての、ヒトその他生物に用いられ、皮膚と接触する可能性のある全ての化学物質が対象となる。
本発明における「皮膚感作性」とは、遅延性過敏反応のひとつであり、化学物質による過剰な免疫反応により皮膚にかぶれが起こる現象をいう。
本発明における「光毒性」とは、一般的には皮膚内に吸収された薬剤が、光エネルギーによって光化学反応を起こし活性化された結果、毒性を獲得して組織を傷害する性質をいう。
本発明における「光アレルギー性」とは、一般的には、皮膚内に吸収された薬剤が、光エネルギーによって光化学反応を起こし、活性化あるいは構造が変化することによって、免疫原性を獲得し光アレルギー反応を引き起こす、あるいは憎悪する性質をいう。
本発明における「光ハプテン型」とは、薬剤の抗原性獲得機構の1つであり、UV照射下で、体内で光分解中間体の高エネルギー活性体が生成され、それがタンパクと結合し完全抗原となり、アレルギー反応を引き起こす機構をいう。
本発明における「プロハプテン型」とは、原因物質の光分解又は光酸化により生成した構造変化物がハプテンとなり、タンパクと相互作用して抗原性を持ち、アレルギー反応を引き起こす機構をいう。
本発明における「ローカルリンフノードアッセイ(Local Lymph Node Assay (LLNA))」とは、OECD TG(経済協力開発機構試験法ガイドライン)429に記載の皮膚感作・局所リンパ節試験をいう。
Explanation of Terms The “test substance” in the present invention is not particularly limited, and includes all chemical substances that are used in humans and other living organisms, such as pharmaceuticals, cosmetics, and daily necessities, and that may come into contact with the skin. Become.
“Skin sensitization” in the present invention is one of delayed hypersensitivity reactions and refers to a phenomenon in which skin irritation occurs due to an excessive immune reaction caused by a chemical substance.
The term “phototoxicity” in the present invention generally refers to the property that a drug absorbed in the skin causes a photochemical reaction by light energy and is activated, thereby acquiring toxicity and injuring the tissue.
The term “photoallergic” in the present invention generally means that a drug absorbed in the skin undergoes a photochemical reaction by light energy and acquires immunogenicity by activation or structural change, thereby obtaining light. A property that causes or hates allergic reactions.
The “photohapten type” in the present invention is one of the mechanisms for acquiring the antigenicity of a drug. Under UV irradiation, a high-energy active form of a photodegradation intermediate is produced in the body, which binds to a protein and is completely A mechanism that becomes an antigen and causes an allergic reaction.
The “prohapten type” in the present invention refers to a mechanism in which a structural change produced by photolysis or photooxidation of a causative substance becomes a hapten, interacts with a protein, has antigenicity, and causes an allergic reaction.
“Local Lymph Node Assay (LLNA)” in the present invention refers to the skin sensitization / local lymph node test described in OECD TG (Guidelines for Test Method for Economic Cooperation and Development) 429.

本発明の光安全性試験法は、下記(1)〜(4)の各ステップを有することを特徴とする。
即ち、
(1)被験物質のUV吸収スペクトル測定(光毒性及び光アレルギー性試験の実施の要否を決定するステップ)、
(2)皮膚感作性評価(対照物質試験群に対して3倍の皮膚感作性を示す被験物質の濃度の算出を行うステップ)、
(3)光毒性評価
(3−i)光ハプテン型試験及びプロハプテン型試験の2通りのUV照射方法で、より感作性の高い試験方法を選択するステップ、
(3−ii)前記(3−i)において選択されたいずれか1つのUV照射方法において、皮膚感作及び光毒性を生じない最高濃度を決定するステップ、
(4)光アレルギー性評価(皮膚感作及び光毒性を生じない濃度で、被験物質の光アレルギー性を評価するステップ)、
のステップからなる。
また、本発明による光安全性試験の概要を、図1のフロー図に示す。
本発明は、体系的に、かつ、効果的に光安全性試験法を行う方法であり、例えば、ローカルリンフノードアッセイ(Local Lymph Node Assay (LLNA))に基づき試験することができる。
The photosafety test method of the present invention has the following steps (1) to (4).
That is,
(1) UV absorption spectrum measurement of the test substance (step for determining whether or not to perform phototoxicity and photoallergic tests),
(2) Skin sensitization evaluation (step of calculating the concentration of a test substance exhibiting three times the skin sensitization relative to the control substance test group),
(3) Phototoxicity evaluation (3-i) A step of selecting a test method with higher sensitization by two UV irradiation methods of a photohapten type test and a prohapten type test,
(3-ii) determining a maximum concentration that does not cause skin sensitization and phototoxicity in any one UV irradiation method selected in (3-i) above;
(4) Photoallergic evaluation (step of evaluating photoallergenicity of the test substance at a concentration that does not cause skin sensitization and phototoxicity),
Consists of steps.
An outline of the photosafety test according to the present invention is shown in the flowchart of FIG.
The present invention is a method for systematically and effectively performing a photosafety test method, and can be tested based on, for example, a local Lymph Node Assay (LLNA).

次に、本発明の方法の各ステップについて述べる。   Next, each step of the method of the present invention will be described.

本発明のステップ(1)は、被験物質のUV吸収スペクトルを測定するステップである。   Step (1) of the present invention is a step of measuring the UV absorption spectrum of the test substance.

(1)被験物質のUV吸収スペクトル測定
UV吸収スペクトルの測定は分光光度計(例えば、島津製作所製)を用い、波長280〜400nmの範囲で測定し、モル吸光係数(ε)を算出する。
(1) Measurement of UV absorption spectrum of test substance A UV absorption spectrum is measured using a spectrophotometer (for example, manufactured by Shimadzu Corporation) in a wavelength range of 280 to 400 nm, and a molar extinction coefficient (ε) is calculated.

測定に使用する溶媒としては、測定波長域においてUV吸収域をもたない乃至少なく測定に支障のない溶媒が用いられ、例えば、エタノール、メタノール、ジメチルホルムアミド等が挙げられるが、これらに限られない。
測定濃度は、被験物質のUV吸収に応じ、また測定装置に用いるセル長さに応じて適宜決定される。測定セルは、通常0.1cm乃至10cmの長さのセルが用いられる。
モル吸光係数εは、下記式(I)により求められる。
ε=A/(c×d) ・・・式(I)
A:吸光度、 c:モル濃度(mol/L)、 d:セル長さ(cm)
As the solvent used for the measurement, a solvent that does not have a UV absorption range in the measurement wavelength range or is less harmful to the measurement is used. Examples thereof include, but are not limited to, ethanol, methanol, dimethylformamide, and the like. .
The measurement concentration is appropriately determined according to the UV absorption of the test substance and according to the cell length used in the measurement apparatus. As the measurement cell, a cell having a length of 0.1 cm to 10 cm is usually used.
The molar extinction coefficient ε is determined by the following formula (I).
ε = A / (c × d) Formula (I)
A: Absorbance, c: Molar concentration (mol / L), d: Cell length (cm)

本発明のステップ(1)によれば、上記εが1000未満でUV吸収なし、1000以上でUV吸収ありと判定する。
UV吸収なしと判定された物質に関しては、光毒性及び光アレルギー性陰性と判定し、ステップ(2)以後の試験は行わない。一方、UV吸収ありと判定された物質に関しては次の評価ステップである皮膚感作性評価を実施することとする。
According to step (1) of the present invention, it is determined that the ε is less than 1000 and there is no UV absorption, and that it is 1000 or more and UV absorption is present.
Substances determined to have no UV absorption are determined to be phototoxic and photoallergic negative, and tests after step (2) are not performed. On the other hand, with respect to a substance determined to have UV absorption, skin sensitization evaluation, which is the next evaluation step, is performed.

本発明のステップ(2)は、皮膚感作性を評価し、陽性と判定されるSI(Stimulation Index)が3を示す用量である被験物質の濃度(EC3)値を算出するステップである。   Step (2) of the present invention is a step of evaluating the skin sensitization and calculating a test substance concentration (EC3) value at a dose of SI (Stimulation Index) determined to be positive 3.

(2)皮膚感作性評価ステップ
皮膚感作性評価における、OECD TG429に準拠したLLNA試験の実施によるEC3の算出について説明する。EC3の値は、次のステップ(3)で用いる被験物質濃度とするものである。
(2) Skin sensitization evaluation step Calculation of EC3 by performing an LLNA test based on OECD TG429 in skin sensitization evaluation will be described. The value of EC3 is the test substance concentration used in the next step (3).

LLNA試験とは、被験物質を経皮適用した後、約1週間後にH標識チミジンを投与して当該H標識チミジンのリンパ節への取り込み量を測定、即ち、リンパ球の増殖を調べる試験方法である。具体的試験はOECD(経済協力開発機構)毒性試験ガイドラインTG429に準拠して行われる。 The LLNA test is a test in which 3 H-labeled thymidine is administered about 1 week after the test substance is applied transdermally, and the amount of 3 H-labeled thymidine taken into the lymph nodes is measured, that is, the proliferation of lymphocytes is examined. Is the method. The specific test is conducted in accordance with OECD (Economic Cooperation and Development Organization) Toxicity Test Guideline TG429.

