JP2016101187A - Air purification system preventing reduction in decomposition efficiency of contaminated air - Google Patents

Air purification system preventing reduction in decomposition efficiency of contaminated air Download PDF

Info

Publication number
JP2016101187A
JP2016101187A JP2014239466A JP2014239466A JP2016101187A JP 2016101187 A JP2016101187 A JP 2016101187A JP 2014239466 A JP2014239466 A JP 2014239466A JP 2014239466 A JP2014239466 A JP 2014239466A JP 2016101187 A JP2016101187 A JP 2016101187A
Authority
JP
Japan
Prior art keywords
air
reaction tube
air purification
flow rate
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014239466A
Other languages
Japanese (ja)
Inventor
憲治 立石
Kenji Tateishi
憲治 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I-QUARK CORP
Original Assignee
I-QUARK CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I-QUARK CORP filed Critical I-QUARK CORP
Priority to JP2014239466A priority Critical patent/JP2016101187A/en
Publication of JP2016101187A publication Critical patent/JP2016101187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air purification system achieving further reduction of low concentration of pollutants in the air by solving the problem in that it is necessary to reduce the process air flow rate for noise reduction depending on the installation environment, and such a reduction in the air flow rate reduces the flow rate of the contaminated air in a reaction tube, resulting in a reduction in decomposition efficiency of contaminants.SOLUTION: There is provided an air purification system that achieves a mechanism for preventing a reduction in the decomposition efficiency of the contaminated air by maintaining decomposition reaction characteristics in a reaction tube inside the system even when the capacity of a fan for introducing the contaminated air into the reaction tube is lowered to reduce air flow rate. The air purification system can maintain the performance regardless of the process air flow rate by incorporating a gas flow passage cross-sectional area adjusting function for achieving the above in the system and causing the function to be operated according to air flow rate control.SELECTED DRAWING: Figure 9

Description

低濃度のVOCや臭気物質等を長期的に吸引することで起きる健康被害の防止や、除菌・ウィルスの不活化による室内環境の改善等を目的とした、比較的小スペースで使用する空気浄化装置に関する。 Air purification used in a relatively small space for the purpose of preventing health damage caused by long-term inhalation of low-concentration VOCs and odorous substances, and improving the indoor environment by sterilization and inactivation of viruses. Relates to the device.

空気浄化装置は、広義では埃などの物質を除去するものも含むが、本発明では、VOCや臭気物質などの化学物質を除去する装置を指す。一般家庭の他、事務所,病院,工場などで使用されている。 The air purification device includes a device that removes substances such as dust in a broad sense, but in the present invention, it refers to a device that removes chemical substances such as VOCs and odorous substances. Used in general households, offices, hospitals, factories, etc.

特に、十分に換気が出来ない病院や診療所等では、菌・ウィルスに対応した小型VOC等処理装置の開発要望が強い。待合室は不特定多数の身体的弱者が集まる場所だけに、空気環境への配慮が必要である。 In particular, in hospitals and clinics where ventilation is not sufficient, there is a strong demand for development of processing devices such as small VOCs that are compatible with bacteria and viruses. In the waiting room, consideration must be given to the air environment only where an unspecified number of physically vulnerable persons gather.

空気浄化装置として、数百ppmレベルの高濃度VOC等を低濃度化する除去装置は製品化されているが、低濃度VOC等を限りなくゼロにする除去装置は、ほとんど市販されていない。 As an air purification device, a removal device that lowers the concentration of high concentration VOC at a level of several hundred ppm has been commercialized, but a removal device that makes low concentration VOC or the like zero is hardly commercially available.

浄化手段として、光触媒機能性膜を使用したものも多い。光触媒機能性膜に紫外光等を照射することにより、光触媒が励起し、化学物質を分解するものである。しかし、光触媒の特性上、反応速度が遅く少量の化学物質除去には対応できるが、量が多くなると処理が追いつかず、多量の処理には向いていない。 Many of the purification means use a photocatalytic functional film. By irradiating the photocatalytic functional film with ultraviolet light or the like, the photocatalyst is excited to decompose the chemical substance. However, due to the characteristics of the photocatalyst, the reaction rate is slow and it is possible to cope with the removal of a small amount of chemical substances.

