JP2016101264A - 心磁図装置 - Google Patents

心磁図装置 Download PDF

Info

Publication number
JP2016101264A
JP2016101264A JP2014240563A JP2014240563A JP2016101264A JP 2016101264 A JP2016101264 A JP 2016101264A JP 2014240563 A JP2014240563 A JP 2014240563A JP 2014240563 A JP2014240563 A JP 2014240563A JP 2016101264 A JP2016101264 A JP 2016101264A
Authority
JP
Japan
Prior art keywords
current
magnetocardiogram
sensor array
magnetic sensor
heart
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014240563A
Other languages
English (en)
Inventor
勝 杉町
Masaru Sugimachi
勝 杉町
洋 高木
Hiroshi Takagi
洋 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Cerebral and Cardiovascular Center
Original Assignee
National Cerebral and Cardiovascular Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Cerebral and Cardiovascular Center filed Critical National Cerebral and Cardiovascular Center
Priority to JP2014240563A priority Critical patent/JP2016101264A/ja
Publication of JP2016101264A publication Critical patent/JP2016101264A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】心磁図データに基づく新たな解析方法を用いることができる心磁図装置の提供【解決手段】装置全体が設置された磁気シールドルームと、心臓内に発生した電流に伴って発生する磁気を心臓全体が計測面に十分入る位置関係に設けられた磁気センサアレイと、被験者を横臥、或いは座位にするためのベッドと、磁気センサアレイを駆動し、磁気センサアレイにより得られた多チャンネル心磁図の磁場波形を計測する計測制御回路部と、磁気センサアレイから得られた磁場波形を疑似電流波形に変換する第一のデータ処理部と、前記磁気センサアレイから得られた磁場波形を収録し解析する第二のデータ処理部を収録する演算処理装置と、磁場波形と疑似電流波形を含む心磁図データを時間的に重ね書きしたものを表示する表示手段とを備えることを特徴とする心磁図装置とする。【選択図】図1