OECD TG429によれば、使用動物種は、CBA/Ca又はCBA/J系統の未産経で非妊娠の若齢雌マウスを使用する。試験開始時、動物は8〜12週齢で体重のばらつきが最小限のものが用いられる。使用動物数は、用量群あたり最低4匹の動物に加えて、被験物質用溶媒のみを処理した陰性対照群を設ける。   According to OECD TG429, the animal species used are non-pregnant, non-pregnant young female mice of the CBA / Ca or CBA / J strain. At the start of the study, animals are used that are 8-12 weeks old and have minimal body weight variation. As for the number of animals used, in addition to a minimum of 4 animals per dose group, a negative control group treated with only the solvent for the test substance is provided.

なお、被験物質は、適切な溶媒に溶解し、所定の濃度とする。該溶媒としては例えば、N,N−ジメチルホルムアミド(DMF)、70%エタノール及びメチルエチルヘキシル(MEK)、その他、アセトン/オリーブ油(4:1 v/v)、プロピレングリコール等が挙げられるが、これらに限定されない。
被験物質の用量は、例えば、100%、50%、25%、10%、5%、2.5%、1%、0.5%などの一連の濃度から選択される。
The test substance is dissolved in an appropriate solvent to a predetermined concentration. Examples of the solvent include N, N-dimethylformamide (DMF), 70% ethanol and methylethylhexyl (MEK), acetone / olive oil (4: 1 v / v), propylene glycol, and the like. It is not limited.
The dose of the test substance is selected from a series of concentrations such as 100%, 50%, 25%, 10%, 5%, 2.5%, 1%, 0.5%, etc.

試験の実施は、以下の手順によって行われる。
第1日目に、各動物を同定し、体重を記録する。被験物質、溶媒のみの適切な希釈液を25μLずつ、両耳背部に適用開始する。
第2日目及び第3日目に、第1日目に実施した適用手順を繰り返す。
第6日目に、動物の個体毎の体重記録及びリンパ節増殖試験試薬をマウス尾静脈から注射し、5時間後、動物を屠殺し、各耳から耳介リンパ節を採取し耳介に取り込まれた試験試薬の活性を測定する。
The test is performed according to the following procedure.
On the first day, each animal is identified and body weight is recorded. Start applying 25 μL of the appropriate dilution of the test substance and solvent only to the back of both ears.
On the second and third days, the application procedure performed on the first day is repeated.
On the sixth day, individual body weight records and lymph node proliferation test reagents were injected from the tail vein of the mouse, and 5 hours later, the animals were sacrificed, and the auricular lymph nodes were collected from each ear and taken into the auricle. Measure the activity of the test reagent.

上記試験において、リンパ節の増殖を評価する方法として、例えば、試験試薬としてH標識チミジン、その他には、例えば、H標識メチルチミジン、125I標識−ヨードデオキシウリジン等が用いられ得るが、かかる放射性同位元素標識化合物を用いる方法以外でも、被験物質の経皮適用後のリンパ球の増殖を評価する試薬及びそれを用いる方法、例えば、5−ブロモ−2’−デオキシウリジン(BrdU)を用いるELISA方法も例示されるが、これらに限定されず、マウス局所リンパ節増殖試験として評価可能な方法であれば、本発明に用いることができる。 In the above test, as a method for evaluating the proliferation of lymph nodes, for example, 3 H-labeled thymidine as a test reagent, and in addition, for example, 3 H-labeled methylthymidine, 125 I-labeled iododeoxyuridine and the like can be used. In addition to the method using such a radioisotope-labeled compound, a reagent for evaluating the proliferation of lymphocytes after dermal application of a test substance and a method using the same, for example, 5-bromo-2′-deoxyuridine (BrdU) are used. An ELISA method is also exemplified, but not limited thereto, and any method that can be evaluated as a mouse local lymph node proliferation test can be used in the present invention.

このようにして、該ステップ(2)においては、被験物質溶液について、予め決定した複数の試験用量濃度の溶液を試験群とし、被験物質溶液の調製に用いる溶媒(例えば、上記のDMF等)のみを塗布した動物群を対照群とし、試験を行う。被験物質群が対照群に対して3倍の活性を示す被験物質の濃度、即ちEC3を求める。   In this way, in the step (2), with respect to the test substance solution, a solution having a plurality of test dose concentrations determined in advance is used as a test group, and only the solvent (for example, the above-described DMF or the like) used for the preparation of the test substance solution is used. The test is carried out using the group of animals coated with as a control group. Determine the concentration of the test substance in which the test substance group shows three times the activity of the control group, that is, EC3.

EC3の算出方法について、上記試験の結果、皮膚感作性陽性となった物質については、陽性と判定される増殖刺激係数(Stimulation Index(SI))が3を示すと推定される用量である被験物質濃度をEC3とする。
即ち、SIは、下記式(II)により計算される。
SI=m/m・・・式(II)
m:被験物質溶液を投与したマウスの耳介リンパ節におけるH標識メチルチミジン量
:対照物質(溶媒のみ)を投与したマウスの耳介リンパ節におけるH標識メチルチミジン量
算出されたEC3の値、即ち被験物質濃度を、次のステップ(3)の最高濃度に用いることとする。
Regarding a method for calculating EC3, for a substance that is positive for skin sensitization as a result of the above test, a test in which the growth stimulation coefficient (Stimulation Index (SI)) determined to be positive is a dose estimated to be 3. The substance concentration is EC3.
That is, SI is calculated by the following formula (II).
SI = m / m 0 ... Formula (II)
m: test substance solution 3 H-labeled methyl thymidine amount of auricular lymph nodes of mice treated with m 0: control material EC3 calculated 3 H-labeled methyl thymidine amount of auricular lymph nodes of mice administered (solvent only) Is used as the maximum concentration in the next step (3).

なお、被験物質のEC3の既知情報がある場合、当該情報を用いて次の評価ステップである光毒性評価を実施するものとする。   In addition, when there is known information on EC3 of the test substance, phototoxicity evaluation as the next evaluation step is performed using the information.

本発明のステップ(3)は、UV照射により光毒性を評価するステップであり、2段階のステップ(3−i)及び(3−ii)からなり、試験方法及び次のステップ(4)における被験物質の濃度を決定するステップである。   Step (3) of the present invention is a step of evaluating phototoxicity by UV irradiation, and comprises two steps (3-i) and (3-ii). The test method and the test in the next step (4) This is a step of determining the concentration of the substance.

(3)光毒性評価ステップ
(3−i)2通りのUV照射方法で光毒性を評価するステップ
(UV照射方法の選択)
光アレルギーの原因物質には、UV照射下でタンパク質と直接反応する光ハプテンと、光分解又は光酸化により生成した構造変化物が抗原となるプロハプテンの2通りがある。したがって、本発明においては2通りの抗原提示に対応すべく、UV照射方法は、動物に被験物質を塗布してから積算光量、例えば、10J/cmになるように照射する方法(光ハプテン型)と、被験物質を透明なガラスバイアルに入れ被験物質のみ24時間照射してから動物に塗布する方法(プロハプテン型)の2通りの試験を実施するものとする。
(3) Phototoxicity evaluation step (3-i) Step of evaluating phototoxicity by two UV irradiation methods (selection of UV irradiation method)
There are two types of photoallergic substances: a photohapten that reacts directly with protein under UV irradiation, and a prohapten whose structural change produced by photolysis or photooxidation serves as an antigen. Therefore, in the present invention, in order to deal with two types of antigen presentation, the UV irradiation method is a method of irradiating an animal with a test substance and then irradiating it with an integrated light amount, for example, 10 J / cm 2 (light hapten type). ), And a method (prohapten type) in which a test substance is placed in a transparent glass vial and irradiated only on the test substance for 24 hours and then applied to an animal.

(3−i)−1 光ハプテン型試験
光ハプテン型試験は、動物に被験物質を塗布してから積算光量が10J/cmになるようにUV照射する方法である。
光ハプテン型試験における紫外線(UV)照射用光源としては、例えば、光毒性及び光アレルギー性試験の従来法でも繁用され、真皮まで到達するUVA領域(320nm〜400nm)に極大波長を持つBLBランプ(例えば、東芝製FL40S BLB)を、例えば6灯並列で用いる例が挙げられるが、同様の効果を有する装置及び条件であればこれに限定されるものではない。
光照射量(J/cm)は、例えば、時間(分)×光照射強度(mW/cm)×60÷1000という数式により算出される値である。好ましくは、10J/cm乃至20J/cmであり、例えば、10J/cm、20J/cm等の条件で行われ、最も好ましくは、10J/cmである。
(3-i) -1 Optical Hapten Type Test The optical hapten type test is a method in which UV irradiation is performed so that the accumulated light amount becomes 10 J / cm 2 after applying a test substance to an animal.
As a light source for ultraviolet (UV) irradiation in the light hapten type test, for example, a BLB lamp having a maximum wavelength in the UVA region (320 nm to 400 nm) reaching the dermis, which is frequently used in the conventional methods of phototoxicity and photoallergenicity tests. (For example, Toshiba's FL40S BLB) is used, for example, in parallel with 6 lamps. However, the present invention is not limited to this as long as the apparatus and conditions have the same effect.
The light irradiation amount (J / cm 2 ) is a value calculated by, for example, an equation of time (minutes) × light irradiation intensity (mW / cm 2 ) × 60 ÷ 1000. Preferably, a 10J / cm 2 to 20 J / cm 2, for example, carried out in conditions such as 10J / cm 2, 20J / cm 2, most preferably at 10J / cm 2.