そうした光触媒による分解反応の効率を改善するために、光触媒励起用光源と、光触媒機能性膜との位置関係は工夫されており、特開2000−262606号公報においては、光触媒管を複数本並列に配置した空気浄化装置が開示されている。 In order to improve the efficiency of the decomposition reaction by such a photocatalyst, the positional relationship between the photocatalyst excitation light source and the photocatalyst functional film has been devised. In JP-A-2000-262606, a plurality of photocatalyst tubes are arranged in parallel. An arranged air purification device is disclosed.

特開2000−262606号公報JP 2000-262606 A

光触媒は紫外線等の照射で励起され、VOC等を分解するが、分解生成物が光触媒機能性膜近傍で滞留すると、光触媒にVOC等が供給されなくなり、新たな分解を阻害する。 The photocatalyst is excited by irradiation with ultraviolet rays or the like, and decomposes VOC or the like. However, if the decomposition product stays in the vicinity of the photocatalyst functional film, VOC or the like is not supplied to the photocatalyst and inhibits new decomposition.

光触媒機能性膜近傍で分解生成物が滞留するのを防止するためには、光触媒機能性膜近傍の気体流速を速い状態で維持する必要があるが、家庭やオフィス、病院などの静かな環境下では、ファン風量を落として運転する場合が多くあると考えられ、その結果、光触媒機能性膜近傍での気体流速を維持できず遅くなってしまい、分解効率が低下する。 In order to prevent the decomposition products from staying in the vicinity of the photocatalytic functional film, it is necessary to maintain the gas flow velocity in the vicinity of the photocatalytic functional film at a high speed, but in a quiet environment such as a home, office, or hospital. Then, it is considered that there are many cases where the fan air volume is decreased, and as a result, the gas flow rate in the vicinity of the photocatalytic functional film cannot be maintained and the operation is slowed down, and the decomposition efficiency is lowered.

本発明は、ファン風量を落としても、光触媒機能性膜近傍で流速が遅くならず、光触媒による分解効率が低下しない空気浄化装置を提供することにある。 An object of the present invention is to provide an air purification device in which the flow rate does not slow in the vicinity of the photocatalytic functional film and the decomposition efficiency by the photocatalyst does not decrease even when the fan air volume is reduced.

上記課題を解決するために、本発明に係る空気浄化装置は、前記空気浄化装置内の光触媒機能性膜近傍において、光触媒で分解された分解生成物の滞留を抑えるために、前記空気浄化装置内のファン風量を落としても、流速を確保するように、気体流路断面積を変化させることを特徴とする。 In order to solve the above problems, an air purification device according to the present invention is provided in the air purification device in order to suppress residence of decomposition products decomposed by the photocatalyst in the vicinity of the photocatalytic functional film in the air purification device. The gas flow passage cross-sectional area is changed so as to ensure the flow velocity even when the fan air volume is reduced.

前記ファン風量に応じて、気体流路断面積を調整するために、蓋式、シャッター式等の調整機構を追加する。 An adjustment mechanism such as a lid type or a shutter type is added to adjust the cross-sectional area of the gas flow path according to the fan air volume.