Description

本発明は、心磁図データに基づく新たな解析方法を用いることができる心磁図装置に関する。
心臓は、全身に血液を送り出すために収縮と弛緩をくりかえしており、この規則的な機械運動の生成には、心臓の規則的な電気的興奮が大きく関与している。心臓病の診断には心臓内の電気活動の異常を検知することが重要であり、これまで心臓の調律、肥大、梗塞、異常伝導などを検知するために心電図が広く用いられている。
心電図は心臓内で発生した電流が、心臓外(たとえば胸部)に伝搬したものを体表の2点間の電位差として検出したものである。心臓内では複数の電流が同時に発生して移動しており、心電図では、心臓外に伝搬したものを検出するためにこの複数の電流を分離するのが困難であった。また胸部には種々の電気伝導度の異なる媒質があり、胸郭の大部分を占め空気を多く含む肺や、脂肪、骨は電気伝導度が低く、血液や心筋、骨格筋は伝導度が高い。そのため心電図ではこのような歪んだ電位差を測定している。
心臓内に発生した電流をより正確に検出する方法として、電流に伴って発生する磁気を高感度磁気センサ等にて、磁気シールド内で検出する心磁図を用いる方法がある。心磁図では、磁気センサを複数(たとえば64チャンネル)用いることにより心臓内の複数の電流を空間的時間的に高い分解能で検知でき、磁気センサは体表に対し非接触で検出できるので、多くのセンサ信号を用いても簡便に測定できる。
しかしながら、心磁図により測定された多チャンネルで記録された心磁図データを心臓電気生理学の知識に照らし合わせ、効率よく解析するためには新たな解析方法を取り入れる必要がある。
非特許文献1及び非特許文献2には、多チャンネル心磁図の磁場波形から疑似電流波形を計算する解析方法が記載されている。この解析方法では、2次元各点における法線方向磁場の勾配ベクトル(グラディアントベクトル、各点での磁場の空間偏微分から求めたベクトル)を90度右に回転させることによって、疑似電流ベクトルを得ている。疑似電流ベクトルの大きさを2次元に等高線および色調にて表示し、疑似電流ベクトルを矢印の向きと大きさで重ねて表示することによって解析を容易にすることができる。また疑似電流ベクトルの大きさの時間変化を測定位置ごとに表示したものをベクトル絶対値波形として用いることにより、効率良く解析することができる。
Hosaka H, Cohen D, J Electrocardiol 1976; 9(4): 426-432 Tsukada K, Kandori A, Miyashita T, et al. 1998; Proceedings of the 20th Annual International Conference of the IEEE/EMBS
しかしながら、心磁図データから多くの空間的時間的情報が得られるものの、上記した解析方法は、心磁図データの一部を利用するにすぎず、心磁図で測定された多チャンネルで記録され、多くの空間的時間的情報が得られる心磁図データをより有効に利用するためには、新たな解析方法が必要とされている。
本発明は、上記した課題を解決するためになされてものであり、心磁図データに基づく新たな解析方法を用いることができる心磁図装置を提供することを目的とする。
請求項1に係る発明は、装置全体が設置された磁気シールドルームと、心臓内に発生した電流に伴って発生する磁気を心臓全体が計測面に十分入る位置関係に設けられた磁気センサアレイと、被験者を横臥、或いは座位にするためのベッドと、前記磁気センサアレイを駆動し、前記磁気センサアレイにより得られた多チャンネル心磁図の磁場波形を計測する計測制御回路部と、前記磁気センサアレイから得られた磁場波形を疑似電流波形に変換する第一のデータ処理部と、前記磁気センサアレイから得られた磁場波形を収録し解析する第二のデータ処理部を収録する演算処理装置と、前記磁場波形と前記疑似電流波形を含む心磁図データを時間的に重ね書きしたものを表示する表示手段とを備えることを特徴とする心磁図装置に関する。
請求項2に係る発明は、前記演算処理装置は、前記計測制御回路部で記録された磁場波形または前記第一のデータ処理部により解析された疑似電流波形を色分けする色分け処理部を収録し、この色分けは、赤色、緑色、青色からなるRGBカラーモデルによる輝度により表現され、前記磁気センサアレイの各センサは夫々チャンネル番号を有し、各磁気センサに対応する波形の輝度は、最小を0、最大を1としたとき、図5記載の別表色体系により表現することを特徴とする請求項1記載の心磁図装置に関する。
請求項3に係る発明は、前記磁場波形または前記疑似電流波形を同期加算平均する計算手段を備え、前記計算手段は、前記磁気センサアレイにより測定されたQRS波の相互相関関数を計算し、該相互相関関数が最大になる時間を用いて同期させることにより、同期加算平均を計算することを特徴とする請求項1又は2記載の心磁図装置に関する。
