JP2016102424A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2016102424A
JP2016102424A JP2014240144A JP2014240144A JP2016102424A JP 2016102424 A JP2016102424 A JP 2016102424A JP 2014240144 A JP2014240144 A JP 2014240144A JP 2014240144 A JP2014240144 A JP 2014240144A JP 2016102424 A JP2016102424 A JP 2016102424A
Authority
JP
Japan
Prior art keywords
fuel
amount
scr catalyst
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014240144A
Other languages
Japanese (ja)
Inventor
高田 圭
Kei Takada
圭 高田
中山 茂樹
Shigeki Nakayama
茂樹 中山
大橋 伸基
Nobumoto Ohashi
伸基 大橋
見上 晃
Akira Kenjo
晃 見上
潤一 松尾
Junichi Matsuo
潤一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014240144A priority Critical patent/JP2016102424A/en
Publication of JP2016102424A publication Critical patent/JP2016102424A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To suppress, to easily occur, a decline in a NOelimination rate when an SCR catalyst disposed in an exhaust passage of an internal combustion engine is exposed to the atmosphere with a high temperature and high fuel concentration which causes fuel poisoning.SOLUTION: An exhaust emission control system for an internal combustion engine controls an amount of an additive that is NHor a precursor of NHto be supplied to an exhaust emission control device, in accordance with the basic addition amount determined according to an NOconcentration of an exhaust gas flowing into the exhaust emission control device including an SCR catalyst. When the SCR catalyst is exposed to the atmosphere with a high temperature and high fuel concentration which causes fuel poisoning to easily occur, increase correction of the basic addition amount is performed in accordance with the fuel concentration of the exhaust gas flowing into the exhaust emission control device, and the corrected amount of the additive is supplied to the exhaust emission control device, so as to suppress a decline in an NOelimination rate caused by the fuel poisoning.SELECTED DRAWING: Figure 4

Description

本発明は、SCR(Selective Catalytic Reduction)触媒を含む排気浄化装置が排気
通路に配置された内燃機関の排気浄化システムに関する。
The present invention relates to an exhaust gas purification system for an internal combustion engine in which an exhaust gas purification device including an SCR (Selective Catalytic Reduction) catalyst is disposed in an exhaust passage.

内燃機関の排気浄化システムとして、排気通路に配置された酸化触媒と、該酸化触媒より下流の排気通路に配置されSCR触媒を担持するパティキュレートフィルタ(SCRF)と、前記酸化触媒へ燃料(炭化水素(燃料))を供給する燃料供給部と、前記SCRFのSCR触媒へアンモニア(NH)又はNHの前駆体である添加剤を供給する添加剤供給部と、を備えたものが知られている。このように構成された内燃機関の排気浄化システムでは、パティキュレートフィルタに捕集された粒子状物質(PM:Particulate Matter
)を酸化及び除去する場合に、燃料供給部から酸化触媒へ未燃燃料を供給することで、パティキュレートフィルタをPMの酸化可能な温度まで昇温させる処理(昇温処理)が実行される(たとえば、特許文献1を参照)。
As an exhaust gas purification system for an internal combustion engine, an oxidation catalyst disposed in an exhaust passage, a particulate filter (SCRF) disposed in an exhaust passage downstream of the oxidation catalyst and carrying an SCR catalyst, and a fuel (hydrocarbon) to the oxidation catalyst (Fuel)) is known, and an additive supply unit that supplies ammonia (NH 3 ) or an additive that is a precursor of NH 3 to the SCRF SCR catalyst is known. Yes. In the exhaust gas purification system for an internal combustion engine configured as described above, particulate matter (PM) collected by the particulate filter (PM: Particulate Matter
) Is oxidized and removed, a process for raising the temperature of the particulate filter to a temperature at which PM can be oxidized (temperature increase process) is performed by supplying unburned fuel from the fuel supply unit to the oxidation catalyst ( For example, see Patent Document 1).

特開2014−148908号公報JP 2014-148908 A 特開2010−180814号公報JP 2010-180814 A 特開2013−122222号公報JP 2013-122222 A 特開2010−180792号公報JP 2010-180792 A 特開2010−196496号公報JP 2010-196696 A

ところで、上記したような昇温処理が行われると、パティキュレートフィルタに加えてSCR触媒も高温な雰囲気に曝されることになる。ここで、車両等の移動体に搭載されるSCR触媒としては、Fe錯体やCu錯体等によりイオン交換されたゼオライトを担体として用いるものが一般的である。そのようなSCR触媒が高温な雰囲気(たとえば、500℃以上)に曝されると、担体の細孔径が拡大する可能性がある。また、SCR触媒が高温な雰囲気に曝されると、SCR触媒において排気中に含まれる燃料の低分子化が促進される可能性もある。   By the way, when the temperature raising process as described above is performed, the SCR catalyst is exposed to a high temperature atmosphere in addition to the particulate filter. Here, as an SCR catalyst mounted on a moving body such as a vehicle, a catalyst that uses zeolite ion-exchanged with an Fe complex or a Cu complex as a carrier is generally used. When such an SCR catalyst is exposed to a high-temperature atmosphere (for example, 500 ° C. or higher), the pore diameter of the support may increase. Further, when the SCR catalyst is exposed to a high-temperature atmosphere, there is a possibility that the low molecular weight of the fuel contained in the exhaust gas in the SCR catalyst is promoted.

よって、SCR触媒が高温な雰囲気に曝されているときに、排気中の燃料濃度が高くなると、低分子化した燃料が前記担体の拡径した細孔内に入り込みやすくなる。排気中の燃料が担体の細孔内に入り込むと、担体の活性点が燃料によって覆われることで、NHの吸着やNOとNHとの反応が阻害される現象(燃料被毒)が発生し、SCR触媒によるNO浄化率(SCR触媒へ流入するNOの量に対し、SCR触媒で浄化されるNOの量の比率)が低下する可能性がある。 Therefore, when the fuel concentration in the exhaust gas becomes high when the SCR catalyst is exposed to a high temperature atmosphere, the low molecular weight fuel tends to enter into the expanded pores of the carrier. When the fuel in the exhaust gas from entering the pores of the support, that the active sites of the carrier is covered by the fuel, a phenomenon reaction between adsorption and NO X and NH 3 in the NH 3 is inhibited (fuel poisoning) is occurs, (relative to the amount of the NO X flowing into the SCR catalyst, the ratio of the amount of the NO X to be purified by the SCR catalyst) NO X purification rate by the SCR catalyst may be reduced.

本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、SCR触媒を含む排気浄化装置へ流入する排気のNO濃度に応じて定まる基本添加量に従って、前記排気浄化装置へ供給されるNH又はNHの前駆体である添加剤の量を制御する内燃機関の排気浄化システムにおいて、SCR触媒が燃料被毒の発生しやすい高温且つ燃料濃度の高い雰囲気に曝されているときに、該SCR触媒におけるNO浄化率の低下を少なく抑えることにある。 The present invention has been made in view of the above-mentioned problems, and its object is according to the basic amount determined according to the NO X concentration of the exhaust gas flowing into an exhaust purification device that includes an SCR catalyst, the exhaust gas purifying in an internal combustion engine exhaust gas purification system for controlling the amount of a precursor which is an additive of the NH 3 or NH 3 is supplied to the apparatus, SCR catalyst is exposed to high ambient occurrence likely high temperature and fuel concentration of the fuel poisoning when is is to suppress decrease the deterioration of the NO X purification rate of the SCR catalyst.

本発明は、上記した課題を解決するために、SCR触媒を含む排気浄化装置へ流入する排気のNO濃度に応じて定められる基本添加量に従って、排気浄化装置へ供給されるNH又はNHの前駆体である添加剤の量を制御する内燃機関の排気浄化システムにおいて、SCR触媒が燃料被毒の発生しやすい高温且つ燃料濃度の高い雰囲気に曝されているときは、燃料濃度に応じて前記基本添加量を増量補正して、その補正後の量の添加剤を排気浄化装置へ供給することにより、SCR触媒におけるNO浄化率の低下を抑制するようにした。 In order to solve the above-described problems, the present invention provides NH 3 or NH 3 supplied to the exhaust purification device according to the basic addition amount determined according to the NO x concentration of the exhaust gas flowing into the exhaust purification device including the SCR catalyst. In an exhaust gas purification system for an internal combustion engine that controls the amount of an additive that is a precursor of SCR, when the SCR catalyst is exposed to a high temperature and high fuel concentration atmosphere where fuel poisoning is likely to occur, the fuel concentration depends on the fuel concentration. said basic amount to increase correction by supplying the additive amount of the corrected into an exhaust purification device, and so as to suppress the reduction of the NO X purification rate of the SCR catalyst.

詳細には、本発明は、内燃機関の排気通路に配置されSCR触媒を含む排気浄化装置と、排気浄化装置へ流入する排気にNH又はNHの前駆体である添加剤を供給する供給手段と、排気浄化装置へ流入する排気のNO濃度に応じて定められる基本添加量に基づいて供給手段を制御する制御手段と、を備えた内燃機関の排気浄化システムにおいて、SCR触媒の温度を検出する検出手段と、排気浄化装置へ流入する排気の燃料濃度を取得する取得手段と、を更に備え、制御手段は、検出手段により検出される温度が所定の閾値未満である場合は前記基本添加量の添加剤を供給手段から供給させ、検出手段により検出される温度が前記所定の閾値以上である場合は前記基本添加量を増量補正するものであって、その補正による増加率が取得手段により取得される燃料濃度の低いときより高いときに大きくなるように前記基本添加量を増量補正して、その補正後の量の添加剤を供給手段から供給させるようにした。ここでいう「所定の閾値」は、SCR触媒を構成する担体の細孔の拡径や排気に含まれる燃料の低分子化が発生しやすくなる温度、すなわち排気中の燃料が前記担体の細孔内に入り込みやすくなる温度の下限値である。 In particular, the present invention, supply means for supplying an exhaust gas purifying device disposed in an exhaust passage of an internal combustion engine including an SCR catalyst, an additive which is a precursor of NH 3 or NH 3 in the exhaust gas flowing into an exhaust purification device If, in an internal combustion engine exhaust gas purification system for and a control means for controlling the supply means based on the basic amount determined according to the NO X concentration of the exhaust gas flowing into the exhaust purification device, detects the temperature of the SCR catalyst Detecting means for obtaining the fuel concentration of the exhaust gas flowing into the exhaust gas purification device, and the control means, when the temperature detected by the detecting means is less than a predetermined threshold, the basic addition amount When the temperature detected by the detection means is equal to or higher than the predetermined threshold, the basic addition amount is corrected to increase, and the increase rate by the correction is taken. The basic amount to be larger when higher than when low fuel concentration obtained by the means in increasing correction was an additive amount of the corrected so as to supply from the supply means. Here, the “predetermined threshold value” is a temperature at which the diameter of the pores of the carrier constituting the SCR catalyst is increased or the molecular weight of the fuel contained in the exhaust gas is easily generated, that is, the fuel in the exhaust gas is the pores of the carrier. It is the lower limit of the temperature at which it is easy to enter.

SCR触媒の温度が前記所定の閾値未満である場合は、SCR触媒を構成する担体の細孔の拡径や排気に含まれる燃料の低分子化が発生しにくい。そのため、排気浄化装置へ流入する排気のNO濃度に応じて定められる基本添加量の添加剤が排気浄化装置へ供給されることで、SCR触媒における好適なNO浄化率を実現することができる。 When the temperature of the SCR catalyst is lower than the predetermined threshold value, it is difficult to increase the diameter of the pores of the carrier constituting the SCR catalyst and to reduce the molecular weight of the fuel contained in the exhaust gas. Therefore, by additives of the basic amount determined according to the NO X concentration of the exhaust gas flowing into an exhaust purification device is supplied to the exhaust purification device, it is possible to realize a suitable NO X purification rate of the SCR catalyst .

一方、SCR触媒の温度が前記所定の閾値以上である場合は、SCR触媒を構成する担体の細孔が拡径しやすく、およびまたは排気中に含まれる燃料が低分子化しやすい。そのため、前記細孔内に排気中の燃料が入り込みやすくなり、それに応じてSCR触媒の燃料被毒が発生しやすくなる。さらに、排気浄化装置へ流入する排気の燃料濃度が高いときは低いときに比べ、前記細孔内に流入する排気の量が多くなりやすく、それに応じてSCR触媒のHC被毒量が多くなりやすい。そのような環境においては、前記基本添加量の添加剤が排気浄化装置へ供給されても、SCR触媒における好適なNO浄化率を実現することは難しい。 On the other hand, when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold, the pores of the carrier constituting the SCR catalyst are likely to expand, and / or the fuel contained in the exhaust gas is likely to be reduced in molecular weight. Therefore, the fuel in the exhaust gas easily enters the pores, and the fuel poisoning of the SCR catalyst easily occurs accordingly. Furthermore, when the fuel concentration of the exhaust gas flowing into the exhaust purification device is high, the amount of exhaust gas flowing into the pores is likely to increase compared to when it is low, and the HC poisoning amount of the SCR catalyst tends to increase accordingly. . In such an environment, the even basic amount of the additive is supplied to the exhaust purification device, it is difficult to realize a suitable NO X purification rate of the SCR catalyst.

ところで、SCR触媒の温度が高いときは低いときに比べ、NOとNHとの反応速度が大きいため、SCR触媒の個々の活性点で単位時間あたりに浄化(還元)することができるNOの量が多くなる。よって、SCR触媒の温度が前記所定の閾値以上である場合において、燃料濃度が低いときより高いときの増加率が大きくなるように前記基本添加量を増量補正した量の添加剤が排気浄化装置へ供給されると、SCR触媒において燃料被毒の発生していない活性点で単位時間あたりに浄化されるNOの量を多くすることができる。その結果、SCR触媒の一部の活性点で燃料被毒が発生することに起因するNO浄化率の低下分は、燃料被毒の発生していない残りの活性点で浄化されるNO量の増加に起因するNO浄化率の増加分によって補われる。よって、SCR触媒が燃料被毒の発生しやすい高温な雰囲気に曝されているときに、燃料被毒に起因するNO浄化率の低下を少なく抑えることができる。 By the way, when the temperature of the SCR catalyst is high, the reaction rate of NO X and NH 3 is higher than when the temperature is low, and therefore NO X that can be purified (reduced) per unit time at each active point of the SCR catalyst. The amount of increases. Therefore, when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold value, the amount of additive that is corrected to increase the basic addition amount so that the increase rate when the fuel concentration is higher than when the fuel concentration is low is increased to the exhaust purification device. When supplied, it is possible to increase the amount of NO x purified per unit time at the active point where no fuel poisoning occurs in the SCR catalyst. As a result, decrease amount of the NO X purification rate due to the fuel poisoning occur with some active sites of the SCR catalyst, NO X amount to be purified by the remaining active sites does not occur in the fuel poisoned supplemented by increase of the NO X purification rate due to the increase in. Therefore, when the SCR catalyst is exposed to prone hot atmosphere of the fuel poisoning, it is possible to reduce the deterioration of the NO X purification rate due to the fuel poisoning.

なお、SCR触媒の温度が前記所定の閾値以上である場合であっても、該SCR触媒へ
流入する排気の燃料濃度が十分に低ければ、燃料被毒が発生しにくくなるため、燃料被毒に起因するNO浄化率の低下も発生しにくい。そこで、前記検出手段により検出されるSCR触媒の温度が前記所定の閾値以上である場合であっても、前記取得手段により取得される燃料濃度が所定濃度以下であるときは、前記制御手段が前記基本添加量の添加剤を供給手段から供給させるようにしてもよい。ここでいう「所定濃度」は、該所定濃度以下の燃料を含む排気がSCR触媒に流入しても、前記基本添加量の添加剤がSCR触媒に供給されれば、SCR触媒において好適なNO浄化率を実現することができる燃料濃度の上限値である。このような構成によれば、SCR触媒の温度が前記所定の閾値以上であっても、燃料被毒が発生しにくいときは、供給手段から供給される添加剤の量が不要に増量されなくなる。そのため、添加剤の消費量を抑えつつ、SCR触媒のNO浄化率の低下を抑制することができる。
Even when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold, if the fuel concentration in the exhaust gas flowing into the SCR catalyst is sufficiently low, fuel poisoning is unlikely to occur. reduction of the NO X purification rate due to hardly occur. Therefore, even when the temperature of the SCR catalyst detected by the detection means is equal to or higher than the predetermined threshold, when the fuel concentration acquired by the acquisition means is equal to or lower than the predetermined concentration, the control means You may make it supply the additive of a basic addition amount from a supply means. Here, the “predetermined concentration” means that NO X suitable for the SCR catalyst can be used if the basic additive amount of the additive is supplied to the SCR catalyst even if the exhaust gas containing fuel of the predetermined concentration or less flows into the SCR catalyst. This is the upper limit of the fuel concentration that can achieve the purification rate. According to such a configuration, even when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold value, the amount of additive supplied from the supply means is not increased unnecessarily when fuel poisoning is difficult to occur. Therefore, while suppressing the consumption of the additive, it is possible to suppress the reduction of the NO X purification rate of the SCR catalyst.