(3−i)−2 プロハプテン型試験
プロハプテン型試験においては、被験物質を透明なガラスバイアルに入れ被験物質のみ24時間照射してから動物に塗布する方法を用いるので、上記照射用光源を同様に用いることができる。
(3-i) -2 Prohapten-type test In the prohapten-type test, the test substance is placed in a transparent glass vial and irradiated only for 24 hours before being applied to the animal. Can be used.

動物群その他の基本的取り扱いは、前記ステップ(2)と同様である。そして、目視による一般状態観察、試験開始日と6日目に体重測定、耳介厚さの測定及び耳介リンパ節の重量を測定し判定を行うこととする。
判定方法としては、光ハプテン型試験及びプロハプテン型試験において、UV非照射群に対して耳介厚あるいは耳介リンパ節重量の増加が認められた照射方法を有効照射方法として選択する。いずれの照射方法においても変化がない場合は光ハプテン型を選択することとする。
Animal group and other basic handling is the same as in step (2). Then, the general state observation by visual inspection, the measurement of the body weight, the measurement of the thickness of the auricle, and the weight of the auricular lymph node are measured on the test start date and the sixth day, and the determination is made.
As a determination method, an irradiation method in which an increase in auricle thickness or auricular lymph node weight is observed in the UV non-irradiation group in the light hapten type test and the prohapten type test is selected as an effective irradiation method. If there is no change in any irradiation method, the light hapten type is selected.

(3−ii)選択されたUV照射方法で光毒性評価をするステップ
ここでは次のステップ(4)の試験に用いる被験物質の濃度を決定する。
光毒性の評価及は、皮膚感作性陰性の物質に関しては投与できる最大濃度をもって、また、皮膚感作性陽性の物質に関してはEC3を最高濃度として光毒性評価を行うものとする。
(3-ii) Step of performing phototoxicity evaluation using the selected UV irradiation method Here, the concentration of the test substance used in the test of the next step (4) is determined.
The phototoxicity is evaluated with the maximum concentration that can be administered for substances with negative skin sensitization, and with the highest concentration of EC3 for substances with positive skin sensitization.

前記(3−i)で決定された光ハプテン型試験又はプロハプテン型試験のいずれかの方式で試験を行い、被験物質の試験用量は、(3−i)で行われた濃度より低い濃度で適宜設定される。その他の試験条件は、(3−i)と同様にする。なお、このステップはステップ(3−i)にて、各照射方法で試験用量を複数設定することにより、同時に実施することができる。
そして、目視による一般状態観察、試験開始日と6日目に体重測定、耳介厚さの測定及び耳介リンパ節の重量を測定する。
The test is conducted by either the photohapten type test or the prohapten type test determined in (3-i), and the test substance test dose is appropriately set at a concentration lower than the concentration obtained in (3-i). Is set. Other test conditions are the same as (3-i). This step can be performed simultaneously by setting a plurality of test doses in each irradiation method in step (3-i).
And the general state observation by visual observation, the body weight measurement, the measurement of the thickness of the auricle, and the weight of the auricular lymph node are measured on the test start date and the 6th day.

判定方法としては、体重が試験開始日に対して5%を上回る減少が認められた場合に全身毒性の可能性を有すると判定し、一方、耳介厚さは試験開始日に対して125%を上回る増加が認められた場合に光毒性陽性と判定する基準に基づき行う。そして、両耳の耳介厚さが125%を下回った濃度を光毒性のない最高濃度として、次のステップ(4)で用いる試験濃度を決定するものとする。   As a determination method, it is determined that there is a possibility of systemic toxicity when the body weight is decreased by more than 5% with respect to the test start date, while the thickness of the auricle is 125% with respect to the test start date. This is based on the criteria for determining positive phototoxicity when an increase exceeding 1 is observed. Then, the test concentration used in the next step (4) is determined with the concentration at which the pinna thickness of both ears is less than 125% as the highest concentration without phototoxicity.

本発明のステップ(4)は、皮膚感作及び光毒性の無い濃度での光アレルギー性を評価するステップである。   Step (4) of the present invention is a step for evaluating photoallergenicity at a concentration without skin sensitization and phototoxicity.

(4)光アレルギー性評価ステップ
光アレルギー性の評価は、ステップ(3−ii)で決定した全身毒性及び光毒性のない最高濃度を試験用量として、媒体及び被験物質投与群それぞれUV照射群と照射無しの群を設定し試験を行う。
(4) Photoallergenicity evaluation step Photoallergic evaluation is carried out by using the highest concentration without systemic toxicity and phototoxicity determined in step (3-ii) as the test dose, and irradiation with the UV irradiation group and the test substance administration group, respectively. Set the group without and perform the test.

動物群その他の基本的取り扱いは、前記ステップ(2)と同様である。
UV照射はステップ(3−i)光毒性評価の際に決定した有効照射方法で照射し、その他の試験操作及び条件は、ステップ(2)のTG429に準拠した方法と同様であり、又は、その他のマウス局所リンパ節増殖試験が用いられ得る。
例えば、被験物質群の各個体のトリチウム標識チミジン(H−thymidine)取込量を媒体対照群の平均H−thymidine取込量で除した値を光増殖刺激係数(photo Stimulation Index(pSI))とする。
Animal group and other basic handling is the same as in step (2).
UV irradiation is performed by the effective irradiation method determined in the step (3-i) phototoxicity evaluation, and other test operations and conditions are the same as the method based on TG429 in step (2), or other The mouse local lymph node proliferation test can be used.
For example, tritiated thymidine (3 H-thymidine) Mean 3 H-thymidine uptake by value obtained by dividing the light growth stimulation factor for uptake the vehicle control group of each individual of the test substance group (photo Stimulation Index (pSI) ).

判定方法は、媒体のUV照射有無の群間のH−thymidine取込量に関して有意差検定(p<0.05)を行い、有意差が生じないことを試験成立の条件とする。光アレルギー性評価は被験物質のUV照射有無の群間でpSIの有意差検定(p<0.05)を実施し、有意差が生じた場合に、光アレルギー性陽性とする。
UV照射の試験群に関して複数試験用量を設定することにより、LLNA同様EC3を算出することができる(photo EC3:pEC3)。
In the determination method, a significant difference test (p <0.05) is performed on the amount of 3 H-thymidine incorporation between the groups with and without UV irradiation of the medium, and no significant difference is taken as a condition for the establishment of the test. For photoallergic evaluation, a significant difference test (p <0.05) of pSI is performed between groups with or without UV irradiation of the test substance.
By setting multiple test doses for the UV irradiation test group, EC3 can be calculated as in LLNA (photo EC3: pEC3).

また、各地域の光パッチテストの既知情報がある物質のpSIの比(pSI ratio)を算出し、これを陽性対照とし定量的評価の検討を実施することも可能である。
また、本発明の方法により得られた結果を、さらに次の5つの方法で、定量的評価の検討を実施することも可能である。
(1)光増殖刺激係数比(pSI ratio:pSI比)を算出する。
即ち、[UV(+)]/[UV(−)]の値をpSI比とする。
(2)光増殖刺激係数差(pSIの差)を算出する。
即ち、[UV(+)]−[UV(−)]の値をpSI差とする。
(3)複数用量で試験した場合、pSIと試験用量を用いて1次式から傾きを算出し、[UV(−)]/[UV(+)]間の比を算出する。
(4)以下の式から光アレルギーファクター(Photo Allergy Factor:PAF)を算出する。
(4−i)皮膚感作性陽性の場合
PAF=EC3(ステップ2で算出)/pEC3*1
(4−ii)皮膚感作性陰性の場合
PAF=最大試験濃度/pEC3*1
1:pSIが3を超えずに光アレルギー性陽性と判定された場合は、pSI間に統計的有意差が認められる最大濃度を用いてもよい。
(5)既知光アレルギー性物質のpSI比もしくはPAFと比較する。
例えば副作用として薬剤性光線過敏症が重篤なケトプロフェンなどを用いることができるが、その限りではない。
このように、本発明のpSI比、pSI差、pSI傾き比及びPAFの結果は、種々の既知情報と相関があるため(後述の表9参照)、光アレルギー性の強度を数値として定量評価をすることも可能である。また、既知物質を陽性対照として光アレルギー性の強度を推定することも可能である。
It is also possible to calculate the pSI ratio (pSI ratio) of a substance with known information on the optical patch test in each region, and use this as a positive control to examine quantitative evaluation.
Moreover, it is also possible to examine the quantitative evaluation of the results obtained by the method of the present invention by the following five methods.
(1) The photoproliferation stimulation coefficient ratio (pSI ratio: pSI ratio) is calculated.
That is, the value of [UV (+)] / [UV (−)] is set as the pSI ratio.
(2) Calculate the photoproliferation stimulation coefficient difference (pSI difference).
That is, the value of [UV (+)] − [UV (−)] is defined as the pSI difference.
(3) When testing with multiple doses, calculate the slope from the linear equation using pSI and the test dose, and calculate the ratio between [UV (−)] / [UV (+)].
(4) A photo allergy factor (PAF) is calculated from the following equation.
(4-i) When skin sensitization is positive PAF = EC3 (calculated in step 2) / pEC3 * 1
(4-ii) When skin sensitization is negative PAF = maximum test concentration / pEC3 * 1
* 1: When it is determined that the photoallergenicity is positive without the pSI exceeding 3, the maximum concentration at which a statistically significant difference is observed between the pSIs may be used.
(5) Compare with pSI ratio or PAF of known photoallergic substance.
For example, ketoprofen or the like with severe drug photosensitivity can be used as a side effect, but it is not limited thereto.
Thus, since the results of the pSI ratio, pSI difference, pSI slope ratio and PAF of the present invention are correlated with various known information (see Table 9 to be described later), the photoallergenic intensity is numerically evaluated. It is also possible to do. It is also possible to estimate the photoallergenic intensity using a known substance as a positive control.