請求項4に係る発明は、心臓内に発生した電流の分裂を判定する判定手段を備え、前記表示手段は、心臓内に発生した電流の向きと電流量をベクトルで表示し、前記磁気センサアレイにより得られる夫々の心臓内に発生した電流の電流値において、最大値と同程度の電流を主電流とし、電流値が前記主電流の60%以上である電流を有効電流とし、前記判定手段は、各時相において、主電流と有効電流のベクトルのなす角度が45度以上である場合、又は各主電流のベクトルの角度が45度以上異なる場合、又は各有効電流のベクトルの角度が45度以上異なる場合に心臓内に発生した電流が分裂していると判定することを特徴とする請求項3記載の心磁図装置。
請求項5に係る発明は、心臓内に発生した脱分極電流の終了を判断する判断手段を備え、前記判断手段は、前記磁気センサアレイにより測定されるQRS波の全時相における全ての測定箇所における疑似電流波形の最大振幅が6〜8%以下となる時点において、脱分極過程が終了したと判断することを特徴とする請求項3記載の心磁図装置に関する。
本発明によれば、磁気センサアレイにより測定された心磁図データ(磁場波形)を磁気センサアレイの各センサが設けられる位置に基づいて、夫々を系統的に色付けし、時間的に重ね書きすることで、異常応答の検出や異常の生じた領域を容易に同定することができる。この方法によって心臓の脱分極過程が延長した場合、主としてどの領域の脱分極が遅延しているのか、また、心臓の再分極の不均一性についての情報なども容易に知ることができる。
本発明によれば、計算手段は、磁気センサアレイにより測定されたQRS波の相互相関関数を計算し、該相互相関関数が最大になる時間を用いて同期させることにより、同期加算平均を計算することから、正確な同期加算平均が計算でき、解析の精度が向上する。たとえばQRS波の精密な計算ができるために、心臓脱分極過程における伝導異常や脱分極電流の分裂などを正確に求めることができる。
本発明によれば、心臓内の電流の分裂を判定する判定手段を備えることにより、心臓内の分裂を検知することができ、電流分裂のある患者に対する適切な診断が可能となる。
本発明によれば、心臓内の脱分極電流の終了を判断する判断手段を備えることにより、左室及び右室の脱分極時間の長さを別々に知ることができる。
本発明に係る心磁図装置を示す図である。 磁気センサアレイの実施形態の一例を示す図である。 心磁図装置が被験者に取り付けられる位置を示す図である。 本発明に係る心磁図装置のシステムを示すブロック図である。 色付けを示す図であり磁気センサアレイのチャンネル番号を示す図である。 色付けを示す図であり色付けされる色体系を示す図である。 健常な被験者の磁場波形を示す図であり各チャンネル番号の磁場波形を時間的にそろえて重ね書きしたものを示す図である。 健常な被験者の磁場波形を示す図であり赤の領域の磁場波形を示す図である。 健常な被験者の磁場波形を示す図であり緑の領域の磁場波形を示す図である。 健常な被験者の磁場波形を示す図であり青の領域の磁場波形を示す図である。 健常な被験者の磁場波形を示す図であり紫の領域の磁場波形を示す図である。 心臓疾患のある被験者の磁場波形を示す図であり各チャンネル番号の磁場波形を時間的にそろえて重ね書きしたものを示す図である。 心臓疾患のある被験者の磁場波形を示す図であり赤の領域の磁場波形を示す図である。 心臓疾患のある被験者の磁場波形を示す図であり緑の領域の磁場波形を示す図である。 心臓疾患のある被験者の磁場波形を示す図であり青の領域の磁場波形を示す図である。 心臓疾患のある被験者の磁場波形を示す図であり紫の領域の磁場波形を示す図である。 (a)は本発明に係る心磁図装置の同期加算平均を示す図であり、(b)は従来図の同期加算平均により得られる電流波形を示す図である。 各時相における健常な被験者の心臓内に発生する電流を示す図でありQRSが35msにおける心臓内に発生する電流を示す図である。 各時相における健常な被験者の心臓内に発生する電流を示す図でありQRSが65msにおける心臓内に発生する電流を示す図である。 各時相における健常な被験者の心臓内に発生する電流を示す図でありQRSが80msにおける心臓内に発生する電流を示す図である。 各時相における健常な被験者の心臓内に発生する電流を示す図でありQRSが105msにおける心臓内に発生する電流を示す図である。 各時相における電流分裂のある被験者の心臓内に発生する電流を示す図であり、QRSが45msにおける心臓内に発生する電流を示す図である。 各時相における電流分裂のある被験者の心臓内に発生する電流を示す図であり、QRSが65msにおける心臓内に発生する電流を示す図である。 各時相における電流分裂のある被験者の心臓内に発生する電流を示す図であり、QRSが75msにおける心臓内に発生する電流を示す図である。 各時相における電流分裂のある被験者の心臓内に発生する電流を示す図であり、QRSが85msにおける心臓内に発生する電流を示す図である。