反応管の構成を示す図である。It is a figure which shows the structure of a reaction tube. 反応管集合体の構成を示す図であるIt is a figure which shows the structure of the reaction tube assembly. 本発明の実施形態に係る空気浄化装置の構成を示す図である。It is a figure which shows the structure of the air purification apparatus which concerns on embodiment of this invention. ファン風量と反応管内流速の関係を示す図である。It is a figure which shows the relationship between a fan air volume and the flow velocity in a reaction tube. 気体流路断面積と反応管内流速の関係を示す図である。It is a figure which shows the relationship between a gas flow-path cross-sectional area and the flow velocity in a reaction tube. 反応管内流速と汚染空気等の分解効率の関係を示す図である。It is a figure which shows the relationship between the flow velocity in a reaction tube, and decomposition | disassembly efficiency, such as contaminated air. 反応管の吸気口をグループで開閉する例を示す図である。It is a figure which shows the example which opens and closes the inlet port of a reaction tube in a group. 反応管の吸気口を個別に開閉する例を示す図である。It is a figure which shows the example which opens and closes the inlet port of a reaction tube separately. 本発明の実施形態に係る空気浄化装置において吸気口部分の構成を示す図である。It is a figure which shows the structure of the inlet port part in the air purification apparatus which concerns on embodiment of this invention. 空気浄化装置のスライドシャッターの構成を示す図であって、スライド機構で反応管の吸気口を1本あるいは2本毎に塞ぐ機構である。It is a figure which shows the structure of the slide shutter of an air purifying apparatus, Comprising: It is a mechanism which plugs the inlet of a reaction tube for every one or two with a slide mechanism. 空気浄化装置のスライドシャッターのシャッター収納部の構成を示す図である。It is a figure which shows the structure of the shutter accommodating part of the slide shutter of an air purifying apparatus. 反応管内に設けた渦巻き気流発生構成を示す図である。It is a figure which shows the spiral airflow generation | occurrence | production structure provided in the reaction tube.

光触媒を塗布した活性炭等の吸着物質を円筒形の管内内壁に固着させ、この円筒管とほぼ同等の長さを持つ光触媒励起用光源を前記円筒管内に挿入し、該内壁物質と光触媒励起用光源との距離が均一になるよう前記光源を中心部に固定したものを反応管と呼ぶ。 An adsorbent such as activated carbon coated with a photocatalyst is fixed to the inner wall of a cylindrical tube, and a photocatalyst excitation light source having a length substantially equal to the cylindrical tube is inserted into the cylindrical tube. A tube in which the light source is fixed at the center so that the distance to the tube is uniform is called a reaction tube.

前記反応管の内部が、浄化すべき気体の流路となる。 The inside of the reaction tube becomes a gas flow path to be purified.

光触媒励起用光源と光触媒機能性膜の間隔は、分解反応を効率良く行う距離に設定する。間隔については、
におて、一例が示されている。
The distance between the photocatalyst excitation light source and the photocatalytic functional film is set to a distance at which the decomposition reaction is efficiently performed. For the interval,
An example is shown here.

空気浄化装置に求められる処理能力によって、必要な数の反応管を並列に配置し各反応管内により絞り込まれた流路における空気の流速を満たすため静圧の大きなファンを設置する。 Depending on the processing capacity required for the air purifier, a required number of reaction tubes are arranged in parallel, and a fan with a high static pressure is installed to satisfy the air flow rate in the flow passages narrowed down in each reaction tube.

本発明の一実施例を説明する。空気浄化装置は、ファンと複数の反応管を集合させてなる反応管集合体により構成され、排出口側に設けた該ファンにより装置内に負圧を作り汚染空気を前記空気浄化装置内に吸い込み、汚染空気が反応管集合体の内部を通過する間に分解・吸着され、浄化された空気をファンで装置外部に送り出す。他の例では吸気口側にファンを設けて装置内に正圧を作ることで、反応管内に反応に必要な空気の流速を作り出す事でも実現できる。 An embodiment of the present invention will be described. The air purification device is composed of a reaction tube assembly in which a fan and a plurality of reaction tubes are assembled. The fan provided on the discharge port side creates a negative pressure in the device and sucks contaminated air into the air purification device. The contaminated air is decomposed and adsorbed while passing through the inside of the reaction tube assembly, and the purified air is sent out of the apparatus by a fan. In another example, a fan can be provided on the inlet side to create a positive pressure in the apparatus, thereby creating a flow rate of air necessary for the reaction in the reaction tube.