本発明と従来のモルモットを用いた光安全性試験の手法の比較を、表1に示す。   Table 1 shows a comparison of photosafety test methods using the present invention and conventional guinea pigs.

表1.本発明による方法と従来法との比較.

Figure 2016102722
注)表中の従来法は以下を参照のこと。
皮膚感作性試験及び光アレルギー性試験:
厚生労働省(1989年)薬審一第二四号 医薬品の製造(輸入)承認申請に必要な毒性試験のガイドラインについて。
モルモットを用いた光毒性試験
鬼頭 暢子, 清岡 昌史, 三善 隆弘, 藤堂 洋三. (2007年) Garenoxacinのモルモットにおける光毒性試験. 日本化学療法学会雑誌. P75−77。 Table 1. Comparison between the method according to the present invention and the conventional method.
Figure 2016102722
Note) Refer to the following for the conventional method in the table.
Skin sensitization test and photoallergy test:
Ministry of Health, Labor and Welfare (1989) Pharmaceutical Examination No. 1-24 Guidelines for toxicity tests required for application for manufacturing (import) approval of pharmaceutical products.
Phototoxicity test using guinea pigs :
Reiko Kito, Masafumi Kiyooka, Takahiro Miyoshi, Yozo Todo. (2007) Phototoxicity test of Garenoxacin in guinea pigs. Journal of the Japanese Society of Chemotherapy. P75-77.

本発明によれば、多くの期間及び費用を必要とするin vivo光安全性試験において、より取り扱いの容易なマウスを、より少ない動物数で実施でき、試験期間も短期間であり、また、試験費用もコストも抑えることができ、効果的に定量的な評価結果を得ることができる(表1参照)。
即ち、本発明の試験結果は、従来の定性的評価のみでなく、定量的評価も可能である利点も有する。
According to the present invention, in an in vivo photosafety test that requires a lot of time and cost, a mouse that can be handled more easily can be performed with a smaller number of animals, and the test period is also short. Costs and costs can be reduced, and quantitative evaluation results can be obtained effectively (see Table 1).
That is, the test result of the present invention has an advantage that not only conventional qualitative evaluation but also quantitative evaluation is possible.

本発明による光安全性試験の概要を示すフロー図である。It is a flowchart which shows the outline | summary of the optical safety test by this invention. 本発明による光安全性試験のステップ(1)で行う、被験物質クロルプロマジン塩酸塩のUV吸収スペクトル図である。It is a UV absorption spectrum figure of the test substance chlorpromazine hydrochloride performed at the step (1) of the photosafety test according to the present invention. 本発明による光安全性試験のステップ(2)で行う、被験物質としてクロルプロマジン塩酸塩を用いた増殖刺激係数(SI)の測定結果を示す図である。It is a figure which shows the measurement result of the growth stimulation coefficient (SI) using the chlorpromazine hydrochloride as a to-be-tested substance performed at step (2) of the photosafety test by this invention. 本発明による光安全性試験のステップ(4)で行う、被験物質としてクロルプロマジン塩酸塩を用いた光増殖刺激係数(pSI)の測定結果を示す図である。It is a figure which shows the measurement result of the photo-proliferation stimulation coefficient (pSI) using the chlorpromazine hydrochloride as a to-be-tested substance performed at step (4) of the photosafety test by this invention.

以下、本発明を実施例に基づき詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

1.実験材料
1.1 使用動物
雌性CBA/Caマウス(日本エスエルシー)の8乃至10週齢を用いた。
1.2 被験物質及び媒体
使用した被験物質を表2に示す。
ステップ(1)のUV吸収スペクトルの測定では、N,N−ジメチルホルムアミド(DMF)(和光純薬工業株式会社製、純度100%)、メタノール(和光純薬工業株式会社製、純度100%)あるいは280〜400nmの波長にUV吸収をもたない溶媒を適宜用いた。
その他のステップの試験ではDMF、70%エタノール及びメチルエチルヘキシル(MEK)(和光純薬工業株式会社製、純度100%)の3種から適宜選択して用いた。
1. Experimental Materials 1.1 Animals Used 8 to 10 weeks old female CBA / Ca mice (Japan SLC) were used.
1.2 Test substances and media Table 2 shows the test substances used.
In the measurement of the UV absorption spectrum in step (1), N, N-dimethylformamide (DMF) (manufactured by Wako Pure Chemical Industries, Ltd., purity 100%), methanol (manufactured by Wako Pure Chemical Industries, Ltd., purity 100%) or A solvent having no UV absorption at a wavelength of 280 to 400 nm was appropriately used.
In the tests of other steps, DMF, 70% ethanol and methyl ethyl hexyl (MEK) (manufactured by Wako Pure Chemical Industries, Ltd., purity 100%) were appropriately selected and used.

表2.被験物質一覧.

Figure 2016102722
Table 2. List of test substances.
Figure 2016102722

(実施例1)
被験物質として、下記クロロプロマジン塩酸塩(以下、CPZとする。)(東京化成工業株式会社製、純度99.5%)を用い、図1の流れに基づき、光安全性試験の各ステップを行った。

Figure 2016102722
Example 1
As a test substance, the following chloropromazine hydrochloride (hereinafter referred to as CPZ) (manufactured by Tokyo Chemical Industry Co., Ltd., purity 99.5%) is used, and each step of the photosafety test is performed based on the flow of FIG. went.
Figure 2016102722

ステップ(1)UV吸収スペクトルの測定
UV吸収スペクトルの測定は、分光光度計(島津製作所製、BioSpec−mini)を用い、被験物質クロルプロマジン塩酸塩をN,N−ジメチルホルムアミド(DMF)に溶解しメタノールに溶解し、0.1mMの濃度とし、分光光度計(島津製作所)を用い、280〜400nmの範囲でUV吸収スペクトルを測定した。UV吸収スペクトルを図2に示す。図2に示すように、CPZは、312nmに吸収極大が認められたので、この312nmにおけるモル吸光係数(ε)を算出した。
CPZのモル吸光係数(ε)は、計算式(I)により、モル吸光係数:4860であった。
したがって、εが1000未満でUV吸収なし、1000以上でUV吸収ありとの判定基準に従い、UV吸収ありと判定したものは次の評価ステップである皮膚感作性評価を実施することとしているため、CPZに関しては次の評価ステップに進むことにした。
Step (1) Measurement of UV absorption spectrum The UV absorption spectrum was measured by dissolving a test substance chlorpromazine hydrochloride in N, N-dimethylformamide (DMF) using a spectrophotometer (manufactured by Shimadzu Corporation, BioSpec-mini). The UV absorption spectrum was measured in the range of 280 to 400 nm using a spectrophotometer (Shimadzu Corporation). The UV absorption spectrum is shown in FIG. As shown in FIG. 2, since CPZ had an absorption maximum at 312 nm, the molar extinction coefficient (ε) at 312 nm was calculated.
The molar extinction coefficient (ε) of CPZ was 4860 according to the calculation formula (I).
Therefore, in accordance with the determination criteria that ε is less than 1000 and there is no UV absorption, and 1000 or more and there is UV absorption, what is determined to be UV absorption is to perform the skin sensitization evaluation which is the next evaluation step. Regarding CPZ, we decided to proceed to the next evaluation step.

ステップ(2)皮膚感作性評価
皮膚感作性評価は、OECD TG429に準拠したLLNAによるEC3の算出を行った。
被験物質CPZは、DMFに溶解し溶液とし、対照物質としてDMFを用いた。
被験物質溶液で以下の各試験用量濃度の溶液を試験群とし、被験物質溶液の調製に用いた溶媒(DMF)のみを塗布した動物群を対照群とし、そして、被験物質群の各個体のトリチウム標識チミジン(H−thymidine)(製造者:Moravek社、販売者:第一クラリティより入手可能)取込量が対照群に対して3倍の活性を示す被験物質の濃度、即ちEC3を算出した。
即ち、被験物質CPZは、皮膚感作性陽性と判定されたので、陽性と判定される増殖刺激係数(Stimulation Index(SI))が3を示すと推定される用量であるEC3を算出し、結果を表3及び図3に示す。これにより、EC3の濃度は、2.4%と算出され、この値を、次のステップ(3)の最高濃度に決定した。
Step (2) Skin sensitization evaluation For skin sensitization evaluation, EC3 was calculated by LLNA based on OECD TG429.
The test substance CPZ was dissolved in DMF to form a solution, and DMF was used as a control substance.
A test substance solution having the following test dose concentrations as a test group, an animal group coated only with the solvent (DMF) used for the preparation of the test substance solution as a control group, and tritium of each individual in the test substance group thymidine (3 H-thymidine) (manufacturer: Moravek Co., seller: first Clarity available from) uptake was calculated concentration of the test substance exhibiting a 3-fold activity relative to the control group, i.e., the EC3 .
That is, since the test substance CPZ was determined to be positive for skin sensitization, EC3, which is a dose estimated that the growth stimulation coefficient (Stimulation Index (SI)) determined to be positive, is 3, was calculated. Is shown in Table 3 and FIG. Thereby, the concentration of EC3 was calculated to be 2.4%, and this value was determined as the maximum concentration in the next step (3).