本発明に係る心磁図装置の好適な実施形態について図面を参照しながら説明する。図1は、本発明に係る心磁図装置、図4は本発明に係る心磁図装置のシステムを示すブロック図である。
本発明に係る心磁図装置1は、図1に示すように実施形態の一例として、装置全体が設置された磁気シールドルーム2と、心臓内に発生した電流に伴って発生する磁気を心臓全体が計測面に十分入る位置関係に設けられた複数個の磁気センサからなる磁気センサアレイ3と、被験者を横臥、或いは座位にするためのベッド6と、磁気センサアレイ3を駆動し該磁気センサアレイ3により得られた多チャンネル心磁図の磁場波形を計測する計測制御回路部7と、磁気センサアレイ3から得られた磁場波形を疑似電流波形に変換する第一のデータ処理部8と、磁気センサアレイ3から得られた磁場波形を収録し解析する第二のデータ処理部10を収録する演算処理装置9と、磁場波形と疑似電流波形を含む心磁図データを時間的に重ね書きしたものを表示する表示手段13と、心磁図データ等を記憶する記憶手段12を備えている。
磁気シールドルーム2は、環境磁気雑音を除去するために設けられており、装置全体が磁気シールド内に設けられている。
磁気センサアレイ3は超電導状態で使用する場合、磁気センサアレイ3が収納され、液体ヘリウムを内填するデュワ4と、デュワ4を保持するガントリ5とを備えており、磁気センサには超電導材料が好適に用いられる。超伝導材料としては特に限定されないが、Nb(ニオブ)を用いることが好ましい。更に、磁気センサアレイ3の磁気センサは、光ポンピング式磁気センサから構成されていてもよい。この場合超電導とする必要がなく、常温で使用される。
磁気センサアレイ3は心臓内に発生した電流に伴って発生する磁気を測定する。磁気センサアレイ3は、実施形態の一例として図2に示すように8×8の格子状で等間隔に並んだ64個の磁気センサから構成されており、夫々チャンネル番号を有している。例えば、各磁気センサアレイ間の距離を2.5cmとした場合、計測面は17.5cm×17.5cmとなる。ここで、図2に示すように、被験者の剣状突起を磁気センサアレイ3の下から2行目左から3列目(チャンネル番号は51番、図3の斜線部分)に合わせることで、磁気センサアレイは、心臓全体が計測面に十分入る位置関係となる。
磁気センサアレイ3に設けられる磁気センサの数は2次元に複数配置されていればその数は特に限定されない。例えば、上述した64個に限らず、磁気センサが25個(5×5)や100個(10×10)の格子状に設けられていてもよい。更に、磁気センサアレイは、磁気センサが格子状に設けられることに限定されず、例えば円状内に等間隔に設けられていてもよい。
磁気センサアレイ3により測定された心磁図データ(磁場波形)には、P波、QRS波(Q波、R波、S波)、ST部分、T波、U波等の波形が含まれており、心磁図装置1の記憶手段12に記憶される。
デュワ4は、磁気センサアレイ3を冷却するために設けられており、磁気センサアレイ3を超電導状態となる温度で使用するために液体ヘリウムが内填されている。デュワ4はガントリ5により保持されている。
計測回路制御部7は、磁気センサアレイ3を駆動し該磁気センサアレイ3により得られた多チャンネル心磁図の磁場波形を計測する。
演算処理装置9は、磁気センサアレイ3から得られた磁場波形を疑似電流波形に変換する第一のデータ処理部8と、磁気センサアレイ3から得られた磁場波形を収録し解析する第二のデータ処理部10を収録している。演算処理装置9はCPU等から構成されており、第一のデータ処理部8、第二のデータ処理部10、色分け処理部11、計測回路制御部7、表示手段13、計算手段14、判定手段15、判断手段16の各手段を実行する。記憶手段12には、心磁図データ、色分けデータ、判定基準、判断基準等が記憶されている。
表示手段13は、磁気センサアレイ3により得られた磁場波形を時間的に重ね書きしたものをモニタ等に表示する。また、第一のデータ処理部8により、多チャンネル心磁図の磁場波形から変換された疑似電流波形を時間的に重ね書きしたものをモニタ等に表示する。この場合、表示手段13は、複数の多チャンネル心磁図データや、疑似電流波形を重ね書きして表示してもよく、特定のチャンネル番号における心磁図データや疑似電流波形の経時変化を重ね書きして表示してもよい。
本発明に係る心磁図装置1における演算処理装置9は、計測制御回路部7で記録された磁場波形または前記第一のデータ処理部8により解析された疑似電流波形を色分けする色分け処理部11を収録してもよい。
図6、7は、磁気センサアレイ3により測定され、磁気センサアレイ3により得られた64箇所の多チャンネル心磁図の心磁図データを表示手段13により時間的にそろえて重ね書きしたものである。