ここで、前記基本添加量を増量補正するにあたり、排気浄化装置へ流入する排気の燃料濃度が高いときは低いときに比べてSCR触媒の燃料被毒が発生しやすく、且つNO浄化率が低下しやすいという観点に基づいて、排気浄化装置へ流入する排気の燃料濃度に応じて基本添加量を増量補正してもよい。また、SCR触媒の温度が前記所定の閾値以上であるときは、SCR触媒の燃料被毒が進行するほどNO浄化率が低下するという観点に基づいて、排気浄化装置へ流入する排気の燃料濃度からSCR触媒の実際の燃料被毒量を推定して、その燃料被毒量に応じて基本添加量を増量補正してもよい。なお、SCR触媒の燃料被毒量は、排気浄化装置へ流入する排気の燃料濃度に加え、SCR触媒の温度にも相関する。そこで、本発明に係わる制御手段は、検出手段により検出される温度が前記所定の閾値以上の高温域にある場合に、検出手段により検出される温度と取得手段により取得される燃料濃度とをパラメータとしてSCR触媒の燃料被毒量を推定し、且つその推定された燃料被毒量が少ないときより多いときの増加率が大きくなるように前記基本添加量を増量補正してもよい。このような構成によると、高温用添加量をSCR触媒の実際の燃料被毒量に応じた量にすることできるため、燃料被毒に起因するNO浄化率の低下をより確実に少なく抑えることができる。 Here, upon increase correction of the basic amount, fuel poisoning of SCR catalyst is likely to occur than when at high fuel concentration of the exhaust gas flowing into the exhaust purification device is low, and NO X purification rate decrease Based on the viewpoint that it is easy to do, the basic addition amount may be increased and corrected according to the fuel concentration of the exhaust gas flowing into the exhaust purification device. Further, when the temperature of the SCR catalyst is above the predetermined threshold value, based on the viewpoint as NO X purification rate fuel poisoned SCR catalyst progresses decreases, the fuel concentration of the exhaust gas flowing into an exhaust purification device From this, the actual fuel poisoning amount of the SCR catalyst may be estimated, and the basic addition amount may be increased and corrected according to the fuel poisoning amount. The fuel poisoning amount of the SCR catalyst correlates with the temperature of the SCR catalyst in addition to the fuel concentration of the exhaust gas flowing into the exhaust purification device. Therefore, when the temperature detected by the detection means is in a high temperature range equal to or higher than the predetermined threshold, the control means according to the present invention sets the parameter detected by the temperature detected by the detection means and the fuel concentration acquired by the acquisition means. As described above, the basic poisoning amount may be increased and corrected so that the fuel poisoning amount of the SCR catalyst is estimated and the rate of increase when the estimated fuel poisoning amount is larger than when the fuel poisoning amount is small. According to this construction, since it possible to an amount corresponding to a high temperature for the addition amount of the actual fuel poisoning amount of the SCR catalyst, to suppress more surely reduce the deterioration of the NO X purification rate due to the fuel poisoned Can do.

ここで、本発明における排気浄化装置は、排気中のPMを捕集するパティキュレートフィルタを含み、SCR触媒がパティキュレートフィルタに担持されていてもよい。排気浄化装置がパティキュレートフィルタを含む場合は、SCR触媒がパティキュレートフィルタより下流に配置される構成、又はSCR触媒がパティキュレートフィルタに担持される構成が考えられる。そして、SCR触媒がパティキュレートフィルタに担持される構成によると、SCR触媒がパティキュレートフィルタより下流に配置される構成に比べ、内燃機関からSCR触媒までの経路長が短くなるため、SCR触媒がより高温な排気に曝されやすく、それに応じてSCR触媒における燃料被毒の発生頻度が高くなりやすい。よって、SCR触媒がパティキュレートフィルタに担持される構成において、SCR触媒の温度が前記所定の閾値以上へ上昇したときに、前述したように燃料濃度に基づいて基本添加量が増量補正され、且つ補正後の量に従って供給手段が制御されると、燃料被毒に起因するNO浄化率の低下を抑制する効果がより大きくなる。 Here, the exhaust emission control device according to the present invention may include a particulate filter that collects PM in the exhaust gas, and the SCR catalyst may be carried on the particulate filter. When the exhaust purification device includes a particulate filter, a configuration in which the SCR catalyst is disposed downstream of the particulate filter, or a configuration in which the SCR catalyst is supported on the particulate filter can be considered. And, according to the configuration in which the SCR catalyst is supported on the particulate filter, the path length from the internal combustion engine to the SCR catalyst is shorter than the configuration in which the SCR catalyst is arranged downstream of the particulate filter. It is easy to be exposed to high-temperature exhaust gas, and accordingly, the frequency of occurrence of fuel poisoning in the SCR catalyst tends to increase. Therefore, in the configuration in which the SCR catalyst is supported on the particulate filter, when the temperature of the SCR catalyst rises to the predetermined threshold value or more, the basic addition amount is corrected based on the fuel concentration and corrected as described above. When the supply means according to the amount of post is controlled, the effect of suppressing the reduction of the NO X purification rate due to the fuel poisoning becomes larger.

なお、排気浄化装置がパティキュレートフィルタを含む場合は、該パティキュレートフィルタを所定の再生温度まで昇温させることで、該パティキュレートフィルタに捕集されているPMを酸化及び除去する必要がある。そのため、排気浄化装置はパティキュレートフィルタより上流に配置される酸化触媒を更に含むようにしてもよい。そして、排気浄化システムは、前記酸化触媒へ流入する排気に燃料を供給して、その燃料を酸化触媒で酸化させることにより、前記パティキュレートフィルタへ流入する排気の温度を上昇させる昇温処理を行う昇温制御手段を更に備えるようにしてもよい。ここでいう「所定の再生温度」は、PMが酸化する温度(たとえば、500℃−650℃)である。   When the exhaust gas purification device includes a particulate filter, it is necessary to oxidize and remove PM collected by the particulate filter by raising the temperature of the particulate filter to a predetermined regeneration temperature. For this reason, the exhaust purification device may further include an oxidation catalyst disposed upstream of the particulate filter. The exhaust purification system supplies a fuel to the exhaust gas flowing into the oxidation catalyst, and oxidizes the fuel with the oxidation catalyst, thereby performing a temperature raising process for increasing the temperature of the exhaust gas flowing into the particulate filter. You may make it further provide a temperature rising control means. The “predetermined regeneration temperature” here is a temperature at which PM is oxidized (for example, 500 ° C. to 650 ° C.).

ここで、前記昇温処理が実行されることで、パティキュレートフィルタが前記所定の再生温度まで昇温されると、該パティキュレートフィルタに担持されたSCR触媒も前記所定の再生温度まで昇温する可能性がある。SCR触媒が前記所定の再生温度まで昇温すると、該SCR触媒を構成するゼオライトの細孔が拡径する可能性がある。また、前記書オン処理が実行された場合は、前記酸化触媒で十分に酸化されない燃料が高温な雰囲気に曝されることで、燃料の低分子化が進む可能性もある。よって、前記昇温処理が実行されると、SCR触媒の燃料被毒が発生しやすく、それに伴ってSCR触媒のNO浄化率が低下しやすくなると言える。よって、前記昇温処理が実行されることでSCR触媒の温度が前記所定の再生温度まで上昇したときに、前述したように燃料濃度に基づいて基本添加量が増量補正され、且つ補正後の量に従って供給手段が制御されれば、SCR触媒におけるNO浄化率の低下を抑制する効果がより大きくなる。そこで、上記したような昇温処理が実行される排気浄化システムにおいては、前記所定の閾値が前記再生温度以下にされることが望ましい。 Here, when the particulate filter is heated to the predetermined regeneration temperature by executing the temperature increasing process, the SCR catalyst carried on the particulate filter is also heated to the predetermined regeneration temperature. there is a possibility. When the temperature of the SCR catalyst is raised to the predetermined regeneration temperature, the pores of the zeolite constituting the SCR catalyst may expand. Further, when the write-on process is executed, the fuel that is not sufficiently oxidized by the oxidation catalyst may be exposed to a high-temperature atmosphere, so that the fuel may be reduced in molecular weight. Therefore, when the Atsushi Nobori processing is executed, the fuel poisoning is likely to occur in the SCR catalyst, it can be said that NO X purification rate of the SCR catalyst with the it tends to decrease. Therefore, when the temperature of the SCR catalyst rises to the predetermined regeneration temperature by executing the temperature raising process, the basic addition amount is corrected to increase based on the fuel concentration as described above, and the corrected amount if supply means is controlled in accordance with, the effect of suppressing the reduction of the NO X purification rate of the SCR catalyst becomes larger. Therefore, in the exhaust gas purification system in which the temperature raising process as described above is executed, it is desirable that the predetermined threshold value is set to the regeneration temperature or less.

本発明によれば、SCR触媒を含む排気浄化装置へ流入する排気のNO濃度に応じて定まる基本添加量に従って、前記排気浄化装置へ供給されるNH又はNHの前駆体である添加剤の量を制御する内燃機関の排気浄化システムにおいて、SCR触媒が燃料被毒の発生しやすい高温且つ燃料濃度の高い雰囲気に曝されているときに、該SCR触媒におけるNO浄化率の低下を少なく抑えることができる。 According to the present invention, the additive that is NH 3 or the precursor of NH 3 supplied to the exhaust purification device according to the basic addition amount determined according to the NO x concentration of the exhaust gas flowing into the exhaust purification device including the SCR catalyst in an internal combustion engine exhaust gas purification system for controlling the amount of, when the SCR catalyst is exposed to high ambient occurrence likely high temperature and fuel concentration of the fuel poisoning, reduce the deterioration of the NO X purification rate of the SCR catalyst Can be suppressed.

第1の実施例において本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and an intake / exhaust system thereof in a first embodiment. SCR触媒の温度特性を示す図である。It is a figure which shows the temperature characteristic of an SCR catalyst. SCR触媒の温度が所定の閾値以上である場合において、SCRFへ流入する排気の燃料濃度、尿素水溶液の供給量、及びSCR触媒のNO浄化率の経時変化を示すタイミングチャートである。In case the temperature of the SCR catalyst is above a predetermined threshold, the fuel concentration of the exhaust gas flowing into the SCRF, is a timing chart showing changes with time of the NO X purification rate of the feed amount, and the SCR catalyst of the urea aqueous solution. 第1の実施例において添加剤供給弁を制御する際に実行される処理ルーチンを示すフローチャートである。It is a flowchart which shows the process routine performed when controlling an additive supply valve in a 1st Example. SCRFへ流入する排気の燃料濃度と単位時間あたりにおける燃料被毒量の増加量との相関を示す図である。It is a figure which shows the correlation with the fuel concentration of the exhaust gas which flows into SCRF, and the increase amount of the fuel poisoning amount per unit time. SCR触媒の温度と単位時間あたりにおける燃料被毒量の減少量との相関を示す図である。It is a figure which shows the correlation with the temperature of an SCR catalyst, and the reduction amount of the fuel poisoning amount per unit time. SCR触媒の温度が所定の閾値以上である場合において、SCR触媒の燃料被毒量、尿素水溶液の供給量、及びSCR触媒のNO浄化率の経時変化を示すタイミングチャートである。In case the temperature of the SCR catalyst is above a predetermined threshold, the fuel poisoning amount of the SCR catalyst is a timing chart showing changes with time of the NO X purification rate of the feed amount, and the SCR catalyst of the urea aqueous solution. 第2の実施例において添加剤供給弁を制御する際に実行される処理ルーチンを示すフローチャートである。It is a flowchart which shows the process routine performed when controlling an additive supply valve in a 2nd Example. SCR触媒の燃料被毒量を推定するための処理ルーチンを示すフローチャートである。It is a flowchart which shows the process routine for estimating the fuel poisoning amount of an SCR catalyst.

以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.

<実施例1>
先ず、本発明の第1の実施例について図1乃至図4に基づいて説明する。図1は、本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1
は、軽油を燃料とする圧縮着火式内燃機関(ディーゼルエンジン)である。ただし、本発明に係る内燃機関は、ディーゼルエンジンに限られるものではなく、ガソリンを燃料とする火花点火式内燃機関(ガソリンエンジン)であってもよい。
<Example 1>
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and its intake / exhaust system. Internal combustion engine 1 shown in FIG.
Is a compression ignition internal combustion engine (diesel engine) using light oil as fuel. However, the internal combustion engine according to the present invention is not limited to a diesel engine, and may be a spark ignition internal combustion engine (gasoline engine) using gasoline as fuel.

内燃機関1には排気通路2が接続されている。排気通路2には、SCR触媒が担持されたパティキュレートフィルタ(以下、「SCRF」と記す)4が設けられている。ここでいうSCR触媒は、ゼオライトにより構成される担体と、その担体の一部をFe錯体やCu錯体等とイオン交換することで生成される活性成分と、を備え、NHを還元剤として排気中のNOを選択還元する触媒である。また、パティキュレートフィルタは、排気中のPMを捕集するウォールフロー型のフィルタである。 An exhaust passage 2 is connected to the internal combustion engine 1. The exhaust passage 2 is provided with a particulate filter (hereinafter referred to as “SCRF”) 4 carrying an SCR catalyst. The SCR catalyst here includes a support composed of zeolite and an active component generated by ion exchange of a part of the support with an Fe complex, a Cu complex or the like, and exhausts with NH 3 as a reducing agent. It is a catalyst that selectively reduces NO X therein. The particulate filter is a wall flow type filter that collects PM in the exhaust gas.

SCRF4より上流の排気通路2には、タンク8に貯蔵される添加剤を排気中に供給するための添加剤供給弁7が取り付けられている。なお、タンク8に貯蔵される添加剤としては、NHガス、又はNHの前駆体である尿素水溶液等を用いることができるが、本実施例では尿素水溶液を用いるものとする。添加剤供給弁7から排気中に供給された尿素水溶液は、排気の熱を受けて熱分解され、又はSCR触媒において加水分解される。尿素水溶液が熱分解又は加水分解されると、NHが生成される。このようにして生成されたNHは、SCRに吸着される。SCRに吸着されたNHは、排気中に含まれるNOと反応して窒素(N)や水(HO)を生成する。つまり、NHは、NOの還元剤として機能する。ここで、前記添加剤供給弁7は、本発明に係わる「供給手段」に相当する。 An additive supply valve 7 for supplying the additive stored in the tank 8 into the exhaust is attached to the exhaust passage 2 upstream of the SCRF 4. As an additive stored in the tank 8, NH 3 gas or a urea aqueous solution that is a precursor of NH 3 can be used. In this embodiment, a urea aqueous solution is used. The urea aqueous solution supplied into the exhaust gas from the additive supply valve 7 is thermally decomposed by receiving heat from the exhaust gas or hydrolyzed in the SCR catalyst. When the urea aqueous solution is thermally decomposed or hydrolyzed, NH 3 is generated. The NH 3 thus generated is adsorbed on the SCR. NH 3 adsorbed on the SCR reacts with NO X contained in the exhaust to generate nitrogen (N 2 ) and water (H 2 O). That is, NH 3 functions as a NO X reducing agent. Here, the additive supply valve 7 corresponds to a “supply means” according to the present invention.

前記SCRF4より下流の排気通路2には、SCRF4をすり抜けたNHを酸化するための酸化触媒(以下、「ASC」と記す)5が設けられている。また、ASC5は、酸化触媒とSCR触媒とを組み合わせることで構成された触媒であってもよい。この場合、たとえば、酸化アルミニウム(Al)やゼオライト等を材料とする担体に白金(Pt)等の貴金属を担持させることで酸化触媒を形成し、ゼオライトを材料とする担体にFeやCu等の卑金属を担持(ゼオライトの一部をFe錯体やCu錯体等によりイオン交換)させることでSCR触媒を形成してもよい。ASC5がこのように構成されると、排気中の燃料、CO、及びNHを酸化させることができ、さらにNHが酸化されることで生成されるNOを余剰のNHで還元することもできる。 The exhaust passage 2 downstream of the SCRF 4 is provided with an oxidation catalyst (hereinafter referred to as “ASC”) 5 for oxidizing NH 3 that has passed through the SCRF 4. ASC5 may be a catalyst configured by combining an oxidation catalyst and an SCR catalyst. In this case, for example, an oxidation catalyst is formed by supporting a noble metal such as platinum (Pt) on a carrier made of aluminum oxide (Al 2 O 3 ), zeolite or the like, and Fe or Cu is used on the carrier made of zeolite. An SCR catalyst may be formed by supporting a base metal such as a zeolite (ion exchange with a part of zeolite by Fe complex or Cu complex). When the ASC 5 is configured in this way, the fuel, CO, and NH 3 in the exhaust gas can be oxidized, and NO X produced by the oxidation of the NH 3 can be reduced with excess NH 3. You can also.