表3.クロルプロマジン塩酸塩(CPZ)のLLNA結果まとめ.

Figure 2016102722
DPM:Disintegration per minute(壊変毎分)
SI:Stimulation Index(増殖刺激係数)
EC3:被験物質溶液の調製に用いる溶媒のみを塗布した動物群を対照群とし、対照群に対して3倍の活性を示す被験物質の濃度
対照群:被験物質溶液の調製に用いた溶媒であるN,N−ジメチルホルムアミド(DMF)を投与した。 Table 3. Summary of LLNA results for chlorpromazine hydrochloride (CPZ).
Figure 2016102722
DPM: Dissociation per minute
SI: Stimulation Index (proliferation stimulation coefficient)
EC3: A group of animals coated only with the solvent used for the preparation of the test substance solution is used as a control group, and the concentration of the test substance that exhibits three times the activity of the control group. Control group: the solvent used for the preparation of the test substance solution N, N-dimethylformamide (DMF) was administered.

ステップ(3) 光毒性評価
ステップ(3−i)UV照射方法の選択
以下の光ハプテン型試験及びプロハプテン型の試験を実施の2通りを実施した。
(3−i)−1の光ハプテン型試験においては、UV照射方法は、動物に被験物質を塗布してから積算光量が10J/cmになるように照射する方法であり、被験物質を塗布してから30分後にマウスを専用の容器に入れ、厚さ3mmのガラス板でフタをして照射した。塗布及びUV照射の期間は連続して3日間、1日1回塗布及びUVを照射した。塗布開始日、被験物質塗布直前に体重及び耳介厚さを測定した。耳介厚さはマイクロメーター(ミツトヨ、MDC−25MJ)を用いて測定した。被験物質の塗布はマイクロピペットを用い、片耳25μLずつ塗布した。塗布開始から6日目に体重、耳介厚さを測定した後、頚椎脱臼による安楽致死処置後、耳介リンパ節を採取し、秤量した。
なお、紫外線(UV)照射用光源としては、光毒性及び光アレルギー性試験の従来法でも繁用され、真皮まで到達するUVA領域(320nm〜400nm)に極大波長を持つBLBランプ(FL40S BLB,東芝)を6灯並列で用いた。
また、(3−i)−2のプロハプテン型試験は、被験物質を透明なガラスバイアル(スクリュー管ビン、アズワン株式会社製)に入れ被験物質のみ24時間照射してから動物に塗布する方法であり、照射後回収した被験物質を動物の耳介に塗布した。
この時、動物にはUVを照射しなかった。照射以外の操作は光ハプテン型試験と同様にした。
試験期間中、目視による一般状態観察、塗布開始日と6日目に体重測定、耳介厚さの測定及び耳介リンパ節の重量を測定した。その結果を表4に示す。
光毒性の判定方法として、体重は試験開始日に対して5%を上回る減少が認められた場合に全身毒性の可能性を有すると判定し、耳介厚さは試験開始日に対して125%を上回る増加が認められた場合に光毒性陽性と判定する基準に従い、UV照射法の判定方法として、光ハプテン型試験及びプロハプテン型試験において、塗布開始日に対して光毒性陽性あるいは耳介リンパ節重量の増加が認められた照射方法を有効照射方法として選択する基準に従い、CPZについては、耳介厚さのより増加があり光毒性が認められた光ハプテン型の試験方法を選択することとした。
Step (3) Phototoxicity assessment
Step (3-i) Selection of UV Irradiation Method The following two optical hapten type tests and prohapten type tests were carried out.
In the (3-i) -1 optical hapten type test, the UV irradiation method is a method in which the test substance is applied to the animal and then irradiated so that the integrated light amount becomes 10 J / cm 2. Then, 30 minutes after that, the mouse was put in a special container, covered with a 3 mm thick glass plate and irradiated. During the coating and UV irradiation, the coating and UV irradiation were performed once a day for 3 days continuously. Body weight and auricle thickness were measured on the application start date and immediately before application of the test substance. The pinna thickness was measured using a micrometer (Mitutoyo, MDC-25MJ). The test substance was applied using a micropipette and 25 μL per ear. On the 6th day from the start of application, the body weight and the thickness of the auricle were measured, and then the auricular lymph node was collected and weighed after euthanasia by cervical dislocation.
As a light source for ultraviolet (UV) irradiation, a BLB lamp (FL40S BLB, Toshiba) having a maximum wavelength in the UVA region (320 nm to 400 nm) reaching the dermis is also frequently used in conventional methods of phototoxicity and photoallergenicity tests. ) Was used in parallel with 6 lamps.
The (3-i) -2 prohapten type test is a method in which a test substance is placed in a transparent glass vial (screw tube bottle, manufactured by AS ONE Co., Ltd.), irradiated with only the test substance for 24 hours and then applied to an animal. The test substance collected after irradiation was applied to the auricle of the animal.
At this time, the animals were not irradiated with UV. Operations other than irradiation were the same as in the light hapten type test.
During the test period, the general state was visually observed, the body weight was measured on the application start date and the sixth day, the thickness of the auricle was measured, and the weight of the auricular lymph node was measured. The results are shown in Table 4.
As a method for determining phototoxicity, it is determined that there is a possibility of systemic toxicity when the body weight is decreased by more than 5% with respect to the test start date, and the thickness of the auricle is 125% with respect to the test start date. In accordance with the criteria for determining that phototoxicity is positive when an increase in excess of 2 is observed, in the photohapten type test and prohapten type test, phototoxicity positive or auricular lymph node in the photohapten type test and prohapten type test In accordance with the criteria for selecting an irradiation method with an increase in weight as an effective irradiation method, for CPZ, we decided to select a photohapten-type test method in which the pinna thickness was increased and phototoxicity was observed. .

表4.クロルプロマジン塩酸塩(CPZ)の各照射方法における耳介厚さ測定結果.

Figure 2016102722
注)表4中の*: 2.4%を上限として、複数用量で光ハプテン型の両照射方法を検討。2.4%では過剰な刺激が認められたため、ここでは1%の実験結果を示す。 Table 4. Ear thickness measurement results for each irradiation method of chlorpromazine hydrochloride (CPZ).
Figure 2016102722
Note) * in Table 4: Considering both light hapten-type irradiation methods with multiple doses up to 2.4%. Since excessive stimulation was observed at 2.4%, the experimental result of 1% is shown here.

ステップ(3−ii) 光毒性評価
光毒性の評価及は皮膚感作性陰性の物質に関しては投与できる最大濃度、皮膚感作性陽性の物質に関してはEC3を最高濃度として、ステップ(3−i)で選択された試験方法を用い評価を行った。
被験物質CPZの試験用量を表5のように変化させた以外は、ステップ(3−i)の光ハプテン型試験方法と同様にして実施した。なお、このステップはステップ(3−i)にて、各照射方法で試験用量を複数設定することにより、同時に実施することができる。
そして、目視による一般状態観察、塗布開始日と6日目に体重測定、耳介厚さの測定及び耳介リンパ節の重量を測定した。結果を表5に示す。
体重は試験開始日に対して5%を上回る減少が認められた場合に全身毒性の可能性を有すると判定し、耳介厚さは試験開始日に対して125%を上回る増加が認められた場合に光毒性陽性と判定する基準に従い、表5より、両耳の耳介厚さが125%を下回った0.1%の濃度を光毒性のない最高濃度として、次のステップ4で用いる試験濃度と決定した。
Step (3-ii) Evaluation of phototoxicity Phototoxicity is evaluated with respect to a substance that is negative for skin sensitization, with the maximum concentration that can be administered, and for substances that are positive for skin sensitization, EC3 is the maximum concentration, and step (3-i) Evaluation was carried out using the test method selected in.
The test was carried out in the same manner as the photohapten type test method in Step (3-i) except that the test dose of the test substance CPZ was changed as shown in Table 5. This step can be performed simultaneously by setting a plurality of test doses in each irradiation method in step (3-i).
And the general state observation by visual observation, the body weight measurement, the measurement of the thickness of the auricle, and the weight of the auricular lymph node were measured on the application start date and the 6th day. The results are shown in Table 5.
The body weight was judged to be systemic toxicity when a decrease of more than 5% was observed with respect to the test start date, and the thickness of the auricle was increased by more than 125% with respect to the test start date. In accordance with the criteria for determining positive phototoxicity, the test used in the next step 4 is taken from Table 5 as the highest concentration without phototoxicity of 0.1% where the pinna thickness of both ears is less than 125% The concentration was determined.

表5.クロルプロマジン塩酸塩(CPZ)の光ハプテン型光感作後の耳介厚さ測定結果.