これら64本の波形は多くの場合に同様の時相で上下を繰り返すが、一部の波形で異なる応答を行うことがあり、その異なる応答が異常を表している。これまで、夫々の心磁図データを白黒による濃淡等の単純な重ね書きで表現すると、異常応答を見逃すこともあり、異常応答があることはわかっても、どの領域からの異常であるかは容易に判別することができなかった。
そこで、演算処理装置9に収録されている色分け処理部11が磁気センサアレイ3の各チャンネル番号から得られる心磁図データを色分けデータにより色分けする。この色分けは、赤色、緑色、青色からなるRGBカラーモデルによる輝度により表現され、磁気センサアレイ3の各センサの輝度は、最小を0、最大を1としたとき、図5の(b)に示される色体系により表現する。
ここで、RGBカラーモデルにより表現される赤、緑、青の夫々の輝度により、実際に波形として表現される色は、赤の輝度が高い赤の領域(R)、緑の輝度が高い緑の領域(G)、青の輝度が高い青の領域(B)、青と赤の輝度が高い紫の領域(V)に分けることができる。
各々の色の領域に対応するチャンネル番号は、図5の(b)に示すように、赤の領域が1、2、3、4、9、10、11、12、17、18、19、25,26、27、33、34,35、41、42であり、緑の領域が5,6,7,8、13,14,15,16、22,23,24、31,32であり、青の領域が39,40、47,48、55,56、63,64であり、紫の領域が20,21,28,29,30、36,37.38、43、44、45、46、49、50、51、52、53、54、57、58、59、60、61、62である。
磁気センサアレイ3により測定された心磁図データを図5の(b)に示すような色体系により表現することで、視認性が向上し、心磁図データから異常応答の検出や異常の生じた心臓の領域を容易に特定することができる。具体的には、心臓の脱分極過程が延長した場合、主としてどの領域の脱分極が遅延しているのか、また、心臓の再分極の不均一性についての情報等を容易に知ることができる。
図6は、健常な被験者の磁場波形を示す図であり、(a)は各チャンネル番号の磁場波形を時間的にそろえて重ね書きしたものを示す図であり、(b)は赤の領域、(c)は緑の領域、(d)は青の領域、(e)は紫の領域の磁場波形を示す図である。図7は、心臓疾患のある被験者の磁場波形を示す図であり、(a)は各チャンネル番号の磁場波形を時間的にそろえて重ね書きしたものを示す図であり、(b)は赤の領域、(c)は緑の領域、(d)は青の領域、(e)は紫の領域の磁場波形を示す図である。
ここで、T波の磁場波形について説明すると、図6に示されるように、健常な被験者の磁場波形は上下で略対称の磁場波形となっており、赤、青、紫の領域では上下に略対称、緑の領域は上向きの磁場波形となっている。図7に示されるように、心臓疾患のある被験者の磁場波形は上下で非対称の磁場波形となっており、緑と青の領域では下向き、紫の領域では上向きの磁場波形となっている。一方、赤の領域の磁場波形は、一旦下向きとなった後に上向きの波形を示している。従って、この領域の再分極が速まっており、再分極が不均一になっていることが分かる。
疑似電流の大きさを表す疑似電流波形のQRS波形は、3つの時相の波形に分けられ、それぞれが中隔(Q波)、左心室(R波)、右心室(S波)の脱分極に相当する。3つの山の包絡線はそれぞれ対応する心室の領域の色で表示されるために、視認性が向上し測定箇所における脱分極の過程が正常であるか、又は異常であるかを容易に確認できる。具体的には、左心室の脱分極に長い時間がかかる場合には、2つ目の山(時間幅)が長く大きくなり、右心室に相当する色の線は隠されてしまうことから左心室の異常を確認できる。
次に磁場波形の解析方法について説明する。心磁図データから得られた磁場波形や疑似電流波形は、雑音が多くこのままでは解析が困難であるため、心臓調律の同じ時相を定義して、同期加算平均した波形を計算する必要があった。これまでの代表的な解析方法として、波形の頂点(最大値)の時刻を同期させる方法が使われているが、心臓内の伝導に異常がある場合には、頂点付近に多数の極大値があり、正確な同期ができなかった(図7の(b)参照)。
本発明に係る心磁図装置1は、磁場波形または疑似電流波形を同期加算平均する計算手段14を備えている。
磁気センサアレイ3により測定された磁場波形に含まれているQRS波は、心臓脱分極に相当する波形である。計算手段14は、磁気センサアレイ3により測定された磁場波形に含まれているQRS波の相互相関関数を計算する。この磁場波形の相互相関関数が最大になる時間を用いて同期させることにより、同期加算平均を計算する(図7の(a)参照)。
これにより、より正確な磁場波形の同期加算平均が計算でき、解析の精度が向上する。更にQRS波の精密な計算ができるために、心臓脱分極過程における伝導異常や脱分極電流の分裂などを正確に求めることができる。