前記SCRF4及び添加剤供給弁7より上流の排気通路2には、酸化機能を有する酸化触媒3が設けられている。該酸化触媒より上流の排気通路2には、酸化触媒3に流れ込む排気を介して酸化触媒3に内燃機関1の燃料を供給するための燃料供給弁6が配置されている。燃料供給弁6から排気に供給された燃料は、酸化触媒3により酸化され、下流に位置するSCRF4に流れ込む排気の温度を昇温させ得る。   An oxidation catalyst 3 having an oxidation function is provided in the exhaust passage 2 upstream of the SCRF 4 and the additive supply valve 7. A fuel supply valve 6 for supplying the fuel of the internal combustion engine 1 to the oxidation catalyst 3 through the exhaust gas flowing into the oxidation catalyst 3 is disposed in the exhaust passage 2 upstream of the oxidation catalyst. The fuel supplied to the exhaust from the fuel supply valve 6 is oxidized by the oxidation catalyst 3, and the temperature of the exhaust flowing into the SCRF 4 located downstream can be raised.

前記酸化触媒3と前記SCRF4との間の排気通路2には、SCRF4へ流入する排気のNO濃度を検出する第一NOセンサ10と、酸化触媒3から流出する排気の温度を検出する第一温度センサ13とが設けられている。なお、SCRF4へ流入する排気のNO濃度は、内燃機関1の運転状態等から推定されてもよい。前記SCRF4と前記ASC5との間の排気通路2には、SCRF4から流出する排気の温度を検出する第二温度センサ14が設けられている。また、ASC5より下流の排気通路2には、ASC5から流出する排気のNO濃度を検出する第二NOセンサ11が設けられている。さらに、排気通路2には、SCRF4の上流側の排気圧力と下流側の排気圧力との差圧を検出するための差圧センサ12がSCRF4と並列に設けられている。なお、酸化触媒3、SCRF4、及びASC5の組合せは、本発明に係わる排気浄化装置の一実施例である。 In the exhaust passage 2 between the oxidation catalyst 3 and the SCRF 4, a first NO X sensor 10 that detects the NO X concentration of the exhaust flowing into the SCRF 4 and a temperature of the exhaust flowing out from the oxidation catalyst 3 are detected. One temperature sensor 13 is provided. Note that the NO x concentration of the exhaust gas flowing into the SCRF 4 may be estimated from the operating state of the internal combustion engine 1 or the like. In the exhaust passage 2 between the SCRF 4 and the ASC 5, a second temperature sensor 14 for detecting the temperature of the exhaust gas flowing out from the SCRF 4 is provided. The exhaust passage 2 downstream of the ASC 5 is provided with a second NO X sensor 11 that detects the NO X concentration of the exhaust gas flowing out from the ASC 5. Further, a differential pressure sensor 12 for detecting a differential pressure between the exhaust pressure upstream of the SCRF 4 and the exhaust pressure downstream is provided in the exhaust passage 2 in parallel with the SCRF 4. The combination of the oxidation catalyst 3, SCRF4, and ASC5 is an embodiment of the exhaust gas purification apparatus according to the present invention.

このように構成された内燃機関1には、電子制御ユニット(ECU)20が併設されて
いる。ECU20は、前述した第一NOセンサ10、第二NOセンサ11、第一温度センサ13、第二温度センサ14、差圧センサ12に加え、クランクポジションセンサ21、アクセルポジションセンサ22、エアフローメータ26等と電気的に接続され、各種センサの出力信号がECU20に入力されるようになっている。ここで、クランクポジションセンサ21は、内燃機関1の出力軸(クランクシャフト)の回転位置を検出するセンサである。アクセルポジションセンサ22は、アクセルペダルの操作量(アクセル開度)を検出するセンサである。エアフローメータ26は、内燃機関1の吸気通路25に取り付けられ、内燃機関1へ吸入される空気量(吸入空気量)を検出するセンサである。
The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 20. The ECU 20 includes a crank position sensor 21, an accelerator position sensor 22, an air flow meter in addition to the first NO X sensor 10, the second NO X sensor 11, the first temperature sensor 13, the second temperature sensor 14, and the differential pressure sensor 12 described above. 26 and the like, and output signals from various sensors are input to the ECU 20. Here, the crank position sensor 21 is a sensor that detects the rotational position of the output shaft (crankshaft) of the internal combustion engine 1. The accelerator position sensor 22 is a sensor that detects an operation amount (accelerator opening) of an accelerator pedal. The air flow meter 26 is a sensor that is attached to the intake passage 25 of the internal combustion engine 1 and detects the amount of air taken into the internal combustion engine 1 (intake air amount).

ECU20は、前記各種センサの検出値に基づいて内燃機関1の運転状態や排気浄化システムを制御する。たとえば、ECU20は、SCRF4へ流入する排気のNO濃度に基づいて添加剤供給弁7から供給される尿素水溶液の目標量(基本添加量)を決定し、その基本添加量に従って添加剤供給弁7を制御する。上記の基本添加量を決定するにあたり、ECU20は、先ずSCR触媒のNH吸着量を推定する。NH吸着量は、SCRF4のSCR触媒に供給されるNH(尿素水溶液が熱分解又は加水分解されて生成されるNH)の量から、前記SCR触媒において消費されるNHの量(NOの還元に消費されるNHの量)とNHスリップ量(SCR触媒をすり抜けるNHの量)とを減算した値を積算することによって推定される。 The ECU 20 controls the operating state of the internal combustion engine 1 and the exhaust purification system based on the detection values of the various sensors. For example, ECU 20 determines a target amount of the urea aqueous solution supplied from the additive supply valve 7 based on the concentration of NO X exhaust gas flowing into SCRF4 (basic amount), additive supply valve in accordance with the basic amount 7 To control. In determining the basic addition amount, the ECU 20 first estimates the NH 3 adsorption amount of the SCR catalyst. The amount of NH 3 adsorbed is determined based on the amount of NH 3 consumed in the SCR catalyst (NO 3 ) from the amount of NH 3 (NH 3 produced by thermal decomposition or hydrolysis of urea aqueous solution) supplied to the SCR catalyst of SCRF4. It is estimated by integrating the value obtained by subtracting the amount of NH 3 consumed for the reduction of X ) and the amount of NH 3 slip (the amount of NH 3 passing through the SCR catalyst).

ここで、SCR触媒において消費されるNHの量は、前記SCR触媒へ流入するNOの量(NO流入量)とSCR触媒のNO浄化率とをパラメータとして演算される。その際、NO流入量は、第一NOセンサ10の検出値(SCRF4へ流入する排気のNO濃度)に排気流量(単位時間あたりの吸入空気量と単位時間あたりの燃料噴射量との総量)を乗算することにより求められる。なお、SCRF4へ流入する排気のNO濃度は、内燃機関1の運転状態に相関することから、内燃機関1の運転状態に基づいて推定されてもよい。一方、NO浄化率は、SCR触媒が正常(燃料被毒や劣化が発生していない状態)であると想定した場合のNO浄化率であり、SCR触媒へ流入する排気の流量とSCR触媒の温度とをパラメータとして求められる。その際、正常なSCR触媒のNO浄化率は、排気流量が多くなるほど低くなり、且つSCR触媒の温度が高くなるほど高くなる特性を有するため、そのような特性に基づいてSCR触媒のNO浄化率を求めることができる。 Wherein the amount of NH 3 to be consumed in the SCR catalyst is calculated and the amount of the NO X flowing into the SCR catalyst (NO X inflow) and NO X purification rate of the SCR catalyst as a parameter. At that time, the NO X inflow amount is calculated by adding the exhaust value (intake air amount per unit time and fuel injection amount per unit time) to the detection value of the first NO X sensor 10 (NO X concentration of exhaust gas flowing into the SCRF 4). It is obtained by multiplying the total amount). Note that the NO X concentration of the exhaust gas flowing into the SCRF 4 correlates with the operating state of the internal combustion engine 1, and therefore may be estimated based on the operating state of the internal combustion engine 1. On the other hand, NO X purification rate is NO X purification rate when the SCR catalyst is assumed to be normal (fuel state poisoning and degradation has not occurred), of the exhaust gas flowing into the SCR catalyst flow rate and SCR catalyst As a parameter. At this time, NO X purification rate of normal SCR catalyst becomes lower as the exhaust flow rate increases, and because it has a higher becomes properties as the temperature of the SCR catalyst is increased, NO X purification of the SCR catalyst based on such properties The rate can be determined.

NH吸着量の推定に用いられるNHスリップ量は、NH吸着量の前回の推定値と、SCR触媒の温度と、排気の流量と、をパラメータとして求められる。ここで、排気の流量が一定であれば、NH吸着量が多くなるほど、且つSCR触媒の温度が高くなるほど、SCR触媒から流出する排気のNH濃度が高くなる。また、SCR触媒から流出する排気のNH濃度が一定であれば、排気の流量が多くなるほど、単位時間あたりのNHスリップ量が多くなる。これらの相関を踏まえると、SCR触媒のNH吸着量とSCR触媒の温度とをパラメータとしてSCR触媒から流出する排気のNH濃度を求め、次いでそのNH濃度に排気の流量を乗算することで、NHスリップ量を求めることができる。 NH 3 slip amount used in the estimation of the adsorbed NH 3 amount is calculated and the previous estimate of the adsorbed NH 3 amount, and the temperature of the SCR catalyst, and the flow rate of the exhaust gas, as a parameter. Here, if the flow rate of the exhaust gas is constant, the NH 3 concentration in the exhaust gas flowing out from the SCR catalyst increases as the NH 3 adsorption amount increases and the temperature of the SCR catalyst increases. Further, if the NH 3 concentration in the exhaust gas flowing out from the SCR catalyst is constant, the NH 3 slip amount per unit time increases as the exhaust gas flow rate increases. Based on these correlations, the NH 3 concentration of the exhaust gas flowing out from the SCR catalyst is obtained by using the NH 3 adsorption amount of the SCR catalyst and the temperature of the SCR catalyst as parameters, and then the NH 3 concentration is multiplied by the flow rate of the exhaust gas. , NH 3 slip amount can be obtained.

上記した方法によりSCR触媒のNH吸着量が推定されると、ECU20は、そのNH吸着量と目標NH吸着量との差(目標NH吸着量からNH吸着量の推定値を減算した値)を演算し、その差に相当する尿素水溶液の量を基本添加量に定める。なお、ここでいう目標NH吸着量は、一定量(たとえば、SCR触媒のNH吸着速度とNH脱離速度とが平衡状態になるときのNH吸着量)であってもよい。また、目標NH吸着量は、SCR触媒のNO浄化率が一定となるように、NO流入量に応じて変更されてもよい。 When adsorbed NH 3 amount of the SCR catalyst by the method described above can be estimated, ECU 20 may subtract the estimated value of the adsorbed NH 3 amount from the difference (target adsorbed NH 3 amount between the adsorbed NH 3 amount and the target adsorbed NH 3 amount The amount of urea aqueous solution corresponding to the difference is determined as the basic addition amount. The target adsorbed NH 3 amount referred to here, a certain amount (e.g., NH 3 adsorption amount when the NH 3 adsorption rate and NH 3 desorption rate of the SCR catalyst in equilibrium) may be used. Further, the target NH 3 adsorption amount may be changed according to the NO X inflow amount so that the NO X purification rate of the SCR catalyst becomes constant.

また、ECU20は、SCRF4のパティキュレートフィルタに捕集されているPMの量(PM捕集量)が所定量以上になったときに、前記パティキュレートフィルタに捕集されているPMを酸化及び除去するための処理(昇温処理)を実行する。具体的には、ECU20は、エアフローメータ26の検出値や燃料噴射量等から演算される排気流量や差圧センサ12の検出値等をパラメータとして、パティキュレートフィルタのPM捕集量を演算する。このようなPM捕集量の演算処理は、内燃機関1の運転期間中に所定の周期で繰り返し実行される。そして、ECU20は、PM捕集量の演算値が所定量以上になったときに昇温処理を実行する。ここでいう昇温処理は、燃料供給弁6から排気中に燃料を供給し、又は内燃機関1の図示しない燃料噴射弁からポスト噴射させて内燃機関1の排気に燃料を供給することで、その燃料が酸化触媒3で酸化される際に発生する反応熱を利用してSCRF4を所定の再生温度(PMが酸化し得る温度であって、たとえば500℃−650℃)に昇温させる処理である。このような昇温処理が行われると、SCRF4のパティキュレートフィルタに捕集されていたPMが酸化及び除去される。なお、ここでいうポスト噴射は、噴射された燃料が内燃機関1の出力にほとんど寄与しない時期、たとえば膨張行程の後期や排気行程の前期等に行われる燃料噴射である。このような昇温処理をECU20が実行することにより、本発明に係わる「昇温制御手段」が実現される。   Further, the ECU 20 oxidizes and removes the PM trapped in the particulate filter when the amount of PM trapped in the particulate filter of the SCRF 4 (PM trap amount) exceeds a predetermined amount. To perform the process (temperature increase process). Specifically, the ECU 20 calculates the PM collection amount of the particulate filter using the exhaust flow rate calculated from the detection value of the air flow meter 26, the fuel injection amount, and the like, the detection value of the differential pressure sensor 12, and the like as parameters. Such calculation processing of the amount of collected PM is repeatedly executed at a predetermined cycle during the operation period of the internal combustion engine 1. Then, the ECU 20 performs the temperature raising process when the calculated value of the PM collection amount becomes a predetermined amount or more. The temperature raising process here refers to supplying fuel into the exhaust from the fuel supply valve 6 or post-injecting it from a fuel injection valve (not shown) of the internal combustion engine 1 to supply the fuel to the exhaust of the internal combustion engine 1. This is a process of raising the temperature of the SCRF 4 to a predetermined regeneration temperature (a temperature at which PM can be oxidized, for example, 500 ° C. to 650 ° C.) using reaction heat generated when the fuel is oxidized by the oxidation catalyst 3. . When such a temperature raising process is performed, PM collected by the particulate filter of SCRF4 is oxidized and removed. The post-injection here is fuel injection performed at a time when the injected fuel hardly contributes to the output of the internal combustion engine 1, for example, at the latter stage of the expansion stroke or the first half of the exhaust stroke. When the ECU 20 executes such a temperature increase process, the “temperature increase control means” according to the present invention is realized.

ところで、上記したような昇温処理が実行されると、SCRF4のパティキュレートフィルタに担持されているSCR触媒もパティキュレートフィルタと同様に前記再生温度まで昇温する可能性が高い。ここで、SCR触媒の温度が500℃以上の前記再生温度まで上昇すると、該SCR触媒を構成するゼオライトの細孔が拡径する可能性がある。また、上記した昇温処理が実行された場合は、酸化触媒3へ供給された燃料のうち、該酸化触媒3によって十分に酸化されない一部の燃料が高温な雰囲気に曝されて低分子化する可能性もある。よって、上記した昇温処理が実行されると、ゼオライトの拡径した細孔内に低分子化した燃料が入り込みやすくなる。ゼオライトの細孔内に燃料が入り込むと、ゼオライトに担持されているFeやCu等の活性成分が燃料によって覆われることで、NHの吸着やNHとNOとの反応が阻害される燃料被毒が発生しやすくなる。 By the way, when the temperature raising process as described above is executed, there is a high possibility that the SCR catalyst carried on the particulate filter of the SCRF 4 is also raised to the regeneration temperature like the particulate filter. Here, when the temperature of the SCR catalyst rises to the regeneration temperature of 500 ° C. or more, the pores of the zeolite constituting the SCR catalyst may expand. In addition, when the above-described temperature raising process is executed, a part of the fuel supplied to the oxidation catalyst 3 that is not sufficiently oxidized by the oxidation catalyst 3 is exposed to a high-temperature atmosphere to reduce the molecular weight. There is a possibility. Therefore, when the above-described temperature raising process is executed, the low molecular weight fuel easily enters the pores whose diameter has been expanded in the zeolite. When the fuel enters the pores of the zeolite, that the active ingredient, such as Fe and Cu which are carried on the zeolite are covered by the fuel, the fuel react with the adsorption and NH 3 and NO X in the NH 3 is inhibited Poisoning is likely to occur.