Figure 2016102722
Table 5. Ear thickness measurement results after photohapten-type photosensitization of chlorpromazine hydrochloride (CPZ).
Figure 2016102722

ステップ(4) 光アレルギー性評価
光アレルギー性の評価は、ステップ(3−ii)で決定した全身毒性及び光毒性のない最高濃度をCPZ 0.1%及び0.01%を試験用量として媒体及び被験物質投与群それぞれUV照射群と照射無しの群に分けて行った。
UV照射はステップ(3−i)光毒性評価の際に決定した有効照射方法で照射し、その他の試験操作及び条件は、OECD TG429に準拠しステップ(2)と同様に実施した。
被験物質群の各個体のトリチウム標識チミジン(H−thymidine)取込量は、媒体対照群の平均H−thymidine取込量で除した値を光増殖刺激係数(photo Stimulation Index(pSI))として求めた。
なお、他の具体的手技はステップ2に準拠し行った。
媒体のUV照射有無の群間のH−thymidine取込量に関して有意差検定(p<0.05)を行い、有意差が生じないことを試験成立の条件とした。
光アレルギー性評価は被験物質のUV照射有無の群間でpSIの有意差検定(p<0.05)を実施し、有意差が生じた場合光アレルギー性陽性とした。
また、得られたpSIの結果から、光増殖刺激係数比(pSI比)、光増殖刺激係数差(pSI差)、傾き比及び光アレルギーファクター(PAF)を算出した。結果を表6及び図4に示す。
Step (4) Photoallergenicity Evaluation The photoallergic evaluation is carried out by determining the highest concentration free from systemic toxicity and phototoxicity determined in step (3-ii) as CPZ 0.1% and 0.01% as test doses, Each test substance administration group was divided into a UV irradiation group and a non-irradiation group.
UV irradiation was performed by the effective irradiation method determined in the step (3-i) phototoxicity evaluation, and other test operations and conditions were performed in the same manner as in step (2) in accordance with OECD TG429.
The amount of tritium-labeled thymidine ( 3 H-thymidine) uptake of each individual in the test substance group is a value obtained by dividing the value obtained by dividing the average 3 H-thymidine uptake amount of the vehicle control group (photo Stimulation Index (pSI)). As sought.
Other specific procedures were performed in accordance with Step 2.
A significant difference test (p <0.05) was performed on the amount of 3 H-thymidine incorporation between the groups with and without UV irradiation of the medium, and the absence of a significant difference was defined as a condition for establishing the test.
In the photoallergic evaluation, a significant difference test of pSI (p <0.05) was performed between the groups with or without UV irradiation of the test substance.
Moreover, from the obtained pSI results, a photoproliferation stimulation coefficient ratio (pSI ratio), a photoproliferation stimulation coefficient difference (pSI difference), a slope ratio, and a photoallergy factor (PAF) were calculated. The results are shown in Table 6 and FIG.

表6.クロルプロマジン塩酸塩(CPZ)の光アレルギー性評価結果.

Figure 2016102722
注)表6中、*:P<0.05 **:P<0.01(対応するUV(−)群のpSIに対して) Table 6. Photoallergic evaluation results of chlorpromazine hydrochloride (CPZ).
Figure 2016102722
Note) In Table 6, *: P <0.05 **: P <0.01 (with respect to pSI of the corresponding UV (−) group)

表6及び図4より、CPZのpSI(UV+)はpSI(UV−)と比較して統計的に有意な増加を確認した。よって、被験物質CPZは光アレルギー性陽性(対応のないt検定(Unpaired−t test)、p<0.01)と判定された。   From Table 6 and FIG. 4, the pSI (UV +) of CPZ confirmed the statistically significant increase compared with pSI (UV-). Therefore, the test substance CPZ was determined to be positive for photoallergenicity (unpaired-t test, p <0.01).

実施例2〜8
CPZの代わりに、表2に示す被験物質及び表7に示す試験用量を用いた以外は実施例1と同様に、本発明の(1)乃至(4)のステップに基づき試験した。
但し、被験物質を溶解する溶媒は、夫々、ステップ1は全物質の試験においてメタノールを用い、ステップ2以降の溶媒は6−MCは70%エタノール、TCSAはMEK、その他の被験物質はDMFを用いた。
結果を表7に示す。
Examples 2-8
The test was performed based on the steps (1) to (4) of the present invention in the same manner as in Example 1 except that the test substance shown in Table 2 and the test dose shown in Table 7 were used instead of CPZ.
However, as the solvent for dissolving the test substance, methanol is used in Step 1 for the test of all substances, the solvent after Step 2 is 70% ethanol for 6-MC, MEK for TCSA, and DMF for other test substances. It was.
The results are shown in Table 7.

表7.本発明による光安全性LLNA試験結果まとめ.

Figure 2016102722
注)
pSI:photo−stimulation index
P:陽性
N:陰性
表7中、*:P<0.05 **:P<0.01(対応するUV(−)群のpSIに対して)
pSI(UV−)=(UV(−)の各動物のDPM)/(UV(−)の対応する対照溶媒の平均DPM)
pSI(UV+)=(UV(+)の各動物のDPM)/(UV(+)の対応する対照溶媒の平均DPM) Table 7. Summary of photosafety LLNA test results according to the present invention.
Figure 2016102722
note)
pSI: photo-stimulation index
P: Positive N: Negative In Table 7, *: P <0.05 **: P <0.01 (with respect to pSI of the corresponding UV (−) group)
pSI (UV −) = (DPM of each animal in UV (−)) / (average DPM of the corresponding control solvent in UV (−))
pSI (UV +) = (DPM of each animal in UV (+)) / (average DPM of the corresponding control solvent in UV (+))

また、表8に、本発明の試験方法による実施例1乃至8の被験物質の試験結果を、従来法による結果と比較する一覧を示す。
表8の結果から、本発明による光安全性試験の結果は、いずれも既報と一致した結果が得られた。
Table 8 shows a list comparing the test results of the test substances of Examples 1 to 8 according to the test method of the present invention with the results according to the conventional method.
From the results in Table 8, all the results of the photosafety test according to the present invention were in agreement with those already reported.

表8.本発明による試験結果の従来法との比較.

Figure 2016102722
N:陰性、P:陽性、−:報告例なし
(既報:下記*2参照) Table 8. Comparison of test results according to the present invention with conventional methods.
Figure 2016102722
N: negative, P: positive,-: no report (previously reported: see * 2 below)

また、世界各地域の光パッチテストの既知情報(下記*2参照)があるCPZ、6−MC及びTCSAに関して、pSIの比(pSI比)、pSI差、傾き比及びPAFを算出し、定量的評価の検討を行った。結果を表9に示す。
表9より、実施例1、7及び11の被験物質の試験結果と、従来報告されている光パッチテスト陽性率との比較から、本発明による光安全性試験の結果(pSI比、pSI差、傾き比及びPAF)は、世界各地で行われている従来の光パッチテストの陽性率の結果とよく相関する結果であることが示された。
In addition, for CPZ, 6-MC and TCSA, which have known information on optical patch tests in various regions of the world (see * 2 below), pSI ratio (pSI ratio), pSI difference, slope ratio and PAF are calculated and quantitatively calculated. Evaluation was conducted. The results are shown in Table 9.
From Table 9, from the comparison of the test results of the test substances of Examples 1, 7 and 11 and the conventionally reported photo patch test positive rate, the results of the photosafety test according to the present invention (pSI ratio, pSI difference, It has been shown that the slope ratio and PAF) correlate well with the results of the positive rate of the conventional optical patch test performed in various parts of the world.

表9.本発明による試験結果と、各地域における光パッチテストとの比較.

Figure 2016102722
Table 9. Comparison of test results according to the present invention and optical patch tests in each region.
Figure 2016102722