計算手段14による同期加算平均を計算するにあたり、計測された心拍の中で調律の異なる異所性のものは同期加算の対象から除外する。具体的には、QRS波の形状の異なるものを除外するが、加えてP波の形状の異なるものも除外してもよい。これにより、より正確な同期加算平均が計算できる。
心臓内に発生する電流の分裂を検知する方法について説明する。本発明に係る心磁図装置1は、心臓内に発生した電流の分裂を判定する判定手段15を備えている。
磁気センサアレイ3により測定された64箇所の多チャンネル磁場波形を第一のデータ処理部8により疑似電流波形に変換する。計算手段14は第一のデータ処理部8により変換された疑似電流波形の同期加算平均を計算する。
表示手段13は、得られた疑似電流波形の時系列に基づいて、心臓内で発生した電流の向きと電流量をベクトルでモニタに表示する。
ここで、心臓内で発生し、磁気センサアレイ3により得られた各チャンネル番号(64箇所)における電流の電流値について、各時相における最大値と同程度の電流(例えば1〜5番目迄の電流)を主電流とし、電流値が主電流の60%以上である電流を有効電流とする。
判定手段15は、各時相における主電流及び有効電流について、以下の判定基準(1)〜(3)に基づいて、この何れかに相当する場合、心臓内で発生した電流が分裂していると判定する。
(1)主電流と有効電流のベクトルのなす角度が45度以上である場合
(2)各主電流のベクトルの角度が45度以上異なる場合
(3)各有効電流のベクトルの角度が45度以上異なる場合
ここで、具体例を示して説明する。図8の(a)は健常者の、(b)は電流分裂のある患者の各時相における、各チャンネルの電流の向き及び電流値を示している。ここで、各時相における疑似電流値の最大値を表に示す。表1は健常者について、表2は電流分裂のある患者についてである。
Figure 2016101264
Figure 2016101264
図9は、各時相における健常な被験者の心臓内に発生する電流を示す図であり、(a)はQRSが35ms、(b)は65ms、(c)は80ms、(d)は105msにおける心臓内に発生する電流を示す図である。図10は、各時相における電流分裂のある被験者の心臓内に発生する電流を示す図であり、(a)はQRSが45ms、(b)は65ms、(c)は75ms、(d)は85msにおける心臓内に発生する電流を示す図である。図9、及び10に示される各時相における各チャンネルのベクトル表示において、主電流は太線のベクトル、有効電流は太さが中程度で矢先を塗りつぶしたベクトル、それ以外は細線のベクトルで表示している。
図9に示される健常な被験者の各時相の主電流及び有効電流のベクトルは、略同じ方向を示している。一方、図10に示される電流分裂のある被験者の各時相の主電流及び有効電流のベクトルは、(a)、(d)については略同一方向であるものの、(b)、(c)については、主電流と有効電流の各ベクトルのなす角、及び有効電流同士の各ベクトルのなす角が45度以上となっている。従って、この結果が上述した判定基準に相当することから、心臓内で発生した電流が分裂していると判定することができる。
これにより、心臓内で発生する電流が病的による分裂であることを判定することが可能となる。具体的には、電流分裂のある患者は、重症心不全の治療法である心臓再同期療法の効果が見られず、予後も不良であることを予測できる。また、肥大型心筋症でも電流分裂によって致死的不整脈を起こすことを予測できる。
心臓内で発生する脱分極電流の終了を判断する方法について説明する。本発明に係る心磁図装置1は、心臓内に発生した脱分極過程の終了を判断する判断手段16を備えている。
磁気センサアレイ3により測定された64箇所の多チャンネル心磁図データ(磁場時間波形)に含まれているQRS波は、計測回路制御部7により疑似電流波形に変換される。
判断手段16は、QRS波の全時相の全チャンネルの中で最大のものを疑似電流波形の最大振幅とし、このQRS波の全時相について全チャンネルの中で疑似電流波形の最大振幅が6〜8%以下となる時点において、脱分極過程が終了したと判断する。
心磁図では空間分解能が良好なために、心臓の左室、右室のそれぞれどの部分で伝導が障害されることにより脱分極電流が遅延しているのかを知ることができる。更に、判断手段16を備えることにより、脱分極電流が最終的に消失する部位と時刻を測定することができ、左室及び右室の脱分極過程がそれぞれどの程度続いているのかを知ることができる。特に、左室の脱分極電流の流れる時間の測定が可能となることで、左室の肥大や不整脈等を診断することが可能となる。
本発明に係る心磁図装置は、心臓疾患に関する診断をより正確にできるため、医療機関等で好適に利用される。
1 心磁図装置
2 磁気シールド
3 磁気センサアレイ
6 ベッド
7 計測回路制御部
8 第一のデータ処理部
9 演算処理装置
10 第二のデータ処理部
11 色分け処理部
13 表示手段
14 計算手段
15 判定手段
16 判断手段