ファンの風量を低減させる場合、気体流路を反応管単位で閉じることで断面積を小さくし、ファン風量が小さくても、前記反応管内の必要な流速を確保することができる。 When reducing the air volume of the fan, the cross-sectional area is reduced by closing the gas flow path in units of reaction tubes, and the necessary flow velocity in the reaction tube can be ensured even if the fan air volume is small.

以下、本発明の実施形態について、図面に基づき、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施例では、図1に示すような反応管2が、図2のように6本の反応管集合体を構成している。空気浄化装置の処理能力と設置面積から制約される大きさによって、反応管2の並列数、配置方法は変更可能である。 In one embodiment of the present invention, the reaction tubes 2 as shown in FIG. 1 constitute six reaction tube assemblies as shown in FIG. The number and arrangement method of the reaction tubes 2 can be changed according to the size restricted by the processing capacity and the installation area of the air purifier.

反応管2は、図1のように、円筒の内壁全面にバインダーで活性炭5を固定し、光触媒機能性膜6でコートしている。 As shown in FIG. 1, the reaction tube 2 has an activated carbon 5 fixed on the entire inner wall of the cylinder with a binder and coated with a photocatalytic functional film 6.

反応管2の円筒の中心に、棒状の光触媒励起用光源4が設置されており、この光触媒励起用光源4で光触媒を励起させる。光源は、光触媒の励起と殺菌のための紫外線を効率よく発生させる機能があれば、方式を問わない。冷陰極管や熱陰極管、又はLEDなどの半導体による発光装置等でも良い。 A rod-like photocatalyst excitation light source 4 is installed at the center of the cylinder of the reaction tube 2, and the photocatalyst is excited by the photocatalyst excitation light source 4. The light source may be of any type as long as it has a function of efficiently generating ultraviolet rays for excitation and sterilization of the photocatalyst. A light emitting device such as a cold cathode tube, a hot cathode tube, or a semiconductor such as an LED may be used.

各反応管の内部が、汚染空気11の流路となる。紫外線で励起された光触媒が、VOCや臭気物質などの化学物質を分解し、活性炭5に分解生成物を吸着させている。 The inside of each reaction tube becomes a flow path of the contaminated air 11. The photocatalyst excited by ultraviolet rays decomposes chemical substances such as VOC and odorous substances, and the activated carbon 5 adsorbs the decomposition products.

前記のメカニズムにより、反応管2を通過した空気は、VOCや臭気物質が除去された清浄空気10となる。 By the mechanism described above, the air that has passed through the reaction tube 2 becomes clean air 10 from which VOCs and odorous substances have been removed.

光触媒励起用光源4の形状は、反応管2内の光触媒反応に必要な光強度が得られれば、棒状に限らず、U字管形状でも構わない。それに応じて、反応管2の断面形状も楕円等に変えることも可能である。 The shape of the photocatalyst excitation light source 4 is not limited to a rod shape but may be a U-shaped tube shape as long as the light intensity necessary for the photocatalytic reaction in the reaction tube 2 is obtained. Accordingly, the cross-sectional shape of the reaction tube 2 can be changed to an ellipse or the like.

図3は、反応管集合体と、ファン8による空気浄化装置の概略図である。 FIG. 3 is a schematic view of a reaction tube assembly and an air purification device using a fan 8.

ファン8により汚染空気11を装置内に取り込み、反応管集合体で浄化された清浄空気10を、装置の外に排出する。 Contaminated air 11 is taken into the apparatus by the fan 8, and the clean air 10 purified by the reaction tube assembly is discharged out of the apparatus.

反応管集合体は、ファン8による空気の流れの中に入るような構成であれば、その配置は図示した方法による必要はない。反応管集合体の両側にファン8が存在する形でもよい。反応管2内の流速が確保されれば、ファンの位置も規定されない。 As long as the reaction tube assembly is configured to enter the flow of air by the fan 8, the arrangement thereof does not have to be performed by the illustrated method. The fan 8 may be present on both sides of the reaction tube assembly. If the flow velocity in the reaction tube 2 is ensured, the position of the fan is not defined.