ここで、SCR触媒の燃料被毒が発生すると、SCR触媒のNO浄化率が低下する可能性がある。特に、上記の昇温処理が実行されることでSCR触媒の温度が500℃以上の前記再生温度に昇温している場合は、燃料被毒が発生しやすく、それに伴ってSCR触媒のNO浄化率が低下しやすい。ここで、SCR触媒の温度とNO浄化率との相関を図2に示す。なお、図2は、燃料被毒の発生していない正常なSCR触媒の温度とNO浄化率との相関を示している。図2に示すように、SCR触媒は、該SCR触媒の温度が凡そ200℃−350℃の適正な温度範囲にあるときは十分に高いNO浄化率(たとえば、80%以上)を実現するが、該SCR触媒の温度が凡そ350℃を超えると該SCR触媒の温度が高くなるほどNO浄化率が低くなる特性を有している。そのため、SCR触媒の温度が500℃以上の前記再生温度まで上昇しているときに、SCR触媒の燃料被毒が発生すると、燃料被毒の発生がNO浄化率に及ぼす影響が大きくなり、それに伴ってNO浄化率の低下幅が大きくなる可能性がある。したがって、上記した昇温処理が実行されることで、パティキュレートフィルタとともにSCR触媒の温度が前記再生温度まで上昇すると、燃料被毒が発生しやすく、且つNO浄化率が低下しやすい環境にSCR触媒が置かれていると言える。なお、SCR触媒に燃料被毒や劣化が発生している場合は、上記した適正な温度範囲が高温側に多少シフトしたり、又はNO浄化率の絶対値が小さくなったりするものの、500℃以上の高温域において燃料被毒の発生がNO浄化率に及ぼす影響が大きいことは正常時と同様である。 Here, when the fuel poisoning of SCR catalysts occurs, NO X purification rate of the SCR catalyst may be reduced. In particular, when the temperature of the SCR catalyst by raising the temperature process described above is performed is heated to the regeneration temperature of more than 500 ° C., the fuel poisoning is likely to occur, the SCR catalyst accordingly NO X The purification rate tends to decrease. Here, the correlation between temperature and NO X purification rate of the SCR catalyst in FIG. Incidentally, FIG. 2 shows the correlation between the temperature and the NO X purification rate of normal SCR catalyst does not occur in the fuel poisoning. As shown in FIG. 2, the SCR catalyst achieves a sufficiently high NO x purification rate (for example, 80% or more) when the temperature of the SCR catalyst is in an appropriate temperature range of about 200 ° C. to 350 ° C. , the temperature of the SCR catalyst is more than about 350 ° C. the SCR catalyst temperature becomes higher as the NO X purification rate has a characteristic to be low. Therefore, when the temperature of the SCR catalyst is increased to the regeneration temperature of more than 500 ° C., the fuel poisoning of SCR catalysts occurs, effects the generation of fuel poisoning on the NO X purification rate becomes large, it there is a possibility that the decline in association with NO X purification rate is increased. Thus, by raising the temperature process described above is executed, when together with the particulate filter temperature of the SCR catalyst is increased to the regeneration temperature, the fuel poisoning is likely to occur, and the NO X purification rate tends to decrease environmental SCR It can be said that the catalyst is placed. In the case where the fuel poisoning or deterioration occurs in the SCR catalyst, although a proper temperature range above or slightly shifted to the high temperature side, or the absolute value of the NO X purification rate may become small, 500 ° C. it is similar to the normal effects of the generation of fuel poisoning on the NO X purification rate is large in the above high temperature range.

そこで、本実施例では、上記した昇温処理の実行によってSCR触媒の温度が所定の閾値以上に上昇しているとき、すなわち、燃料被毒が発生しやすく、それに応じてNO浄化率が低下しやすい環境にSCR触媒が置かれているときは、前述の基本添加量(SCR
F4へ流入する排気のNO濃度に応じて決定される添加量)を増量補正して、その補正後の量(以下、「高温用添加量」と記す)に従って添加剤供給弁7を制御するようにした。ここでいう所定の閾値は、SCR触媒の担体であるゼオライトの細孔が拡径する可能性、及び排気中の燃料が低分子化する可能性がある温度の下限値であって、前記再生温度以下の温度(たとえば、500℃)である。
Therefore, in this embodiment, when the temperature of the SCR catalyst by the execution of the Atsushi Nobori process described above has risen above a predetermined threshold, i.e., the fuel poisoning is likely to occur, reduced NO X purification rate accordingly When the SCR catalyst is placed in an easily accessible environment, the basic addition amount (SCR
And increase correction of the amount) determined according to the NO X concentration of the exhaust gas flowing into F4, the amount of the corrected (hereinafter, controls the additive supply valve 7 according referred to as "high temperature additive amount") I did it. The predetermined threshold here is a lower limit value of the temperature at which the pores of the zeolite, which is the carrier of the SCR catalyst, may expand and the temperature at which the fuel in the exhaust gas may become low in molecular weight. The following temperature (for example, 500 ° C.).

上記した高温用添加量は、SCRF4へ流入する排気の燃料濃度に応じた補正係数を前記基本添加量に乗算することで求められる。ここで、SCRF4へ流入する排気の燃料濃度は、前記昇温処理が実行されているときに、内燃機関1から酸化触媒3を経由してSCRF4に到達する排気の燃料濃度である。したがって、SCRF4へ流入する燃料濃度の取得に際しては、内燃機関1から排出される排気の燃料濃度、前記昇温処理の実行により排気中に供給される燃料の量、酸化触媒3における燃料の消費量(酸化反応量)が考慮され、具体的には、以下の手順(ステップ1−4)によりSCRF4へ流入する排気の燃料濃度が算出される。
(ステップ1)
ステップ1では、内燃機関1から排出される排気の燃料濃度が算出される。具体的には、機関負荷と機関回転速度と内燃機関1から排出される排気の燃料濃度との相関が格納されたマップを予めECU20のROMに記憶させておき、機関負荷及び機関回転速度を引数として該マップにアクセスすることで、内燃機関1から排出される排気の燃料濃度を算出すればよい。
(ステップ2)
ステップ2では、燃料供給弁6により排気に供給される燃料の量、又は燃料噴射弁によるポスト噴射により排気に供給される燃料の量を考慮して、単位時間あたりに酸化触媒3へ流入する燃料量が算出される。具体的には、上記ステップ1で算出された燃料濃度と排気の流量(エアフローメータ26により検出される吸入空気量と燃料噴射量との総量)とを乗算した値に、燃料供給弁6による燃料供給量、又は燃料噴射弁からのポスト噴射による燃料供給量を加算することで、単位時間あたりに酸化触媒3へ流入する燃料量を算出すればよい。
The above high temperature addition amount can be obtained by multiplying the basic addition amount by a correction coefficient corresponding to the fuel concentration of the exhaust gas flowing into the SCRF 4. Here, the fuel concentration of the exhaust gas flowing into the SCRF 4 is the fuel concentration of the exhaust gas that reaches the SCRF 4 from the internal combustion engine 1 via the oxidation catalyst 3 when the temperature raising process is being executed. Therefore, when acquiring the fuel concentration flowing into the SCRF 4, the fuel concentration of the exhaust gas discharged from the internal combustion engine 1, the amount of fuel supplied into the exhaust gas by the execution of the temperature raising process, and the fuel consumption amount in the oxidation catalyst 3 (Oxidation reaction amount) is considered, and specifically, the fuel concentration of the exhaust gas flowing into the SCRF 4 is calculated by the following procedure (step 1-4).
(Step 1)
In step 1, the fuel concentration of the exhaust discharged from the internal combustion engine 1 is calculated. Specifically, a map in which the correlation between the engine load, the engine speed, and the fuel concentration of the exhaust gas discharged from the internal combustion engine 1 is stored in advance in the ROM of the ECU 20, and the engine load and the engine speed are arguments. By accessing the map, the fuel concentration of the exhaust discharged from the internal combustion engine 1 may be calculated.
(Step 2)
In step 2, the fuel flowing into the oxidation catalyst 3 per unit time in consideration of the amount of fuel supplied to the exhaust by the fuel supply valve 6 or the amount of fuel supplied to the exhaust by post injection by the fuel injection valve. A quantity is calculated. Specifically, the value obtained by multiplying the fuel concentration calculated in step 1 above and the flow rate of exhaust gas (the total amount of the intake air amount detected by the air flow meter 26 and the fuel injection amount) is multiplied by the fuel supplied by the fuel supply valve 6. The amount of fuel flowing into the oxidation catalyst 3 per unit time may be calculated by adding the supply amount or the fuel supply amount by post injection from the fuel injection valve.

(ステップ3)
ステップ3では、第一温度センサ13の検出値に基づいて、酸化触媒3の温度が算出される。そして、この時点における酸化触媒3の酸化能力(単位時間当たりの燃料の酸化能力)が、酸化触媒3の温度及び排気流量に基づいて算出される。具体的には、酸化触媒3の温度が上昇するほどその酸化能力は大きくなる傾向があり、また、酸化触媒3へ流入する排気流量が多くなるほどその酸化能力は低下していく傾向がある。そこで、これらの傾向が反映されたマップを予めECU20のROMに記憶させておき、酸化触媒3の温度と排気流量を引数として該マップにアクセスすることで、酸化触媒3の酸化能力(たとえば、酸化触媒3に流入する燃料濃度に対する酸化触媒3から流出する燃料濃度の比率である酸化率)を算出すればよい。
(ステップ4)
ステップ4では、上記ステップ1−3の結果を踏まえ、以下の(1)の式に従いSCRF4へ流入する排気の燃料濃度が算出される。
(SCRF4へ流入する排気の燃料濃度)=(酸化触媒3へ流入する燃料量から算出される燃料濃度)×(1−(酸化触媒3の酸化能力としての酸化率))・・(1)
(Step 3)
In step 3, the temperature of the oxidation catalyst 3 is calculated based on the detection value of the first temperature sensor 13. Then, the oxidation capacity of the oxidation catalyst 3 at this time (the oxidation capacity of the fuel per unit time) is calculated based on the temperature of the oxidation catalyst 3 and the exhaust gas flow rate. Specifically, the oxidation capability tends to increase as the temperature of the oxidation catalyst 3 increases, and the oxidation capability tends to decrease as the flow rate of exhaust gas flowing into the oxidation catalyst 3 increases. Therefore, a map reflecting these trends is stored in the ROM of the ECU 20 in advance, and the map is accessed using the temperature of the oxidation catalyst 3 and the exhaust gas flow rate as arguments, so that the oxidation capability of the oxidation catalyst 3 (for example, oxidation) What is necessary is just to calculate the oxidation rate which is the ratio of the fuel concentration flowing out from the oxidation catalyst 3 to the fuel concentration flowing into the catalyst 3.
(Step 4)
In step 4, based on the result of step 1-3, the fuel concentration of the exhaust gas flowing into SCRF 4 is calculated according to the following equation (1).
(Fuel concentration of exhaust gas flowing into SCRF 4) = (fuel concentration calculated from the amount of fuel flowing into oxidation catalyst 3) × (1- (oxidation rate as oxidation ability of oxidation catalyst 3)) (1)

なお、酸化触媒3における燃料の酸化率は、燃料の分子量に依存する場合もある。すなわち、低分子量の燃料は比較的酸化されにくく、一方で高分子量の燃料は酸化されやすい。そこで、比較的低分子量の燃料が供給されるポスト噴射で燃料供給が行われる場合は、比較的高分子量の燃料が供給される燃料供給弁6による燃料供給が行われる場合に比べ、酸化触媒の酸化能力の酸化率を低く設定してもよい。   Note that the oxidation rate of the fuel in the oxidation catalyst 3 may depend on the molecular weight of the fuel. That is, low molecular weight fuel is relatively less oxidized, while high molecular weight fuel is more likely to be oxidized. Therefore, when the fuel supply is performed by the post injection in which the fuel having a relatively low molecular weight is supplied, the oxidation catalyst is compared with the case where the fuel is supplied by the fuel supply valve 6 to which the fuel having a relatively high molecular weight is supplied. The oxidation rate of the oxidation ability may be set low.

上記した手順によってSCRF4へ流入する排気の燃料濃度が求められると、該燃料濃度をパラメータとして補正係数が決定される。その際、SCRF4へ流入する燃料濃度が高くなるほどSCR触媒の燃料被毒が発生しやすく、且つSCR触媒のNO浄化率が低下しやすいと考えられる。また、SCR触媒の温度が前記所定の閾値以上の高温域にあるときは、前述の図2の説明で述べたように、SCR触媒の温度が高くなるほどNO浄化率が低くなる傾向がある。そのため、SCR触媒の温度が高くなるほど、燃料被毒の発生がNO浄化率に及ぼす影響が大きいと言える。よって、前記補正係数は、SCRF4へ流入する燃料濃度に加え、SCR触媒の温度も考慮して決定されることが望ましい。そこで、本実施例では、SCRF4へ流入する排気の燃料濃度に応じて定められる第一補正係数k1と、SCR触媒の温度に応じて定められる第二補正係数k2と、を用いて前記基本添加量の増量補正を行うようにした。その際、第一補正係数k1は、1より大きい値であってSCR触媒へ流入する排気の燃料濃度が高くなるほど大きな値に設定されればよい。また、第二補正係数k2は、1より大きい値であって、SCR触媒の温度が高くなるほど大きな値に設定されればよい。そして、ECU20は、下記の(2)の式に従って基本添加量を増量補正することで、高温用添加量を求めればよい。
(高温用添加量)=(基本添加量)*(第一補正係数)*(第二補正係数)・・(2)
When the fuel concentration of the exhaust gas flowing into the SCRF 4 is obtained by the above procedure, the correction coefficient is determined using the fuel concentration as a parameter. At that time, the fuel poisoning is likely to occur in the SCR catalyst as a higher fuel concentration flowing into SCRF4, and NO X purification rate of the SCR catalyst is considered to be likely to decrease. Further, when the temperature of the SCR catalyst is a high temperature range of not lower than the predetermined threshold value, as described with reference to FIG. 2 described above, as the temperature of the SCR catalyst is increased NO X purification rate tends to be low. Therefore, as the temperature of the SCR catalyst is increased, the influence of the generation of fuel poisoning on the NO X purification rate can be said to be greater. Therefore, it is desirable that the correction coefficient is determined in consideration of the temperature of the SCR catalyst in addition to the fuel concentration flowing into the SCRF 4. Therefore, in this embodiment, the basic addition amount is calculated using the first correction coefficient k1 determined according to the fuel concentration of the exhaust gas flowing into the SCRF 4 and the second correction coefficient k2 determined according to the temperature of the SCR catalyst. The amount of increase was corrected. At this time, the first correction coefficient k1 may be set to a value larger than 1 and larger as the fuel concentration of the exhaust gas flowing into the SCR catalyst becomes higher. The second correction coefficient k2 may be a value larger than 1 and set to a larger value as the temperature of the SCR catalyst becomes higher. And ECU20 should just obtain | require the addition amount for high temperature by carrying out the increase correction | amendment of the basic addition amount according to the following formula | equation of (2).
(Addition amount for high temperature) = (Basic addition amount) * (First correction coefficient) * (Second correction coefficient) (2)

上記(2)の式に従って算出される高温用添加量は、SCRF4へ流入する排気のNO濃度に応じて決定される基本添加量より多い量であって、SCRF4へ流入する排気の燃料濃度が高くなるほど、且つSCR触媒の温度が高くなるほど多い量になる。このような補正による増加率(基本添加量に対する高温用添加量の比率)は、SCRF4へ流入する排気の燃料濃度が高くなるほど、且つSCR触媒の温度が高くなるほど大きくなる。 High temperature additive amount calculated according to the formula (2) is an amount greater than the base amount determined according to the NO X concentration of the exhaust gas flowing into the SCRF4, the fuel concentration of the exhaust gas flowing into the SCRF4 The higher the temperature and the higher the temperature of the SCR catalyst, the larger the amount. The increase rate (ratio of the high temperature addition amount to the basic addition amount) by such correction increases as the fuel concentration of the exhaust gas flowing into the SCRF 4 increases and the temperature of the SCR catalyst increases.

ここで、基本添加量より多い高温用添加量の尿素水溶液が添加剤供給弁7から排気中に供給されると、増量分(高温用添加量と基本添加量との差)の尿素水溶液から生成されるNHがSCR触媒をすり抜けることが懸念される。しかしながら、SCR触媒の温度が前記所定の閾値以上の高温域にあるときは、SCR触媒の活性点におけるNOとNHとの反応速度が大きくなる。そのため、SCR触媒の温度が前記所定の閾値以上であるときは、燃料被毒の発生していない活性点で単位時間あたりに浄化(還元)することができるNOの量が多くなる。よって、前記増量分の尿素水溶液から生成されるNHは、燃料被毒の発生していない活性点においてNOとの反応に寄与することになる。その結果、SCR触媒の一部の活性点が燃料によって被毒されることに起因するNO浄化率の低下分は、燃料によって被毒されていない活性点で浄化されるNO量の増加に起因するNO浄化率の増加分によって補償される。そのため、基本添加量より多い高温用添加量の添加剤が添加剤供給弁7から排気中に供給されても、SCR触媒をすり抜けるNHの増加を抑制しつつ、燃料被毒に起因するNO浄化率の低下を少なく抑えることができる。 Here, when an aqueous urea solution having a higher temperature addition amount than the basic addition amount is supplied into the exhaust gas from the additive supply valve 7, it is generated from an increased amount of urea solution (difference between the high temperature addition amount and the basic addition amount). There is a concern that the NH 3 that passes through the SCR catalyst. However, when the temperature of the SCR catalyst is in a high temperature range equal to or higher than the predetermined threshold value, the reaction rate between NO X and NH 3 at the active point of the SCR catalyst increases. Therefore, when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold, the amount of NO X that can be purified (reduced) per unit time at the active point where fuel poisoning has not occurred increases. Therefore, NH 3 produced from the increased amount of urea aqueous solution contributes to the reaction with NO X at the active point where no fuel poisoning occurs. As a result, decrease amount of the NO X purification rate due to a part of the active sites of the SCR catalyst is poisoned by fuel, by the fuel to increase the amount of NO X to be purified in active sites that are not poisoned It is compensated by increase of the NO X purification rate due to. Therefore, even if an additive having a high temperature addition amount higher than the basic addition amount is supplied into the exhaust gas from the additive supply valve 7, NO X resulting from fuel poisoning is suppressed while suppressing an increase in NH 3 that passes through the SCR catalyst. A decrease in the purification rate can be suppressed to a small extent.