Claims (5)

  1. 装置全体が設置された磁気シールドルームと、
    心臓内に発生した電流に伴って発生する磁気を心臓全体が計測面に十分入る位置関係に設けられた磁気センサアレイと、
    被験者を横臥、或いは座位にするためのベッドと、
    前記磁気センサアレイを駆動し、前記磁気センサアレイにより得られた多チャンネル心磁図の磁場波形を計測する計測制御回路部と、
    前記磁気センサアレイから得られた磁場波形を疑似電流波形に変換する第一のデータ処理部と、前記磁気センサアレイから得られた磁場波形を収録し解析する第二のデータ処理部を収録する演算処理装置と、
    前記磁場波形と前記疑似電流波形を含む心磁図データを時間的に重ね書きしたものを表示する表示手段と、
    を備えることを特徴とする心磁図装置。
  2. 前記演算処理装置は、前記計測制御回路部で記録された磁場波形または前記第一のデータ処理部により解析された疑似電流波形を色分けする色分け処理部を収録し、
    この色分けは、赤色、緑色、青色からなるRGBカラーモデルによる輝度により表現され、前記磁気センサアレイの各センサは夫々チャンネル番号を有し、各磁気センサに対応する波形の輝度は、最小を0、最大を1としたとき、図5記載の別表色体系により表現することを特徴とする請求項1記載の心磁図装置。
  3. 前記磁場波形または前記疑似電流波形を同期加算平均する計算手段を備え、
    前記計算手段は、前記磁気センサアレイにより測定されたQRS波の相互相関関数を計算し、該相互相関関数が最大になる時間を用いて同期させることにより、同期加算平均を計算することを特徴とする請求項1又は2記載の心磁図装置。
  4. 心臓内に発生した電流の分裂を判定する判定手段を備え、
    前記表示手段は、心臓内に発生した電流の向きと電流量をベクトルで表示し、
    前記磁気センサアレイにより得られる夫々の心臓内に発生した電流の電流値において、最大値と同程度の電流を主電流とし、電流値が前記主電流の60%以上である電流を有効電流とし、
    前記判定手段は、各時相において、主電流と有効電流のベクトルのなす角度が45度以上である場合、又は各主電流のベクトルの角度が45度以上異なる場合、又は各有効電流のベクトルの角度が45度以上異なる場合に心臓内に発生した電流が分裂していると判定することを特徴とする請求項3記載の心磁図装置。
  5. 心臓内に発生した脱分極電流の終了を判断する判断手段を備え、
    前記判断手段は、前記磁気センサアレイにより測定されるQRS波の全時相における全ての測定箇所における疑似電流波形の最大振幅が6〜8%以下となる時点において、脱分極過程が終了したと判断することを特徴とする請求項3記載の心磁図装置。
JP2014240563A 2014-11-27 2014-11-27 心磁図装置 Pending JP2016101264A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014240563A JP2016101264A (ja) 2014-11-27 2014-11-27 心磁図装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014240563A JP2016101264A (ja) 2014-11-27 2014-11-27 心磁図装置