図3に示す空気浄化装置概略図において、ファンの風量と反応管内流速の関係を表したグラフは、圧力損失を無視すれば、一般的に図4のような関係になる。ファンの風量に比例して、反応管内流速は変化する。 In the schematic diagram of the air purification apparatus shown in FIG. 3, the graph showing the relationship between the air flow rate of the fan and the flow velocity in the reaction tube generally has a relationship as shown in FIG. 4 if pressure loss is ignored. The flow velocity in the reaction tube changes in proportion to the air volume of the fan.

ファンの風量は、強・中・弱のように段階的に切替えるものが一般的であるが、風量を連続的に変化させることも可能である。 The fan airflow is generally switched stepwise such as strong, medium, and weak, but the airflow can be changed continuously.

家庭やオフィス、病院などの静かな環境下、あるいは大風量での吹き出しを好まない環境下では、ファン8の風量を落として運転する場合が多くあると考えられ、その場合反応管2内を通過する空気の流速も遅くなる。 In quiet environments such as homes, offices, and hospitals, or in environments that do not like blowing with a large air volume, it is considered that there are many cases where the fan 8 is operated with a reduced air volume, in which case it passes through the reaction tube 2. The flow rate of air to be reduced is also reduced.

その結果、反応管2内の光触媒機能性膜近傍に反応生成物が滞留しやすくなり、新たな汚染空気の供給が阻害され、分解効率が悪化する。 As a result, the reaction product tends to stay in the vicinity of the photocatalytic functional film in the reaction tube 2, the supply of new contaminated air is hindered, and the decomposition efficiency deteriorates.

ファン8の風量を下げた場合でも、良好な分解効率に必要な反応管2内流速を維持するためには、気体流路断面積を小さくして、単位面積当たりの流速を上げればよい。 Even when the air volume of the fan 8 is lowered, in order to maintain the flow velocity in the reaction tube 2 necessary for good decomposition efficiency, the gas flow channel cross-sectional area may be reduced to increase the flow velocity per unit area.

排気風量は、単位面積当たりを通過する風の体積なので、単位面積と流速の積で表現される。ゆえに、ファン8の風量をパラメータとした、気体流路断面積と反応管内流速の関係は、圧力損失を無視すれば、図5のようになる。
風量が一定且つ圧力が維持されれば、通過する断面積が小さくなると、それに反して流速は速くなる。
Since the exhaust air volume is the volume of the wind passing per unit area, it is expressed by the product of the unit area and the flow velocity. Therefore, the relationship between the gas channel cross-sectional area and the flow velocity in the reaction tube with the air volume of the fan 8 as a parameter is as shown in FIG. 5 if the pressure loss is ignored.
If the air volume is constant and the pressure is maintained, the flow velocity increases as the cross sectional area passing through decreases.

また、反応管内の流速と光触媒機能性膜近傍でのVOC等分解効率のグラフは、図6のようになる。
風速が増すことで分解効率は上昇する。風速の上昇に伴って分解効率の伸びは緩くなるが、右上がりの特性を示す。
Also, a graph of the flow rate in the reaction tube and the decomposition efficiency such as VOC in the vicinity of the photocatalytic functional film is as shown in FIG.
The decomposition efficiency increases as the wind speed increases. As the wind speed increases, the decomposition efficiency slows down, but shows a characteristic of increasing to the right.

図5、図6より、ファン8の風量を下げても、気体流路断面積を小さくすることで、反応管2内の流速を確保でき、その結果、分解効率が低下するのを防ぐことができる。 From FIG. 5 and FIG. 6, even if the air volume of the fan 8 is lowered, the flow velocity in the reaction tube 2 can be secured by reducing the gas flow path cross-sectional area, and as a result, the degradation efficiency can be prevented from being lowered. it can.