図3は、SCR触媒の温度が前記所定の閾値以上である場合において、SCRF4へ流入する排気のNO濃度及びSCR触媒の温度が一定であるときの、SCRF4へ流入する排気の燃料濃度、尿素水溶液の供給量、及びSCR触媒のNO浄化率の経時変化を示す図である。図3に示すように、SCR触媒の温度が前記所定の閾値以上である場合は、高温用添加量(図3中(b)の実線)が基本添加量(図3中(b)の一点鎖線)より多くなるため、高温用添加量の添加剤が添加剤供給弁7から排気中に供給された場合のSCR触媒のNO浄化率(図3中(c)の実線)は、基本添加量の添加剤が添加剤供給弁7から排気中に供給された場合のSCR触媒のNO浄化率(図3中(c)の二点鎖線)より高くなる。そして、SCRF4へ流入する排気の燃料濃度が増加した際(図3中のt2)には、それに応じて前述の第一補正係数k1が大きくされることで、高温用添加量が増加される。その結果、基本添加量が供給された場合のSCR触媒のNO浄化率は、SCRF4へ流入する排気の燃料濃度が増加した後に低下するが、高温用添加量が供給された場
合のSCR触媒のNO浄化率は、SCRF4へ流入する排気の燃料濃度が増加した後も低下しなくなる。したがって、SCR触媒の温度が前記所定の閾値以上であるときに、高温用添加量の添加剤を添加剤供給弁7から排気中に供給させることで、SCR触媒の燃料被毒が発生しやすい状況におけるSCR触媒のNO浄化率を抑制することができる。
3, in the case the temperature of the SCR catalyst is above the predetermined threshold value, when the temperature of the exhaust gas of the NO X concentration and the SCR catalyst flowing into SCRF4 is constant, the fuel concentration of the exhaust gas flowing into the SCRF4, urea supply amount of the aqueous solution, and is a diagram showing changes with time of the NO X purification rate of the SCR catalyst. As shown in FIG. 3, when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold, the high temperature addition amount (solid line in FIG. 3 (b)) is the basic addition amount (dashed line in FIG. 3 (b)). ) many made for than, NO X purification rate of the SCR catalyst when the amount of the additive for high temperature is supplied from the additive supply valve 7 into the exhaust solid line (in FIG. 3 (c)), the basic amount additive is higher than the NO X purification rate of the SCR catalyst when it is fed into the exhaust gas (two-dot chain line in FIG. 3 (c)) from the additive supply valve 7. When the fuel concentration of the exhaust gas flowing into the SCRF 4 increases (t2 in FIG. 3), the first correction coefficient k1 is increased accordingly, whereby the high temperature additive amount is increased. As a result, the NO X purification rate of the SCR catalyst when the basic addition amount is supplied, but decreases after the fuel concentration of the exhaust gas flowing into SCRF4 increased, the SCR catalyst when the amount of addition for the high temperature is supplied NO X purification rate also will not decrease after the fuel concentration of the exhaust gas flowing into SCRF4 increased. Therefore, when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold value, the SCR catalyst is likely to be poisoned by supplying the additive for the high temperature into the exhaust gas from the additive supply valve 7. it is possible to suppress the NO X purification rate of the SCR catalyst in.

なお、高温用添加量を決定する際に基本添加量に乗算される補正係数は、前述したような第一補正係数と第二補正係数とに必ずしも分ける必要はなく、SCRF4へ流入する排気の燃料濃度とSCR触媒の温度とをパラメータとして一つの補正係数を決定してもよい。その場合は、SCRF4へ流入する排気の燃料濃度とSCR触媒の温度と補正係数との相関が格納されたマップを予めECU20のROMに記憶させておき、SCRF4へ流入する排気の燃料濃度とSCR触媒の温度とを引数として該マップにアクセスすることで、補正係数を算出すればよい。   The correction coefficient multiplied by the basic addition amount when determining the high temperature addition amount does not necessarily have to be divided into the first correction coefficient and the second correction coefficient as described above, and the fuel of the exhaust gas flowing into the SCRF 4 One correction coefficient may be determined using the concentration and the temperature of the SCR catalyst as parameters. In that case, a map storing the correlation between the fuel concentration of the exhaust gas flowing into the SCRF 4, the temperature of the SCR catalyst and the correction coefficient is stored in advance in the ROM of the ECU 20, and the fuel concentration of the exhaust gas flowing into the SCRF 4 and the SCR catalyst are stored. The correction coefficient may be calculated by accessing the map with the temperature of

以下、本実施例における添加剤供給弁7の制御手順について図4に沿って説明する。図4は、添加剤供給弁7を制御する際にECU20が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU20のROMに記憶されており、ECU20によって周期的に実行される。   Hereinafter, the control procedure of the additive supply valve 7 in the present embodiment will be described with reference to FIG. FIG. 4 is a flowchart showing a processing routine executed by the ECU 20 when the additive supply valve 7 is controlled. This processing routine is stored in advance in the ROM of the ECU 20 and is periodically executed by the ECU 20.

図4の処理ルーチンでは、ECU20は、先ずS101の処理においてSCRF4のパティキュレートフィルタに捕集されているPMを酸化及び除去するための昇温処理が実行中であるか否かを判別する。ここで、前記昇温処理が実行されていない場合は、燃料被毒、及び燃料被毒に起因するNO浄化率の低下が発生しにくい環境にSCR触媒が置かれていると考えられるため、基本添加量の尿素水溶液を添加剤供給弁7から供給させることで、SCR触媒において好適なNO浄化率を実現することができると考えられる。よって、S101の処理において否定判定された場合は、ECU20は、S108の処理へ進み、SCRF4へ流入する排気のNO濃度に基づいて決定される基本添加量の尿素水溶液が排気中に供給されるように、添加剤供給弁7を制御する。一方、S101の処理において肯定判定された場合は、ECU20は、S102の処理へ進む。 In the processing routine of FIG. 4, the ECU 20 first determines whether or not a temperature raising process for oxidizing and removing PM collected in the particulate filter of the SCRF 4 in the process of S101 is being executed. Here, since the case where the temperature increasing process is not running, fuel poisoning, and the SCR catalyst in the NO X purification rate difficult environment decrease occurred due to the fuel poisoning is believed to be laid, be to supply the urea aqueous solution of the basic amount of additive supply valve 7, it is considered possible to realize a suitable NO X purification rate in the SCR catalyst. Therefore, if a negative determination is made in the processing of S101, ECU 20 proceeds to the processing of S108, the urea aqueous solution of the basic additive amount determined is supplied into the exhaust gas on the basis of the NO X concentration of the exhaust gas flowing into the SCRF4 Thus, the additive supply valve 7 is controlled. On the other hand, if an affirmative determination is made in the process of S101, the ECU 20 proceeds to the process of S102.

S102の処理では、ECU20は、SCRF4のSCR触媒の温度Tcを検出する。SCR触媒の温度Tcは、専用の温度センサによって直接検出されてもよいが、第二温度センサ14の検出値から推定されてもよく、又は第一温度センサ13の検出値と第二温度センサ14の検出値との差から推定されてもよい。なお、昇温処理の実行中は、SCRF4のパティキュレートフィルタに捕集されているPMの酸化反応熱がSCR触媒に直接的に伝達されることで、SCR触媒の温度が一時的に上昇する可能性があるため、そのような現象を考慮してSCR触媒の温度Tcが推定されてもよい。このようにS102の処理が実行されることで、本発明に係わる「検出手段」が実現される。   In the process of S102, the ECU 20 detects the temperature Tc of the SCR catalyst of SCRF4. The temperature Tc of the SCR catalyst may be directly detected by a dedicated temperature sensor, but may be estimated from the detection value of the second temperature sensor 14, or the detection value of the first temperature sensor 13 and the second temperature sensor 14. It may be estimated from the difference from the detected value. During the temperature increase process, the temperature of the SCR catalyst can be temporarily increased by directly transferring the oxidation heat of PM trapped in the particulate filter of SCRF4 to the SCR catalyst. Therefore, the temperature Tc of the SCR catalyst may be estimated in consideration of such a phenomenon. By executing the processing of S102 in this way, the “detection means” according to the present invention is realized.

S103の処理では、ECU20は、前記S102の処理で取得されたSCR触媒の温度(SCR触媒の温度)Tcが所定の閾値Tcthre以上であるか否かを判別する。ここでいう所定の閾値Tcthreは、前述したように、SCR触媒の担体であるゼオライトの細孔が拡径する可能性、及び排気中の燃料が低分子化する可能性がある温度の下限値である。つまり、所定の閾値Tcthreは、前記ゼオライトの拡径した細孔内に低分子化した燃料が入り込むことで、SCR触媒の燃料被毒が発生し、それに伴ってSCR触媒のNO浄化率を低下し得ると考えられる温度である。ここで、SCR触媒の温度Tcが前記所定の閾値Tcthreより低い場合は、前記ゼオライトの細孔が拡径しにくく、且つ排気中の燃料が低分子化しにくい。そのため、SCR触媒の燃料被毒、及び燃料被毒に起因するNO浄化率の低下が発生しにくいと言える。よって、該S103の処理で否定判定された場合は、ECU20は、S108の処理へ進み、基本添加量に従って添加剤供給弁7を制御する。一方、SCR触媒の温度Tcが前記所定の閾値Tcthre以上であ
る場合は、前記ゼオライトの細孔が拡径しやすく、且つ排気中の燃料が低分子化しやすい。そのため、SCR触媒の燃料被毒、及び燃料被毒に起因するNO浄化率の低下が発生しやすいと言える。よって、該S103の処理で肯定判定された場合は、ECU20は、S104−S107の処理を順次実行することで、SCR触媒のNO浄化率の低下を抑制する。
In the process of S103, the ECU 20 determines whether or not the SCR catalyst temperature (SCR catalyst temperature) Tc acquired in the process of S102 is equal to or higher than a predetermined threshold Tcthre. As described above, the predetermined threshold value Tcthre is the lower limit value of the temperature at which the pores of the zeolite, which is the carrier of the SCR catalyst, may expand, and the fuel in the exhaust gas may become low molecular. is there. That is, the predetermined threshold Tcthre, by low molecular weight fuel from entering the pores larger diameter of the zeolite, poisoning occurs fuel SCR catalyst, reduce the NO X purification rate of the SCR catalyst with it This is the temperature that can be considered. Here, when the temperature Tc of the SCR catalyst is lower than the predetermined threshold value Tcthre, the pores of the zeolite are difficult to expand, and the fuel in the exhaust gas is difficult to decrease in molecular weight. Therefore, the fuel poisoning of SCR catalysts, and reduced of the NO X purification rate due to the fuel poisoning is less likely to occur. Therefore, if a negative determination is made in step S103, the ECU 20 proceeds to step S108, and controls the additive supply valve 7 in accordance with the basic addition amount. On the other hand, when the temperature Tc of the SCR catalyst is equal to or higher than the predetermined threshold value Tcthre, the pores of the zeolite are likely to expand, and the fuel in the exhaust gas tends to be low molecular. Therefore, the fuel poisoning of SCR catalysts, and reduced of the NO X purification rate due to the fuel poisoning can be said to likely occur. Therefore, if a positive determination is made in the processing of the S103, ECU 20, by sequentially executing the processing of S104-S107, suppressing deterioration of the NO X purification rate of the SCR catalyst.

先ず、S104の処理では、ECU20は、SCRF4へ流入する排気の燃料濃度Dhcを取得する。SCRF4へ流入する排気の燃料濃度Dhcは、前述したように、前記昇温処理が実行されている際に、SCRF4へ流入する排気の燃料濃度であり、内燃機関1から排出される排気の燃料濃度、前記昇温処理の実行により排気中に供給される燃料の量、及び酸化触媒3における燃料の消費量(酸化反応量)を考慮した前記(1)の式に基づいて算出される。このようにS104の処理が実行されることで、本発明に係わる「取得手段」が実現される。   First, in the process of S104, the ECU 20 acquires the fuel concentration Dhc of the exhaust gas flowing into the SCRF 4. As described above, the fuel concentration Dhc of the exhaust gas flowing into the SCRF 4 is the fuel concentration of the exhaust gas flowing into the SCRF 4 when the temperature raising process is being performed, and the fuel concentration of the exhaust gas discharged from the internal combustion engine 1. The calculation is performed based on the equation (1) in consideration of the amount of fuel supplied into the exhaust gas by the execution of the temperature raising process and the amount of fuel consumed in the oxidation catalyst 3 (oxidation reaction amount). As described above, the “acquiring unit” according to the present invention is realized by executing the processing of S104.

S105の処理では、ECU20は、前記S104の処理で取得された燃料濃度Dhcに基づいて第一補正係数k1を決定するとともに、前記S102の処理で取得されたSCR触媒の温度Tcに基づいて第二補正係数k2を決定する。その場合、第一補正係数k1は、1より大きい値であって燃料濃度Dhcが高くなるほど大きな値にされる。また、第二補正係数k2は、1より大きい値であってSCR触媒の温度Tcが高くなるほど大きな値にされる。   In the process of S105, the ECU 20 determines the first correction coefficient k1 based on the fuel concentration Dhc acquired in the process of S104, and the second based on the temperature Tc of the SCR catalyst acquired in the process of S102. A correction coefficient k2 is determined. In this case, the first correction coefficient k1 is a value greater than 1 and increases as the fuel concentration Dhc increases. Further, the second correction coefficient k2 is a value larger than 1 and is made larger as the temperature Tc of the SCR catalyst becomes higher.

S106の処理では、ECU20は、前記(2)の式に従って高温用添加量を算出する。すなわち、ECU20は、SCRF4へ流入する排気のNO濃度に基づいて決定される基本添加量に、前記S104の処理で取得された第一補正係数k1と第二補正係数k2とを乗算することにより、高温用添加量を算出する。 In the process of S106, the ECU 20 calculates the high temperature addition amount according to the equation (2). That, ECU 20 multiplies the basic addition amount is determined based on the concentration of NO X exhaust gas flowing into SCRF4, a first correction coefficient k1 obtained by the processing of the S104 by multiplying the second correction factor k2 The amount added for high temperature is calculated.

S107の処理では、ECU20は、前記S106の処理で算出された高温用添加量に従って添加剤供給弁7を制御する。その場合、添加剤供給弁7から排気中に供給される尿素水溶液の量は、SCRF4へ流入する排気のNO濃度に応じて決定される基本添加量より多い量であって、SCRF4へ流入する排気の燃料濃度が高くなるほど、且つSCR触媒の温度が高くなるほど多くなる。つまり、添加剤供給弁7から排気中に供給される尿素水溶液の量は、SCR触媒の担体であるゼオライトの細孔内に排気中の燃料が入り込みやすく、且つ前記細孔内に入り込む燃料の量が多くなりやすくなるほど多くなる。なお、前記S104−前記S108の処理が実行されることで、本発明に係わる「制御手段」が実現される。 In the process of S107, the ECU 20 controls the additive supply valve 7 in accordance with the high temperature additive amount calculated in the process of S106. In that case, the amount of the aqueous urea solution supplied from the additive supply valve 7 into the exhaust gas is an amount greater than the base amount determined according to the NO X concentration of the exhaust gas flowing into SCRF4, flows into SCRF4 It increases as the fuel concentration in the exhaust gas increases and the temperature of the SCR catalyst increases. That is, the amount of the urea aqueous solution supplied into the exhaust gas from the additive supply valve 7 is the amount of the fuel in the exhaust gas that easily enters the pores of the zeolite that is the carrier of the SCR catalyst, and enters the pores. The more it becomes, the more it becomes. It should be noted that the “control means” according to the present invention is realized by executing the processing of S104 to S108.

以上述べた処理ルーチンに従って添加剤供給弁7から供給される尿素水溶液の量が制御されると、昇温処理の実行中にSCR触媒を構成するゼオライトの拡径した細孔内に低分子化した燃料が入り込むことで、SCR触媒の一部の活性点で燃料被毒が発生しても、燃料被毒の発生していない他の活性点で還元されるNOの量を多くすることができる。その結果、SCR触媒の一部の活性点が燃料によって被毒されることに因るNO浄化率の低下分は、燃料によって被毒されていない活性点で浄化されるNO量の増加に因るNO浄化率の増加分によって補われることになり、SCR触媒のNO浄化率の低下を少なく抑えることができる。 When the amount of the urea aqueous solution supplied from the additive supply valve 7 is controlled according to the processing routine described above, the molecular weight is reduced in the expanded pores of the zeolite constituting the SCR catalyst during the temperature increasing process. by fuel enters, even fuel poisoning occurs with some active sites of the SCR catalyst, it is possible to increase the amount of the nO X to be reduced by other active sites fuel not poisoning occurs . As a result, the decrease in the NO X purification rate due to the poisoning of some active sites of the SCR catalyst by the fuel increases the amount of NO X purified at the active sites not poisoned by the fuel. due will be compensated by increase of the NO X purification rate, it is possible to reduce the deterioration of the NO X purification rate of the SCR catalyst.