なお、従来法の試験結果は、下記の報告(*2)を参照のこと。
*2:既報
1. Lujuan G, Yue H, Chunya N, Yu X, Li M, Shuxian Y,and Xia D. (2014) Retrospective Study of Photo Patch Testing in a Chinese Population During a 7-year Period. Dermatitis. 25, 22-26.
2. Sai Yee Chuah, Yung Hian Leow, Anthony Teik Jin Goon, Colin Thiam Seng Theng,and Wei-Sheng Chong. (2013) Photo patch testing in Asians: a 5-year experiience in Singapore. Photodermatology, Photoimmunology & Photomedicine 29,116-120.
3. Paolo Daniele Pigatto, Gianpaolo Guzzi, Donatella Schena, Marcella Guarrera, Caterina Foti, Stefano Francalanci, Antonio Cristaudo, Fabio Ayala,and Colombina Vincenzi. (2008) Photopatch test: an Italian multicentre study from 2004 to 2006. Contact Dermatitis 59,103-108.
4. Jose Carlos Cardoso, Maria Miguel Canelas, Margarida Goncalo,and Americo Figueiredo. (2009) Photo patch testing with an extenede series of photoallergens: a 5-year study. Contact Dermatitis 60,325-329.
5. Leigh Ann Scalf, Mark D.P. Davis, Audrey L. Rohlinger,and Suzanne M. Connolly. (2009) Photo patch Testing of 182 Patients: A 6-Year Experience at the Mayo Clinic. Dermatitis. 20, 44-52.
6. Vinod K Sharma, Gomathy Sethuraman,and Arika Bansal(2007) Evaluation of
photopatch test series in India. Contact Dermatitis 56,168-169.
7. J de la Cuadra-Oyanguren, A Perez-Ferriols, M Lecha-Carrelero, AM Gimenez-Arnau, V Femandez-Redondo, FJ Ortiz de Frutos, JF Silvestre-Salvador,and E Serra-Baldrich. (2007) Results and Assessment of Photopatch Testing in Spain: Towards a New Standard Set of Photoallergens. Actas Dermosifiliogr 98, 96-101.
8. A.M. Bryden, H. Moseley, S.H. Ibbotson, M.M.U. Chowdhury, M.H. Beck, J. Bourke, J. English, P. Farr, I.S. Foulds, D.J. Gawkrodger, S. George, D.I. Orton, S. Shaw, J. McFadden, P. Norris, P. Podmore, S. Powell, L.E. Rhodes, J. Sansom, M. Wilkinson, H. van Weelden,and J. Ferguson. (2006) Photo patch testing of 1155 patients: results of the U.K. multicentre photopatch study group. British Joumal of Dermatology 155,737-747.
9. F. Leonard, H. Adamski, A. Bonnevalle, A. Bottlaender, J.-L. Bourrain, C. Goujon-Henry, D. Leroy, J.-R. Mancitet, M.-C.Marguery, J.-L. Peyron, P.Plantin, H. Roger, J.-L. Schmutz, G. Terrier, M. Vigan,and P. Bernard. (2005) Etude prospective multicentrique 1992-2001 de la batterie standard des photopatch-tests de la Societe Francaise de Photodermatologic. Ann Dermatol Venereol 132,313-320.
10. Rohan B Crouch, Peter A Foley,and Christopher S Baker. (2002) Letter to the editor. The results of photopatch testing 172 patients to sunscreening agents at the photobiology clinic, St Vincent's Hospital, Melbourne. Australasian Journal of Dermatology 43, 74.
11. Berit Berne,and Anne-Marie Ros. (1998) 7 years experience of photo patch testing with sunscreen allergens in Sweden. Contact Dermatitis. 38, 61-64.
12. Vincent A. DeLeo, Sylvia M. Suarez, and Martha J. Maso. (1992) Results of Photo patch Testing in New York, 1985 to 1990. Arch Dermatol 128 1513-1518
13. E. Holzle, N. Neumann, B. Hausen, B. Przybilla, S. Schauder, H. Honigsmann, A. Bircher, and G. Plewig. (1991) Photo patch testing: The 5-year experience of the German, Austrian, and Swiss Photopatch Test Group. Journal of the American Academy of Dermatology. 1, 59-68.
For the test results of the conventional method, see the following report (* 2).
* 2: Previous report
1. Lujuan G, Yue H, Chunya N, Yu X, Li M, Shuxian Y, and Xia D. (2014) Retrospective Study of Photo Patch Testing in a Chinese Population During a 7-year Period. Dermatitis. 25, 22- 26.
2. Sai Yee Chuah, Yung Hian Leow, Anthony Teik Jin Goon, Colin Thiam Seng Theng, and Wei-Sheng Chong. (2013) Photo patch testing in Asians: a 5-year experiience in Singapore.Photodermatology, Photoimmunology & Photomedicine 29,116- 120.
3. Paolo Daniele Pigatto, Gianpaolo Guzzi, Donatella Schena, Marcella Guarrera, Caterina Foti, Stefano Francalanci, Antonio Cristaudo, Fabio Ayala, and Colombina Vincenzi. (2008) Photopatch test: an Italian multicentre study from 2004 to 2006. Contact Dermatitis 59,103- 108.
4. Jose Carlos Cardoso, Maria Miguel Canelas, Margarida Goncalo, and Americo Figueiredo. (2009) Photo patch testing with an extenede series of photoallergens: a 5-year study. Contact Dermatitis 60,325-329.
5. Leigh Ann Scalf, Mark DP Davis, Audrey L. Rohlinger, and Suzanne M. Connolly. (2009) Photo patch Testing of 182 Patients: A 6-Year Experience at the Mayo Clinic. Dermatitis. 20, 44-52.
6. Vinod K Sharma, Gomathy Sethuraman, and Arika Bansal (2007) Evaluation of
photopatch test series in India. Contact Dermatitis 56,168-169.
7. J de la Cuadra-Oyanguren, A Perez-Ferriols, M Lecha-Carrelero, AM Gimenez-Arnau, V Femandez-Redondo, FJ Ortiz de Frutos, JF Silvestre-Salvador, and E Serra-Baldrich. (2007) Results and Assessment of Photopatch Testing in Spain: Towards a New Standard Set of Photoallergens. Actas Dermosifiliogr 98, 96-101.
8. AM Bryden, H. Moseley, SH Ibbotson, MMU Chowdhury, MH Beck, J. Bourke, J. English, P. Farr, IS Foulds, DJ Gawkrodger, S. George, DI Orton, S. Shaw, J. McFadden , P. Norris, P. Podmore, S. Powell, LE Rhodes, J. Sansom, M. Wilkinson, H. van Weelden, and J. Ferguson. (2006) Photo patch testing of 1155 patients: results of the UK multicentre photopatch study group.British Joumal of Dermatology 155,737-747.
9. F. Leonard, H. Adamski, A. Bonnevalle, A. Bottlaender, J.-L. Bourrain, C. Goujon-Henry, D. Leroy, J.-R. Mancitet, M.-C. Marguery, J .-L. Peyron, P. Plantin, H. Roger, J.-L. Schmutz, G. Terrier, M. Vigan, and P. Bernard. (2005) Etude prospective multicentrique 1992-2001 de la batterie standard des photopatch- tests de la Societe Francaise de Photodermatologic. Ann Dermatol Venereol 132,313-320.
10. Rohan B Crouch, Peter A Foley, and Christopher S Baker. (2002) Letter to the editor.The results of photopatch testing 172 patients to sunscreening agents at the photobiology clinic, St Vincent's Hospital, Melbourne.Australasian Journal of Dermatology 43, 74.
11. Berit Berne, and Anne-Marie Ros. (1998) 7 years experience of photo patch testing with sunscreen allergens in Sweden. Contact Dermatitis. 38, 61-64.
12. Vincent A. DeLeo, Sylvia M. Suarez, and Martha J. Maso. (1992) Results of Photo patch Testing in New York, 1985 to 1990. Arch Dermatol 128 1513-1518
13. E. Holzle, N. Neumann, B. Hausen, B. Przybilla, S. Schauder, H. Honigsmann, A. Bircher, and G. Plewig. (1991) Photo patch testing: The 5-year experience of the German , Austrian, and Swiss Photopatch Test Group.Journal of the American Academy of Dermatology. 1, 59-68.

以上、本発明の実施例について詳述したが、本発明は、かかる特定の実施態様に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲において、種々の改良・変更が可能である。   As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to this specific embodiment, In the range of the summary of this invention described in the claim, various improvement * It can be changed.

本発明によれば、多くの期間及び費用を必要とするin vivo光安全性試験において、より取り扱いの容易なマウスを、より少ない動物数で実施でき、試験期間も短期間であり、また、試験費用もコストも抑えることができ、効果的に定量的な評価結果を得ることができる。
即ち、本発明の試験結果は、従来の定性的評価のみでなく、定量的評価も可能である利点も有する。
したがって、種々の医薬品、化粧品、生活用品その他の製品に対する光安全性試験に応用可能である。
According to the present invention, in an in vivo photosafety test that requires a lot of time and cost, a mouse that can be handled more easily can be performed with a smaller number of animals, and the test period is also short. Costs and costs can be reduced, and quantitative evaluation results can be obtained effectively.
That is, the test result of the present invention has an advantage that not only conventional qualitative evaluation but also quantitative evaluation is possible.
Therefore, it can be applied to a photosafety test for various pharmaceuticals, cosmetics, daily necessities and other products.

Claims (6)