次に、気体流路断面積を調整する方法について説明する。 Next, a method for adjusting the gas channel cross-sectional area will be described.

反応管集合体は、図2のように、複数の反応管2で構成されている。 The reaction tube assembly is composed of a plurality of reaction tubes 2 as shown in FIG.

反応管集合体のうち、一部の反応管2の吸気口に蓋をすることで、蓋のない反応管2内の流速を上げることができる。図3のような空気浄化装置においては、反応管2の両端口で、ファン8に遠い方が吸気口となる。 By covering the inlets of some of the reaction tubes 2 in the reaction tube assembly, the flow velocity in the reaction tubes 2 without the lid can be increased. In the air purification apparatus as shown in FIG. 3, at the both ends of the reaction tube 2, the one far from the fan 8 becomes the intake port.

蓋の一例を図7に示す。図7は1枚の蓋13で、全6本の反応管2のうち、3本の反応管2の吸気口を閉じることができる。これにより、空気が通過する空間は半分となり、圧力損失を無視した一般的な解釈では、蓋のない反応管2内の流速は蓋をする前の2倍となり、ファン8の風量低下による分解効率低下を抑えることができる。 An example of the lid is shown in FIG. In FIG. 7, one lid 13 can close the intake ports of three reaction tubes 2 among all six reaction tubes 2. As a result, the space through which air passes is halved, and in a general interpretation ignoring the pressure loss, the flow velocity in the reaction tube 2 without the lid is twice that before the lid is closed, and the decomposition efficiency due to the decrease in the air volume of the fan 8 The decrease can be suppressed.

別の蓋の例を、図8に示す。図8は、蓋13が反応管毎に分離されていて、反応管を個別に閉じることができる。図8では、蓋を付けた反応管は3本であるが、全6本にそれぞれ蓋を付けることで、6本の反応管それぞれに蓋をするか否かの制御が可能となり、全てを閉じての動作は無いものの、調整の範囲が広がる。 Another lid example is shown in FIG. In FIG. 8, the lid 13 is separated for each reaction tube, and the reaction tube can be closed individually. In FIG. 8, there are three reaction tubes with lids. However, by attaching lids to all six tubes, it becomes possible to control whether or not the six reaction tubes are to be covered. Although there is no operation, the range of adjustment is expanded.

図7、図8は一例としてドアタイプの蓋の例を示したが、方式はこの例に拘らない。反応管2の吸気口或いは排気口の開閉制御ができるものであれば、他の方式でも構わない。 7 and 8 show an example of a door-type lid as an example, but the method is not limited to this example. Any other method may be used as long as it can control opening and closing of the intake port or the exhaust port of the reaction tube 2.

図7、8では反応管2の吸気口を個別に開閉することで、吸気口が閉じていない残りの反応管2内の流速を確保する方法例を示したが、開閉の方法として空気浄化装置の吸気口を段階的に調整することも可能である。 7 and 8 show an example of a method for securing the flow velocity in the remaining reaction tubes 2 where the intake ports are not closed by individually opening and closing the intake ports of the reaction tubes 2. It is also possible to adjust the inlet of the air in stages.

図9の例では、空気浄化装置の反応管毎の吸気口部面積を調整するシャッター形式の遮蔽板を設けることで、反応管集合体の個々の反応管内の流速を調整することができる。 In the example of FIG. 9, by providing a shutter-type shielding plate that adjusts the intake port area for each reaction tube of the air purification device, the flow velocity in each reaction tube of the reaction tube assembly can be adjusted.

図10のように、両側からスライド式シャッター9を出し入れして、吸気口を反応管単位で個別に完全に閉じて面積を調整する方法が考えられる。図11のように、両側のシャッターを空気浄化装置の筐体内壁に沿うように収納すれば、シャッターを追加することで変わる空気浄化装置筐体1の大きさを、最小限に抑えることができる。 As shown in FIG. 10, a method of adjusting the area by inserting / removing the sliding shutter 9 from both sides and individually closing the intake port individually for each reaction tube is conceivable. If the shutters on both sides are housed along the inner wall of the housing of the air purification device as shown in FIG. 11, the size of the air purification device housing 1 that is changed by adding the shutter can be minimized. .