Publications (1)

Publication Number Publication Date
JP2016101264A true JP2016101264A (ja) 2016-06-02

Family

ID=56087837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014240563A Pending JP2016101264A (ja) 2014-11-27 2014-11-27 心磁図装置

Country Status (1)

Country Link
JP (1) JP2016101264A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109589108A (zh) * 2018-12-05 2019-04-09 北京昆迈生物医学研究院有限公司 一种基于原子磁强计的心磁图系统及方法
JP2020092982A (ja) * 2018-12-14 2020-06-18 株式会社リコー 生体磁場計測装置、生体磁場計測方法
US10701844B2 (en) 2016-12-02 2020-06-30 Tdk Corporation Magnetically shielded room
JP2020532343A (ja) * 2017-08-09 2020-11-12 ジェネテシス インク. 生体磁場の検出
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions
CN117100276A (zh) * 2023-10-23 2023-11-24 山东大学齐鲁医院 心功能检测系统、计算机存储介质及终端

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10701844B2 (en) 2016-12-02 2020-06-30 Tdk Corporation Magnetically shielded room
JP2020532343A (ja) * 2017-08-09 2020-11-12 ジェネテシス インク. 生体磁場の検出
CN109589108A (zh) * 2018-12-05 2019-04-09 北京昆迈生物医学研究院有限公司 一种基于原子磁强计的心磁图系统及方法
JP2020092982A (ja) * 2018-12-14 2020-06-18 株式会社リコー 生体磁場計測装置、生体磁場計測方法
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions
CN117100276A (zh) * 2023-10-23 2023-11-24 山东大学齐鲁医院 心功能检测系统、计算机存储介质及终端
CN117100276B (zh) * 2023-10-23 2024-01-12 山东大学齐鲁医院 心功能检测系统、计算机存储介质及终端

Similar Documents

Publication Publication Date Title
JP2016101264A (ja) 心磁図装置
Fenici et al. Clinical application of magnetocardiography
JP6339677B2 (ja) 長期生理的信号品質インジケーションに関する方法及びディスプレイ
EP1885240B1 (en) Analysis of electrocardiogram signals
US8626275B1 (en) Apparatus and method for detecting myocardial ischemia using analysis of high frequency components of an electrocardiogram
Bond et al. Methods for presenting and visualising electrocardiographic data: From temporal signals to spatial imaging
US10426368B2 (en) Method and system for cardiac ischemia detection
EP2334231A1 (en) A system and a method for spatial estimation and visualization of multi-lead electrocardiographic st deviations
Andersen et al. The ST injury vector: electrocardiogram-based estimation of location and extent of myocardial ischemia
Mc Loughlin Precordial bipolar leads: A new method to study anterior acute myocardial infarction
Cohen et al. Part I Abnormal patterns and physiological variations in magnetocardiograms
JP4153950B2 (ja) 付加誘導機能を備えた心電計及び付加誘導心電図導出方法
JP2022139170A (ja) 生体磁気計測装置、生体磁気計測プログラム、および、心磁信号処理方法
WO2009062651A2 (en) Modeling the electrical activity of the heart by a single dipole, concurrently estimating subject and measurement related conditions
Horáček et al. Comparison of epicardial potential maps derived from the 12-lead electrocardiograms with scintigraphic images during controlled myocardial ischemia
EP3476286B1 (en) Apparatus for providing electrocardiographic and especially arrhythmia information
US10360700B2 (en) Interpolation of dynamic three-dimensional maps
JP2010214016A (ja) 体表面心電図を解析し、t波交互脈または心房細動波に関する2次元機能図を生成する心電図解析装置
US7805179B2 (en) Method of examining dynamic cardiac electromagnetic activity and detection of cardiac functions using results thereof
US20230181078A1 (en) Systems and devices for detecting coronary artery disease using magnetic field maps
US9149201B2 (en) TWA measuring apparatus and TWA measuring method
RU2651068C1 (ru) Способ неинвазивного определения электрофизиологических характеристик сердца
JP5450269B2 (ja) 磁場解析方法、プログラムおよび磁場解析装置
Janusek et al. Evaluation of T-wave alternans in high-resolution ECG maps recorded during the stress test in patients after myocardial infarction
JP7264377B2 (ja) 生体情報表示装置、生体情報表示方法及び表示プログラム