下記ステップ(1)〜(4)、
(1)被験物質のUV吸収スペクトル測定を行い、前記被験物質の最大吸収波長におけるモル吸光係数が1000以上の場合に、次のステップ(2)を行うことを決定し、そして、モル吸光係数が1000未満の場合に、UV吸収が無いものとして光毒性及び光アレルギー性陰性と評価することにより、次の(2)以後のステップの光毒性及び光アレルギー性試験の実施の要否を決定するステップ、
(2)皮膚感作性評価において、被験物質試験群が、対照物質試験群に対して3倍の皮膚感作性を示す前記被験物質の濃度の算出を行うステップ、
(3)光毒性評価において、
(3−i)前記ステップ(2)で算出した前記被験物質濃度において、光ハプテン型試験及びプロハプテン型試験の2通りのUV照射方法で光毒性試験を行い、より感作性の高い試験方法を選択するステップ、
(3−ii)前記(3−i)において選択されたいずれか1つの前記UV照射方法において、前記被験物質について光毒性試験を行い、皮膚感作及び光毒性を生じない最高濃度を決定するステップ、
(4)光アレルギー性評価において、前記(3−i)において選択されたUV照射方法を用い、前記(3−ii)において決定された皮膚感作及び光毒性の生じない濃度で、前記被験物質の光アレルギー性を評価するステップ、
からなる、光安全性試験方法。
The following steps (1) to (4),
(1) The UV absorption spectrum of the test substance is measured, and when the molar extinction coefficient at the maximum absorption wavelength of the test substance is 1000 or more, it is determined that the next step (2) is performed, and the molar extinction coefficient is In the case of less than 1000, the phototoxicity and photoallergenicity negative are evaluated as having no UV absorption, thereby determining the necessity of conducting the phototoxicity and photoallergenicity test in the subsequent steps (2) and subsequent steps. ,
(2) In the skin sensitization evaluation, a test substance test group calculates a concentration of the test substance exhibiting a skin sensitization three times that of a control substance test group,
(3) In phototoxicity assessment,
(3-i) At the test substance concentration calculated in the step (2), a phototoxicity test is performed by two UV irradiation methods of a photohapten type test and a prohapten type test, and a test method with higher sensitization is obtained. Step to choose,
(3-ii) A step of performing a phototoxicity test on the test substance in any one of the UV irradiation methods selected in (3-i) and determining a maximum concentration that does not cause skin sensitization and phototoxicity. ,
(4) In the photoallergic evaluation, using the UV irradiation method selected in (3-i) above, the test substance at a concentration at which skin sensitization and phototoxicity determined in (3-ii) do not occur The step of assessing the photoallergenicity of the
A photosafety test method comprising:
前記ステップ(2)における前記皮膚感作性評価が、OECD TG429に準拠したLLNA試験により行われ、被験物質に対する対照物質試験群に対し3倍の増殖刺激係数(SI)値を示す被験物質の濃度(EC3)の算出を行うことを特徴とする、請求項1に記載の方法。   The concentration of the test substance in which the skin sensitization evaluation in the step (2) is performed by an LLNA test according to OECD TG429 and shows a growth stimulation coefficient (SI) value three times that of the control substance test group for the test substance. The method according to claim 1, wherein (EC3) is calculated. 前記ステップ(3)におけるUV照射量が10J/cm乃至20J/cmであることを特徴とする、請求項1に記載の方法。 The method according to claim 1, wherein the UV irradiation amount in the step (3) is 10 J / cm 2 to 20 J / cm 2 . 前記ステップ(3)における前記光毒性評価が、マウスにおける耳介厚さの増加を指標とする、請求項1に記載の方法。   The method according to claim 1, wherein the phototoxicity evaluation in the step (3) uses an increase in auricle thickness in a mouse as an index. 前記ステップ(4)における前記光アレルギー性評価が、OECD TG429に準拠したLLNA試験により行われることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the photoallergic evaluation in the step (4) is performed by an LLNA test according to OECD TG429. 下記ステップ(1)〜(4)、
(1)被験物質のUV吸収スペクトル測定を行い、前記被験物質の最大吸収波長におけるモル吸光係数が1000以上の場合に、次のステップ(2)を行うことを決定し、そして、モル吸光係数が1000未満の場合に、UV吸収が無いものとして光毒性及び光アレルギー性陰性と評価することにより、次の(2)以後のステップの光毒性及び光アレルギー性試験の実施の要否を決定するステップ、
(2)皮膚感作性評価において、被験物質試験群が、対照物質試験群に対して3倍の皮膚感作性を示す前記被験物質の濃度の算出を行うステップ、
(3)光毒性評価において、
(3−i)前記ステップ(2)で算出した前記被験物質濃度において、光ハプテン型試験及びプロハプテン型試験の2通りのUV照射方法で光毒性試験を行い、より感作性の高い試験方法を選択するステップ、
(3−ii)前記(3−i)において選択されたいずれか1つの前記UV照射方法において、前記被験物質について光毒性試験を行い、皮膚感作及び光毒性を生じない最高濃度を決定するステップ、
(4)光アレルギー性評価において、前記(3−i)において選択されたUV照射方法を用い、前記(3−ii)において決定された皮膚感作及び光毒性の生じない濃度で、前記被験物質の光アレルギー性を評価するステップ、
からなる、光安全性試験における光増殖刺激係数(pSI:photo Stimulation Index)比、pSI差、傾き比及び光アレルギーファクター(PAF:Photo Allergy Factor)を用い、光アレルギー性の強度を定量化する方法。
The following steps (1) to (4),
(1) The UV absorption spectrum of the test substance is measured, and when the molar extinction coefficient at the maximum absorption wavelength of the test substance is 1000 or more, it is determined that the next step (2) is performed, and the molar extinction coefficient is In the case of less than 1000, the phototoxicity and photoallergenicity negative are evaluated as having no UV absorption, thereby determining the necessity of conducting the phototoxicity and photoallergenicity test in the subsequent steps (2) and subsequent steps. ,
(2) In the skin sensitization evaluation, a test substance test group calculates a concentration of the test substance exhibiting a skin sensitization three times that of a control substance test group,
(3) In phototoxicity assessment,
(3-i) At the test substance concentration calculated in the step (2), a phototoxicity test is performed by two UV irradiation methods of a photohapten type test and a prohapten type test, and a test method with higher sensitization is obtained. Step to choose,
(3-ii) A step of performing a phototoxicity test on the test substance in any one of the UV irradiation methods selected in (3-i) and determining a maximum concentration that does not cause skin sensitization and phototoxicity. ,
(4) In the photoallergic evaluation, using the UV irradiation method selected in (3-i) above, the test substance at a concentration at which skin sensitization and phototoxicity determined in (3-ii) do not occur The step of assessing the photoallergenicity of the
A method for quantifying the intensity of photoallergy using a photo-stimulation index (pSI) ratio, a pSI difference, a slope ratio, and a photoallergy factor (PAF) in a photosafety test .
JP2014241412A 2014-11-28 2014-11-28 Novel testing method for optical safety Pending JP2016102722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014241412A JP2016102722A (en) 2014-11-28 2014-11-28 Novel testing method for optical safety

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014241412A JP2016102722A (en) 2014-11-28 2014-11-28 Novel testing method for optical safety

Publications (1)

Publication Number Publication Date
JP2016102722A true JP2016102722A (en) 2016-06-02

Family

ID=56089293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014241412A Pending JP2016102722A (en) 2014-11-28 2014-11-28 Novel testing method for optical safety

Country Status (1)

Country Link
JP (1) JP2016102722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166976A (en) * 2021-12-08 2022-03-11 桂林医学院 Method for analyzing drug content in health product by tracing auxiliary agent
JP2022059283A (en) * 2020-10-01 2022-04-13 一般財団法人 化学物質評価研究機構 Novel in vitro skin sensitization testing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022059283A (en) * 2020-10-01 2022-04-13 一般財団法人 化学物質評価研究機構 Novel in vitro skin sensitization testing method
JP7214696B2 (en) 2020-10-01 2023-01-30 一般財団法人 化学物質評価研究機構 New in vitro skin sensitization test method
CN114166976A (en) * 2021-12-08 2022-03-11 桂林医学院 Method for analyzing drug content in health product by tracing auxiliary agent
CN114166976B (en) * 2021-12-08 2024-02-27 桂林医学院 Method for analyzing drug content in health care product by tracing auxiliary agent

Similar Documents

Publication Publication Date Title
Mahler et al. S3 guidelines: Epicutaneous patch testing with contact allergens and drugs–Short version, Part 1
Czarnobilska et al. The most important contact sensitizers in Polish children and adolescents with atopy and chronic recurrent eczema as detected with the extended European Baseline Series
Rauh et al. Brain anomalies in children exposed prenatally to a common organophosphate pesticide
Kerr et al. A European multicentre photopatch test study
Song et al. Age-related cataract, cataract surgery and subsequent mortality: a systematic review and meta-analysis
Swinnen et al. An update on airborne contact dermatitis: 2007–2011
Ale et al. Diagnostic approach in allergic and irritant contact dermatitis
Bhattacharya et al. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons
Isaksson et al. The development and course of patch‐test reactions to 2‐hydroxyethyl methacrylate and ethyleneglycol dimethacrylate
Kimber et al. Allergic contact dermatitis: a commentary on the relationship between T lymphocytes and skin sensitising potency
Saitta et al. Is there a true concern regarding the use of hair dye and malignancy development?: a review of the epidemiological evidence relating personal hair dye use to the risk of malignancy
Bregnbak et al. Association between cobalt allergy and dermatitis caused by leather articles–a questionnaire study
Ornelas et al. The contribution of the basophil activation test to the diagnosis of hypersensitivity reactions to oxaliplatin
Mekić et al. Epidemiology and determinants of facial telangiectasia: a cross‐sectional study
JP2016102722A (en) Novel testing method for optical safety
Dere et al. Intra‐and inter‐individual differences in human sperm DNA methylation
Tillman et al. Usage test with palladium‐coated earrings in patients with contact allergy to palladium and nickel
Babić et al. Association of hairdressing with cancer and reproductive diseases: A systematic review
Viel et al. The basophil activation test: a sensitive test in the diagnosis of allergic immediate hypersensitivity to pristinamycin
Cooper et al. Patterns of allergic sensitization and factors associated with emergence of sensitization in the rural tropics early in the life course: findings of an Ecuadorian birth cohort
Pecquet et al. P14 Hydrolysed wheat protein: a new allergen in cosmetics and food
Osadolor et al. Renal function assessment of workers occupationally exposed to hair and nail care products in Benin City, Edo State
Bisen et al. Aeroallergen patch testing in patients of suspected contact dermatitis
Mohammad et al. Patch testing: a retrospective analysis of 103 patients with emphasis on practical aspects for the clinician
Conde‐Salazar et al. P48 Actual risk of contact dermatitis in hairdressers