全体の風量を下げながら、反応管内の光触媒機能性膜表面流速を確保する別の方法として、反応管内に渦巻き状の流れを起こさせるために、図12のような空気に渦巻き気流を発生させるための回転案内羽根14を光触媒励起用光源からの光を阻害しない形で、吸気口や反応管内の一部あるいは複数個所に設けることも有効である。 As another method for ensuring the surface flow rate of the photocatalytic functional film in the reaction tube while reducing the total air flow, in order to generate a spiral flow in the reaction tube, a spiral air flow is generated in the air as shown in FIG. It is also effective to provide the rotary guide vanes 14 in a part or a plurality of locations in the intake port or reaction tube so as not to obstruct the light from the photocatalyst excitation light source.

1 空気浄化装置筐体、 2 反応管、 3 バインダーを塗布した反応管内壁、 4 光触媒励起用光源、 5 活性炭、 6 光触媒機能性膜、 7 光触媒励起用光源電極、 8 ファン、 9 スライド式シャッター、 10 清浄空気、 11 汚染空気、 12 空気浄化装置吸気口、
13 蓋、14 回転案内羽根。
DESCRIPTION OF SYMBOLS 1 Air purifier housing | casing, 2 Reaction tube, 3 Inner wall coated with binder, 4 Light source for photocatalyst excitation, 5 Activated carbon, 6 Photocatalyst functional film, 7 Light source electrode for photocatalyst excitation, 8 Fan, 9 Sliding shutter, 10 Clean air, 11 Contaminated air, 12 Air purifier air inlet,
13 lid, 14 rotating guide vanes.

Claims (3)

光触媒機能性膜と光触媒励起用光源と活性炭等の吸着物質で構成される複数の反応管と、各反応管に汚染空気を導入するファンを有する空気浄化装置において、前記空気浄化装置内部の各反応管を選択的に使用する事で空気が流れる気体流路断面積を変更する手段を有し、風量が減少した時は前記気体流路断面積を減少させ前記空気浄化装置内の各反応管を流れる空気の線流速を確保することを特徴とする汚染空気の分解効率の低下を生じない空気浄化装置。 Each reaction inside the air purification device in the air purification device having a photocatalyst functional film, a light source for photocatalyst excitation, a plurality of reaction tubes composed of an adsorbent such as activated carbon, and a fan for introducing contaminated air into each reaction tube By selectively using a pipe, it has means for changing the cross-sectional area of the gas flow path through which air flows, and when the air volume is reduced, the cross-sectional area of the gas flow path is decreased and each reaction pipe in the air purifier is An air purification apparatus that ensures a linear flow velocity of flowing air and does not cause degradation of the decomposition efficiency of contaminated air. 請求項1に記載の空気浄化装置において、前記気体流路断面積を好適にし、前記分解効率を下げないことを特徴とする汚染空気の分解効率の低下を生じない空気浄化装置。 2. The air purification device according to claim 1, wherein the gas flow passage cross-sectional area is preferably set and the decomposition efficiency is not lowered, and the degradation efficiency of contaminated air is not reduced. 請求項1に記載の空気浄化装置において、反応管内に空気の渦を発生させる機構を取り付けて、流速を増し、管内に滞留する空気を剥ぎ取らせることを特徴とする汚染空気の分解効率の低下を生じない空気浄化装置。
2. The air purification apparatus according to claim 1, wherein a mechanism for generating an air vortex in the reaction tube is attached, the flow rate is increased, and the air staying in the tube is stripped off. No air purification device.
JP2014239466A 2014-11-27 2014-11-27 Air purification system preventing reduction in decomposition efficiency of contaminated air Pending JP2016101187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014239466A JP2016101187A (en) 2014-11-27 2014-11-27 Air purification system preventing reduction in decomposition efficiency of contaminated air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014239466A JP2016101187A (en) 2014-11-27 2014-11-27 Air purification system preventing reduction in decomposition efficiency of contaminated air