<実施例1の変形例>
なお、前記昇温処理が実行されることでSCRF4の温度Tcが前記所定の閾値Tcthre以上の高温域にあるときに燃料を含む排気がSCRF4へ流入すると、前述したようにSCR触媒のゼオライトの細孔内に低分子化した燃料が入り込むことで燃料被毒が発生しやすくなるが、SCRF4へ流入する排気の燃料濃度Dhcが十分に低ければ、好適
なNO浄化率の実現が事実上阻害されない。これは、SCR触媒における燃料被毒を発生又は促進させる要因として、SCR触媒が曝される排気の燃料濃度Dhcを挙げることができ、その燃料濃度Dhcが十分に低ければ燃料被毒の要因となるSCR触媒への燃料の吸着が定常化しにくいと考えられる。
<Modification of Example 1>
If the exhaust gas containing fuel flows into SCRF 4 when the temperature Tc of SCRF 4 is in a high temperature range equal to or higher than the predetermined threshold value Tcthre by executing the temperature raising process, as described above, the SCR catalyst zeolite fineness is reduced. Fuel poisoning is likely to occur when low molecular weight fuel enters the pores, but if the fuel concentration Dhc of the exhaust gas flowing into SCRF 4 is sufficiently low, the realization of a suitable NO x purification rate is not substantially hindered. . This can be exemplified by the fuel concentration Dhc of the exhaust to which the SCR catalyst is exposed as a factor for generating or promoting fuel poisoning in the SCR catalyst. If the fuel concentration Dhc is sufficiently low, it becomes a factor of fuel poisoning. It is considered that the adsorption of fuel to the SCR catalyst is difficult to stabilize.

上記したような燃料濃度と燃料被毒との相関を踏まえると、SCR触媒の温度Tcが前記所定の閾値Tcthre以上の高温域にある場合であって、SCRF4へ流れ込む排気の燃料濃度が十分に低ければ、SCR触媒の温度が前記所定の閾値Tcthre未満である場合と同様に、基本添加量の尿素水溶液をSCRF4へ供給することで十分に高いNO浄化率を得ることができる。そこで、SCR触媒の温度Tcが前記所定の閾値Tcthre以上である場合において、SCRF4へ流入する排気の燃料濃度Dhcが所定濃度以下であるときは、基本添加量に従って尿素水溶液の供給量が制御されてもよい。ここでいう所定濃度は、該所定濃度以下の燃料を含む排気がSCRF4へ流入しても、SCR触媒による好適なNO浄化率を実現することができる燃料濃度の上限値である。このように添加剤供給弁7から供給される尿素水溶液の量が制御されると、SCR触媒の温度Tcが前記所定の閾値Tcthre以上である場合に、尿素水溶液の消費量を少なく抑えつつ、SCR触媒のNO浄化率の低下を少なく抑えることができる。 Considering the correlation between the fuel concentration and the fuel poisoning as described above, the fuel concentration of the exhaust gas flowing into the SCRF 4 is sufficiently low when the temperature Tc of the SCR catalyst is in the high temperature range equal to or higher than the predetermined threshold value Tcthr. If, it is possible that the temperature of the SCR catalyst is as if the is less than a predetermined threshold value Tcthre, obtain a sufficiently high NO X purification rate by supplying the aqueous urea solution of the basic amount to SCRF4. Therefore, when the temperature Tc of the SCR catalyst is equal to or higher than the predetermined threshold value Tcthre, when the fuel concentration Dhc of the exhaust gas flowing into the SCRF 4 is lower than the predetermined concentration, the supply amount of the urea aqueous solution is controlled according to the basic addition amount. Also good. Predetermined concentration referred to here, the exhaust containing the following fuel the predetermined concentration even flows into SCRF4, which is the upper limit value of the fuel concentration can be achieved a suitable NO X purification rate by the SCR catalyst. When the amount of the urea aqueous solution supplied from the additive supply valve 7 is controlled in this way, when the temperature Tc of the SCR catalyst is equal to or higher than the predetermined threshold value Tcthr, the consumption of the urea aqueous solution is suppressed to a small level. it can be suppressed to reduce the deterioration of the NO X purification rate of the catalyst.

なお、SCR触媒の燃料被毒は、該SCR触媒の温度Tcが低いときより高いときに発生しやすい。このようなSCR触媒の温度Tcと燃料被毒の発生しやすさとの相関を踏まえると、前記所定濃度は、SCR触媒の温度Tcが低いときより高いときに小さい値に設定されてもよい。このように前記所定濃度が定められれば、基本添加量の尿素水溶液をSCR触媒へ供給することで、SCR触媒が十分に高いNO浄化率を発揮することができるときに、尿素水溶液の供給量が不要に増加されることがより確実に抑制することができる。 Note that fuel poisoning of the SCR catalyst is likely to occur when the temperature Tc of the SCR catalyst is higher than when the temperature is low. Considering the correlation between the temperature Tc of the SCR catalyst and the likelihood of fuel poisoning, the predetermined concentration may be set to a smaller value when the temperature Tc of the SCR catalyst is higher than when the temperature is low. As long this manner the predetermined concentration determined, by supplying the aqueous urea solution of the basic amount to SCR catalyst, when it can SCR catalyst to exhibit a sufficiently high NO X purification rate, the supply amount of the urea aqueous solution It is possible to more reliably suppress an unnecessary increase.

<実施例2>
次に、本発明の第2の実施例について図5乃至図9に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。前述の第1の実施例では、SCR触媒の温度Tcが前記所定の閾値Tcthre以上であるときは、SCRF4へ流入する排気の燃料濃度が高くなるほど、且つSCR触媒の温度Tcが高くなるほど、SCR触媒の燃料被毒が発生しやすく、且つNO浄化率が低下しやすくなるという観点に基づいて、高温用添加量を決定する例について述べた。これに対し、本実施例では、SCRF4の燃料被毒量が多くなるほどSCR触媒のNO浄化率が低下するという観点に基づいて、高温用添加量を決定する例について述べる。詳細には、本実施例では、SCR触媒の実際の燃料被毒量を推定し、その燃料被毒量に応じた補正係数(以下、「第三補正係数」と記す)を前記基本添加量に乗算することで、高温用添加量を決定する。
<Example 2>
Next, a second embodiment of the present invention will be described with reference to FIGS. Here, a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted. In the first embodiment described above, when the temperature Tc of the SCR catalyst is equal to or higher than the predetermined threshold value Tcthre, the higher the fuel concentration of the exhaust gas flowing into the SCRF 4 and the higher the temperature Tc of the SCR catalyst, the higher the SCR catalyst. fuel poisoning is likely to occur in, and based on the perspective of NO X purification rate tends to decrease, have dealt with the cases of determining the high temperature amount. In contrast, in the present embodiment will describe an example based on the viewpoint of NO X purification rate of the SCR catalyst greater the fuel poisoning amount of SCRF4 decreases, to determine the high temperature amount. Specifically, in this embodiment, the actual fuel poisoning amount of the SCR catalyst is estimated, and a correction coefficient (hereinafter referred to as “third correction coefficient”) corresponding to the fuel poisoning amount is set as the basic addition amount. By multiplying, the addition amount for high temperature is determined.

SCR触媒の燃料被毒量は、単位時間あたりにおける燃料被毒量の増加分と単位時間あたりにおける燃料被毒量の減少分との収支を積算することにより推定される。単位時間あたりにおける燃料被毒量の増加分は、SCRF4へ流入する排気の燃料濃度、及び酸化触媒3の温度に相関する。たとえば、図5に示すように、SCRF4へ流入する排気の燃料濃度が高くなるほど、単位時間あたりにおける燃料被毒量の増加量が多くなる傾向がある。これは、SCRF4へ流入する排気の燃料濃度が高くなるほど、燃料被毒の要因となるSCR触媒への燃料の吸着が定常化しやすくなるとともに、燃料により覆われる活性点が多くなると考えられる。また、単位時間あたりにおける燃料被毒量の増加量は、酸化触媒3の温度が高くなるほど多くなる傾向もある。これは、酸化触媒3の温度が高くなるほど、排気中に含まれる燃料の酸化が促進される一方で、該酸化触媒3で十分に酸化されない燃料の低分子化が促進されるため、SCR触媒へ流入する燃料の分子量が小さくなりやす
く、それに応じて前記ゼオライトの細孔内へ流入する燃料の量が多くなりやすいと考えられる。そこで、上記した相関のそれぞれを格納したマップを予めECU20のROMに記憶させ、SCRF4へ流入する排気の燃料濃度、及び酸化触媒3の温度のそれぞれに対応するマップにアクセスすることで、それら2つのパラメータに対応した増加量を算出すればよい。そして、それらの増加量を以下の(3)の式に代入することで、単位時間あたりの燃料被毒量の増加分を算出することができる。
(単位時間あたりの燃料被毒量の増加分)=(燃料濃度に起因する増加量)+(酸化触媒3の温度に起因する増加量)・・(3)
The fuel poisoning amount of the SCR catalyst is estimated by integrating the balance of the increase in the fuel poisoning amount per unit time and the decrease in the fuel poisoning amount per unit time. The increase in the fuel poisoning amount per unit time correlates with the fuel concentration of the exhaust gas flowing into the SCRF 4 and the temperature of the oxidation catalyst 3. For example, as shown in FIG. 5, as the fuel concentration of the exhaust gas flowing into the SCRF 4 increases, the amount of increase in the fuel poisoning amount per unit time tends to increase. This is considered that as the fuel concentration of the exhaust gas flowing into the SCRF 4 increases, the adsorption of the fuel to the SCR catalyst, which causes fuel poisoning, becomes easier to stabilize and the active points covered with the fuel increase. Further, the amount of increase in the fuel poisoning amount per unit time tends to increase as the temperature of the oxidation catalyst 3 increases. This is because, as the temperature of the oxidation catalyst 3 increases, the oxidation of the fuel contained in the exhaust is promoted, while the low molecular weight of the fuel that is not sufficiently oxidized by the oxidation catalyst 3 is promoted. It is considered that the molecular weight of the inflowing fuel tends to be small and the amount of the fuel flowing into the pores of the zeolite tends to increase accordingly. Therefore, a map storing each of the above correlations is stored in advance in the ROM of the ECU 20, and the two maps are accessed by accessing the maps corresponding to the fuel concentration of the exhaust gas flowing into the SCRF 4 and the temperature of the oxidation catalyst 3, respectively. The increase amount corresponding to the parameter may be calculated. Then, by substituting these increases into the following equation (3), the increase in the fuel poisoning amount per unit time can be calculated.
(Increase in fuel poisoning amount per unit time) = (Increase amount due to fuel concentration) + (Increase amount due to temperature of oxidation catalyst 3) (3)

次に、単位時間あたりにおける燃料被毒量の減少分は、SCR触媒の温度、SCRF4へ流入する排気の酸素濃度、及びSCR触媒の燃料被毒量に相関する。たとえば、図6に示すように、SCR触媒の温度が高くなるほど、単位時間あたりにおける燃料被毒量の減少量が多くなる傾向がある。これは、SCR触媒の温度が高くなるほど、該SCR触媒に吸着している燃料の酸化や脱離が促進されると考えられる。また、単位時間あたりにおける燃料被毒量の減少量は、SCRF4へ流入する排気の酸素濃度が高くなるほど多くなる傾向もある。これは、SCRF4へ流入する排気の酸素濃度が高くなるほど、SCR触媒に吸着している燃料が排気中の酸素と接触する機会が多くなり、それに伴ってSCR触媒に吸着している燃料の酸化が促進されるものと考えられる。さらに、単位時間あたりにおける燃料被毒量の減少量は、SCR触媒の燃料被毒量が多くなるほど多くなる傾向もある。これは、SCR触媒に吸着している燃料のうち、排気中の酸素と接触する燃料の量は、SCR触媒の燃料被毒量が多くなるほど多くなるためと考えられる。そこで、上記した相関のそれぞれを格納したマップを予めECU20のROMに記憶させ、SCR触媒の温度、SCRF4へ流入する排気の酸素濃度、及びSCR触媒の燃料被毒量のそれぞれに対応するマップにアクセスすることで、それら3つのパラメータに対応した減少量を算出すればよい。そして、それらの減少量を以下の(4)の式に代入することで、単位時間あたりの燃料被毒量の減少分を算出することができる。
(単位時間あたりの燃料被毒量の減少分)=(SCR触媒の温度に起因する減少量)+(酸素濃度に起因する減少量)+(燃料被毒量に起因する減少量)・・(4)
なお、SCRF4へ流入する排気の酸素濃度は、酸化触媒3とSCRF4との間の排気通路2に酸素濃度センサ(Oセンサ)を取り付けることで検出されてもよく、内燃機関1の運転状態や酸化触媒3の温度等から推定されてもよい。
Next, the decrease in the fuel poisoning amount per unit time correlates with the temperature of the SCR catalyst, the oxygen concentration of the exhaust gas flowing into the SCRF 4, and the fuel poisoning amount of the SCR catalyst. For example, as shown in FIG. 6, as the temperature of the SCR catalyst increases, the amount of decrease in the fuel poisoning amount per unit time tends to increase. This is considered that the higher the temperature of the SCR catalyst, the more the oxidation and desorption of the fuel adsorbed on the SCR catalyst is promoted. Further, the amount of decrease in the fuel poisoning amount per unit time tends to increase as the oxygen concentration of the exhaust gas flowing into the SCRF 4 increases. This is because the higher the concentration of oxygen in the exhaust gas flowing into SCRF4, the more the fuel adsorbed on the SCR catalyst comes into contact with the oxygen in the exhaust gas, and accordingly the oxidation of the fuel adsorbed on the SCR catalyst is reduced. It is considered to be promoted. Further, the amount of decrease in the fuel poisoning amount per unit time tends to increase as the fuel poisoning amount of the SCR catalyst increases. This is presumably because the amount of the fuel adsorbed on the SCR catalyst that comes into contact with oxygen in the exhaust gas increases as the fuel poisoning amount of the SCR catalyst increases. Therefore, a map storing each of the above correlations is stored in the ROM of the ECU 20 in advance, and a map corresponding to each of the temperature of the SCR catalyst, the oxygen concentration of the exhaust gas flowing into the SCRF 4 and the fuel poisoning amount of the SCR catalyst is accessed. By doing so, the reduction amount corresponding to these three parameters may be calculated. Then, by substituting those reduction amounts into the following equation (4), the reduction amount of the fuel poisoning amount per unit time can be calculated.
(Decrease in fuel poisoning per unit time) = (Decrease due to SCR catalyst temperature) + (Decrease due to oxygen concentration) + (Decrease due to fuel poisoning) 4)
Note that the oxygen concentration of the exhaust gas flowing into the SCRF 4 may be detected by attaching an oxygen concentration sensor (O 2 sensor) to the exhaust passage 2 between the oxidation catalyst 3 and the SCRF 4. It may be estimated from the temperature of the oxidation catalyst 3 or the like.

上記した方法により単位時間あたりの燃料被毒量の増加分、及び単位時間あたりの燃料被毒量の減少分が算出されると、それらの差分(単位時間あたりの燃料被毒量の増加分から単位時間あたりの燃料被毒量の減少分を減算した量)を燃料被毒量の前回の演算値に加算することで、SCR触媒の燃料被毒量を算出する。このようにSCR触媒の燃料被毒量を推定する処理は、内燃機関1の運転期間中に所定の周期で繰り返し実行されるものとする。そして、前記昇温処理の実行によってSCR触媒の温度が前記所定の閾値以上の高温域まで上昇しているときは、その時点におけるSCR触媒の燃料被毒量に基づいて上記の第三補正係数を決定する。なお、SCR触媒の温度が前記所定の閾値以上である場合は、SCR触媒の燃料被毒量が多くなるほど、SCR触媒のNO浄化率が低下しやすいため、前記第三補正係数は1より大きい値であって、SCR触媒の燃料被毒量が多くなるほど大きな値に設定されればよい。そして、第三補正係数とその時点における基本添加量とを以下の(5)の式に代入することで、高温用添加量が算出される。
(高温用添加量)=(基本添加量)*(第三補正係数)・・(5)
When the increase in the fuel poisoning amount per unit time and the decrease in the fuel poisoning amount per unit time are calculated by the method described above, the difference between them (from the increase in fuel poisoning amount per unit time to the unit The amount of fuel poisoning of the SCR catalyst is calculated by adding the amount obtained by subtracting the decrease in the amount of fuel poisoning per hour) to the previous calculated value of the fuel poisoning amount. The process for estimating the fuel poisoning amount of the SCR catalyst in this manner is repeatedly executed at a predetermined cycle during the operation period of the internal combustion engine 1. When the temperature of the SCR catalyst rises to a high temperature range equal to or higher than the predetermined threshold due to the execution of the temperature raising process, the third correction coefficient is calculated based on the fuel poisoning amount of the SCR catalyst at that time. decide. Incidentally, when the temperature of the SCR catalyst is above the predetermined threshold value, as the fuel poisoning amount of the SCR catalyst increases, since the NO X purification rate of the SCR catalyst is easily lowered, is greater than 1 said third correction coefficient The value may be set to a larger value as the fuel poisoning amount of the SCR catalyst increases. Then, the high-temperature additive amount is calculated by substituting the third correction coefficient and the basic additive amount at that time into the following equation (5).
(Addition amount for high temperature) = (Basic addition amount) * (Third correction factor) (5)

上記(5)の式に従って算出される高温用添加量は、SCRF4へ流入する排気のNO濃度に応じて決定される基本添加量より多い量であって、SCR触媒のHC被毒量が多くなるほど多い量になる。このような補正による増加率(基本添加量に対する高温用添加量の比率)は、SCR触媒のHC被毒量が多くなるほど大きくなる。 High temperature additive amount calculated according to the formula (5) is an amount greater than the base amount determined according to the NO X concentration of the exhaust gas flowing into the SCRF4, many HC poisoning amount of the SCR catalyst The amount will increase. The increase rate (ratio of the high temperature addition amount to the basic addition amount) due to such correction increases as the HC poisoning amount of the SCR catalyst increases.

図7は、SCR触媒の温度が前記所定の閾値以上である場合において、SCRF4へ流入する排気のNO濃度及びSCR触媒の温度が一定であるときの、SCR触媒のHC被毒量、尿素水溶液の供給量、及びSCR触媒のNO浄化率の経時変化を示す図である。図7に示すように、SCR触媒の温度が前記所定の閾値以上である場合は、基本添加量(図7中(b)の一点鎖線)は、HC被毒量が増加しても増加されない。そのため、基本添加量の尿素水溶液が添加剤供給弁7から排気中に供給された場合のSCR触媒のNO浄化率(図7中(c)の二点鎖線)は、HC被毒量の増加に伴って低下する。これに対し、高温用添加量(図7中(b)の実線)は、HC被毒量の増加に伴って増加する。これは、SCR触媒において実際に燃料被毒が発生している活性点が多くなるほど、高温用添加量が多くなると言い換えることもできる。よって、SCR触媒において実際に燃料被毒が発生している活性点が多くなるほど、燃料被毒が発生していない残りの活性点におけるNHとNOとの反応量を多くすることができる。その結果、高温用添加量の添加剤が添加剤供給弁7から排気中に供給された場合のSCR触媒のNO浄化率(図7中(c)の実線)は、HC被毒量が増加しても低下しなくなる。 7, when the temperature of the SCR catalyst is above the predetermined threshold value, when the temperature of the NO X concentration and the SCR catalyst of the exhaust gas flowing into the SCRF4 is constant, the SCR catalyst HC poisoning amount, the urea aqueous solution amount of supply, and is a diagram showing changes with time of the NO X purification rate of the SCR catalyst. As shown in FIG. 7, when the temperature of the SCR catalyst is equal to or higher than the predetermined threshold value, the basic addition amount (the one-dot chain line in FIG. 7B) is not increased even if the HC poisoning amount increases. Therefore, NO X purification rate of the SCR catalyst when the aqueous urea solution of the basic amount is supplied from the additive supply valve 7 into the exhaust (two-dot chain line in FIG. 7 (c)), an increase of the HC poisoning amount Decreases with it. On the other hand, the high temperature addition amount (solid line in FIG. 7B) increases as the HC poisoning amount increases. In other words, the amount of high-temperature addition increases as the number of active sites where fuel poisoning actually occurs in the SCR catalyst increases. Therefore, the more active points where fuel poisoning actually occurs in the SCR catalyst, the greater the amount of reaction between NH 3 and NO X at the remaining active points where fuel poisoning has not occurred. As a result, the, HC poisoning amount NO X purification rate of the SCR catalyst (solid line in to FIG. 7 (c)) in the case where the addition amount of the additive for high temperature is supplied from the additive supply valve 7 into the exhaust increases Even if it does not decrease.

以下、本実施例における添加剤供給弁7の制御手順について図8に沿って説明する。図8は、添加剤供給弁7を制御する際にECU20が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU20のROMに記憶されており、ECU20によって周期的に実行される。なお、図8の処理ルーチンにおいて、前述の図4の処理ルーチンと同様の処理には同一の符号を付している。図8の処理ルーチンでは、図4の処理ルーチンにおけるS104−S106の処理に代えて、S201−S203の処理が実行されるようになっている。したがって、S103の処理において肯定判定された場合に、ECU20は、S201の処理を実行する。   Hereinafter, the control procedure of the additive supply valve 7 in the present embodiment will be described with reference to FIG. FIG. 8 is a flowchart showing a processing routine executed by the ECU 20 when the additive supply valve 7 is controlled. This processing routine is stored in advance in the ROM of the ECU 20 and is periodically executed by the ECU 20. In the processing routine of FIG. 8, the same processes as those of the above-described processing routine of FIG. In the processing routine of FIG. 8, the processing of S201-S203 is executed instead of the processing of S104-S106 in the processing routine of FIG. Accordingly, when an affirmative determination is made in the process of S103, the ECU 20 executes the process of S201.

S201の処理では、ECU20は、SCR触媒の燃料被毒量を取得する。SCR触媒の燃料被毒量は、図9の処理ルーチンに従って求められる。図9の処理ルーチンは、内燃機関1の運転期間中に所定の周期で繰り返し実行される処理ルーチンである。図9の処理ルーチンでは、ECU20は、S301の処理において各種データを読み込む。ここでいう各種データは、SCR触媒の燃料被毒量を求めるために必要なデータであり、前述したように、SCRF4へ流入する排気の燃料濃度Dhc、酸化触媒3の温度、SCR触媒の温度、SCRF4へ流入する排気の酸素濃度、及び本処理ルーチンの前回の実行時に求められた燃料被毒量Choldである。   In the process of S201, the ECU 20 acquires the fuel poisoning amount of the SCR catalyst. The fuel poisoning amount of the SCR catalyst is obtained according to the processing routine of FIG. The processing routine of FIG. 9 is a processing routine that is repeatedly executed at a predetermined cycle during the operation period of the internal combustion engine 1. In the processing routine of FIG. 9, the ECU 20 reads various data in the processing of S301. The various data here are data necessary for determining the fuel poisoning amount of the SCR catalyst. As described above, the fuel concentration Dhc of the exhaust gas flowing into the SCRF 4, the temperature of the oxidation catalyst 3, the temperature of the SCR catalyst, These are the oxygen concentration of the exhaust gas flowing into the SCRF 4 and the fuel poisoning amount Hold determined at the previous execution of this processing routine.

S302の処理では、ECU20は、単位時間あたりにおける燃料被毒量の増加分ΔChaを演算する。具体的には、ECU20は、前述した、SCRF4へ流入する排気の燃料濃度と単位時間あたりにおける燃料被毒量の増加量との相関、及び酸化触媒3の温度と単位時間あたりにおける燃料被毒量の増加量との相関に基づいて、SCRF4へ流入する排気の燃料濃度Dhc、及び酸化触媒3の温度のそれぞれに対応する、燃料被毒量の増加量を算出する。そして、ECU20は、それら増加量の総和を前記増加分ΔChaとして算出する。   In the process of S302, the ECU 20 calculates an increase ΔCha of the fuel poisoning amount per unit time. Specifically, the ECU 20 described above correlates the fuel concentration of the exhaust gas flowing into the SCRF 4 and the increase amount of the fuel poisoning amount per unit time, and the temperature of the oxidation catalyst 3 and the fuel poisoning amount per unit time. Based on the correlation with the increase amount, the fuel poison amount increase amount corresponding to each of the fuel concentration Dhc of the exhaust gas flowing into the SCRF 4 and the temperature of the oxidation catalyst 3 is calculated. Then, the ECU 20 calculates the sum of the increase amounts as the increase ΔCha.

S303の処理では、ECU20は、単位時間あたりにおける燃料被毒量の減少分ΔChdを演算する。具体的には、ECU20は、前述した、SCR触媒の温度と単位時間あたりにおける燃料被毒量の減少量との相関、SCRF4へ流入する排気の酸素濃度と単位時間あたりにおける燃料被毒量の減少量との相関、及び、SCR触媒の燃料被毒量と単位時間あたりにおける燃料被毒量の減少量との相関に基づいて、SCR触媒の温度、SCR触媒へ流入する排気の酸素濃度、及び燃料被毒量の前回値Choldのそれぞれに対応する、燃料被毒量の減少量を算出する。そして、ECU20は、それら減少量の総和を前記減少分ΔChdとして算出する。   In the process of S303, the ECU 20 calculates a reduction amount ΔChd of the fuel poisoning amount per unit time. Specifically, the ECU 20 described above relates to the correlation between the temperature of the SCR catalyst and the reduction amount of the fuel poisoning amount per unit time, the oxygen concentration of the exhaust gas flowing into the SCRF 4 and the reduction of the fuel poisoning amount per unit time. The temperature of the SCR catalyst, the oxygen concentration of the exhaust gas flowing into the SCR catalyst, and the fuel based on the correlation with the amount and the correlation between the fuel poisoning amount of the SCR catalyst and the decrease amount of the fuel poisoning amount per unit time A reduction amount of the fuel poisoning amount corresponding to each of the previous values Cold of the poisoning amount is calculated. Then, the ECU 20 calculates the sum of the reduction amounts as the reduction amount ΔChd.

S304の処理では、ECU20は、前記S302の処理で算出された増加分ΔChaと前記S303の処理で算出された減少分ΔChdとの差(ΔCha−ΔChd)を燃料被毒量の前回値Choldに加算することで、現時点におけるSCR触媒の燃料被毒量を算出する。   In the process of S304, the ECU 20 adds the difference (ΔCha−ΔChd) between the increase ΔChha calculated in the process of S302 and the decrease ΔChd calculated in the process of S303 to the previous value Chold of the fuel poisoning amount. Thus, the fuel poisoning amount of the SCR catalyst at the present time is calculated.

ここで図8の処理ルーチンに戻り、ECU20は、前記S201の処理を実行した後にS202の処理を実行する。S202の処理では、ECU20は、前記S201の処理で取得された燃料被毒量から第三補正係数k3を決定する。第三補正係数k3は、前述したように、1より大きい値であって、SCR触媒の燃料被毒量が多くなるほど大きな値に設定される。   Here, returning to the processing routine of FIG. 8, the ECU 20 executes the process of S202 after executing the process of S201. In the process of S202, the ECU 20 determines the third correction coefficient k3 from the fuel poisoning amount acquired in the process of S201. As described above, the third correction coefficient k3 is a value larger than 1, and is set to a larger value as the fuel poisoning amount of the SCR catalyst increases.

S203の処理では、ECU20は、SCRF4へ流入する排気のNO濃度に応じて決定される基本添加量に、前記S202の処理で決定された第三補正係数k3を乗算して、高温用添加量を算出する。ECU20は、該S203の処理を実行した後にS107の処理へ進み、前記S202の処理で算出された高温用添加量に従って添加剤供給弁7を制御する。その場合、添加剤供給弁7から排気中に供給される尿素水溶液の量は、SCR触媒の実際の燃料被毒量に応じた量になるため、燃料被毒の発生に起因するSCR触媒のNO浄化率の低下をより確実に抑制することが可能となる。 In the process of S203, the ECU 20 multiplies the basic amount determined according to the NO X concentration of the exhaust gas flowing into the SCRF4, by multiplying the third correction coefficient k3 determined in the processing of the S202, the addition amount for high temperature Is calculated. After executing the process of S203, the ECU 20 proceeds to the process of S107, and controls the additive supply valve 7 according to the high temperature additive amount calculated in the process of S202. In that case, since the amount of the urea aqueous solution supplied into the exhaust gas from the additive supply valve 7 is an amount corresponding to the actual fuel poisoning amount of the SCR catalyst, the NO of the SCR catalyst due to the occurrence of fuel poisoning. It becomes possible to more reliably suppress the decrease in the X purification rate.

<実施例2の変形例>
なお、SCR触媒の燃料被毒量がNO浄化率に影響を与えない程度に少ない場合は、基本添加量に従って添加剤供給弁7から供給される尿素水溶液の量が制御されてもよい。その場合、SCR触媒の温度が前記所定の閾値Tcthre以上であるときの尿素水溶液の消費量を少なく抑えつつ、SCR触媒のNO浄化率の低下を抑制することができる。
<Modification of Example 2>
In the case less to the extent that the fuel poisoning amount of the SCR catalyst does not affect the NO X purification rate, the amount of the urea aqueous solution supplied from the additive supply valve 7 may be controlled in accordance with the basic amount. In that case, it is possible that the temperature of the SCR catalyst while suppressing decrease the consumption of the urea aqueous solution when the a predetermined threshold Tcthre above, to suppress the reduction of the NO X purification rate of the SCR catalyst.

また、SCR触媒の燃料被毒が発生している場合は、SCR触媒の温度が前記所定の閾値Tcthre以上である場合に加え、前述の図2に示した適正な温度範囲より低い場合においても、SCR触媒のNO浄化率が低下しやすい。よって、SCR触媒の燃料被毒が発生している場合においては、SCR触媒の温度Tcが前記所定の閾値以上のときに加え、SCR触媒の温度Tcが前記適正な温度範囲より低いときも、前記基本添加量より多い量の尿素水溶液が添加剤供給弁7から供給されるようにしてもよい。ここで、SCR触媒の温度Tcが前記適正な温度範囲より低い場合は、NOとNHとの反応速度が比較的小さいため、尿素水溶液の供給量の増加によってNO浄化率を増加させることができるものの、SCR触媒で反応せずにSCRF4から流出するNHの量(NHスリップ量)が増える可能性がある。しかしながら、前述の図1に示したように、SCRF4の下流にASC5を配置することで、SCRF4から流出するNHをASC5によって浄化(酸化)することができる。よって、SCR触媒の温度Tcが前記適正な温度範囲より低い場合に、前記基本添加量より多い量の尿素水溶液を添加剤供給弁7から供給すると、NHスリップ量の増加を抑制しつつ、燃料被毒の発生に起因するNO浄化率の低下を抑制することができる。ただし、SCR触媒の温度が低いときは、その下流に配置されるASC5が活性していない可能性もある。よって、そのような場合には、尿素水溶液の増量を行わないことが望ましい。 Further, when fuel poisoning of the SCR catalyst has occurred, in addition to the case where the temperature of the SCR catalyst is equal to or higher than the predetermined threshold value Tcthr, even when the temperature is lower than the appropriate temperature range shown in FIG. NO X purification rate is likely to decrease in the SCR catalyst. Therefore, in the case where fuel poisoning of the SCR catalyst has occurred, when the temperature Tc of the SCR catalyst is equal to or higher than the predetermined threshold, the temperature Tc of the SCR catalyst is lower than the appropriate temperature range. An amount of urea aqueous solution larger than the basic addition amount may be supplied from the additive supply valve 7. Here, when the temperature Tc of the SCR catalyst is lower than the appropriate temperature range, the reaction rate between NO X and NH 3 is relatively small, and therefore the NO X purification rate is increased by increasing the supply amount of the urea aqueous solution. However, there is a possibility that the amount of NH 3 flowing out from the SCRF 4 without reacting with the SCR catalyst (NH 3 slip amount) increases. However, as shown in FIG. 1 described above, by arranging ASC 5 downstream of SCRF 4, NH 3 flowing out from SCRF 4 can be purified (oxidized) by ASC 5. Therefore, when the urea aqueous solution in an amount larger than the basic addition amount is supplied from the additive supply valve 7 when the temperature Tc of the SCR catalyst is lower than the appropriate temperature range, the increase in the NH 3 slip amount is suppressed while suppressing the increase in the NH 3 slip amount. it is possible to suppress the reduction of the NO X purification rate due to the occurrence of poisoning. However, when the temperature of the SCR catalyst is low, there is a possibility that the ASC 5 arranged downstream thereof is not activated. Therefore, in such a case, it is desirable not to increase the amount of the urea aqueous solution.

また、SCR触媒の燃料被毒量が過剰に多くなると、添加剤供給弁7から供給される尿素水溶液の量を増量しても、NO浄化率の低下を抑制しきれなくなる。よって、SCR触媒の燃料被毒量が所定の許容限界値を超えているときは、高温用添加量に基づく添加剤供給弁7の制御を停止(基本添加量に基づく添加剤供給弁7の制御を実行)して、SCR触媒の燃料被毒を解消させるための処理を実行してもよい。なお、ここでいう許容限界値は、SCR触媒の燃料被毒量が該許容限界値を超えると、尿素水溶液の供給量を増量して
もNO浄化率が増加しないと考えられる値、又は該値からマージンを差し引いた値である。
Further, when the fuel poisoning amount of the SCR catalyst is excessively large, even if increasing the amount of aqueous urea solution that is supplied from the additive supply valve 7, not be sufficiently suppress the reduction of the NO X purification rate. Therefore, when the fuel poisoning amount of the SCR catalyst exceeds a predetermined allowable limit value, the control of the additive supply valve 7 based on the high temperature additive amount is stopped (the control of the additive supply valve 7 based on the basic additive amount). ), And a process for eliminating fuel poisoning of the SCR catalyst may be executed. Incidentally, the allowable limit value referred to herein is, when the fuel poisoning amount of the SCR catalyst is above the allowable limit value is considered to NO X purification rate will not increase even if increasing the supply amount of the urea aqueous solution value, or the It is the value obtained by subtracting the margin from the value.