Publications (1)

Publication Number Publication Date
JP2016101187A true JP2016101187A (en) 2016-06-02

Family

ID=56087735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014239466A Pending JP2016101187A (en) 2014-11-27 2014-11-27 Air purification system preventing reduction in decomposition efficiency of contaminated air

Country Status (1)

Country Link
JP (1) JP2016101187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181069B1 (en) * 2020-07-08 2020-11-20 김정근 Photo-catalyst purifying apparatus for air sterilization purifying and lighting apparatus using the same
CN112334161A (en) * 2018-11-30 2021-02-05 首尔伟傲世有限公司 Fluid processing module and storage apparatus including the same
JP7255004B1 (en) 2022-08-05 2023-04-10 ナカ電子株式会社 Virus inactivation device and method by ultraviolet irradiation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262606A (en) * 1999-03-19 2000-09-26 Takamasa Iwasaru Air purifying device
JP2001061949A (en) * 1999-08-27 2001-03-13 Fujitec:Kk Deodorizing apparatus
JP2009284955A (en) * 2008-05-27 2009-12-10 I-Quark Corp Air purifier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000262606A (en) * 1999-03-19 2000-09-26 Takamasa Iwasaru Air purifying device
JP2001061949A (en) * 1999-08-27 2001-03-13 Fujitec:Kk Deodorizing apparatus
JP2009284955A (en) * 2008-05-27 2009-12-10 I-Quark Corp Air purifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112334161A (en) * 2018-11-30 2021-02-05 首尔伟傲世有限公司 Fluid processing module and storage apparatus including the same
KR102181069B1 (en) * 2020-07-08 2020-11-20 김정근 Photo-catalyst purifying apparatus for air sterilization purifying and lighting apparatus using the same
JP7255004B1 (en) 2022-08-05 2023-04-10 ナカ電子株式会社 Virus inactivation device and method by ultraviolet irradiation
JP2024022373A (en) * 2022-08-05 2024-02-16 ナカ電子株式会社 Apparatus and method for deactivating virus by ultraviolet irradiation

Similar Documents

Publication Publication Date Title
CN107202396B (en) Dual cycle formula new trend system and new fan
CN111780276B (en) Efficient photoelectric-cycle alternate-sterilization air disinfection equipment
US10010644B2 (en) Photocatalytic device for ductless heating and air conditioning systems
KR101676817B1 (en) Radiation type space sterilizer
RU189481U1 (en) Installation for air disinfection
KR102311002B1 (en) A multifunctional filter assembly for air conditioners and air conditioner with this
KR20110135526A (en) Ceiling air cleaning device
JP2016101187A (en) Air purification system preventing reduction in decomposition efficiency of contaminated air
KR101043967B1 (en) Air purifier for front door
KR101081858B1 (en) Apparatus for sterilizing and deodorizing air
CN110749022A (en) Sterile workshop purifying and ventilating system
KR100858520B1 (en) Air cleaning system using ventilation unit
CN203454284U (en) Commercial media air purification sterilizer
JP2018143636A (en) Reaction tube and air purification device
CN205252140U (en) Wind channel type plasma air purification degassing unit
KR200443340Y1 (en) Air Sterilizer equipped with dual fan and dual case
CN213657041U (en) Medical operating room air purification degassing unit
CN210892032U (en) Sterile workshop purifying and ventilating system
KR20070036763A (en) A ventilation unit using the phi module
CN218599943U (en) Sterilizing machine
CN216716459U (en) Negative pressure fresh air ion deodorization system
CN205606775U (en) Novel central air conditioning purifies device
KR20220006358A (en) Filter And Structure Of Negative Pressure Making Apparatus Using The Same
KR102116370B1 (en) Air cleaner sterilizer
CN212408918U (en) Air purification device of hoist and mount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305