ここで、SCR触媒の燃料被毒量は、前述したように、SCR触媒の温度が高くなるほど、且つSCRF4へ流入する排気の酸素濃度が高くなるほど、減少する。よって、SCR触媒の燃料被毒を解消させる処理(以下、「燃料被毒解消処理」と記す)は、SCR触媒の温度が該SCR触媒から燃料が脱離、又は該SCR触媒に吸着している燃料が酸化し得る温度域にあるときに、SCRF4へ流入する排気の酸素濃度を高めることで行われる。SCRF4へ流入する排気の酸素濃度を高める方法としては、図示しないスロットル弁の開度を増加させ、又は図示しないEGR装置によって排気通路2から吸気通路25へ還流されるEGRガスの量を減少させる方法を用いることができる。そして、このような方法によって燃料被毒解消処理が実行されることで、SCR触媒の燃料被毒量が前記許容限界値以下に減少した際には、前記高温用添加量に基づく添加剤供給弁7の制御を再開してもよい。なお、前記被毒解処理の実行時におけるSCR触媒の燃料被毒量は、前述の第2の実施例で述べた方法によって求めることが可能である。   Here, as described above, the fuel poisoning amount of the SCR catalyst decreases as the temperature of the SCR catalyst increases and the oxygen concentration of the exhaust gas flowing into the SCRF 4 increases. Therefore, in the process of eliminating fuel poisoning of the SCR catalyst (hereinafter referred to as “fuel poisoning elimination process”), the temperature of the SCR catalyst is desorbed from the SCR catalyst or adsorbed to the SCR catalyst. This is done by increasing the oxygen concentration of the exhaust gas flowing into the SCRF 4 when the fuel is in a temperature range where it can be oxidized. As a method of increasing the oxygen concentration of the exhaust gas flowing into the SCRF 4, a method of increasing the opening of a throttle valve (not shown) or reducing the amount of EGR gas recirculated from the exhaust passage 2 to the intake passage 25 by an EGR device (not shown). Can be used. Then, when the fuel poisoning elimination processing is executed by such a method, when the fuel poisoning amount of the SCR catalyst decreases below the allowable limit value, the additive supply valve based on the high temperature addition amount 7 may be resumed. The fuel poisoning amount of the SCR catalyst at the time of executing the poisoning solution processing can be obtained by the method described in the second embodiment.

<その他の実施例>
前述の第1又は第2の実施例で述べた添加剤供給弁7の制御方法は、パティキュレートフィルタとSCR触媒とが別体で排気通路2に配置される排気浄化システムにも適用可能である。すなわち、酸化触媒より下流の排気通路にパティキュレートフィルタが配置され、さらにその下流の排気通路にSCR触媒が配置される排気浄化システムにおいて、パティキュレートフィルタに捕集されたPMを酸化及び除去するための昇温処理が実行されると、SCR触媒の温度が前記所定の閾値以上まで上昇することで、燃料被毒が発生しやすく、且つNO浄化率が低下しやすい環境にSCR触媒が置かれる可能性がある。よって、前記昇温処理の実行によってSCR触媒の温度が前記所定の閾値以上に上昇した場合に、前述した第1又は第2の実施例で述べた高温用添加量に従って添加剤供給弁7が制御されれば、SCR触媒のNO浄化率の低下を抑制することができる。
<Other examples>
The method for controlling the additive supply valve 7 described in the first or second embodiment can be applied to an exhaust purification system in which the particulate filter and the SCR catalyst are separately provided in the exhaust passage 2. . That is, in an exhaust gas purification system in which a particulate filter is disposed in the exhaust passage downstream of the oxidation catalyst and an SCR catalyst is disposed in the exhaust passage downstream of the oxidation catalyst, the PM trapped in the particulate filter is oxidized and removed. When the temperature raising processing is executed, that the temperature of the SCR catalyst rises to above the predetermined threshold, the fuel poisoning is likely to occur, and the NO X purification rate tends to decrease environment SCR catalyst is placed in the there is a possibility. Therefore, when the temperature of the SCR catalyst rises above the predetermined threshold value due to the execution of the temperature raising process, the additive supply valve 7 is controlled according to the high temperature addition amount described in the first or second embodiment. if it is, it is possible to suppress the reduction of the NO X purification rate of the SCR catalyst.

また、前述の第1又は第2の実施例で述べた添加剤供給弁7の制御方法は、吸蔵還元型触(NSR(NOX Storage Reduction)触媒)より下流の排気通路にSCR触媒が配置さ
れる排気浄化システムにも適用可能である。このような排気浄化システムでは、排気に含まれる硫黄酸化物(SO)が、NSR触媒に吸蔵される。NSR触媒に吸蔵されるSOの量が多くなると、該NSR触媒のNO吸蔵能力が低下してしまい、NSR触媒が本来果たすべきNO浄化機能を発揮しにくくなる。そこで、NSR触媒に蓄積したSOを放出するために、NSR触媒の温度を上昇させるとともにNSR触媒をリッチ雰囲気に置く硫黄被毒回復制御が行われる。このような硫黄被毒回復制御が実行されると、NSR触媒の下流に配置されるSCR触媒の温度が前記所定の閾値以上まで上昇することで、燃料被毒が発生しやすく、且つNO浄化率が低下しやすい環境にSCR触媒が置かれる可能性がある。よって、硫黄被毒回復制御の実行によってSCR触媒の温度が前記所定の閾値以上になった場合に、前述した第1又は第2の実施例で述べた高温用添加量に従って添加剤供給弁7が制御されれば、SCR触媒のNO浄化率の低下を抑制することができる。
Further, in the control method of the additive supply valve 7 described in the first or second embodiment, the SCR catalyst is arranged in the exhaust passage downstream of the storage reduction type catalyst (NSR (NO X Storage Reduction) catalyst). It can also be applied to an exhaust purification system. In such an exhaust purification system, sulfur oxide (SO X ) contained in the exhaust is stored in the NSR catalyst. When the amount of SO X stored in the NSR catalyst increases, the NO X storage capacity of the NSR catalyst decreases, and it becomes difficult to exhibit the NO X purification function that the NSR catalyst should originally perform. Therefore, in order to release SO X accumulated in the NSR catalyst, sulfur poisoning recovery control is performed in which the temperature of the NSR catalyst is raised and the NSR catalyst is placed in a rich atmosphere. When such sulfur poisoning recovery control is executed, the temperature of the SCR catalyst disposed downstream of the NSR catalyst rises to the predetermined threshold or higher, so that fuel poisoning is likely to occur and NO X purification is performed. The SCR catalyst may be placed in an environment where the rate is likely to decrease. Therefore, when the temperature of the SCR catalyst becomes equal to or higher than the predetermined threshold due to the execution of the sulfur poisoning recovery control, the additive supply valve 7 is controlled according to the high temperature addition amount described in the first or second embodiment. if it is controlled, it is possible to suppress the reduction of the NO X purification rate of the SCR catalyst.

なお、前述の第1又は第2の実施例で述べた添加剤供給弁7の制御方法は、上記したような昇温処理の実行時や硫黄被毒回復制御の実行時に限らず、SCR触媒の温度が前記所定の閾値以上の高温域にあるときに実行されてもよい。たとえば、内燃機関1が高負荷運転されることで排気温度が上昇し、それに伴ってSCR触媒の温度が前記所定の閾値以上まで上昇したときに、前述の第1又は第2の実施例で述べた高温用添加量に従って添加剤供給弁7が制御されてもよい。   Note that the control method of the additive supply valve 7 described in the first or second embodiment is not limited to the above-described temperature increase processing or sulfur poisoning recovery control, but the SCR catalyst control method. It may be executed when the temperature is in a high temperature range equal to or higher than the predetermined threshold. For example, when the internal combustion engine 1 is operated at a high load and the exhaust gas temperature rises, and accordingly the temperature of the SCR catalyst rises to the predetermined threshold value or more, it will be described in the first or second embodiment. The additive supply valve 7 may be controlled according to the high temperature addition amount.

1 内燃機関
2 排気通路
3 酸化触媒
6 燃料供給弁
7 添加剤供給弁
8 タンク
10 第一NOセンサ
11 第二NOセンサ
12 差圧センサ
13 第一温度センサ
14 第二温度センサ
20 ECU
21 クランクポジションセンサ
22 アクセルポジションセンサ
25 吸気通路
26 エアフローメータ
Reference Signs List 1 internal combustion engine 2 exhaust passage 3 oxidation catalyst 6 fuel supply valve 7 additive supply valve 8 tank 10 first NO X sensor 11 second NO X sensor 12 differential pressure sensor 13 first temperature sensor 14 second temperature sensor 20 ECU
21 Crank position sensor 22 Accelerator position sensor 25 Intake passage 26 Air flow meter

Claims (5)

内燃機関の排気通路に配置され、SCR触媒を含む排気浄化装置と、
前記排気浄化装置へ流入する排気にアンモニア又はアンモニアの前駆体である添加剤を供給する供給手段と、
前記排気浄化装置へ流入する排気のNO濃度に応じて定められる基本添加量に基づいて前記供給手段を制御する制御手段と、
を備えた内燃機関の排気浄化システムにおいて、
前記SCR触媒の温度を検出する検出手段と、
前記排気浄化装置へ流入する排気の燃料濃度を取得する取得手段と、
を更に備え、
前記制御手段は、
前記検出手段により検出される温度が前記所定の閾値未満である場合は、前記基本添加量の添加剤を前記供給手段から供給させ、
前記検出手段により検出される温度が前記所定の閾値以上である場合は、前記基本添加量を増量補正するものであって、その補正による増加率が前記取得手段により取得される燃料濃度の低いときより高いときに大きくなるように前記基本添加量を増量補正して、その補正後の量の添加剤を前記供給手段から供給させる内燃機関の排気浄化システム。
An exhaust purification device that is disposed in an exhaust passage of the internal combustion engine and includes an SCR catalyst;
Supply means for supplying ammonia or an additive which is a precursor of ammonia to the exhaust gas flowing into the exhaust purification device;
And control means for controlling the supply means based on the basic amount determined according to the NO X concentration of the exhaust gas flowing into the exhaust gas purifier,
In an exhaust gas purification system for an internal combustion engine equipped with
Detection means for detecting the temperature of the SCR catalyst;
Obtaining means for obtaining the fuel concentration of the exhaust flowing into the exhaust purification device;
Further comprising
The control means includes
If the temperature detected by the detection means is less than the predetermined threshold, the basic addition amount of the additive is supplied from the supply means,
When the temperature detected by the detection means is equal to or higher than the predetermined threshold value, the basic addition amount is corrected to increase, and when the increase rate by the correction is low in the fuel concentration acquired by the acquisition means An exhaust purification system for an internal combustion engine, wherein the basic additive amount is increased and corrected so as to increase when higher, and the corrected amount of additive is supplied from the supply means.
前記検出手段により検出される温度が前記所定の閾値以上である場合において、前記取得手段により取得される燃料濃度が所定濃度以下であるときは、前記制御手段は、前記基本添加量の添加剤を前記供給手段から供給させる請求項1に記載の内燃機関の排気浄化システム。   In the case where the temperature detected by the detection means is equal to or higher than the predetermined threshold, and the fuel concentration acquired by the acquisition means is less than or equal to a predetermined concentration, the control means adds the basic addition amount of the additive. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the exhaust gas purification system is supplied from the supply means. 前記検出手段により検出される温度が前記所定の閾値以上である場合において、前記制御手段は、前記検出手段により検出される温度と前記取得手段により取得される燃料濃度とをパラメータとして前記SCR触媒の燃料被毒量を推定し、且つ推定された燃料被毒量が少ないときより多いときの増加率が大きくなるように前記基本添加量を増量補正して、その補正後の量の添加剤を前記供給手段から供給させる請求項1に記載の内燃機関の排気浄化システム。   When the temperature detected by the detection means is equal to or higher than the predetermined threshold, the control means uses the temperature detected by the detection means and the fuel concentration acquired by the acquisition means as parameters. Estimating the fuel poisoning amount, and correcting the basic additive amount to increase so that the increase rate when the estimated fuel poisoning amount is larger than when the fuel poisoning amount is small is increased. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the exhaust gas purification system is supplied from a supply means. 前記排気浄化装置は、排気中の粒子状物質を捕集するパティキュレートフィルタを含み、
前記SCR触媒は、前記パティキュレートフィルタに担持されている請求項1乃至3の何れか一項に記載の内燃機関の排気浄化システム。
The exhaust gas purification device includes a particulate filter that collects particulate matter in the exhaust gas,
The exhaust purification system for an internal combustion engine according to any one of claims 1 to 3, wherein the SCR catalyst is carried by the particulate filter.
前記排気浄化装置は、前記パティキュレートフィルタより上流に配置される酸化触媒を含み、
前記パティキュレートフィルタを所定の再生温度まで昇温させるために、前記排気浄化装置へ流入する排気に燃料を供給して、その燃料を前記酸化触媒で酸化させることにより、前記パティキュレートフィルタへ流入する排気の温度を上昇させる昇温処理を行う昇温制御手段を更に備え、
前記所定の閾値は、前記所定の再生温度以下である請求項4に記載の内燃機関の排気浄化システム。
The exhaust purification device includes an oxidation catalyst disposed upstream of the particulate filter,
In order to raise the temperature of the particulate filter to a predetermined regeneration temperature, fuel is supplied to the exhaust gas flowing into the exhaust gas purification device, and the fuel is oxidized by the oxidation catalyst to flow into the particulate filter. It further comprises a temperature raising control means for performing a temperature raising process for raising the temperature of the exhaust,
The exhaust gas purification system for an internal combustion engine according to claim 4, wherein the predetermined threshold value is equal to or lower than the predetermined regeneration temperature.
JP2014240144A 2014-11-27 2014-11-27 Exhaust emission control system for internal combustion engine Pending JP2016102424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240144A JP2016102424A (en) 2014-11-27 2014-11-27 Exhaust emission control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240144A JP2016102424A (en) 2014-11-27 2014-11-27 Exhaust emission control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016102424A true JP2016102424A (en) 2016-06-02

Family

ID=56089170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240144A Pending JP2016102424A (en) 2014-11-27 2014-11-27 Exhaust emission control system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016102424A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167935A (en) * 2018-03-26 2019-10-03 マツダ株式会社 Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
CN115653735A (en) * 2022-12-27 2023-01-31 卓品智能科技无锡股份有限公司 Method and system for recovering diesel engine SCR sulfur poisoning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293605A (en) * 2008-06-09 2009-12-17 Hino Motors Ltd Control device for exhaust treatment device
WO2014162597A1 (en) * 2013-04-05 2014-10-09 トヨタ自動車株式会社 Exhaust emission purification system for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293605A (en) * 2008-06-09 2009-12-17 Hino Motors Ltd Control device for exhaust treatment device
WO2014162597A1 (en) * 2013-04-05 2014-10-09 トヨタ自動車株式会社 Exhaust emission purification system for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167935A (en) * 2018-03-26 2019-10-03 マツダ株式会社 Exhaust gas state estimation method for engine, catalyst abnormality determination method for engine, and catalyst abnormality determination device for engine
JP7159584B2 (en) 2018-03-26 2022-10-25 マツダ株式会社 Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
CN115653735A (en) * 2022-12-27 2023-01-31 卓品智能科技无锡股份有限公司 Method and system for recovering diesel engine SCR sulfur poisoning

Similar Documents

Publication Publication Date Title
JP5672295B2 (en) Exhaust gas purification device deterioration judgment system
US20120102927A1 (en) Exhaust purification system of internal combustion engine
JP5093062B2 (en) Exhaust gas purification device for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
JP6179505B2 (en) Exhaust gas purification system for internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JPWO2010079621A1 (en) Catalyst passage component determination device and exhaust purification device for internal combustion engine
WO2015122443A1 (en) Exhaust purification device and control method for exhaust purification device
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2008240577A (en) Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst
JP5910759B2 (en) Exhaust gas purification system for internal combustion engine
JP2019152137A (en) Exhaust emission control device for internal combustion engine
JP2010261320A (en) Exhaust emission control device of internal combustion engine
EP3342998B1 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6149940B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264320A (en) Exhaust emission control device for internal combustion engine
JP5983438B2 (en) Exhaust gas purification device for internal combustion engine
JP6179572B2 (en) Exhaust gas purification system for internal combustion engine
JP2016102424A (en) Exhaust emission control system for internal combustion engine
JP5198520B2 (en) Exhaust gas purification system for internal combustion engine
JP2010249076A (en) Exhaust emission control device of internal combustion engine
CN108533366B (en) Exhaust gas purification device for internal combustion engine
WO2014112311A1 (en) Exhaust purification device for internal combustion engine
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP4924756B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180327